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ABSTRACT 

Lignin is a high-volume farm waste and environmental hazard of paper and pulp 

industries. To promote the utilization of its rich aromatic units into important chemicals 

and fuels, efforts were intensively made to breakdown lignin structure with a variety of 

depolymerization processes involving heating, solvent, and catalysts or their 

combination. Among those processes, ethanolysis in supercritical conditions shows 

promising performance for its high lignin conversion and little char formation. To 

improve the yield and selectivity of aromatics, particularly phenols, we examined the 

important roles of acidity and pore structure of different zeolite catalyst play in this 

process. Zeolites with close micropores and acidity defined by their crystal structures 

including Beta, Y, and ZSM-5 were first examined. Zeolites with the same microporous 

structure but different acidic strength caused by various H-type sites were further 

evaluated. Comparisons were further made between HZSM-5 and HY zeolites with 

unique mesoporous structures and their counterparts with exclusive micropores. Despite 

the complexity of lignin depolymerization and its greatly diversified products, strong 

acidity was found effective to cleave both the C-O-C and C-C linkages on lignin structure 

to receive more phenols while mild acidity works mainly in ether bond breakdown. When 

the diffusion issues of gigantic lignin intermediate and monomer products are severe 

(e.g., in microporous zeolites), overall yield and selectivity of lignin depolymerization 

products fall and the pore size of catalyst becomes dominant between the two key factors. 

Like in many petrochemical reactions involving bulky molecules, hierarchical pore 
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structure also is important to promote mass transport and increase the exposure and 

utilization of acidic site inside zeolite catalysts. At the presence of mesopores in zeolites, 

their pore configuration is less sensitive when comparing with the acidity to decide the 

yield and selectivity to phenols of C8-C11. These findings provide important guidelines on 

the selection and design of zeolites with appropriate acidity and pore structure to 

facilitate lignin depolymerization or other cracking processes. 

The products of lignin depolymerization are a mixture of various organic 

compounds including alcohols, ester, phenols, and other large hydrocarbons with high 

oxygen content (up to 40 wt.%), poor thermal stability, and low heating values (16-19 

mJ/kg), insuitable to serve as alternative or replacement to fossil fuel. Hydrotreating step, 

a classic refinery process to remove oxygen and other unwanted elements in oil by adding 

hydrogen, is often suggested for the upgrading of bio-oil to increase its C/O ratio, 

improve its energy density, stability, as well as other required fuel properties. We 

successfully synthesized new mesoporous zeolites, Meso-ZSM-5, via solid-state 

crystallization of dry aluminosilicate nanogels. Palladium was further loaded on these 

zeolites to form a bi-functional catalyst (Pd/Meso-ZSM-5). When used in the 

hydrodeoxygenation of guaiacol, a major lignin depolymerization compound, Pd/Meso-

ZSM-5 exhibits superior guaiacol conversion and product distribution when compared 

with those supported on conventional microporous ZSM-5 counterparts. This is attributed 

to the improved diffusion and accessibility of active sites inside Meso-ZSM-5 with its 

unique hierarchically porous structure formed through neighbor nanocrystals connecting 

at edges. Ring saturated hydrocarbons are largely produced at 200 °C when 

hydrogenation dominates while alkaylated aromatics become major HDO products as 
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deoxygenation becomes favorable at 250 °C. Unlike the disappointing conversion and 

severe coking issue over many HDO catalysts, this catalyst shows excellent anti-coking 

performance at various temperature conditions. These encouraging results demonstrated 

the great potential of Pd/Meso-ZSM-5 catalyst in bio-oil upgrading processes and may 

ignite the wide use in emerging renewable energy fields as well as many other reactions 

in traditional fossil fuel industrials. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1 Research Problems 

1.1.1 Biomass, Bio-oil, and Bioenergy 

As a future means of securing the energy supply, depolymerization of biomass 

has growing worth (Singh, S. et al., 2014).  It allows for reduction of fossil fuel 

emissions, provides a source of platform chemicals and supports the rural economy while 

reducing fossil fuel CO2 emissions.  First generation fuels and chemicals for this are high 

value sugars and oils.  Second generation fuels and chemicals are in development, and are 

based on a cheaper source, lignocellulosic feedstock.  The cell wall is composed of 

cellulose, hemicellulose, and lignin, with lignin being of primary importance.  Lignin is 

amorphous, aromatic, and insoluble in water.  It is a three-dimensional heterogeneous 

cross-linked polymer with low viscosity.  It is very hard to isolate lignin from 

ligninocellulose due to its complex nature and must be modified to do so.  Because lignin 

has reactions of carbon centered radicals leading to formation of new carbon-carbon 

linkages and thus char formation, it shows a refractory behavior towards conversion to 

low molecular weight compounds that can be used as starter chemicals and fuel additives. 
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1.1.2 Lignin Depolymerization 

To separate lignin from the lignocellulosic biomass and further depolymerize it 

into a useable form to produce different biofuels and bioproducts various methods have 

been developed.  Lignin depolymerization breaks down the complex aromatic structures 

into simple compounds that can be used to make commercially important chemicals and 

biofuels. Lignin depolymerization can be done by several chemical methods.  Those are 

thermal (e.g., pyrolysis, gasification), chemical (hydrogenolysis, ethanolysis, oxidation, 

combustion) and thermochemical processes (combustion), depending upon what type of 

lignin, which method uses depolymerization, and how efficient the degradation is for 

particular products (Protasio, T. et al., 2013).  Hierarchically structured zeolites are 

widely used in these depolymerization processes due to their unique solid acidity and 

tunable pore structures.   

1.1.3 Lignin Depolymerization Product Upgrading 

The liquid bio oil from lignin depolymerization contains a significantly high 

oxygen content (up to 40 wt.%) and upgrading is required prior to its use as high-valued 

chemicals and fuels.  Hydrodeoxygenation (HDO) serves as an efficient way to 

simultaneously reduce the O/C ratio and increase the H/C ratio of bio oil to improve its 

quality. HDO of bio-oil is done using two kinds of traditional hydrotreating catalysts, but 

with either transition metal or precious metal loaded on solid acidic supports with 

hierarchical porous structure.  Product yields from these catalysts are either partially 

hydrogenated oxygen-containing ones, e.g. phenol, catechol, cyclohexanol, or totally 

hydrogenated compounds such as benzene and cyclohexane.  Serious catalyst 
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deactivation arises because of the low stability of the lignin depolymerization product 

molecules.      

1.2 Objectives and Approaches 

In this dissertation project, we focus on investigating zeolites with appropriate 

acidity and unique pore structure to improve the lignin depolymerization in supercritical 

ethanol and its product from further upgrading with hydrodeoxygenation processes. 

Specifically, the following objectives and approaches are adopted: 

1.2.1 Investigate Roles of Acidity and Pore Structures of Zeolites on Lignin 

Depolymerization in Supercritical Ethanol 

We first examined the role that the solid acidity and pore structure of different 

zeolites play on lignin depolymerization in supercritical ethanol from the following 

aspects: 

1. compare the lignin depolymerization performance on zeolites with similar 

micropore size (HZSM-5 and HBeta types) and similar solid acidity (HBeta 

and HY types), 

2. compare the lignin depolymerization performance over zeolites with the same 

microporous structure but different acidic strength tailored by various ion-

exchange levels, 

3. compare the lignin depolymerization performance over HZSM-5 and HY 

zeolites with fin-like and worm-like mesoporous structures and their 

counterparts with exclusive micropores, 

4. targeting effective cleavage of the C-O-C and C-C linkages on lignin structure 

and yield of phenol products. 
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1.2.2 Explore Hydrodeoxygenation of Bio-Oil Component with New Palladium 

Catalyst Supported on ZSM-5 with Novel Mesoporous Structure (Pd/Meso-ZSM-5) 

We then examined the hydrodeoxygenation of a classical lignin depolymerization 

product component, guaiacol, over Pd/Meso-ZSM-5 from the following aspects: 

1. how the new catalyst system contributes to guaiacol conversion and product 

distribution when compared with those supported on conventional 

microporous ZSM-5 counterparts,  

2. how the new catalyst system contributes to improvement on diffusion and 

accessibility of active sites inside Meso-ZSM-5 with its unique hierarchically 

porous structure, 

3. how the new catalyst system contributes to the improvement on anti-coking 

performance at various temperature conditions when compared with catalyst 

supported on conventional microporous ZSM-5 zeolites. 

1.3 Dissertation Structure 

Chapter 1 outlines the research problems and objectives of this research project. It 

also introduces briefly the research approaches and organization of this dissertation. 

Chapter 2 provides a literature review of relevant research work. This review includes the 

overview of biomass, bioenergy, and bio-oil, various lignin depolymerization processes, 

lignin depolymerization product upgrading through hydrodeoxygenation, and the current 

state of one major catalyst and catalyst support—zeolites widely used in both lignin 

depolymerization and depolymerization product upgrading processes. Chapter 3 

investigates the important roles acidity and pore structure of different zeolites play in 

lignin depolymerization in supercritical ethanol process. Chapter 4 demonstrates the great 
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potential of palladium/ZSM-5 with unique mesoporous structure catalyst in bio-oil 

upgrading. Chapter 5 summarizes the findings of the entire dissertation and recommends 

some work worthy of further exploration.  
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CHAPTER 2 

 

LITERATURE REVIEW 
 

2.1 Biomass as a Renewable Energy Source 

Increased worldwide dependence on non-renewable fossil fuels and their 

excessive use, particularly as transportation fuels, has caused serious consequences; 

foremost are global warming and potential energy crises (Pang, S. et al., 2010).  Overuse 

has resulted in dwindling fossil fuel reserves, which may greatly impact our daily lives as 

well as the energy supply security and economic development of many countries (Guo, 

M. et al., 2015).  Increased greenhouse gas emissions, chiefly carbon dioxide of which 

two-thirds is caused by road transportation, is considered as directly responsible for 

global warming (Guo, M. et al., 2015; Pang, S. et al., 2010; Protasio, T et al., 2013). 

These challenges have triggered the investment and involvement in the utilization of 

renewable energy, which is nowadays the subject of multiple government policies (Guo, 

M. et al., 2015). Among a variety of renewable energy forms, bioenergy and biofuel 

alternatives seem attractive for multiple reasons.  In terms of greenhouse gas emissions, it 

can thus be said that that biomass is simply solar energy that has been captured.  And, 

increasing the use of this bioenergy is a prime opportunity to reduce emissions of fossil 

fuels (Bernier, P. et al., 2013). In addition, for many countries, biomass is abundant and 

the use of bioenergy accounts for a sizeable volume of renewable energy production 

(Castillo-Villar, K. K. et al., 2014).   
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Because of advantages, including no harmful emissions and abundant energy 

production, the use of bioenergy has drawn great attention from many countries in the 

past decade as an excellent source of alternative energy.  In the EU, for example, reliance 

on fossil fuel has increased in the past few decades to the extent that nearly 84% of the 

transport fossil fuel is imported (Guo, M. et al., 2015).  In the United States, government 

policy directives require 100 billion liters of biofuel by the year 2022 (Roth, B. et al., 

2015).  However, great challenges still exist on its massive and economical use. For 

examples, biomass is bulky with a low energy density, and issues with its seasonal supply 

are the primary obstacles precluding the use of biomass as a feasible energy source. 

Another hindrance is logistics costs.  Besides the price, it is still debatable on the 

economic and environmental benefits bioenergy can bring to the world. We believe the 

answers are heavily dependent on which region is designated for its product, what kind of 

conversion technologies are available, and what products we receive eventually from this 

natural renewable energy format.  

Plant biomass thus has been acknowledged as the most likely choice for fuels and 

energy (Pang, S. et al., 2010). Investigations have been done on materials like forest 

residues including wood chips and sawdust as well as similar agricultural residues such 

as grass and crop waste (e.g., rice husks, coffee waste, sugar cane bagasse and bamboo 

cellulose pulp) (Pang, S. et al., 2010; Protasio, T et al., 2013). These forms of biomass 

are obtained from trees or crops that absorb carbon dioxide (CO2) needed for 

photosynthesis so that they may grow.  Large scale production of such biomass can not 

only increase profit of local businesses, but also potentially reduce the emissions of 

greenhouse gases, making the bioenergy production process become essentially a 
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supportable, renewable, and carbon dioxide neutral energy resource (Pang, S. et al., 

2010). When properly managed, this allows not only replacement of fossil fuels (Roth, et 

al., 2015), but also benefits to the ecosystems of developing countries where the halting 

of deforestation, soil degradation, and enhancement of the carbon pool reduces 

greenhouse gas emissions considerably.   

Assessment of sustainable bioenergy from forest products is fundamental in 

biofuel production and the search for alternative energy sources (Sacchelli, S. et al., 

2016).  Biomass extraction can be done on multiple levels in an ecosystem and can be 

analyzed using multiple parameters.  Wood and energy supply and demand can be based 

on regional levels, and should not be localized so that more diverse evaluations can be 

made.  Territorial features should not be limited to only reduction of CO2 emissions, but 

should encompass factors like forest fire risk reduction, estimation of biomass supply and 

demand, biomass quality, and local environment characteristics (Sacchelli, S. et al., 

2016).   Particularly, this is when reforestation and regeneration of crops is a factor 

(Zanchi, G. et al., 2012).  Annual crops and felled forests cause a delay of many years to 

renew.  This time period causes a delay between emissions of biofuels and their renewal 

or regrowth (Zanchi, G. et al., 2012). 

All biomass has three major components, cellulose, hemicellulose, and lignin. 

Lignocellulosic component is the most abundant polymer on earth and is the waste of 

agriculture business, but is the product produced in pulp mills and used for paper and 

packaging business (Chen, J. et al., 2016). Lignocellulosic biomass components are the 

primarily byproduct of these industries. Lignin’s high density gives a high combustion 

yield and thus great heating values (Protasio, T. et al., 2013).  Fifty million tons of lignin 
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is estimated to be produced annually across the world, among which one third is burned 

to produce waste heat and electricity in the paper mills themselves. Such large quantities 

provide an almost unlimited supply for the manufacture of biofuels.  Separating cellulose 

in the lignin-hemicellulose matrix increases its degradation by enzymatic or other means 

to convert each component into useable forms of chemicals and fuels that is imperative to 

their full utilization. The lignin molecule structure consists of a guaiacly, syringyl, and p-

hydxoyphenly propane units in a three-dimensional configuration (Chen, J. et al., 2016).   

Traditionally, pyrolysis is used to convert the ligninocellulosic biomass into small 

molecules containing aromatic ring structures.  Desirable other functional groups 

produced are phenolic hydroxyl, alcoholic hydroxyl, and meothxy and carboxyl groups.  

These latter groups give lignin a highly reactive nature, and so the lignin is subjected to 

further processing into renewable biofuels.  Progress has been made on lignin 

decomposition rates, the product yield and selectivity of its diverse products, and 

potential applications of decomposition products (e.g., propanone and phenol 

compounds) as gasoline and jet fuel in internal combustion engines without any need for 

modification to those already existing engines. 

2.2 Lignin Depolymerization 

Due to its high energy content, lignin is used as a fuel energy source, with over 

95% of all produced lignin has been for fuels and combustion (Wang, H. et al., 2013). 

Lignin depolymerization is intended to convert lignin from a complex compound into 

small but high-valued aromatic chemical molecules to be used as fuels and other basic 

chemicals, instead of simply burning for heating  (Wang, H. et al., 2013; ArneStahl, A. et 

al., 2014). Some lignin types, particularly those containing sulphonates, can be made into 
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vanillin and similar products. Depolymerization of lignin is also useful for a variety of 

transportation fuels (Wang, H. et al., 2013).  Butanol and biodiesel are of particular 

importance (Welker, C. et al., 2015).  Such applications are shown considerable increase 

in use as petroleum prices escalate and demand for renewable energy increases (Wang, 

H. et al., 2013). 

As for lignin, it is comprised of polyaromatics with several basic phenol units 

(i.e., coumaryl, coniferyl, and sinapyl), which can become high-value aromatic feedstock 

and/or high-quality fuels. Pyrolysis (or other thermal processes) and solvent assisted 

processes have been introduced to help improve the cleavage efficiency of C-O-C and C-

C linkages in its structure to release the rich phenol-type aromatics. There are three main 

classes of potential processes under consideration for depolymerization of lignin (Roth, 

B. et al., 2015).  They are high temperature thermal conversion, gasification, or pyrolysis 

that deliver light gaseous and condensable molecules that are subsequently transformed 

by established chemical processes. Renewable fuels can be similarly produced using 

pyrolysis and gasification. The products of these processes may further be transformed 

into aromatic compounds including benzene, toluene, xylene, and phenol through 

Fischer-Troph conversion of syngas, low temperature catalytic or enzymatic conversion 

that lead to high value products (Roth, B. et al., 2015).  

Most methods of depolymerization create poor products in low yields, but the 

depolymerization of oxidized lignin in acidic conditions can improve yields.  Rahimi, et 

al. (ArneStahl, A. et al., 2014) proposed a method that used aqueous formic acid to 

depolymerize oxidized lignin, primarily by C-O-C bond cleavage, with a more than 60% 

yield of low molecular weight aromatics (ArneStahl, A. et al., 2014).  But oxidation 
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causes some loss of carbon from lignin structure, making direct depolymerization a more 

favorable process in lignin utilization. However, lignin’s complex structure makes it 

challenging to direct degrade completely.  This has resulted in recent efforts in using 

catalysts to decompose the lignin. Catalysis have high activity, selectivity, and stability 

and so lend themselves well to use in lignin-to-chemicals conversion and the liquid 

products are then readily used in place of fossil fuels for energy sources and other 

valuable feedstocks (Chen, J. et al., 2016).      

2.2.1 Thermal Depolymerization 

When lignin undergoes pyrolysis, it is subjected to temperatures ranging from 

300-1000 °C in the absence of air. Thermal decomposition of lignin results in three 

groups of products (Lou, R. et al., 2010).  They are the condensed liquid, the solid, and 

light gas. Because all plants vary in their chemical composition, this causes variations in 

the decomposed lignin product composition (Lou, R. et al., 2010).   The solid is called 

the biochar and the light gas contains the CO, CO2, CH4, and other trace light 

hydrocarbon gases.  The condensed liquid contains the hydrocarbons, aromatics, ketones, 

and phenolics as the bio-oil. Among all products, liquid bio-oils are the most abundant, 

generally comprising three-fourths of the total products of lignin thermal decomposition 

(Sukhbaatar, B. et al., 2009).   

Other useful organic products in bio oils include acids (Sukhbaatar, B. et al., 

2009; Nimmanwudipong, T. et al., 2011).  Acetic acid and formic acid are prime 

examples of water-soluble components useful for food products (Abdullah, N. et al., 

2013).  These can be removed from the biofuels using ion-exchange resins made by 

produced phenol-formaldehyde resins.   Lignin biomass is also a source of methyl tert-
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butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether (Dautzenberg, G. et al., 

2011).  These alkyl ethers improve combustion efficiency and enhance the octane number 

in gasoline.  Biomass feedstocks are rich in heteroatoms, O and N, unlike typical 

petroleum-based feedstocks (Luque, R. 2014).  Typical feedstocks are high in C and H.  

Removal of C and H require multiple steps to remove these molecules generating large 

heat losses.  These difficulties in crude oil processing are insignificant when processing 

biomass to biofuels because the biomass feedstocks are in a comparable energy state as 

the products (Luque, R. 2014).  Structurally, biomass contains cellulose and lignin 

(Mohammed, I., et al., 2015; Hughes, S. et al., 2014).  Because lignin has a complex 

structure, it is difficult to separate it from lignocellulosic biomass for conversion to useful 

products without extensive alteration.  These readily lend themselves to bio-oil 

production. Structural analysis shows that biomass has considerable cellulose and lignin 

contents which are good candidates for good quality bio-oil production. And, these have 

low levels of sulfur and nitrogen, and produce little char when thermally decomposed, 

making them quite environmentally sound (Mohammed, I., et al., 2015). 

2.2.2 Solvent Assisted Depolymerization 

Typical pyrolytic processes result in extensive formation of char due to reactions 

in which carbon centered radicals recombine and form new C-C linkages. Therefore, it is 

necessary to use other methods for conversion to biofuels. No practical methods exist for 

depolymerizing lignin using microorganisms or biological methods because lignin is not 

a good metabolic carbon or energy source (Chai, L. et al., 2014).  New investigation 

comprises using solvents as conversion agents, often in the presence of catalysts (Singh, 

S. et al., 2014).  Catalysts include water, acids, bases, methanol, ethanol, and ethylene 
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glycol.  Choosing these compounds as catalysts also reduces the chance for 

repolymerization and char formation common in current pyrolytic decomposition 

methods and promote greater production of lignin to bio-fuels (Singh, S. et al., 2014). 

Depolymerization can also be assisted with chemical agents. Depending on which 

chemical additive is used, lignin depolymerization can be categorized into five main 

areas:  base-catalyzed, acid-catalyzed, metal-catalyzed, ionic liquid-assisted, and 

supercritical fluid-assisted (Wang, H. et al., 2013).   Repolymerization remains an issue, 

and other additives can be introduced in the depolymerization reaction vessel to prevent it 

(Diop, A. et al., 2015).  Phenol can be added to suppress repolymerization and reduce 

char.   This is useful when using methanol as the solvent and increases the amounts of 

phenolic products (Diop, A. et al., 2015). In many cases, the combination of solvent and 

catalysts is used to maximize the lignin conversion and product yield or selectivity.   

2.2.2.1 Solvent Assisted Depolymerization 

To mitigate the substantial char formation in pyrolysis depolymerization 

processes, in more recent years, solvent –based conversion methods have been used 

(Pang, S. et al., 2010).  By using water and alcohols catalyzed by homogenous bases or 

acids, effective depolymerization with noteworthy reduction in char creation is possible 

(Pang, S. et al., 2010).  Water can be used to provide a reaction medium for biomass 

conversion because it is the most plentiful, environmentally gentle solvent with exciting 

physiochemical properties at high temperature.  Water at high temperatures is favorable 

for the removal of oxygen from biomass with an appropriate catalyst because it shows up 

to 3 folds of ionic product and an improved stability for small organic compounds and a 

lower dielectric constant.  Using a common alcohol like methanol or ethanol or ethylene 



14 

 

 

glycol used as the solvent for lignin depolymerization has become a hopeful approach 

and is quite effective in avoiding repolymerzation of depolymerized lignin and 

consequent formation of char.   

In many cases, solvents such as methanol serve as hydrogen donors in lignin 

conversion.  To maximize the roles as hydrogen donor, water or other organic solvents in 

supercritical conditions were used for lignin depolymerization. For water, this is at 

temperatures ranging from 473K to 663K and pressure above 25 MPa.  At supercritical 

conditions, water has a lower dielectric constant, weaker hydrogen bonds, and a high 

isothermal compressibility, making it especially useful for biomass decomposition 

reactions.  If inorganic salts are involved, it is often preferable to have supercritical water 

as water with inorganic salts have relatively good solubility. But there are drawbacks to 

water in supercritical conditions, mainly coming from the harsh temperature and pressure 

conditions to reach supercritical conditions. This gives opportunities to other solvents 

such as alcohol or acetone whose supercritical conditions are relatively easier to 

accomplish. If operation conditions are suitable, there is high phenolic compound 

production and reduction of char formation as phenol acts as a capping agent (Bernier, P. 

et al., 2013).   

The lignin can be depolymerized, if under subcritical and supercritical conditions, 

>290 °C and 25-40 MPa, which produces aromatic monomers and gases. If Kraft or 

organosolv lignin is treated with soluble bases, KOH, NaOH, and CsOH, in CH3OH or 

C2H5OH under supercritical conditions, chatechols and phenols are produced.   Another 

method of yielding phenols and gases is to treat the lignin with supercritical water with p-

cresol as the solvent.  For the depolymerization of organosolv lignin, if a supercritical 
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CO2/acetone/water fluid system is used at temperatures of 300-370 °C at 10 MPa 

pressure results in aromatic products, chiefly syringol and guaiacol.  Even though all 

these methods can be used to depolymerize lignin, there are major disadvantages, 

particularly the high temperatures and high pressures.  Because of the high temperatures 

there is also the risk of corrosion and loss of selectivity to aromatic monomers, which 

react further to produce gases, tar, and char.   

2.2.3 Metal Supported Catalyst Depolymerization 

In the presence of heterogeneous catalysts, such as metal supported catalysts 

including Pt, Ru, Pd, Ni, Co-Mo, and Ni-Mo on C, Al2O3, SiO2, and combinations of the 

two latter and zeolites, depolymerziation reactions occur readily. When these are used, at 

temperatures of 150-300 °C lignin undergoes about 50% conversion and aromatic 

monomers and gases are formed.  But there are drawbacks to this method, because using 

expensive H2 is required and there is difficulty in catalyst recyclability due to sintering 

and leaching of the metals (Guo, M. et al., 2015).     

  In the case of metal supported catalysts, a study was done using a Ni-based 

catalyst for native birchwood lignin conversion (Guo, M. et al., 2015).  This had a very 

high selectivity to monomeric phenols including propyl guaiacol and propyl syringol.  

More recently, a NiAu bimetallic catalyst was developed for the efficient hydrogenolysis 

of organosolv lignin into aromatic monomers under milder reaction conditions, e.g. low 

temperatures, in water.  Also evaluated in hydrogenolysys of lignin C-O bonds into 

monomeric aromatic alcohols were NiRu, NiRh, and NiPd bimetallic catalysts at 100 °C 

and 0.1MPa pressure.  Using a tungsten phosphide in hot compressed water-ethanol 

solvent at 280 °C and 2 MPa of H2 resulted in production of phenols from alkaline lignin.  
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Kraft lignin can be converted into C6-C10 esters, alcohols, arenes, phenols, and benzyl 

alcohols by using a process that utilized a nanostructured MoC catalyst at 280 °C in pure 

ethanol.  For the hydrogenolysis and depolymerizatoin of organosolv lignin and the 

succeeding aromatic ring hydrogenation a single step method was studied using Cu-

doped porous metal oxide in supercritical methanol at 300 °C.  It has also been shown 

that lignin can be base-catalyzed depolymerized into aromatic monomers, or the BCD 

method.  For this, at temperatures above 260 °C in the presence of nitrogen to obtain 

aromatic monomers, homogeneous bases can be used, including NaOH, KOH, and 

CsOH.  The BCD method is not without its inadequacies.  Harsh conditions, low 

selectivity toward desired aromatic product formation, necessity of a neutralization step, 

and corrosion of the reactor system are considerations.  One alternative is to use a Ni-

supported layered double hydroxide, or hydrotalcite.  It could depolymerize the lignin 

without the use of external hydrogen and reduced metal (Guo, M. et al., 2015).  To 

convert lignocellulosic solids into liquid fuels of C2-C6, or aliphatic alcohols, Cu-doped 

hydrotalcite based porous metal oxides in supercritical MeOH can be used (Guo, M. et 

al., 2015).  Also, Lewis acids, particularly, NiCl2 and FeCl3, have been known to 

depolymerize alcell lignin into aromatic monomers.  Catechols, guaiacols, and syringols 

are possible with this method.  Using this, the highest conversions of lignin obtained were 

30% from NiCl2 and 26% from FeCl3, both under reaction conditions of 305 °C and 1 hr 

reaction time.   
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2.2.4 Zeolites Involved Catalytic Depolymerization of Lignin 

Zeolites with micropores (< 2 nm) or hierarchical porous structure that contains 

an additional meso- or macro-sized pore system) are of much interest in lignin 

depolymerization because they have high acidity and excellent thermal stability.  

2.2.4.1 Microporous Zeolites 

A zeolite is a microporous crystalline aluminosilicate, with many SiO4 and AlO4 

tetrahedral structures held together by the corner linking oxygen atoms in certain regular 

manner (Rahman, M. et al., 2009; Bhardwaj, D. 2013).  This gives zeolites a larger 

surface area and definite micropores with a pore size of 2 nm or less and a narrow size 

distribution (Rahman, M. et al., 2009).  The Al3+ atom at the center of an AlO4 

tetrahedron contributes to the framework an overall negative charge that is neutralized by 

cations in zeolites.  When these cations are removed by ion exchange, this gives a great 

number of acidic sites on the zeolite surface, which are believed to be the active sites in 

absorption of hydrocarbon molecules. Zeolites are therefore excellent mediators for 

adsorption and ion exchange. For the same reason, those acidic sites can absorb large 

hydrocarbon molecules and further crack into smaller molecules at the elevated 

temperature (Lutz, W. 2014). Since their introduction, zeolites are also widely used as 

cracking catalysts in fluid-cracking catalysts (FCC) and hydrocracking processes (Deng, 

Z. et al., 2015; Grigor’eva, N. et al., 2013).  

2.2.4.2 Mesoporous Zeolites 

In terms of pore diameters, macroporous zeolites, those with pores diameters 

greater than 50 nm, are more desirable than mesoporous zeolites, those with pore 

diameters of 2-20 nm (Garcia-Martinez et al., 2014; Roussel, T. et al., 2009).   
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Conventional zeolites, those that are completely microporous, do have unique properties, 

but are subject to too many constraints and limitations in reactions involving large 

molecules.  Action, characterization, and lifespan in reactions of zeolites can all be 

enhanced by introducing ancillary mesoporostiy in the zeolite crystals.  Not only do 

mesoporous zeolites have benefits in catalysis, but they also exhibit heightened 

performance in other routes including ion-exchange and adsorption (Perez-Remerez, J. et 

al., 2011). Recent years have seen amazing headway in the synthesis, categorization, and 

utilization of hierarchical zeolites with mesoporous structures (Perez-Remerez, J. et al., 

2011; Wang, X. et al., 2010; Xiang, M. et al., 2015).   

Hierarchical zeolites are obtained by two principal routes (Ding, J. et al., 2013).  

First is direct fabrication from large molecular templates like starch, carbon, resins, and 

surfactants.   These templates are removed after crystallization via calcination.  This 

method is costly, the synthetic procedures are intricate, the resulting products have poor 

mechanical properties, and atmospheric emissions from template combustion, particularly 

halogens, are severe.   The second route is creation of mesopores in an already 

manufactured microporous zeolite.  The mesopores are created with post-manufactured 

treatments in which either aluminum or silicon moieties are selectively detached from the 

zeolite structure.  Resulting mesopore size can be difficult to control using these 

dealumination and desilication processes, and the severe conditions these processes 

involve can create flaws in the zeolites (Ding, J. et al., 2013).     

Post synthetic treatments, primarily dealumination and desilication, can change 

the zeolites by partial degradation of the zeolites so that they possess intra-crystalline 

mesopores necessary for large molecule catalysis (Deng, Z. et al., 2015).   This has been 
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proven for zeolites by using dealumination with not just acids as traditionally done but 

even with silicates including ammonium hexafluorosilicate (Shin, H. et al., 2011).  This 

involves an increase of the silicon to aluminum ratio within the zeolite framework (Shin, 

H. et al., 2011; Jo, C. et al., 2014). 

Dealmuination of zeolites is typically done using acids (Srivastava, R. et al., 

2009).  Particularly oxalic acid or tartaric acid are of choice for dealumination.  

Dealumination is performed on zeolite samples at different acid solution pH values under 

high temperatures or steaming at up to 500 °C.  Zeolites treated with oxalic acid or 

tartaric acid at a pH of 2 or lower show highest activity.   And, this activity increase at 

low pH can be interrelated with increase in accessibility of reactants to zeolite active site.  

Removal of aluminum in the framework causes this phenomenon.  Dealumination is 

achieved by hydrolysis of Al-O-Si bonds combined with steaming (Srivastava, R. et al., 

2009; Hosseini, M. et al., 2015).  Aluminum forms a complex with the organic acids or it 

is directly replaced with silicon from gaseous silicon tetrachloride.  Dealumination of an 

individual zeolite also is influenced by other factors including but not limited to acid site 

occurrence in the framework and defect sites within the framework of the zeolite crystal.  

Acid leaching with concentrated solutions of organic acids removes aluminum embedded 

in the structure of the zeolite from areas near defect sites and also from the outside 

surface of the zeolite.  In the case of zeolite-, dealumination is very easy since there are 

many stacking defects already in its framework (Srivastava, R. et al., 2009; Jin, C. et al., 

2010).  Oxalic acid and citric acid dealumination of zeolite- is common, and aluminum 

species can actually be easily reintroduced in the structure by close control of the solution 

pH if so desired.  If other mineral acids or other organic acids are used, there is greater 
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potential for loss of crystallinity and catalytic properties (Srivastava, R. et al., 2009; 

Hosseini, M. et al., 2015).    HZSM-5 stability is similarly affected by the same 

dealumination processes (Xu, B. et al., 2007; Zhang, H. et al., 2013; Mitchell, S. et al., 

2012). 

Recent attention has been directed towards modification of zeolites to obtain 

hierarchical porosity by desilication with alkaline media (Zhao, L. et al., 2010).  

Investigation into different concentrations of alkali treatment to modify pore size and 

crystalline properties of ZSM-5 has been done.  As alkaline concentration increases, so 

do total areas of the surface and mesopores, and volume and average pore diameter 

increase accordingly.  Contrarily, micropore volume and surface area decrease and the 

samples become much more amorphous (Zhao, L. et al., 2010).  The effectiveness of 

desilication is influenced by aluminum content, changes in NaOH concentration, 

treatment time, and temperature.  Manipulation of these factors allows control over 

resulting mesopore diameter and volume.  If performed at optimum conditions, it does 

not necessarily eliminate micropores or reduce mesoporosity, and structural integrity is 

not lost.  There is some loss of micropore volume, but this is owed to amorphous species 

inside the microchannels.  Washing with dilute acid solutions can restore Micropore 

volume loss (Martinez, C. et al., 2014).   Attention has also been brought to cation 

exchange in zeolites (Zhen, S. et al., 2000).  Properties of zeolites including thermal 

stability, adsorption characteristics, and catalytic nature are all dependent on what types 

and abundance of exchangeable cations within available sites on the catalyst (Zhen, S. et 

al., 2000). 
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Nanocasting with a hard template, when considering traditional template and non-

template methods, is very desirable because the porosity of the synthesized materials, if 

control of the original template properties is done, can be easily and specifically 

designed.  These hard templates include various carbon types, aerogels, and other porous 

materials (Castillo-Villar, K. et al., 2014).  

Soft templates including n-butylamine (BTA), ethylamine (ETA), isopropylamine 

(IPA), tetrapropylamine bromide (TPAB), ethylenediamine (EDA), ethanol (ETL), 

ethanol–ammonium (ETL–AM) have been used to successful synthesis of zeolites in 

hydrothermal environments (Sang, S. et al., 2004). Template selection, gel composition, 

reagent properties all influence the final zeolites physical and chemical properties.  So, 

template selection is vital for robust zeolite synthesis.  If no template is used, structural 

solidity of the synthesized ZSM-5 will be too low.  For zeolites synthesized without a 

template and SiO2/AlO2 ratios greater than 50, quartz appears and so the number of acid 

sites is lowered dramatically (Sang, S. et al., 2004).     

2.2.4.3 Zeolites in Lignin Depolymerization 

The high silicate content allows zeolites to readily absorb water, in turn serving 

well as proton conductors (Baglio, V. et al., 2005).  The great number of Bronstedt acidic 

sites on the surface of zeolites allow hydrocarbon molecules absorption and further 

cracking into smaller compounds at the elevated temperature (Lutz, W. 2014). Therefore, 

zeolites are wide used as cracking catalysts in fluid-cracking catalysts (FCC) and 

hydrocracking processes since their introduction (Deng, Z. et al., 2015; Grigor’eva, N. et 

al., 2013).  In the refining industry, zeolites have continually become more irreplaceable 

as catalysts.  Production was about 625x106 tons in 2004 and is ever increasing.  FCC 
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currently ranks second in the industry of all heterogeneous catalyzed processes in which 

Zeolite H-Y is the active catalyst.  As FCC process utilizes high molecular weight feeds, 

so similar interest is thought effective in lignin molecule cracking within zeolite pores 

(Garcia-Martinez, J. et al., 2014).  A few reports exist of solid acid such as zeolites 

assisted depolymerization of lignin.  

These are typically done at temperatures higher than 340 °C to obtain aromatics 

and gases.  One instance is that where H-ZSM-5 zeolite was used at 340-410 °C in a 

fixed-bed microreactor.  This was used to upgrade pyrolysis oil to return C5-C10 

hydrocarbons.  Overall, the distillate hydrocarbons were 83 wt.% and the maximum 

organic distillate obtained from upgrading the entire bio-oil was 19 wt.% of bio-oil.  

Further examination at 700 °C for pyrolysis of kraft lignin in the presence of NiCl2 and 

H-ZSM-5 zeolite.  In the catalytic fast pyrolysis of alkaline lignin into aromatics and 

gases, properties of acidity and pore size variation have been presented.  Studies have 

shown that when cleaving ether bonds in lignin and improving its decomposition of 

aliphatic hydroxyl, carboxyl, and methoxy groups that zeolites are helpful.  Such zeolites 

as MFI (Z), FAU (Y), BEA (B), FER (F), and MOR (M) zeolites when pyrolized with 

softwood Kraft lignin that a one-step thermal conversion of lignin yields gasoline-range 

liquid products.  H-USY zeolite has proven useful with the process of pyrolysis of 

alkaline lignin at high temperatures.  Pyrolysis has predominantly been used in previous 

studies of the depolymerization of lignin involving acid catalysts, and, in most of the 

reactions, high temperatures are engaged.  Such high temperatures always show the 

formation of char and coke and includes the formation of gases.  So, a low return of 

aromatic monomeric products is obtained.  Usually model compounds have been used in 
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these experiments such as dimers and trimers, thus it turns out to be very hard to replicate 

any results obtained in these reactions with the actual substrates.  This is because they 

have highly complicated structures and impurities in comparison to model compounds 

(Guo, M. et al., 2015). 

As the catalyst supports, zeolites are also better suited than are amorphous oxide 

supports because they contain a higher amount of medium acid sites (Hanaoka, T. et al., 

2015).  Zeolites with a high silica content gives immense practical value to the 

transformation of raw hydrocarbons to gasoline and fuels (Velichkina, L. et al., 2009).   

The sole renewable energy source for conversion to jet fuel is biomass, and since fuel 

consumption efficiency is much higher in planes and air transportation, liquid 

hydrocarbons as fuels have great promise in air transportation applications (Hanaoka, T. 

et al., 2015).  New technology and investigation of new catalysts creates a pathway to the 

reduction of aromatic and olefin content in fuels without lowering octane number 

(Velichkina, L. et al., 2009).   

2.3 Bio-oil Upgrading with Catalytical Hydrodeoxygenation 

The liquid bio oil received from biomass decomposition contains a significant 

water fraction of 10-30 weight percent and also present are aldehydes, acids, 

carbohydrates, phenolics, ketones, alcohols, and a host of other products.  It is unsuitable 

for transport fuel for several reasons. The presence of aldehydes, acids, and phenols in 

bio-oil give it detrimental properties including high viscosity, low heating value, and 

corrosiveness (Zhou, M. et al., 2017). Its high oxygen (up to 40 wt.%) and low hydrogen 

content also make bio-oil have low thermal/chemical stability and low calorific value.  

All these factors rendering the direct use of bio-oils as transport fuel inappropriate.  
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Upgrading processes such as catalytic hydrodeoxygenation (HDO) is used to reduce the 

O/C ratio and increase the H/C ratio of bio-oils. Most oxygen in bio-oil presents as -OH 

groups, C=O groups, and -OCH3 groups. Unlike other upgrading processes that the 

oxygen associated carbon will lose with the removal of oxygen, HDO under hydrogen 

pressure has major byproducts of only H2O and CH3OH (Lu, M. et al., 2016). Therefore, 

bio-oils that are upgraded by hydrodeoxygenation can retain most carbon in the alkane 

bio-oil with high H/C ratio (Wang, L. et al., 2015). 

2.3.1 Hydrodeoxygenation of Bio Oil using Sulfurized CoMo and NiMo Catalysts 

Catalytic hydrodeoxygenation is done using two kinds of catalysts, similar to 

what are used in conventional hydrotreating refining catalysts (Lu, M. et al., 2016). 

Sulfurized CoMo and NiMo catalysts, the most common superior hydrodesulfurization 

and hydrodenitrogenation catalysts, were also used in catalytic HDO of bio-oil. Two 

major disadvantages exist in their use for bio-oil upgrading:  (1) Bio oil has a low sulfur 

content and the use of sulfide catalyst introduces sulfur in its upgrading product to 

contaminate the upgrading product; (2) the catalysts have an unstable sulfide structure 

and sulfur must be uninterruptedly added to keep the catalysts sulfurized state. An 

additional desulfurization process must be added after bio-oil upgrading.  Product yields 

from these sulfurized catalysts are either partially hydrogenated oxygen-containing ones, 

e.g. phenol, catechol, cyclohexanol, or totally hydrogenated compounds such as benzene 

and cyclohexane (Zhou, M. et al., 2017).  These products can easily be blended with 

petroleum fuel in transport fuel applications.  Cyclohexane, toluene, and xylene have 

suitable vapor pressure and carbon number that facilitates their use in gasoline.  Catalyst 
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in HDO reaction are quickly deactivated because of the low stability of intermediate 

aromatic molecule.   

For non-noble metal catalysts, Ni and Fe are good candidates for phenol 

conversion.  Recent studies of monometallic Ni-based catalysts with HDO reaction are 

done at temperatures greater than 300 °C and hydrogen pressures above 8 MPa.  These 

are harsh conditions.  Adding Co to the Ni as an active metal for ring opening through 

HDO of GUA could increase deoxygenation activity.  In short, it is necessary that for 

hydrodeoxygenation of phenols and bio oil, Ni-based catalysts must be modified for 

higher activity at conditions of low pressures and temperatures (Zhou, M. et al., 2017). 

Under high hydrogen pressure, complete conversion of bio-oil compounds is possible 

with relatively low temperatures (e.g., 250-350 °C) (Maki-Arvela, P. et al., 2017; Peters, 

J. et al., 2015).   

2.3.2 Hydrodeoxygenation of Bio Oil using Precious Metal Catalysts 

With noble metals, including Pd, Rh, Pt, and Ru, investigation has been done 

using them with acidic supports as bifunctional catalysts (Lu, M. et al., 2016).  Acid 

treated carbon, -Al2O3, SiO2-Al2O3 and others were used as the acidic supports. Studies 

have been done that show the bifunctional mechanism occurs in the reaction pathway of 

HDO of guaiacol (GUA), one major bio-oil component containing both one -OH group 

and one -OCH3 group over noble metal supports on acidic oxide catalysts.  These are the 

ring hydrogenation of GUA into 2-methoxycyclohexanol on the noble metal site and 

deoxygenation of the same 2-methoxycyclohexanol and products.  Comparing 

commercial Pd/-Al2O3 and CoMoS/-Al2O3 in GUA HDO, it was found that the Pd/-

Al2O3 was the more active, but catechol was formed.  Investigation into HDO of anisole 
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and GUA over Pt/-Al2O3 and Pt/HY catalysts showed that there were significant effects 

caused by the acid center types on transalkylation activity of catalysts.  Combined effects 

of Pd and Fe improved acidity and simultaneously kept the high selectivity to HDO 

products with no change to ring saturation or ring opening.  Palladium has seen the 

widest use as an active metal with HDO catalysts.  The electronic and morphological 

properties of palladium are in fact predisposed by contact with the support and these 

properties show strong effects on the hydrogenation activity of the catalysts.  When 

reduced at high temperatures, Pd/TiO2 catalytic performance was changed by interaction 

between Pd and TiO2 (Lu, M. et al., 2016). 

2.3.3 Hydrodeoxygenation of Bio Oil using Other Catalysts 

Alternative hydrotreating catalysts were examined include transition metal 

phosphides, carbides, nitrides, and rhenium (Zhou, M. et al., 2017).  They have 

outstanding HDS and HDN performance so are considered suitable s for bio oil HDO 

upgrading.  These catalysts allow the reduction of HDO cost for bio oil conversion to 

fuels and chemicals. Main products of metal phosphides used in conjunction with HDO 

include benzene, phenol, and anisole.  Drawback of using these catalysts is fast 

deactivation (Lu, M. et al., 2016).   

2.3.4 Hydrodeoxygenation of Bio Oil Pathways 

Because bio oils are a multipart blend of chemical moieties, model compounds 

were often used to evaluate the HDO catalyst performance as well as the kinetics, 

deactivation mechanism, and reaction pathways GUA is a good representation of 

phenolic compounds with its two most common oxygenated groups (hydroxy and 

methoxy groups to the benzene ring) widely presented in bio-oil molecules derived from 
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lignin (Zhou, M. et al., 2017).  For GUA HDO process, there are two main 

deoxygenation methods proposed.  One is GUA hydrogenation-deoxygenation, that is, 

hydrogenation happens followed by oxygen removal from saturated hydrocarbon rings.  

The other one is a direct deoxygenation route, in which C-O-C and C-OH bonds are 

directly cleaved from the benzene ring without any ring saturation.   

Investigation has been done for the hydrodeoxygenation of guaiacol to yield 

cyclohexanol on non-noble metal catalysts supported on -Al2O3 and ZSM-5 with a Si/Al 

ratio of 25 and 38 (Zhou, M. et al., 2017). Better catalytic activity was seen with the Ni/-

Al2O3 catalysts while adding Co for guaiacol conversion to cyclohexanol became the 

preferred HDO route.  Synergistic effects were studied of the active metal moieties and 

the catalyst support (Zhou, M. et al., 2017). Partial HDO activity is exhibited by HDS 

catalysts NiMo and CoMo, but again this causes much sulfur contamination and catalyst 

deactivation.  It has been shown that successfully cleaving the aromatic-oxygen bond 

with Pt/C catalyst is much easier than using Ru, Rh, and Pd on carbon catalyst and yields 

phenol at greater than 40% using atmospheric pressure, proven stable and as a good 

catalyst for deoxygenation of guaiacol (Gao, D. et al., 2015). 
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CHAPTER 3 

 

LIGNIN DEPOLYMERIZATION IN SUPERCRITICAL ETHANOL 

OVER ZEOLITES WITH DIFFERENT ACIDITY  

AND POROUS STRUCTURES 
 

3.1 Introduction 

Lignin is a mixture of natural polyaromatics with several basic phenol units (i.e., 

coumaryl, coniferyl, and sinapyl) randomly while repeatedly cross-linked mainly with 

ether linkages. Contributing 20-40 wt.% of mass and ~40% heating value of biomass, 

lignin, however, has long been a high-volume by-product and environmental hazard of 

paper and pulp plants. Depolymerization of lignin may not only mitigate such waste and 

pollution, but also generate great profit by producing high-value aromatic feedstock 

and/or high-quality fuels. Progress has been made in lignin depolymerization with 

processes like hydrolysis or thermal cracking to release its rich phenol-type aromatics. 

Catalysts have been introduced to help improve the cleavage efficiency of C-O-C and C-

C linkages of lignin as well as the yield and selectivity of its diverse products. Further 

studies found that the physical and chemical properties of these catalysts, namely their 

various acidity and pore structure, play important roles on lignin depolymerization. 

Similar to what happen in traditional fossil fuel cracking processes, zeolites are widely 

used in lignin depolymerization, serving either as the catalyst or catalyst support. Their 

tailorable acidity and uniform pore size make them favorable to achieve better cracking 

efficiency and product selectivity.  However, the unique micropore structure of 
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traditional zeolites (< 2 nm in diameter) well defined by their crystal framework makes 

the diffusion of gigantic molecules such as lignin fragments, their oligomers, or even the 

decomposed monomers difficult, resulting in quick pore blocking, coke formation, and 

catalyst deactivation. Introducing mesopores (2-50 nm in diameter) or staged hierarchical 

porosity (i.e., connected macropores, mesopores, and micropores) is considered a 

promising solution to overcome such limited molecule transport challenges and low 

active site utilization issues for zeolites in both traditional petrochemical processes and 

the emerging bio-energy processes like lignin depolymerization.  

In this chapter, we investigated the importance of the solid acidity and 

mesoporous structures of zeolites on catalytic depolymerization of lignin in supercritical 

ethanol. Compared to other lignin depolymerization processes, ethanolysis under 

supercritical conditions (scEtOH) is favorable with benefits on high lignin conversion 

and minimum char formation. Three different types of zeolites with exclusive 

micropores, HZSM-5, HBeta, and HY, were evaluated, with the first two carry similar 

micropore size (ZSM-5: 6.36 Å; Beta: 6. 68 Å) and the last two exhibit similar solid 

acidity (Beta and Y types), as shown in Figure 3-1a. The contribution of mesopore 

structure, including our special synthesized fin-like and commercial worm-like 

mesoporous structure in zeolites, was also explored to further reveal its important roles 

on the cleavage of C-O-C and C-C bonds during scEtOH lignin depolymerization (Figure 

3-1b).  
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Figure 3-1: Schematics of the framework of ZSM-5, Beta and USY zeolites (a) and a 

combination of micropore and mesopore (including fin-like pore and worm-like pore) 

structure (b) that are used in the investigation on the importance of acidity and mesopores 

during lignin depolymerization in supercritical ethanol process. 

3.2 Materials and Methods 

3.2.1  Materials 

Tetrapropyl ammonium hydroxide (TPAOH, 1 M in H2O), sodium aluminate (NaAlO2, 

~8% H2O, >99%), aluminium iso-propoxide (AlP), tetramethylammonium hydroxide 

(TMAOH, 25% aqueous solution), tetraethylorthosilicate (TEOS, >99%), Sodium 

hydroxide (NaOH) pellets, ethanol (C2H5OH, >99.5%), Dimethyloctadecyl[3-

(trimethoxysilyl)propyl]ammonium chloride (TPOAC), and cetrimonium bromide 

(CTAB, >99%) were purchased from Sigma-Aldrich and used as received without further 

purification.  Mesoporous HY zeolites (CBV 720) were purchased from Zeolyst, Inc with 

a SiO2/Al2O3 ratio of 30. 
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3.2.2 Zeolite Synthesis 

3.2.2.1 ZSM-5 and Fin-Like Mesoporous ZSM-5 Synthesis 

For fin-like mesoporous zeolite FM-ZSM-5 synthesis, TEOS, NaAlO2, and 

TPAOH were firstly added under vigorous stirring with a pre-calculated ratio of TPOAC 

and CTAB until a clear solution was obtained. The final molar composition of 

synthesized solution was SiO2: Al2O3: TPAOH: TPOAC: CTAB: H2O=30: 1.0: 6.0: 0.6: 

2400. The mixture was further stirred for 2 h at room temperature and then transferred to 

Teflon lined autoclaves and kept at 150 °C for 48 h. After crystallization, the solid 

product was separated by centrifugation at the speed of 2,000 rpm for 10 minutes. The 

received zeolites were further washed several times with distilled water, dried over night 

at 120 °C, and calcined in air at 550 °C for 8 h. The conventional microporous zeolite 

ZSM-5 was also synthesized through a similar hydrothermal process aforementioned, but 

without adding TPOAC and CTAB. 

3.2.2.2 Y Zeolites Synthesis 

Zeolite Y was prepared in the following method. A solution of 0.05 N NaOH was first 

prepared and TMAOH and AIP were then added in the same order under vigorous 

agitation until a clear solution was formed. TOES was then added drop wise and the 

mixture was aged for 3 days under vigorous stirring at room temperature. This gives a 

final molar composition of SiO2: Al2O3: Na2O: (TMA)2O: H2O=1: 0.29: 0.0094:  0.72: 

108.82. After loading in the aged solution, the Teflon-lined stainless-steel autoclave was 

sealed and kept at 100 °C for 6 days. After crystallization, the solid product was 

recovered by centrifugation and further washed with DI water, dried overnight, and 

calcined in air.  
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3.2.2.3 Ion-Exchange and H-type Zeolites Preparation 

All received sodium type zeolites were first dried and calcined in air at 550 °C for 8 h. 

They were then ion-exchanged three times with a 0.1 M NH4NO3 solution at 90 °C for 

90 min with a liquid/solid ratio of 10 cm3/g under magnetic agitation (500 rpm). The 

solid was further separated, extensively washed with DI water, and dried over night at 

120°C. The dried zeolite samples were finally calcined at 550 °C for 6 h with a 

temperature ramp rate of 1.5 °C/min to receive H-type zeolites.  

3.2.3 Characterization 

3.2.3.1 Scanning Electron Microscopy (SEM) Imaging 

SEM images were taken on a Hitachi S-4800. Samples were prepared by dusting 

the zeolite powder onto double sided carbon tape and mounted on an alumina stub. All 

samples were subsequently sputter coated with a thin gold film to reduce charge effects.  

3.2.3.2 X-ray Diffraction (XRD) 

XRD analysis was done on a Bruker D8 diffractometer, using Cu-K radiation at 

room temperature and instrumental settings of 40 kV and 40 mA. Data were recorded in 

the 2 range of 6–55º with an angular step size of 0.02º.  

3.2.3.3 Surface Area and Porosity Analysis 

Nitrogen adsorption isotherms were obtained at -196 °C on a Micromeritics 

ASAP 2020 Surface Area and Porosity Analyzer in a relative pressure range from 0.05 to 

0.99. Before measurement, samples were degassed at 300 °C for 6 h. The pore size 

distribution was calculated using the Nonlocal Density Functional Theory (NLDFT) 

method from the adsorption branch.  
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3.2.4 Lignin Depolymerization Tests 

The catalytic conversion of Kraft lignin was carried out at 280 °C for 6 h in a 

high-pressure batch reactor (Col-Int Tech, 200 mL).  For each run, 1.0 g lignin, 0.5 g 

catalyst, and 100 mL ethanol were first loaded in the reactor and the sealed reactor was 

then evacuated and purged with high-purity nitrogen gas for three times at room 

temperature. The reactor temperature was then risen to 280 °C with the reactor pressure 

reaching ~8 MPa. After the reaction was carried out for 6 h, the liquid was filtered and 

taken for product identification and analysis on a gas chromatography-mass spectrometry 

(GC-MS) instrument (Agilent 7890A-5975C). Benzyl alcohol (0.1 vol% in ethanol, 1.0 

µL) was added in the product samples (1 mL) before GC-MS analysis, serving as the 

known internal standard in GC-MS spectra to normalize the peak area for each 

compound. Multiple-point internal standard plots were generated, covering the expected 

concentration range of major product compounds. For those commercially available 

compounds, such as 4-methyl phenol (i.e., cresol) and 2-methoxy-phenol (i.e., guaiacol), 

diluted solutions with known concentrations were prepared. For other commercially-not-

available compounds such as 3-methyl-1- adamantaneacetic acid, the lignin 

depolymerization product obtained from different catalysts was mixed and further 

concentrated by evaporating most ethanol using a rotary evaporator. The obtained liquid 

was then diluted with ethanol to get different concentrations of each compound using 

benzyl alcohol as the internal standard (0.8 mM). Plots of the peak area ratio of several 

major aromatic compounds in lignin depolymerization products to the internal standard 

(benzyl alcohol) were made versus the concentration ratio (Wang, Y., et al. 2017). The 

original concentrations of those commercially-not-available compounds in the mother 
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solution were determined by their area ratios to guaiacol whose concentration in samples 

was found through their own multiple-point internal standard curve.  

3.3 Results and Discussion 

3.3.1 Morphology and Textural Properties of Zeolites Used in Lignin 

Depolymerization 

The texture properties of different types of zeolites used in lignin 

depolymerization in supercritical ethanol were characterized with SEM, XRD, and Pore 

Size Analyer. Because of their similar synthesis receipt, similar elongated, hexagonal 

plate shape with an average dimension of ~225 × 500 × 700 nm was obtained for both 

microporous ZSM-5 and mesoporous ZSM-5 zeolites, as shown in Figures 3-2a & 3-2b. 

But rather than conventional microporous ZSM-5 zeolites that exhibit smooth surface on 

each axis direction, the morphology of mesoporous ZSM-5 obtained with the assistance 

of dual meso-templates is quite different. Multiple laminar structures are shown in the b-

axis direction of mesoporous ZSM-5 zeolites which are fused together in one end on the 

a-axis framework into a large monolithic piece to create fin-like mesoscale space (Figure 

3-2b). The XRD patterns of mesoporous ZSM-5 and common microporous ZSM-5 

samples show identical, well-resolved peaks which belong to MFI zeolite structure 

(Figure 3-2c). This confirms the successful synthesis of ZSM-5 with this new fin-like 

mesoporous structure (denoted as FM-ZSM-5 in later discussions). Their different pore 

structures are further confirmed through the N2 adsorption–desorption isotherms. As 

shown in Figure 3-2d, conventional microporous ZSM-5 presents a classic type I 

adsorption/desorption isotherm for microporous materials, which has only one high 

uptake at low relative pressure (P/P0 < 0.02) and a long plateau in the high-pressure 
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range (0.4 < P/P0 < 0.9), indicating that the material is a purely microporous phase with 

negligible mesoporosity. On the contrary, FM-ZSM-5 zeolites present a combination of 

both type I and type IV(a) adsorption/desorption profiles with two steep uptake steps, one 

at P/P0 < 0.02 and the other at 0.45 < P/P0 < 0.90 locations, responding for micropore 

filling and mesopore capillary condensation, respectively (Figure 3-2d). The 

disappearance of hysteresis loop on the adsorption–desorption isotherms of typical 

mesoporous materials at high relative pressure further confirm the existing of uniform, 

one end open, fin-like mesopore structure in this new FM-ZSM-5 zeolites. Although the 

use of traditional BET approach to extract surface area and pore volume information 

contributed by micropores from these N2 adsorption–desorption isotherms is known 

questionable for most zeolites, such results serve as valuable reference in comparisons. 

The textural parameters (Table 3-1) further reveal that FM-ZSM-5 has evidentially larger 

BET surface area (460.3 m2/g vs. 354.3 m2/g), larger pore volume (0.32 cm3/g vs. 0.24 

cm3/g), and larger average BJH pore size (3.6 nm vs. 2.7 nm) when compared to its 

microporous counterpart. 

 

 

 

 

Table 3-1: Textural Properties of Microporous and Mesoporous HY and HZSM-5 

Zeolites 



36 

 

 

 

Figure 3-2: SEM images of ZSM-5 (a) and FM-ZSM-5 with fin-like mesoporous 

structure (b), XRD patterns (c) and N2 sorption isotherms (d) of FM-ZSM-5 and ZSM-5 

zeolites. 

 

Similar morphology and texture properties of microporous HY and mesoporous 

HY (denoted as Meso-HY in later discussions) zeolites were also measured. As shown in 

Figures 3-3a-3-3c, similar crystal sizes (400-500 nm) and identical XRD patterns are 

found for Meso-HY and microporous HY zeolites used in this lignin depolymerization 

study. But unlike FM-ZSM-5 with fin-like mesopores, Meso-HY zeolites show worm-

like mesoporous structure (Figure 3-3b). Their hierarchical pore structure is also 

quantified through N2 adsorption–desorption isotherms. As shown in Figure 3-3d, 

conventional microporous HY zeolites present a classic type I adsorption/desorption 

isotherm for microporous materials, which has only one high uptake at low relative 
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pressure (P/P0 < 0.02) and a long plateau in the high-pressure range (0.4 < P/P0 < 0.9). 

On the contrary, Meso-HY zeolites present a combination of both type I and type IV 

adsorption/desorption profiles with two uptake steps, a steep one at P/P0 < 0.02 followed 

by a slow one afterward, responding for micropore filling and mesopore capillary 

condensation, respectively. A hysteresis loop at 0.45 < P/P0 < 0.90 locations suggests the 

existence of hierarchical pore structure in Meso-HY zeolites. The textural parameters 

given in Table 3-1 confirms evidentially larger BET surface area (766.3 m2/g for Meso-

HY vs. 720.6 m2/g for HY), larger pore volume (0.50 cm3/g for Meso-HY vs. 0.33 cm3/g 

for HY), and larger average BJH pore size (6.9 nm for Meso-HY vs. 2.6 nm for HY) of 

Meso-HY than its microporous counterpart. Although BET method underestimates the 

contribution of micropores to the total surface area of zeolites, its accuracy on 

mesoporous structure measurement confirms the availability of many mesopores in 

Meso-HY zeolite crystals. As shown in Table 3-1, more overall surface area is accessible 

to probe molecules (i.e, N2) contributed by the addition of mesopores according to the 

BET method calculation, despite the reduction of the surface area contributed by 

micropores. For the same reasons (i.e., introduction of mesopores), the calculated pore 

volume and average pore size in Meso-HY also significantly increased (Table 3-1).  
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Figure 3-3: SEM images of microporous HY zeolite (a) and Meso-HY zeolite with 

worm-like mesoporous structure (b). XRD patterns (c) and N2 sorption isotherms (d) of 

microporous HY and Meso-HY zeolites.  

3.3.2 Importance of Pore Size and Acidity of Microporous Zeolites in Lignin 

Depolymerization 

To investigate how important the pore size and acidity of different microporous 

zeolites for Kraft lignin depolymerization in supercritical ethanol, three types zeolites, 

HZSM-5, HBeta, and HY zeolites with exclusive micropores were chosen to study here. 

These zeolites are widely used in fossil fuel processes, in which the first two carry similar 

micropore size (HZSM-5: 6.36 Å; HBeta: 6. 68 Å) but different acidity while the last two 

have similar solid acidity (HBeta and HY types) but different micropore size (HBeta: 6. 

68 Å; HY: 11.24 Å), as shown in Figure 3-1a. The catalytic depolymerization of Kraft 
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lignin was carried out in a batch reactor after purging with N2 prior to elevating the 

reaction temperature and pressure to what were used in our previous research work (i.e., 

at 280 oC under a pressure of 8 MPa for 6 h). All three types of zeolites exhibit high 

lignin conversion (65-75%) with very little char formation, consistent with previous 

findings using supercritical alcohols. More than 20 product molecules with a mass weight 

of more than 1.0% were detected by GC-MS in the liquid product samples, as shown in 

Figure 4a. The early eluted C4-C6 products in the GC-MS spectrum are some short-chain 

ether (e.g., 1,1-diethoxy-ethane as one dominant peak), ester (e.g., ethyl acetate as one 

dominant peak), alcohols (e.g., butanol as one dominant peak), fatty acid (e.g., acetate), 

or acetal (e.g., butanal as one dominant peak) that derivate from ethanol reforming 

reactions at the presence of zeolites. This is verified when comparing the GC-MS 

spectrum of lignin ethanolysis products with that from a blank test involving only ethanol 

and zeolites at the same reaction conditions (Figure 3-4). Compounds eluted after 7 

minutes, including different alcohols, esters, and aromatics, appeared only when lignin 

was added (Figure 3-4). The product molecules are similar in all ethanolysis samples 

catalyzed by the three different types of microporous zeolites. But the yield and 

selectivity of individual products or a group of compounds was quite different. Aromatic 

products were found much higher in samples depolymerized by microporous HZSM-5 

and HY than HBeta zeolites (HZSM-5: 37.4%; HY: 39.6%; HBeta: 28.9%), as shown in 

Figures 3-5b-3-5d. Considering the relatively smaller size of micropores in HZSM-5 and 

HBeta than in HY, it seems that the diffusion issues caused by micropore size play a 

more important role on the aromatic production than their solid acidity, given the similar 

micropore size while different acidity of HZSM-5 and HBeta zeolites. Signals of the later 
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eluted C8-C11 compounds, most as aromatics, became more diverse for samples 

depolymerized over HBeta and HY than HZSM-5 (Table 3-2 and Figure 3-4). These 

results suggest that zeolites with strong acidity (e.g., HY and HBeta) work better to break 

down C-O-C (e.g., -O-4) and C-C (e.g., -1) linkages in lignin structure into small 

phenolic molecules. With both large micropores and strong acidity, it is not a surprise for 

microporous HY zeolites to receive the highest selectivity on phenols and the most 

diversified aromatic products (Table 3-2 and Figure 3-4). 
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(a)  

 

(b)   

(c)   

(d)  

Figure 3-4: GC-MS spectra of lignin depolymerization in supercritical ethanol with 

microporous HBeta (a), HZSM-5 (b), HY (c), and a blank test (with only ethanol and 

HZSM-5, no lignin) (d). 
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3.3.3 Zeolites with Different Acidity while Same Micropore Structure in Lignin 

Depolymerization 

In aforementioned comparison, though two zeolite types (i.e., HZSM-5 and 

HBeta) have similar micropore structure while the other pair (i.e., HY and Hbeta) have 

similar acidity, they have framework differences among their crystal structure. To rule 

out that complexity, we further looked into how solid acidity affects the scEtOH lignin 

depolymerization under the same microporous structure. As well-known zeolites gain 

their solid acidity through transforming from sodium type to H types by multiple ion-

exchange processes, we prepared zeolites with different acidity while the same 

microporous structure by regulating the replacement level of sodium in their crystal 

structure. We ion-exchanged once the fresh synthesized microporous Y zeolites 

(designated as NaNH4Y in later discussions) and compared how this partially ion-

exchanged zeolites performed in scEtOH lignin depolymerization with their exclusive 

sodium type (denoted as NaY) and fully-ion exchanged H-type counterparts (denoted as 

HY). As shown in Figure 3-7a, the NaY zeolites gives a yield of 16.1% aromatics of all 

depolymerization products, which increases to 29.8% when using the ion-exchanged once 

zeolites (NaNH4Y) and to 39.7% with fully ion-exchanged HY zeolites, respectively. 

Among all aromatic products, more phenols are received when increasing the solid 
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Figure 3-5: Classified product distributions of lignin catalytic depolymerization in 

supercritical ethanol over microporous HZSM-5 (a), HY (b), and HBeta (c) zeolites 
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acidity of Y zeolites with the same micropore size. Similarly, higher ester yield is also 

found, accompanied with the steady drop of alcohol and ether percentages in the liquid 

product when more acidic sites are available (Figure 3-7b). These results further endorse 

the importance of solid acidity of zeolites to the aromatic production during lignin 

depolymerization. 

 

 (a)   

 

(b)  

 

Figure 3-6: GC-MS spectra of lignin depolymerization in supercritical ethanol with 

microporous NaY (a) and HY (b). 
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3.3.4 Importance of Mesopores to Zeolites in Lignin Catalytic Depolymerization 

Generally speaking, micropores defined by the crystal framework of zeolites are 

too small for lignin fragments and its excessive intermediate oligomers or monomers to 

diffuse deep into zeolite crystals to reach numerous acidic sites over there. This causes 

those giant molecules to largely accumulate near the entrance of micropores close to 

surface, which eventually block them and form coke there. This quickly deactivates the 

zeolites catalyst just like what exclusively happens in fossil fuel cracking processes. 

Mesoporous zeolites or zeolites with a network of pores at different scales (i.e., 

hierarchical pore structure) are therefore necessary to improve the transport of bulky 

reactants or products inside zeolites. Even although the introduction of mesopores in 

zeolite crystals might reduce the surface area contributed by micropores if those 

mesoscale space was originally part of zeolite framework, their presence provides more 

accessible surface area: not only the new surface area created by mesopores, but also 

more accessible surface from micropores deep inside zeolite crystal. Besides, the 

availability of mesopores also helps expose and utilize more acidic active sites inside 

Figure 3-7: (a) Aromatics and phenol, (b) all products of supercritical ethanol 

depolymerization of lignin over Y zeolites with different acidity but the same 

microporous structure 
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zeolite crystals. To reveal how mesopores contribute to lignin conversion and aromatic 

selectivity, we compared the catalytic cracking performance of HZSM-5 and HY zeolites 

with exclusive micropores and those having a combination of micropores and mesopores 

in scEtOH lignin depolymerization. As shown in Figure 3-8 and Figures 3-9a-3-9b, 

signals of compounds of C8-C11 eluted later than 7 minutes in the GC-MS spectra 

increase greatly for samples that were depolymerized by FM-HZSM-5 than that using 

microporous HZSM-5. Although having a complex products, the dominant products 

include fatty acid esters and aromatics. But the signal increase of the former (i.e., fatty 

acid) is much less than the latter (i.e., aromatics, mainly involving phenols). The high 

yield of aromatics (65.4% for FM-HZSM-5 versus 37.4% for HZSM-5) with more 

diversified individual aromatic compounds suggests deeper breakdown of lignin 

fragments over FM-HZSM-5 (Figures 6a-6b). Among all aromatic products, there is one 

major aromatics in lignin ethanolysis products over both types of HZSM-5 zeolites, 1,2-

Dimethoxy-4-(1-methoxyethenyl) benzene (43.9% for FM-HZSM-5 versus 25.4% for 

HZSM-5), a relatively large intermediate aromatic fragment. Desired phenols including 

guaiacol and alkane substituted guaiacols such as methyl- and ethyl- substutited guaiacols 

have obviously high yield over FM-HZSM-5 catalyst (~21.5%) than microporous 

HZSM-5 (~12.0%), as shown in Table 3-2. The higher phenol selectivity over FM-

HZSM-5 zeolites is attributed to their unique textural features which promote the lignin 

depolymerization from two aspects: (i) its fin-like configuration creates many mesoscale 

pathways that significantly reduce the diffusion resistance for large molecules to reach 

and leave the connected micropores in zeolite crystal to avoid pore blocking and coke 

formation; (ii) such more open configuration also help expose more crystal surface, 
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micropores, and the acidic sites inside zeolite crystal, making them accessible to bulky 

molecules (e.g., partial depolymerized, intermediate molecules) so that they can interact 

with the active sites of zeolites, get further cracked into small molecules (e.g., phenols) 

before leaving zeolite surface. With more aromatics produced, the percentages of alcohol, 

ester, and ether in the liquid product all drop for samples treated over FM-HZSM-5 

zeolites (Figures 3-9a-3-9b). 

 

(a)   

(b)  

Figure 3-8: GC-MS spectra of lignin depolymerization in supercritical ethanol with 

mesoporous FM-HZSM-5 (a) and microporous HZSM-5 (b) zeolites  
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Like the scEtOH lignin depolymerization over ZSM-5 zeolites, HY and Meso-HY 

zeolites contribute similar depolymerisation products that are assigned to aromatics, ester, 

alcohol, and ether of C4-C12.  However, the distributions of product compounds in each 

group are quite different: the ether percentage in all liquid products increases despite the 

yields of alcohol and ester drop (Figures 3-9c-3-9d). This might be the result of quick 

transformation reactions between many side groups cleaved from lignin structure and the 

availability of deprotonated ethanol molecules under supercritical state. As for aromatics, 

similar increase on the yield of aromatics (51.7% for Meso-HY versus 39.6% for HY) 

and more diversified individual compounds (Table 3-2) when mesopores were introduced 

suggest deeper breakdown of lignin over Meso-HY than over microporous HY (Figures 

3-9c-3-9d). This again endorses the two major contributions of mesopores to the scEtOH 

Figure 3-9: Classified product distribution of supercritical ethanol depolymerization of 

lignin over with different zeolites: (a) HZSM-5, (b) FM-ZSM-5, (c) HY, (d) Meso-HY 
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lignin depolymerisation discussed early about HZSM-5 and FM-HZSM-5: lower 

diffusion resistance and more exposed acidic sites inside zeolites.  

 

 

 

As for aromatics, lower yield of gigantic intermediate products such as 1,2-

Dimethoxy-4-(1-methoxyethenyl)benzene was found for samples treated with both types 

of Y zeolites when compared to what over HZSM-5 zeolites (HY: 17.2%, Meso-Y: 8.1% 

vs. HZSM-5: 25.4%, FM-ZSM-5: 43.9%), as shown in Table 3-2. Among all aromatic 

products, more phenols were found in lignin depolymerization products over Y zeolites 

(HY: 22.4%, Meso-Y: 37% vs. HZSM-5: 12.0%, FM-ZSM-5: 21.5%). This suggests that 

the strong acidity of Y zeolites promotes not just the ether linkages (e.g., -O-4 bonds) on 

the benzene ring of lignin structure, but also the C-C linkages (e.g., -1 bonds), 

particularly those connecting the benzene ring and the fatty acid side group like para-

Table 3-2: Aromatics Selectivity of Lignin Depolymerization Product over Zeolites with 

Microporous and Mesoporous Structures 
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adamantaneacetic acid groups in 1,2-Dimethoxy-4-(1-methoxyethenyl)benzene. This 

finding is consistent with what happened in EtOH lignin depolymerisation involving 

other zeolites with strong acidity. For examples, in Table 3-2, for depolymerisation 

samples using HBeta and HY, their yield of 1,2-Dimethoxy-4-(1-

methoxyethenyl)benzene is lower than that using HZSM-5 (HY: 17.2%, HBeta: 7.8%, 

HZSM-5: 25.4%). As the consequence, the types and yields of phenols (i.e., guaiacol and 

alkane substituted guaiacols) and C8-C11 fatty ethers or esters formed from cleaved side 

groups are also much higher over those zeolites with stronger acidity (Table 3-2 and 

Figure 3-4). Even for mesoporous zeolites, Meso-HY also contributes more phenol 

compounds and higher yield of many of them in its lignin depolymerization products 

when compared to FM-HZSM-5 with fin-like mesoscale pathways (Table 3-2). These 

results further endorse the importance of strong solid acidity of zeolites during scEtOH 

lignin depolymerization. It helps the deep breakdown of lignin fragments and higher 

selectivity to small phenolic aromatics. Because of the scEtOH lignin depolymerization 

complexity, the contribution difference between various mesopore structures seem not 

sensitive to the product distribution changes when compared to their acidity impact. With 

the diffusion of gigantic molecules less restricted to reach the surface of zeolites, the 

number of strength of the acidic sites on zeolites decide the eventual cracking levels of 

lignin and its large intermediate such as 1,2-Dimethoxy-4-(1-methoxyethenyl)benzene to 

small molecules (e.g., phenols) before leaving the catalyst surface. 

3.4 Conclusion 

In summary, we examined how acidity and pore structure of different zeolites play on 

lignin depolymerization in supercritical ethanol. Zeolites with similar micropore size 
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(HBeta and HZSM-5) or acidity (HBeta and HY) defined by their crystal structures were 

first used to evaluate the roles of these two important factors in lignin depolymerization. 

Zeolites with the same microporous structure, but different acidity caused by various ion-

exchange degrees were further evaluated, followed by zeolites with similar acidity but 

different pore sizes (i.e., mesoporous zeolites versus and microporous counterparts of 

HZSM-5 and HY zeolites). Despite the complexity of lignin depolymerization and its 

greatly diversified products, the strong acidity in HBeta and HY was found effective to 

cleave both C-O-C and C-C linkages in lignin structure to receive more phenols while 

HZSM-5 with mild acidity break down mainly the ether bonds. Hierarchically porous 

structure is important to promote mass transport and the exposure and utilization of the 

acidic sites inside zeolites like in many petrochemical reactions involving bulky 

molecules. But when the diffusion issues become less severe for bulky lignin and its 

partially decomposed intermediate and monomer compounds (e.g., in mesoporous 

zeolites), the acidity dominantly decides the yield and selectivity of lignin 

depolymerization product. These findings provide important guidelines on the selection 

and design of zeolites with appropriate acidity and porous structure to facilitate the 

scEtOH depolymerization of lignin, which will help not only eliminate this high-volume 

farm waste and environmental hazard of paper and pulp plants, but also to promote the 

utilization efforts on converting its rich aromatic units into important chemicals and fuels. 

The same knowledge could also benefit other catalytic cracking processes using a variety 

of heating and/or solvent assistance to improve the conversion, yield, and selectivity of 

bulky hydrocarbons. 
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CHAPTER 4 

 

HYDRODEOXYGENATION OF DEPOLYMERIZATION 

COMPONENTS OVER PALLADIUM/MESOPOROUS  

ZEOLITES 
 

4.1 Introduction 

Pyrolysis bio-oil is a mixture of various organic compounds including alcohols, sugars, 

furans, phenols, and other large hydrocarbons. It retains up to 70% of the total energy of 

the abundant raw biomass and serves as one of the most promising alternative or 

replacement to fossil fuel (Talmadge, M. S. et al. 2014; Shi, Y., et al. 2017). However, its 

direct use in conventional combustion engines is unfavorable due to its high oxygen 

content (up to 40 wt.%), poor thermal stability, and low heating values (16-19 mJ/kg) 

(Hernando, H., et al. 2016; Wang, Y., et al. 2012). Hydrotreating step, a classic refinery 

process to remove oxygen, sulphur, nitrogen, and other unwanted elements in oil by 

adding hydrogen, is often suggested for the upgrading of bio-oil to increase its C/O ratio, 

improve its energy density, stability, as well as other required fuel properties (Wang, Y., 

et al. 2011; Wang Y., et al. 2014). As bio-oil has low or none sulfur-containing 

compounds, conventional hydrotreating catalyst (i.e., NiMoS and CoMoS) are undesired 

due to their inevitable introduction of sulfur into the hydrodeoxygenation (HDO) 

products and consequent extra removing process. Their high operation temperature (i.e., 

350 °C or higher) is also unfavorable for bio-oil HDO, easily leading to the formation of 

heavy hydrocarbons and coke that quickly deactivate the catalyst (Griffin, M. B., 2017; 
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Lai, Q., et al. 2017; Kordouli, E., et al. 2017; Sun, J., et al. 2013; Zhao, H. Y., et al. 

2011; Olcese, R. N., et al. 2012). Noble metals (Pd, Pt, and Ru) catalysts, on the other 

hand, exhibit excellent hydrotreating performance in the removal of oxygen and/or 

saturation of hydrocarbons at relatively low reaction temperature (Zhao, C. et al. 2012; 

Zhu, X., et al. 2011; Bjelic, A., et al. 2019; Bjelic, A., et al. 2019). Beside the superior 

hydrogenation function of noble metal, the acidity and pore structure of catalyst support 

also play important roles on the overall catalyst activity through improving metal 

dispersion as well as enhancing adsorption and/or diffusion of reactive specie (Infantes-

Molina, A. et al. 2015; Hunns, J. A. et al. 2016; Wang, Y., et al. 2013). Among different 

supports, zeolites are often adopted for their uniform pore structure and strong acidity 

(Sotelo-Boyas, R., et al. 2010; Grilc, M., et al. 2014). These features help improve the 

dispersion of noble metal clusters, enhance metal−support interactions, and regulate 

product selectivity. However, traditional single crystal zeolites carry only micropores 

defined by their unique crystal framework, which causes great diffusion resistance for 

large reactant/product molecules and high risk of coking formation. This is particularly 

unfavorable for bio-oil upgrading due to their inclusion of excessive giant oligomers 

(Hong, D. Y., et al. 2010; Valle, B., et al. 2010). Therefore, mesoporous zeolites or 

zeolites with a network of pores at different scales (i.e., hierarchical pore structure) are 

desired supports for hydrotreating catalyst in bio-oil upgrading processes which promote 

both diffusion and overall catalytic performance. 

Recently, we developed a new mesoporous zeolite ZSM-5 synthesis route, in 

which dry aluminosilicate nanogels are transformed into nanocrystal in solid state (Wang, 

Y., et al. 2017). Neighbor developing nanocrystals further joint at edges, creating 
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connected, inter-lattice mesoscale pathway in the finished single crystalline zeolites. This 

new mesoporous ZSM-5 zeolite (designated as Meso-ZSM-5) carries the merits of 

nanocrystal zeolites on mass transport promotion for bulky molecules while avoid their 

intrinsic drawback on hydrothermal stability. We introduce palladium (Pd) metal over 

this new mesoporous zeolite ZSM-5 support (designated as Meso-ZSM-5) to form a bi-

functional catalyst (designated as Pd/Meso-ZSM-5) and investigated its 

hydrodeoxygenation (HDO) activity for bio-oil upgrading. Guaiacol (GUA) is selected as 

the model compound of bio-oil owing to its two oxygenated groups (i.e. methoxy and 

hydroxyl) widely presented in many pyrolysis oil compounds. Its high oxygen content 

and easy coke formation issue often leads to disappointed HDO performance over many 

traditional hydrotreating catalysts, particularly those that are supported on microporous 

materials (Wang, Y., et al. 2012; Choi, M., et al. 2006). The HDO of guaiacol was 

conducted at a temperature of 150-250 °C over Pd/Meso-ZSM-5 and Pd catalyst 

supported on microporous ZSM-5 to investigate the potential improvement of this new 

catalyst on guaiacol conversion and anti-coking resistance.  

4.2 Materials and Methods 

4.2.1 Materials 

Tetrapropyl ammonium hydroxide (TPAOH, 1 M in H2O), sodium aluminate 

(NaAlO2, ~8% H2O, >99%), tetraethylorthosilicate (TEOS, >99%), 

Tetraamminepalladium(II) chloride monohydrate (Pd(NH3)4Cl2·H2O, >98%), and 

Guaiacol (>99%), were purchased from Sigma-Aldrich and used as received without 

further purification.  
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4.2.2 Meso-ZSM-5 Synthesis by Solid-State Crystallization 

Meso-ZSM-5 zeolites were synthesized by mixing TPAOH, NaAlO2, TEOS, and 

H2O with a molar ratio of 0.25TPAOH: 0.015Al2O3: SiO2: 80H2O. TPAOH and NaAlO2 

were first dissolved in H2O, followed by adding TEOS under strong agitation. The 

mixture was kept at 80 °C until a clear solution was obtained, which was left overnight at 

room temperature for solvent evaporation. The as-prepared dry nanogels were further 

transferred to a Teflon-lined autoclave for crystallization at 140 °C for 12 h without 

adding any additional water. Conventional ZSM-5 zeolites with a similar Si/Al ratio of 33 

were synthesized via traditional hydrothermal method at 150 °C for 48 h.  

The synthesized zeolite samples were ion-exchanged three times with a 0.1 M 

NH4NO3 solution at 90 °C for 90 min (liquid/solid ratio = 10 mL/g) under stirring. 

Samples were then filtered, extensively washed with distilled water, and dried at 100 °C 

for 4 h. H-type ZSM-5 samples were prepared after further calcined in air at 500 °C for 6 

h (at a heating rate of 1 °C /min). The hydrothermal stability of zeolites was tested at 150 

°C for 72 h in autoclave with a water/zeolite ratio of 50. 

4.2.3 Pd/Zeolite Catalyst Preparation 

Pd/ZSM-5 and Pd/Meso-ZSM-5 catalysts were prepared by conventional incipient 

wetness impregnation. In brief, a aqueous solution of Pd(NH3)4Cl2·H2O (10mL, 

containing 12.4 mg Pd(NH3)4Cl2·H2O) was added dropwise to wet H-type zeolite powder 

(1.0g) at room temperature and the suspension was further diluted with DI water to a total 

volume of 50 mL under agitation (200 rpm). After 3 hours of stirring, the suspension was 

left still, allowing for solvent evaporation. The dried catalyst samples were then 

transferred to a furnace for further drying at 120 °C for 12 h and calcined at 500 °C for 4 
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h (with a heating rate of 1.5 °C/min). Dried catalyst samples were reduced in a flow of H2 

for 3 hr at 450 °C, using a heating rate of 2.5 °C/min prior to use. 

4.2.4 Characterization 

4.2.4.1 X-ray Diffraction (XRD) 

XRD analysis was done on a Bruker D8 diffractometer, using Cu-K radiation at 

room temperature and instrumental settings of 40 kV and 40 mA. Data were recorded in 

the 2 range of 5–60º with an angular step size of 0.02º.  

4.2.4.2 Electron Microscopy (SEM) Imaging 

Scanning electron microscopy (SEM) images were taken on a Hitachi S-4800. 

Samples were prepared by dusting the zeolite powder onto double sided carbon tape and 

mounted on an alumina stub. All samples were subsequently sputter coated with a thin 

gold film to reduce charging effects. Transmission electron microscopy (TEM) and 

selected-area electron diffraction (ED) measurements were carried out on a Hitachi H-

9500 high-resolution TEM (HRTEM) instrument operating at 300 kV. The samples were 

suspended in ethanol and dispersed on a copper grid coated with lacey carbon film before 

TEM analysis. 

4.2.4.3 Surface Area and Porosity Analysis 

Nitrogen adsorption isotherms were obtained at -196 °C on a Micromeritics 

ASAP 2020 Surface Area and Porosity Analyzer in a relative pressure range from 0.05 to 

0.99. Before measurement, samples were degassed at 300 °C for 6 h. The total surface 

area of catalyst was calculated according to the Brunauer-Emmett-Teller (BET) method 

(Note: the BET method underestimates the specific area of microporous zeolite (Du, X., 
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and E. Wu, 2007)). The pore distribution was obtained by the Barrett-Joyner-Halenda 

(BJH) analysis on the adsorption branch of the isothermal curve.  

4.2.4.4 Ammonia Temperature Programmed Desorption (NH3-TPD) Analysis 

The NH3-TPD was used to measure the acidity of zeolites on a Micromeritics 

AutochemII Chemisorption Analyzer. Zeolite materials (50 mg) were pretreated at 300 

°C for 1 h and then cooled down to 50 °C in an Ar flow of 20 cm3/min. Pure NH3 (at a 

flow rate of 20 cm3/min) was injected until adsorption saturation, followed by Ar purging 

for another 1 h. The desorption of NH3 was monitored in the range of 50–700 °C with a 

ramp of 10 °C /min by a TCD detector. Hydrogen chemisorption was done on a 

Micromeritics ASAP 2020C instrument to determine the Pd dispersion on the support. 

This was done by calculating the difference between the two adsorption isotherms (strong 

H2 adsorption) and extrapolating the curves to zero pressure, assuming H/M = 1 at the 

metal surface. 

4.2.4.5 Hydrogen Temperature Programmed Reduction (H2-TPR) Analysis 

In H2-TPR measurement, a 0.2 g catalyst sample was first pretreated at 300 °C for 

120 min in a flow of N2 (30 mL/min). After cooling down to 75 °C, the sample was 

further heated up to 750 °C at a heating rate of 10 °C/min in a flow of 10% H2 in argon 

(30 mL/min). Hydrogen consumption was measured using calibrated TCD signal. 

4.2.4.6 Thermo-Gravimetric Analysis (TGA) Analysis 

TGA was used to quantify carbon formed on catalyst after reaction using a TGA 

2050 Thermogravimetric Analyzer (TA Instruments, Inc). The weight loss of catalyst 

samples was monitored through a thermal scanning from 20 to 600 °C at a ramp rate of 

10 °C/min in air atmosphere. 
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4.2.5 Guaiacol Hydrodeoxygenation Tests 

The hydrodeoxygenation (HDO) of guaiacol over Pd/ZSM-5 and Pd/Meso-ZSM-

5 catalysts were evaluated in a high-pressure batch reactor (Col-Int Tech, 400 mL). 

Guaiacol of 1.0 g was dissolved in n-hexadecane (99%, Sigma-Aldrich) of 100 mL and 

the solution was loaded in the reactor, together with 0.3 g catalyst. Prior to loading, 

catalyst was reduced H2 for 3 hr at 450 °C. The reactor was then sealed tightly and 

purged three times with first N2 then H2 prior to being heated to appropriate HDO 

temperature (150-250 oC). The reactions were carried out under strong agitation (~1,000 

rpm) and a final H2 pressure was set to 4.0 MPa when the reactor temperature approached 

to its setpoint. During a total of 5-hour reaction period, liquid samples were taken every 

hour and were filtered through a syringe filter prior to off-line analysis using an Agilent 

GC-MS 7890A-5975 equipped with a 30 m HP-5 column. 

4.3 Results and Discussion 

4.2.6 Morphology and Textural Properties of Meso-ZSM-5  

As shown in Figure 1a, the XRD patterns of samples obtained from the solid-state 

crystallization method (Meso-ZSM-5) and traditional hydrothermal method (ZSM-5) are 

identical. Both match the characteristic diffraction pattern of MFI type crystal, indicating 

the same ZSM-5 crystalline framework for zeolites received from both our solid 

crystallization and traditional hydrothermal methods. As depicted in Figure 4-1b, the NH3 

TCD signal profiles of Meso-ZSM-5 and microporous ZSM-5 are almost identical, with 

three separated desorption peaks centered at ca. 165 °C, ca. 330 °C, and 720 °C, which 

correspond to the medium, strong, and ultra-strong acid sites of zeolites, respectively. 

This confirms that with the same Si/Al ratio, Meso-ZSM-5 zeolites synthesized by solid 
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nanogel crystallization also show similar acid strength, both on total acidity and for 

individual acid types, with traditional ZSM-5 counterparts.  

 

Figure 4-1: (a) XRD patterns and (b) NH3-TPD results of Meso-ZSM-5 and ZSM-5 

zeolites. 

 

Although having similar crystal and acidity, the morphology of zeolites obtained 

by solid crystallization of aluminosilicate nanogels is quite different from those 

synthesized through traditional hydrothermal approaches. Rather than the elongated, 

hexagonal plate shape of conventional microporous ZSM-5 zeolites with smooth surface 

and an average dimensions of ~225×500×700 nm (Figure 4-2a), Meso-ZSM-5 zeolites 

have rough surface and a spherical shape (~300-400 nm), attributed to the assembly and 

fusion of many zeolites nanocrystals of 20-30 nm into a large monolithic piece with 

connected inter-lattice mesoscale space, as shown in Figure 4-2b. The HRTEM image 

further confirms the presence of the hierarchical structure on Meso-ZSM-5. As shown in 

Figure 4-2c, the neighbor nanocrystals in single crystalline zeolites exhibit lattice 

diffraction fringes in the same orientation at edges, suggesting that these nanocrystals 

have been grown and merged into a single, large monolithic crystal rather than randomly 

packed nanocrystal aggregates. The integration of those nanocrystals of 20-30 nm is 
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further endorsed by the selected area electron diffraction (SAED) pattern (inset of Figure 

4-2c). Intracrystal mesopores can also be clearly seen in Figure 4-2c, contributing to the 

free space created by the stacking of jointed nanocrystal units into a monolithic large 

piece crystal. 

 

 

Figure 4-2: (a-b) SEM images of conventional ZSM-5 (a) and Meso-ZSM-5 (b) zeolites; 

(c) HRTEM images of Meso-ZSM-5.  The insets in panels (a, b) are high magnification 

(100K) SEM images of these zeolites and the additional scale bars there represent 100 

nm.  The inset in panel (c) is the corresponding electron diffraction pattern of a selected 

area of Meso-ZSM-5. 

  

Their hierarchical pore structure is further confirmed through the N2 adsorption–

desorption isotherms. As shown in Figure 4-3a, conventional microporous ZSM-5 

presents a classic type I adsorption/desorption isotherm for microporous materials, which 

has only one high uptake at low relative pressure (P/P0 < 0.02) and a long plateau in the 

high-pressure range (0.4 < P/P0 < 0.9). On the contrary, Meso-ZSM-5 zeolites present a 

combination of both type I and type IV adsorption/desorption profiles with two uptake 
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steps, a steep one at P/P0 < 0.02 followed by a slow one afterward, responding for 

micropore filling and mesopore capillary condensation, respectively. A hysteresis loop at 

0.45 < P/P0 < 0.90 locations suggests the existence of hierarchical pore structure in 

Meso-ZSM-5 zeolites. The textural parameters (Table 4-1) further reveal that Meso-

ZSM-5 has evidentially larger BET surface area (424.2 m2/g vs 317.9 m2/g), larger pore 

volume (0.28 cm3/g vs 0.15 cm3/g), and larger average BJH pore size (8.4 nm vs 3.0 nm) 

when compared to its microporous counterpart. Such increases are mostly attributed to 

the introduction of mesopores in Meso-ZSM-5. Although BET method underestimates 

the contribution of micropores to the total surface area of zeolites, its accuracy on 

mesoporous structure measurement at least confirms the availability of many mesopores 

in our Meso-ZSM-5 zeolite crystals and their contribution to the increase of the apparent 

surface area on accessible to probe molecules (i.e, N2) BET method calculates. The 

extracted surface area and pore volume information from N2 adsorption–desorption 

isotherms are provided here for general reference purpose, considering its wide adoption 

by zeolite community even today due to a historical reason and in case textural property 

measurement comparisons are needed with other research work. Nevertheless, even 

although the presence of mesopores reduces the surface area contributed by micropores if 

those mesoscale space was occupied by zeolite crystal, their existing provides still more 

accessible surface area: not only the new surface area contributed by mesopores, but also 

more accessible surface from micropores inside zeolite framework.  
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Figure 4-3: N2 sorption isotherm of Meso-ZSM-5 and conventional ZSM-5. 

 
[a] Single point total pore volume at P/P0 = 0.98. [b] BJH adsorption average pore size. 

 

4.2.7 Morphology and Textural Properties of Palladium/Meso-ZSM-5 Catalyst  

The unique hierarchical pore structure of Meso-ZSM-5 also affects the size and 

dispersion of metal particles over zeolite support. After converting zeolites to H-type, 0.5 

wt.% Pd was loaded on both types of zeolites by conventional incipient wetness 

impregnation to form Pd/ZSM-5 and Pd/Meso-ZSM-5 catalysts. For Pd/Meso-ZSM-5 

Sample SBET [m²/g] Vtotal [cm³/g][a] 

Pore Size 

[nm][b] 

Pd Dispersion 

(%) 

Active Particle 

Diameter (nm) 

Meso-ZSM-5 424.2 0.28 8.4 73.6 1.54 

ZSM-5 317.9 0.15 3.0 34.2 3.32 

 1 

Table 4-1: Textural Properties of Meso-ZSM-5 and Conventional ZSM-5 
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catalyst, palladium nanoparticles of an average of 3 nm are uniformly dispersed on the 

surface of zeolite crystal framework (Figure 4-4). The BET surface area of Pd/ZSM-5 

catalyst still has 378.3 m2/g after 0.5wt.% palladium loading, suggesting no large 

aggregates of palladium particles. In contrast, the BET surface area of Pd/ZSM-5 drops to 

233.6 m2/g due to the occurrence of obvious metal aggregation and micropore blocking 

issues. The palladium dispersion analysis by H2-TPD results confirm this claim with 

much better palladium dispersion on Meso-ZSM-5 than that on ZSM-5 (73.6% for 

Pd/Meso-ZSM-5 vs 34.2% for Pd/ZSM-5, as shown in Table 4-1). Correspondingly, the 

calculated active particle diameter is smaller for Pd/MesoZSM-5 (1.54 nm) than 

Pd/ZSM-5 (3.32 nm), as shown in Table 4-1. Although the palladium particle size 

calculated by H2-TPD measurement is much smaller than that in TEM images, both 

results confirm that the availability of mesoporous structure helps disperse palladium 

nanoparticles better over Meso-ZSM-5 support than what on ZSM-5 so that smaller 

average particle size is achieved in Pd/Meso-ZSM-5 catalyst. 

 

 

Figure 4-4: (a) HRTEM image and (b) Pd particles size distribution profile of Pd/Meso-

ZSM-5 catalyst.  
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The H2-TPR signals of both catalysts are shown in Figure 4-5. As in H2-TPR, a 

positive peak means hydrogen consumption while a negative peak is tied with the 

occurrence of hydrogen desorption from catalyst surface. For palladium catalysts, 

negative H2-TPR peaks could come from two processes: one is associated with H2 release 

from the decomposition of palladium hydrides near 105 °C and the other is contributed 

by the desorption of spillover hydrogen on the support material in which that desorption 

temperature is around 200 °C 29. As shown in Figure 4-5, the major negative peak for 

Pd/Meso-ZSM-5 catalyst is around 125 °C while the major negative peak for Pd/ZSM-5 

catalyst is around 220°C, both shifts 20 °C from the two characteristic H2 desorption peak 

positions from the literature. Considering H2-TPR procedure and/or instrument 

difference, our results suggest that the pronounced H2 desorption peak on the H2-TPR 

curve of Pd/Meso-ZSM-5 is attributed to the decomposition of palladium hydride, though 

a minor negative peak is also shown around 220 °C due to the spillover hydrogen. In 

contrast, the major H2 release signal for Pd/ZSM-5 comes from the spillover hydrogen 

over microporous zeolite support. Consider there is more accessible surface area on 

Meso-ZSM-5 than what on microporous ZSM-5, we can further claim that most surface 

area of catalyst support in Pd/Meso-ZSM-5 is covered by palladium particles than what 

in Pd/ZSM-5. In another word, the ZSM-5 support of Pd/ZSM-5 catalyst has more 

exposed surface (i.e., uncovered by palladium particles) to allow significant hydrogen 

spillover effect. With the same Pd impregnation dosage, this means averagely smaller 

size and better dispersion for palladium particles over Meso-ZSM-5 than what on 

microporous ZSM-5. More palladium surface is accessible to H2 probe molecules to form 

palladium hydrides (and release H2 during later TPR test) (Gomez-Quero, S., et al. 2008), 
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rather than spillover on the support surface. Similar findings are also reflected in the 

chemisorption analysis results on palladium particle size and dispersion (Table 4-1). A 

broad positive peak ranging from 300 oC to 400 oC appears in both H2-TPR curves. This 

is attributed to the reduction of palladium oxides that interact strongly with some specific 

acidic sites of ZSM-5 support. Protons in zeolite crystals enhance the chemical anchoring 

of palladium species, making them more difficult to get reduced (Sachtler, W. M. H. and 

A. Y. U. Stakneev, 1992). With similar acidity profiles for Meso-ZSM-5 and 

microporous ZSM-5 support (proved by NH3-TPD results shown in Figure 4-1b), the 

reduction temperature position of this positive peak is unchanged for both zeolite 

supports, implying their similar interaction strength with palladium oxides in certain 

acidic sites. However, the better-defined peak shape and greater peak area for Pd/Meso-

ZSM-5 catalyst again suggest more Pd2+ ions are stabilized there on Meso-ZSM-5. 

Additional broad positive peak centered at 500 oC is also found on the H2-TPR curve of 

Pd/Meso-ZSM-5 catalyst, which is not shown for Pd/ZSM-5 catalyst. This indicates that 

chemical anchoring of palladium clusters occurs on acidic sites of various acidic sites of 

Meso-ZSM-5. Considering two zeolite supports (i.e., ZSM-5 and Meso-ZSM-5) have the 

same acidity profile but different porous structure, it is reasonable to attribute such 

difference to the accessibility of those acidic sites within the hierarchical porous structure 

of Meso-ZSM-5. The different porous structures between Meso-ZSM-5 and microporous 

ZSM-5 results in binding diversity of palladium species on them, which could further 

cause various catalytic behaviors. 
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4.2.8 Evaluation Guaiacol Hydrodeoxygenation Performance 

Most studies on guaiacol HDO were conducted at high temperature and high H2 

pressure conditions to achieve reasonable conversion (Sun, J., et al. 2014; Zhao, H. Y., et 

al. 2011; Olcese, R. N., et al. 2012; Zhao, C. and J. Lercher, 2012; Zhu, X., et al. 2011). 

However, relatively low reaction temperature and H2 pressure are often preferred in 

industrial practice to compromise overall requirements among HDO efficiency, overall 

energy consumption, and coking formation issues. Therefore, our comparison of guaiacol 

HDO performance between Pd/Meso-ZSM-5 and Pd/ZSM-5 was made at relatively low 

temperature (150-250 oC) with a H2 pressure of 4 MPa.  

The conversion of guaiacol and its HDO product distribution strongly depend on 

the reaction temperature. As shown in Figure 5a, both catalysts are very inactive in 
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Figure 4-5: H2-TPR profile of Pd/Meso-ZSM-5 and Pd/ZSM-5 catalysts 
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guaiacol HDO reactions at 150°C. For Pd/ZSM-5, less than 5 % guaiacol is converted 

after the 5-hour reaction period. Despite having more accessible active sites and 

improved intra-particle diffusion, even Pd/Meso-ZSM-5 gets only 19% guaiacol reacted. 

The main products of guaiacol HDO at this temperature include monoxygenated 

compounds such as cyclohexanone (~11% of the total test sample, as shown in Figure 4-

6b). This suggests that hydrogenation of guaiacol could occur, though not effective, over 

ZSM-5 supported palladium catalyst surface at 150 oC. Under such a low HDO 

temperature, the benzene ring saturation dominates all involved reactions while 

deoxygenation is largely limited to the removal of methoxy groups on guaiacol molecular 

structure so that more than 50% of all HDO products is cyclohexanone. Oxygenate-free 

products are very low, suggesting deep deoxygenation reactions (e.g., removal of the 

phenol hydroxyl group) are far from competitive with hydrogenation of benzene ring at 

this low temperature.   

 

 

 

Figure 4-6: (a) Guaiacol conversion and (b) product distributions over Pd/Meso-ZSM-5 

and Pd/ZSM-5 at a hydrodeoxygenation temperature of 150°C 
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Elevating the reaction temperature to 200 °C significantly improve the activity 

and selectivity of both catalysts in guaiacol HDO reactions (Figures 4-7a, 4-7b, and 4-8). 

With the HDO reactions continue, the conversion of guaiacol climbs rapidly to ~84% 

over Pd/Meso-ZSM-5 and ~36 % over Pd/ZSM-5 within the 5-hour reaction time (Figure 

4-7b). Complete deoxygenation and hydrogenation become very efficient with main 

HDO products saturated, oxygenate-free cyclohydrocarbons such as methylcyclohexane, 

cyclohexane, and methylcyclopentane (Figures 4-7a & 4-8c), whose percentage in all 

products accumulates quickly with reactions ongoing (Figure 4-7c). Compared to what 

occurred over Pd/ZSM-5 catalyst, the guaiacol HDO degree on mesoporous zeolites 

supported one (i.e., Pd/Meso-ZSM-5) shows a 2.5 fold increase after the 5-hour reaction 

period and the oxygen-free and ring-saturated products reach 72% of the total test 

samples (Figure 4-8). In contrast, only ~31% of similar products are received over 

Pd/ZSM-5 catalyst. The incomplete guaiacol conversion allows detection of intermediate 

HDO products. Some monoxygenate compounds such as cyclohexanone are found in the 

products and their presence starts from the beginning of the HDO reactions over 

Pd/Meso-ZSM-5 catalyst, with a total partition slowly accumulated from ~4.8% to 11.3% 

of all compounds in the test samples within the 5-hour reaction period (Figure 4-7c). For 

Pd/ZSM-5 catalyst, such percentage is ~5.9% after the 5-hour HDO reaction period 

(Figure 4-6c). Based on the position of remaining oxygen molecules on these partially 

deoxygenated intermediates, the scission of aromatic-methoxy bonds seems much easier 

than the breakdown of the phenol hydroxyl groups. A small quantity of aromatics (e.g., 

cyclohexyl benzene) is also detected in HDO product and their percentage steadily rises 

with continuous consumption of guaiacol (Figure 4-7c). Despite the similar kinetic 
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profile, the partition of these unsaturated, oxygenate-free hydrocarbons (i.e., aromatics) 

always falls behind that of monoxygenate compounds 5% or more in the test samples. 

This further supports the suggested HDO routes over palladium catalyst -- hydrogenation 

has a higher priority to saturate the benzene ring so that benzylation reactions only occur 

when enough monoxygenate HDO intermediates accumulate in the reaction system. 

However, the competition between hydrodeoxygenation and hydrogenation alone 

(suturing the benzene ring) always exists, depending on the reaction temperature. As 

hydrogenation favors low temperature operation as long as having enough dissociated 

hydrogen while deoxygenation requires much higher reaction temperature to break down 

C-OH bonds of phenols, further increase of the HDO temperature could shift this reaction 

preference to deoxygenation dominated routes (Figure 4-9a). 
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Figure 4-7: (a) GUA HDO reaction routes, (b) GUA conversion, and (c) kinetics 5-hour 

HDO reaction of GUA at 200C over Pd/Meso-ZSM-5 and Pd/ZSM-5 catalysts 
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To verify this hypothesis, we further elevated the reaction temperature to 250°C. 

At this temperature, notwithstanding, the guaiacol conversion gets further improved. 

Within only 3 hours, guaiacol is completely reacted over Pd/Meso-ZSM-5 and this takes 

only slightly longer for Pd/ZSM-5 (i.e., 4 hours), as shown in Figure 4-9b. More 

important, the HDO product composition is significantly changed. Despite its more 

diverse products, only oxygen-free compounds were detected, indicating the effective 

deoxygenation ability of both catalysts at 250 °C. Besides deoxygenation, the high 

3.12%

11.3%

4.76%

4.42%
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26.35% 13.67%
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Figure 4-8: The products distribution after 5-hour HDO reaction of GUA at 200 °C over 

Pd/Meso-ZSM-5 (a) and Pd/ZSM-5 (b) catalysts. Note: most "unsaturated, oxygenate-

free" products overlay with "aromatics" except the former include olefins. 
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temperature also triggers other endothermic reactions such as methanization of aromatic 

rings. Unlike at 200 °C that oxygen-free and ring-saturated products dominate, these 

compounds account only 3% of all products over Pd/Meso-ZSM-5 and 6% over Pd/ZSM-

5 at 250 °C (Figure 4-10). In contrast, the percentage of heavy polymethylated aromatic 

products, such as methylated benzene (i.e., toluene, dimethyl benzene, ethyl benzene, 1-

methyl, 2-ethyl benzene, and tri-methyl benzene) and methylated cyclohexene (i.e., 

methylcyclohexene and dimethylcyclohexene), increases rapidly with HDO ongoing 

(Figure 4-9c) and eventually contribute over 94% of all products for both catalysts after 5 

hours. These results together suggest that deoxygenation overturns hydrogenation as the 

dominating process at 250 °C. Similar phenomena have also been found in guaiacol HDO 

process over Co and Ni catalysts (Tran, N. T. et al. 2016; Luo, Y. R., 2007). This is 

reasonable as exothermic reactions such as benzene ring saturation become unfavorable 

at elevated reaction temperature when compared with endothermic reactions like 

hydrogenation. Further hydrogenation of benzene rings after the removal of methoxy 

group therefore becomes less competitive than deoxygenation. Deep deoxygenation on 

the hydroxyl group of phenols also activates  and  hydrocarbon groups on the benzyl 

ring, triggering polyalkylation reactions at elevated temperature. Such reaction preference 

shift (i.e., from hydrogenation domination to deoxygenation domination) results in 

significant amount of heavy polymethylated aromatics in the HDO product of guaiacol at 

250 °C. 
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(a)  
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Although the high HDO temperature helps improve the guaiacol conversion and 

deoxygenation degree, unsaturated, polymethylated aromatics are formed, which, if 

presenting a large quantity within molecule transport pathways inside catalyst, would 

quickly accumulate on its active sites as coke and deactivate the catalyst. For our case, 

after the 5-hour HDO reaction, the used Pd/Meso-ZSM-5 catalyst still retained its 

original gray color while the used Pd/ZSM-5 catalyst turned to brown (Figures 4-11a & 
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 Dimethylcyclohexene
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Figure 4-10: Products distribution after 5h HDO reaction of GUA at 250 °C over 

Pd/Meso-ZSM-5 (a) and Pd/ZSM-5 (b) catalyst. Note: most "unsaturated, oxygenate-

free" products overlay with "aromatics" except the former include olefins 
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4-11b), indicating their different coking situations. The amount of coke on both catalysts 

was further quantified with TGA. As shown in Figure 4-11c, besides the early 4% mass 

loss contributed by water adsorbed on catalyst samples, additional ~8% mass loss occurs 

over Pt/Meso-ZSM-5 catalyst owing to the decomposition of coke deposited on catalyst 

during the 5-hour HDO reaction. For Pd/ZSM-5 catalyst, the formed coke contributes a 

mass loss of 12% (or a 50% increase) in TGA measurement. Such coking formation 

difference is believed the result of additional mesopores and multiple-scale 

reactant/product diffusion highways created in Pd/Meso-ZSM-5 catalyst, which largely 

mitigate the formation of rich hydrocarbon pool that is often seen in catalysts with only 

microporous structure such as Pd/ZSM-5 in this work. Besides molecule transport 

promotion within catalyst, the unique hierarchically porous structure of Meso-ZSM-5 

also makes palladium particles better distributed over the zeolite support surface to gain 

more accessible activate sites to slow down their deactivation. All these merits benefit the 

better guaiacol HDO performance over Pd/Meso-ZSM-5 than what on Pd/ZSM-5 at 

relatively low temperature (150-250 °C). 
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4.3 Conclusions 

In summary, new mesoporous zeolites ZSM-5 (Meso-ZSM-5) is successfully 

produced from aluminosilicate nanogels under solid-state crystallization conditions 

without hydrothermal synthesis and assembly process. These ZSM-5 zeolites have unique 

hierarchical pore geometry created by joining and stacking of many zeolite nanocrystals 

at adjacent crystalline edges. A hydrodeoxygenation process was used to effectively 

upgrade the important bio-oil compound, guaiacol.  For this process, palladium was 

loaded and well dispersed on Meso-ZSM-5 to form Pd/Meso-ZSM-5 catalyst. Attributed 

to fast diffusion and easy accessibility for reactants and/or products, the formed catalyst 

shows superior catalytic conversion and anti-coking performance at various temperature 

conditions when compared with catalyst supported on conventional microporous ZSM-5 

Figure 4-11: Optical photos of Pd/Meso-ZSM-5 (a) and Pd/ZSM-5 (b) after 5-hour GUA 

HDO reaction at 200 °C; (c) TGA results of coking evaluation on these catalysts 
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zeolites. These results demonstrate the great potential of Pd/Meso-ZSM-5 catalyst in bio-

oil upgrading and other hydrotreating reactions involving bulky molecules. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 
 

5.1 Conclusions 

The acidity and pore structure of different zeolites effect on lignin 

depolymerization in supercritical ethanol has been examined.  Those zeolites include that 

with similar pore size, HBeta and HZSM-5, and those with similar acidity, HBeta and 

HY.  Further examination into lignin depolymerization included evaluation of mesopores 

and micropores of HZSM-5 and HY zeolites.  HBeta and HY, due to their strong acidity, 

were found to break down the lignin structure to produce phenols, while HZSM-5 having 

less acidity broke down the ether bonds.  The hierarchically porous structure of the 

zeolites allowed them to utilize the acidic sites to break down bulky molecules.  With 

bulky lignin, diffusion becomes less severe and acidity becomes dominant in selectivity 

of lignin depolymerization products.  This allows tailoring of the design of zeolites which 

decreases plant material waste and promotes the conversion of aromatic units into high-

value chemicals and fuels.   

Palladium loaded on new ZSM-5 zeolites with unique hierarchically porous 

structure (Meso-ZSM-5) synthesized by solid crystallization from aluminosilicate 

nanogels. Such mesoporous zeolites (Pd/Meso-ZSM-5) showed well dispersion on zeolite 

nanocrystals.  Attributed to fast diffusion and easy accessibility for reactants and/or 

products, the formed catalyst shows superior catalytic conversion and anti-coking 
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performance at various temperature conditions when compared with catalyst supported 

on conventional microporous ZSM-5 zeolites when used for lignin depolymerization 

product upgrade by hydrodeoxygenation process. Ring saturated hydrocarbons are largely 

produced at 200 °C when hydrogenation dominates while alkylated aromatics become 

major HDO products as deoxygenation becomes favorable at 250 °C. These results 

demonstrate the great potential of Pd/Meso-ZSM-5 catalyst in bio-oil upgrading and 

other hydrotreating reactions involving bulky molecules. 

5.2 Future Work 

The findings of this project on the roles of solid acidity and porous structures of 

zeolites on lignin depolymerization provide important guidelines on the selection and 

design of zeolites to further facilitate lignin depolymerization or other cracking processes. 

Only Kraft lignin was used in the studies in this project. Other types of lignin such as 

organosolv or alkaline lignin are also worthy of investigation to find out the validity of 

the revealed relationships between acidity and porous structure of zeolites to the 

depolymerization performance, particular the yields of phenols with single benzene ring 

and the intermediate products such as 1,2-Dimethoxy-4-(1-methoxyethenyl)benzene. 

Model molecules mimicking a variety of bonds (e.g., the C-O-C and C-C linkages) within 

the molecular structure of lignin could be used to simplify the analysis and correlation on 

how zeolites with particular acidity and porous structures perform to cleave these bonds. 

The possibility of using the mixture of zeolites of different types to tailor the overall 

acidity, and porous structures is also worth to explore on the contribution to effective 

lignin depolymerization. Such choices of zeolites catalysts or other zeolites with unique 

porous structures such as HZSM-5 with fin-like mesopores used in this dissertation 
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project is also worthy of exploration on other biomass conversion processes such as 

catalytical pyrolysis and hydrolysis in sub-and super-critical water conditions.   

The new mesoporous zeolites used in this project were loaded with palladium and 

their hydrodeoxygenation performance was examined. Other hydrotreating catalyst 

metals, including previous metals such as Pt and Ru as well as transition metals such as 

Ni, Co-Mo, and Ni-Mo are also worthy of investigation on their hydrodeoxygenation 

performance of lignin depolymerization products as well as other hydrotreating processes 

such as HDS and HDN. Various hydrogen pressure and reaction temperature conditions 

should be examined. Other heating or energy supply schemes such as microwave heating 

and electrochemical activation of hydrogenation are also worthy of exploration. 

Zeolites are heavily involved in lignin depolymerization (with a catalyst-to-

reactant ratio often larger than 1:1) and a double-template method was used in this project 

to synthesize zeolites with fin-like mesoporous structure using traditional hydrothermal 

synthesis process. Such zeolite production requires the use of a large quantity of solvent 

(e.g., water and ethanol) which takes 70-80% volume of the high-pressure vessels used in 

hydrothermal synthesis while collects only 10-20% solid product. This not only increases 

the equipment and operation cost and energy consumption during such high-pressure 

synthesis systems, but also leaves a significant amount of toxic liquid waste containing 

alkali, silicates, and aluminates, which adds more cost on post-synthesis separation and 

additional risk of human helath and penalty on environmental pollution. These issues 

become more serious in biomass-based renewable energy processes with their 

significantly high quantity demand of zeolites, which could largely offset the potential 

benefits of these bioenergy routes considering the new pollution concerns or negative 
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impact to environment initiated by the involved zeolite industry. In the future, new, low-

cost, and environmental benign strategies sould be explored in hierarchically porous 

zeolite synthesis so that the overal lignin utilization cost can be significantly reduced to 

some comparable levels to make it competitive with the current fossil fuel product price. 
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