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ABSTRACT 

The big data phenomenon has transformed every area of life and business. 

Businesses today rely on the volume, velocity, and variety (3Vs) of data available today 

in product design, advertisement, sales, and post-sale follow up activities. 

Communication between the firm and the consumer is personalized using data collected 

on the consumer to match the consumer’s location, time, and needs. Some marketers 

argue that this has birth a new era of marketing; transformative marketing, in which the 

firm’s ability to deliver value and to acquire and maintain long-run competitive 

advantage determined by the firm’s data resources. In other words, data are the currency 

of the transformative marketing era. This sentiment is pervasive and has led to massive 

investments in data in recent years. 

This dissertation puts forward a classification of consumer big data to aid the firm 

extract value out of big data despite the 3Vs. The classification also demonstrates how 

value in a transformative marketing era does not have to be created at the expense of the 

consumer, but with the consumer. Five conceptual dichotomies are put forward in essay 

two that are more comprehensive than any other classification of data available in the 

research. 

Finally, the third essay investigates how the big data phenomenon affects 

consumer freedom and emotions. Most people agree that freedom is a fundamental 

human right, and that business practices should respect consumer freedom. However, 
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research on consumer freedom is scant. Two experiments investigate how the 

characteristics of data collected on consumers affects consumer perception of decision 

freedom and satisfaction with value propositions. With the big data phenomenon has 

come a push toward algorithmic decision making. Consumer’s anxiety toward 

algorithmic decision making is investigated along with the satisfaction derived from 

decisions made by third parties that collect data on consumers. 
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CHAPTER 1 

 

ESSAY 1: INTRODUCTORY ESSAY 
 

1.1 Introduction 

Many business academicians and practitioners are quite fond of the popular comic 

strip, Dilbert, which is written and illustrated by Scott Adams. Dilbert captures 

contemporary issues in an intelligent, timely, and funny way.  The comic strip regularly 

challenges issues of importance to marketing and business research. One I am 

particularly interested in is the role of data in marketing and business. Dilbert quite often 

asks questions about data and big data that most businesses and researchers do not 

consider. Even when questions about the role of data in marketing are asked, the 

mainstream conclusions are usually quite different and counterintuitive, and, this is what 

gives the comic series its funny edge. 

So naturally like any good academic, I will introduce my dissertation by sharing 

six of Dilbert’s stories that relate to data in business, published between 2017 and 2020. 

July 10, 2017: 

Boss: I need you to do a financial analysis on upgrading our customer tracking 

software. 

Dilbert: What conclusion do you want me to reach? 

Boss: We’ll do whatever the data says. 

Dilbert: Which is …? 
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Boss: I already bought the upgrade. 

April 03, 2018: 

Boss: What does the data tell us to do? 

Dilbert: We only have bad data on this. 

Boss: Does the bad data suggest we should do what we wanted to do anyway? 

Dilbert: Well, yes. 

Boss: That’s called good data. 

May 07, 2018: 

Dilbert: We had a massive data breach. Hackers got into the private data of all 

our customers. 

Boss: No problem, we’ll issue a press release that says we’re sorry and it will 

never happen again. 

Dilbert: That’s what we said the last three times it happened. 

Boss: Our strategy is to wear them down. 

February 20, 2019 

Dilbert: The test data doesn’t support our plan. 

Boss: We know our plan is brilliant, so just adjust the data to support it. 

Dilbert: You mean falsify the data. 

Boss: Let’s not get hung up on the definition of things. 

March 12, 2020 

Dogbert: The only reason I took a job managing cloud data is so I could laugh at 

people’s private information. Then I discovered a robust market for selling that kind of 

stuff, so it’s a twofer. 
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Dilbert: We need to talk. 

Dogbert: Sure, just email your thoughts to a friend, and I’ll probably read them. 

March 13, 2020 

Dogbert: According to your private data in the cloud, you have a mild case of 

asthma. 

Dilbert: You can see my personal health data? 

Dogbert: See it? Hahaha! I can do more than that! 

Dilbert: What is more than that? 

Dogbert: I can edit it. You have six new diseases now. 

May 07, 2020 

Boss: Is this data accurate? 

Dilbert: You don’t go to war with the data you need. You go to war with the data 

you have. 

Boss: Did you just make it sound noble to use bad data? 

Dilbert: And heroic. 

 

The stories above raise important issues related to big data in today’s business 

environment. First, the value of customer tracking to the firm is questioned. Businesses 

today pay a lot of money for just about any consumer data. Some even believe data are 

the currency of the information economy and are more valuable than money. The New 

York Times published an article in Information Management highlights titled “Big Data 

Analytics: The Currency of the 21st Century Enterprise.” Financial firm Deloitte 

published a report in the Wall Street Journal heralding data as the new currency and 
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attempted to address the role of governments in facilitating the exchange of data 

(deloitte.wsj.com/riskandcompliance/file/2013/11/DataCurrency_report.pdf). If data is 

the new currency and more valuable than money, does this mean that consumer data are 

worth any amount of money the firm can pay? Should cost-benefit analyses be 

undertaken before data investments? Or is more data always better for the firm, no matter 

the cost? Further, what metrics capture benefits of ever-bigger data? 

One only need type in the phrase “big data,” or, “data as currency,” and millions 

of results will be found. If data are the new unit of exchange, and Marketing is the study 

of exchange, does that mean the role of marketing in today’s information economy is the 

study and facilitation of data exchange? The exchange paradigm emerged as a useful 

framework for conceptualizing marketing behavior (Bagozzi, 1975). However, as 

Bagozzi (1975) points out, what marketers have considered as exchange is a special case 

of exchange theory that focuses primarily on direct transfers of tangible entities between 

two parties. Recent focus on data as unit of exchange implies that we have come a long 

way from looking at exchange only as the transaction of tangible goods. However, 

current implementations of data exchange can hardly meet even the conservative criteria 

of restricted exchange put forward by Bagozzi (1975). What is the true nature of data 

exchange and how can mutually beneficial relationships be formed around the exchange 

of data? 

Next, issues about the accuracy and quality of data driving decision making are 

raised. In the era of big data, what is the difference between bad data and good data? 

Doesn’t big data imply all the data collected are used to drive decisions and that more 

data equals more knowledge? According to an article published in the Harvard Business 
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Review, only three percent of companies’ data meet basic quality standards (Nagle et al., 

2017). Bad data costs the United States economy an estimated $3 trillion dollars per year 

(Redman, 2016). The cost of bad data in the USA alone far outweighs the estimated cost 

of the global big data market which was $136 billion in 2016 and $187 in 2019 year 

according to International Data Corporation (IDC). The IDC is considered the premier 

global provider of market intelligence, advisory services, and events for the information 

technology, telecommunications, and consumer technology markets. Big data are clearly 

not all of the same quality and there is far more opportunity in improving and 

understanding data quality than in the exchange of data (Redman, 2016). 

Dilbert also raises very important issues about the methodological analysis of big 

data. We have already seen that most big data are bad data and decisions based on such 

data are quite costly. However, even good data do not guarantee good decisions (Shah et 

al., 2012). Large volumes of data produce spurious correlations that may simply exist due 

to chance.  Five out of a hundred relationships will be significant by chance alone.  Also, 

as Shah et al. (2012) demonstrate, companies spending tens of millions of dollars to 

manage the information streaming in from suppliers and customers do not actually have 

any idea how to extract value from the data. Moreover, Ross et al. (2013) demonstrate 

that big data may not even be necessary as the conclusions arrived at from the analysis of 

big data are easily replicated. Another (academic) issue that arises in the analysis of big 

data is whether big data should be used by researchers and businesses to test 

preestablished hypotheses or should the data be relied on to determine what the 

hypotheses should be?  
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Finally, ethical issues about consumer privacy, consumer exposure and consumer 

vulnerability in today’s data rich climate are raised. The field of data science is changing 

so rapidly that few workers are thinking about the ethical implications of their everyday 

actions (Fung, 2015). Exchange theory implies mutually beneficial relationship between 

exchange partners. Consumers should benefit from the exchange and so should 

businesses. Do consumers have a right to privacy in an information economy? How 

should data breaches be handled to gain consumer trust? What are the implications of 

consumer vulnerability and exposure for freedom and society? When data determines 

consumer preferences or is used in diagnosis (whether in medicine or in business) is the 

consumer free? Are consumers willing to trust algorithms to make decisions in their 

stead? All these are very important questions that need to be addressed in a dominant data 

as unit of exchange paradigm. Also, companies can easily manipulate the data to tell 

whatever stories they desire. For example, Volkswagen was recently caught gaming 

emissions data (Fung, 2015). 

1.2 Purpose of Dissertation 

The big data phenomenon is here to stay. The managerial press frequently 

publishes the biggest trends in business. Recently, artificial intelligence, machine 

learning, and other big data-related fields dominate the reported trends of the future1 In 

marketing specifically, the top five trends to watch were augmented analytics, data 

privacy regulations, artificial intelligence, open source app development, and internet of 

things (IoT) networks (Soffer, 2019). Consumer tracking and data collection is a part of 

 

 
1 See trends for the future report by Andrew Thomas at  https://www.inc.com/andrew-thomas/7-

major-business=trends-to-watch-in-2020.html 

https://www.inc.com/andrew-thomas/7-major-business=trends-to-watch-in-2020.html
https://www.inc.com/andrew-thomas/7-major-business=trends-to-watch-in-2020.html


7 

the new data exchange economy. However, for big data to benefit all stakeholders, the 

questions raised in the introductory part of this essay need to be addressed. This 

dissertation proposes a normative classification of big data that is meant to help create 

value and mutual beneficial exchanges between businesses, consumers, and society. The 

classification should enable the firm to better understand what investments in big data are 

worth pursuing and how to use the data to drive smart decisions. The classification also 

aims to protect consumer independence and privacy in today’s information economy. 

1.3 Contributions 

The specific contributions of this dissertation will be discussed in two parts. First, 

the contributions to marketing and measurement theory will be presented, followed by 

the contributions to marketing practice. 

1.4 Theory 

The classification of big data proposed in essay II of this dissertation is the only 

classification of big data. The classification builds on the frequently cited 3Vs (volume, 

variety, and velocity) of big data. Three dichotomies of big data based on big data 

volume, variety, and velocity are proposed. Finally, essay II introduces 2 additional Vs 

(vulnerability and volition) associated with the big data phenomenon that are often 

ignored by researchers and businesses. Two additional dichotomies of big data based on 

volition and the vulnerability associated with big data are proposed.  

Altogether, five dichotomies of big data are proposed that should enable the firm 

interested in big data to invest in the best quality data, extract the most value out of big 

data, all the while, maintaining integrity and trust of consumers. The classification is also 

the first attempt to understand what volition and personal really mean as concerns the big 
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data phenomenon. Consumers’ perceptions of the characteristics of big data when used in 

value propositions such as advertisements is investigated in the third essay of this 

dissertation. A classification is not theory but should lay the foundation for a theory of 

big data driven value propositions. 

Essay III provides a comprehensive summary of consumer freedom literature 

from myriad disciplines and proposes a general theory of consumer freedom/consumer 

independence. A definition of freedom and the various elements affecting consumer 

freedom are presented. Consumer freedom is purported to be made up of cognitive 

(choice, restrictions, and predictions) and affective (negative emotions and satisfactions) 

elements. Freedom affects post choice attitudes and behaviors through the motivational 

state of reactance. The effect of information processing, information asymmetry, 

individual differences, environmental factors, social and cultural factors on consumer 

freedom are discussed. 

The effect of predictive Analysis on perceptions of freedom is investigated in 

essay III. This is the first investigation of consumers’ perceptions of big data driven value 

proposition on perceived decision freedom and satisfaction with data driven propositions. 

Consumers’ attitudes towards data driven restrictions on decision freedom is also 

investigated in a second experiment. Advancements in data collection and machine 

learning have led to an increase in algorithmic decision making. The second experiment 

investigates consumers attitudes towards such decisions. Finally, the effect of big data 

perceptions on anxiety and satisfaction with value propositions in investigated. The 

literature in marketing suggest that personalization increases satisfaction as consumers 

are only exposed to value propositions that are of interest to them. However, most 
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consumers agree that personalized ads can be creepy and cause anxiety or feelings of 

being watched.  

Forbes published an article in 2016 titled; “21 Scary Things Big Data Knows 

About You”. This article details just how pervasive the big data phenomenon goes. The 

list of things big data knows about us ranges from personal information such as age, 

name, location, relationships, websites visited (even in private mode), to very intimate 

details of consumers’ lives such as whether they are pregnant, intend to quit their jobs, 

whether or not they intend to commit a crime, whether they are a vulnerable consumer, 

how intelligent they are, and conversations with digital personal assistants and even dolls. 

Martel and ToyTalk have created a new Barbie doll, Hello Barbie, that can have 

conversations in real-time. Hello Barbie records everything said to “her” transmits all that 

information to servers at ToyTalk where it is parsed, analyzed, and the correct response 

selected and sent back for Hello Barbie to deliver within seconds. The doll also 

remembers what your kids say so conversations are progressive. Many consumers say 

such listening devices which have become a part of our homes and offices are creepy and 

create anxiety. Consumers also say ads based on past behavior or even things they only 

talked about are creepy (Reinhardt, 2017). How this anxiety affects satisfaction with the 

value proposition is investigated for the first time in this dissertation. 

1.5 Practice 

The current dissertation also contributes to the practice of marketing. Insight on 

how big data is being used in myriad industries to gain competitive advantage is 

presented in essay II. The different sources of big data are also summarized in terms of 

their accuracy and quality. Also, a discussion on the benefits of big data, based on the 

https://www.2oceansvibe.com/author/reinhardt/
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resource-based view of the firm is presented. Practitioners in all industries can use this 

information to make big data investments to gain heterogenous resources in customer 

knowledge that offer long run competitive advantage. The handling of data to gain and 

maintain consumer trust is crucial for relationship marketing (Meyer, 2018). The 

normative classification should help the firm gain consumer trust. 

How the three big data dichotomies based on the timeliness, personalization, and 

volition of big data affect consumer satisfaction with data driven interventions. Most 

retailers today collect consumer data in real-time to offer personalized propositions. For 

example, Amazon.com makes recommendations based on the consumer’s activity on the 

website in real-time. The experiments in this essay are the first to investigate how the 

time between data collection and intervention affects consumer satisfaction. The 

experiments also investigate whether consumers perceive differences in whether data 

collected are volitional or not. Answers to these should help marketing practitioners in 

the collection and implementation of data. 

Next the effect of consumers’ perceptions of data driven interventions on negative 

emotion is investigated. The firm that uses big data would not like to endanger reactance 

or negative emotions in the consumer. This dissertation investigates both perceived and 

actual freedom restrictions affect consumers’ emotions. Businesses, like Amazon, will 

alleviate the consumer from making purchase decisions and instead make purchases for 

consumers without any deliberative input from the consumer. Consumers, to retain 

freedom, would need to opt out rather than opt into new exchanges. They believe is that if 

this strategy is backed by data on the consumer, consumers will be happy to adopt them. 
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Is it not the ultimate in utilitarian value? This dissertation provides exploratory answers 

to this claim. 

Policy implications of data driven decisions are also very important to the practice 

of marketing. The right to choose is a fundamental human right and the corner stone of 

every economic theory (Porter, 1970). Investigating the effect of the big data 

phenomenon on consumer freedom is not just important for a free market but has 

implications for society as a whole. 

The remainder of this introductory essay offers a broad and general framework for 

my research. Big data is used in every industry today and drives decision making in 

insurance, healthcare, public policy, just to name a few. As of the time of this writing, 

governments around the world are using cell phone proximity data to monitor just how 

well citizens are respecting the shelter in place orders put in place because of the 

COVID19 pandemic. These governments are relying on the data to let them know when 

their economies can reopen. Taiwan, South Korea, and Singapore even used location 

tracking to enforce lockdowns (Timberg & Harwell, 2020). Consumer big data are being 

relied on to make decisions about global health, but in so doing, are restricting consumer 

freedom. Poor quality or incomplete data have far reaching consequences in this context 

(Toh, 2020). We are going to war for our survival and we cannot afford to wage war with 

data that has blind spots as the preceding article demonstrates. Proximity data are also 

being used to quarantine consumers who have been in the proximity of an individual who 

has tested positive for the corona virus. Thousands of consumers around the United States 

are protesting the limitations on their freedoms imposed by the shutdown. 
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 In the insurance industry, big data are being used to determine consumer risk 

rates and hence price differentiation. It is not farfetched to think health insurance cost 

will someday soon depend on user-generated big data. Examples of how big data are 

currently used in some of these industries are discussed in essay II. Whether data are the 

unit of exchange for the future or not, data are clearly being exchanged between 

consumers, businesses, organizations, and governments. To create lasting big data 

exchanges, the effects of the exchange relationship on the consumer, who is the starting 

point of most data must be investigated. Big data characteristics drive consumers’ 

perceptions of freedom and those drive important outcomes. The purpose of the third 

essay of this dissertation is to investigate whether consumers perceive big data 

characteristics, how the characteristics of big data drive consumers’ perceptions of 

freedom and finally how big data characteristics and perceived freedom affect consumer 

satisfaction with value propositions. 
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CHAPTER 2 

 

ESSAY 2: CLASSIFICATION ESSAY 
 

2.1 Introduction 

What is the origin of the phrase “big data”? The “big data” first entered the 

Oxford dictionary in 2013; however, Oxford did not coin the term. The first documented 

use of the term as it is understood today is credited to Cox and Ellsworth (1997). For a 

brief history of big data and information storage, see the Forbes article by Gil Press 

(2013). Winshuttle.com hosts an interactive timeline that chronologically documents the 

major events involved in the explosion of recorded information from the 1930s to the 

present time2. Some of the main points from the data explosion timeline are discussed 

below. 

Throughout human history, information has been created and stored. In the 1940s, 

the first warnings of data storage and retrieval problems emerged as recorded data 

required larger amounts of physical storage. For example, data resided on magnetic tapes 

that resembled movie reels or on paper in libraries. In the 1950s, virtual memory was 

created which reduced the physical requirements for data storage and retrieval. 

Centralized computing systems of the 1960s led organizations to design, develop, and 

implement automated inventory systems. In the 1980s information began to develop 

 

 
2 See timeline at  https://www.winshuttle.com/big-data-timeline/. 

https://www.winshuttle.com/big-data-timeline/
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faster and data storage and organization options became even more condensed. I. A. 

Loukides (2011) notes that large amounts of data are being retained because users have 

no way of identifying obsolete data; the penalties for storing obsolete data are less 

apparent than are the penalties for discarding potentially useful data. Users hesitate to 

delete data for fear of getting rid of data that could be needed in the future. Loukides 

(2011) also notes that Parkinson’s Law of Work applies to data: data expands to fill the 

space available for storage. In the late 1980s, IBM defined an architecture for business 

reporting and analysis which became the foundation for data warehousing. At the heart of 

data warehousing is the need for high-quality, consistent storage of historically complete 

and accurate data. Up to this point, the focus had been on data storage and retrieval and 

not on quality and accuracy. In 1989, Howard Dresner redefined business intelligence 

(BI) as concepts and methods to improve business decision making by using fact-based 

support systems. Around the same time, enterprise resource planning (ERP) systems and 

companies offering data services for better decision making entered the scene. The 

growth of ERP companies led to more businesses and organizations integrating data-

driven decision making in their operating strategy. 

In 1990, Peter Denning observed that the imperative to save all the bits forces 

scientists into an impossible situation where it is difficult to make sense of the data. 

However, Denning also points out that it is possible to build machines that can recognize 

or predict patterns in data without understanding the meaning of the patterns, and that 

such machines may eventually be fast enough to handle large data streams in real time. 

The explosion of the World Wide Web, phenomenal growth of computing power and the 

internet, and the idea of the internet of things all came about in the 90s. Predictive 
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analysis in the early 2000s changed the way organizations of all kinds conduct business. 

Organizations began to do exactly what Denning predicted; build algorithms that 

recognize and predict patterns, but without understanding meaning.  

Fast forward after 2010 and the real growth of data and information storing 

capacity accelerates. The internet of things starts to become a reality. Today, smart cities 

and cloud computing make it possible to easily collect, store, and process data in real 

time. Data mining, machine learning and artificial intelligence are some of the tools used 

in big data processing today. These tools continue to advance at exponential rates, giving 

data users more storage and computing power. Denning’s assertion that machines can 

help humans recognize patterns without understanding meaning seems to have directed 

the historical developments in big data and big data application. However, the importance 

of data quality, accuracy, and theory in data analysis and application has been largely 

ignored. Anderson (2008) claims in his article; “The End of Theory,” that the scientific 

method as we know it is dead. According to Anderson, the quest for knowledge used to 

begin with grand theories, but now it begins with massive amounts of data (big data), 

forcing us to view data mathematically first and establish a context later. Several authors 

responded to Anderson’s claim, some who agree and some who do not. 3  

The purpose of this essay is not to discuss the merits and/or demerits of the 

deductive versus inductive methods of scientific inquiry. Therefore, no discussion on 

whether truth is arrived at by starting with grand theories or by starting with large 

datasets is presented. I do not disagree with Anderson that all models are wrong, but 

some are useful. However, Wilson et al. (2017) asserts that big data are plural and not all 

 

 
3 Reactions to Anderson’s claim are available on Edge Foundation’s website 

https://www.edge.org/3rd_culture/anderson08/anderson08_index.html 

https://www.edge.org/3rd_culture/anderson08/anderson08_index.html


16 

equal in objectivity and accuracy. Therefore, business intelligence, predictions, and 

theories build from big data are not all equally useful. Big data shifts marketing focus 

from understanding market segments, to understanding individual customers, leading to 

the rise in customer relationship management (CRM) in marketing. Salesforce, the largest 

CRM company, recently acquired big data firm Tableau for 15.3 billion dollars. The 

acquisition is part of Salesforce’s Customer 360 initiative to help clients gain a complete 

view of their clients through big data. Days before the Tableau acquisition by Salesforce, 

Google acquired big data analytics company, Looker, for 2.6 billion dollars. The desire to 

make more informed decisions using data leads to massive investments in big data by 

most organizations today. Organizations frequently partner with firms that possess big 

data to get a more holistic view of consumers. Are all big data investments useful to the 

firm? How can firms get value out of big data once they possess it? And how does big 

data acquisition and decision-making affect consumer freedom and privacy? 

The current essay proposes a normative classification of big data from a business 

and consumer viewpoint. The purpose of the classification is two-fold. First, the 

classification ought to assist in extracting value out of large consumer datasets. Can firms 

justify the massive investments in big data capabilities they make today? The extant 

evidence that such investments yield any returns whatsoever remains unclear. Second, the 

classification should address or begin to address the largely ignored normative (i.e. 

ethical) aspect of big data-driven decision making. Most organizations and authors 

acknowledge that privacy is a major issue when dealing with consumer data. However, 

nothing is being done to address these concerns. Most authors talk about the enormous 

opportunities big data presents if we can figure out how to address the privacy and ethical 
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concerns that arise from taking advantage of said opportunities but fail to propose any 

solutions.  

Two arguments are presented for a normative classification of big data. The first 

argument, the value argument, will demonstrate how three conceptual dichotomies can 

assist marketers in the extraction of value from big data. The value argument will discuss 

the oft-mentioned characteristics of big data; volume, velocity and variety (the 3Vs of big 

data). Each of the three characteristics are potentially hindering big data effectiveness. 

The classification demonstrates how to gain knowledge of consumers’ in spite of the 

obstacles created by ever increasing volume, velocity and variety. The second argument 

for a normative classification is a societal argument. The essay lays the foundation for 

how big data should be used in a healthy, free society. This argument will address two 

very important issues; consumer privacy, and consumer freedom. Consumers today are 

more aware of effects of big data and internet and computer power on their lives. The 

COVID-19 pandemic birthed protests against consumer tracking and 5G technology. 

How are consumer privacy and freedom affected by big data collection, storage, and 

usage?  

The remainder of the essay will take the format discussed below. First, the essay 

presents a review of recent literature on the centrality of data in today’s business 

environment. The literature review suggests that big data-driven decision making is here 

to stay and helps develop foundational premises supporting the value and societal 

benefits from a big data classification. The essay proceeds as follows: the first conceptual 

dichotomy is introduced after the literature review. Next, the value argument is discussed, 

which is based on the characteristics of big data and shows how a classification can help 
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marketers navigate the complexity that the 3Vs introduce. Three conceptual dichotomies 

are introduced alongside the characteristics of big data. Finally, the societal argument is 

discussed, and the final two conceptual dichotomies presented. 

2.2 Literature Review and Foundational Premises (FP) for Classification 

Technological advances, coupled with the proliferation of digital technologies in 

every aspect of our lives, have led to transformations in the marketing discipline. Some 

refer to the current state of transformation as the transformative marketing era (Franks, 

2012; Kumar, 2018; Varadarajan, 2018; Meyer, 2018). “Transformative marketing is the 

confluence of a firm’s marketing activities, concepts, metrics, strategies and programs 

which are in response to marketplace changes and future trends to leapfrog customers 

with superior value offerings over competition in exchange for profits for the firm and 

benefits to all stakeholders” (Kumar 2018).  

In the current transformative marketing era, individual user constraints such as 

convenience, personalization, experiences, environmental sustainability, and social 

connections have become more important. Technology emerges as a powerful integrator 

of changing markets, customer needs, and blurred geographical boundaries. Calls to 

demonstrate the efficiency of the marketing function have brought the focus on creating 

value and managing customer relationships in a personalized manner. Marketers look to 

big data and artificial intelligence to understand and develop better offerings and manage 

omnichannel communications. Advances in big data, cloud computing, and internet speed 

have brought tremendous changes in terms of need for and affordability of data. The 

adaptability and customization capabilities of technological applications, such as smart 
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devices and cookies, have enabled marketers to establish personalized means of 

communication with their customers.  

Data are central to transformative marketing and the future of marketing thought 

and practice (Kumar, 2018). Transformative marketing goes beyond the current change 

from relationship to engagement marketing, to reaching consumers more precisely 

through personalized relationship management. Personalization requires firms to have 

high customer knowledge (see Appendix A) and to use said knowledge in developing and 

communicating personalized value propositions.  

FP 1: Customer knowledge is essential to value creation using big data. 

However, to assume that operating in an environment rooted in big data is a 

necessary and sufficient condition for more satisfied customers and long run competitive 

advantage is naïve and misleading. Access to big data does not necessarily mean better 

knowledge of customers. Varadarajan (2018) proposes a conceptual framework for 

marketing performance in a transformative landscape, delineating the relationship 

between a firm’s customer information assets, information analysis capabilities, customer 

knowledge, marketing strategy, and performance. In a digital data-rich environment, 3 

market-based resources of major importance include a firm’s:  

1. Customer information assets (data),  

2. Customer information analysis capabilities, and  

3. Customer knowledge (knowledge about the customer) in that order.  

Only by effectively leveraging its customer information assets or data and 

information analysis capabilities, can a firm achieve a competitively advantageous 

resource position in customer knowledge. Analogously, by effectively leveraging its 
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advantageous resource position in customer knowledge to inform its marketing strategy 

decisions, a firm can achieve a better marketing strategy and as a result, market 

environment fit relative to its competitors and, thereby, greater marketing strategy 

effectiveness and efficiency as well as superior marketing and financial performance 

(Varadarajan, 2018). For example, Salesforce, a company that leverages the power of 

cloud computing and storage acquired Tableau, a company that provides consumer data 

analytics in June of 2019. As part of Salesforce’s customer-360 program, Salesforce’s 

customer information assets in terms of customer data will be merged with big data from 

Tableau and Tableau’s customer information analysis capabilities to better understand 

customers. The performance in a transformative landscape framework, which is based on 

resource-advantage theory, makes a distinction between customer information and 

customer knowledge. Customer information is data about customers, while customer 

knowledge is a resource advantage that marketers can leverage in their efforts to create 

personalized value offerings. The resource-based view posits that heterogeneous market 

positions result from effectively leveraging heterogeneous firm resources that are 

valuable, rare, inimitable, and non-substitutable, VRIN resources (See Appendix A) to 

achieve and sustain a competitive advantage in the marketplace.  

2.2.1 Are Big Data VRIN Resources? 

Big data should be valuable, rare, inimitable, and non-substitutable to offer long 

run competitive advantage (Lambrecht and Tucker, 2017). Rare big data are data that are 

difficult to acquire, while inimitable implies the data cannot be reproduced by another 

entity and that big data X cannot be used in place of big data Y. For big data to be non-
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substitutable, no other way to obtain a competitive advantage beyond the data should 

exist.  

2.2.1.1 Are Big Data Inimitable? 

However, Lambrecht and Tucker (2017) demonstrate using several industries that 

access to big data does not protect a firm from competition. First, big data are not 

inimitable for several reasons. For instance, consumption of data does not decrease 

availability. Multiple organizations may use the same data over and over again. DNA 

data collected by companies like Ancestry and 23andMe is sold to several drug 

manufacturers and customer service companies like Spotify and Airbnb. Next, due to 

technological advances, big data have near zero marginal cost of production and 

distribution over long distances and too many users. Big data, consistently, are generated 

at a rapid pace, easily accessed and are readily available wherever needed. The data also 

do not have to be analyzed on site; meaning big data-driven decision making is not 

limited to any geographic region, even if a region lacks individuals skilled in the analysis 

of big data. Lastly individual consumer-level tracking is complemented by the explosion 

of user-generated content where consumers create a digital footprint of their behavior, 

likes, opinions and interests across the internet (Lambrecht and Tucker, 2017). Firms 

have limited resources and big data are by definition enormous and ever increasing 

(Lambrecht and Tucker, 2017). Therefore, firms must understand which big data 

investments will produce the best returns and are worth the limited resources the firm 

possesses. For example, are consumer tracking data equal in quality to user-generated 

data? How do data sources differ on reliability and quality? A classification of big data is 

useful in deciding which big data investments are worth firm resources. 
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FP 2: Big data sources differ in terms of quality and reliability. 

2.2.1.2 Are Big Data Rare? 

Second, big data are not rare. Large shifts in supply infrastructure render the tools 

for gathering big data commonplace (Lambrecht and Tucker, 2017). One can almost 

expect to see an article every year that makes a claim that more data was created in the 

past year than has existed throughout human history. The data explosion phenomenon is 

driven by ever increasing big data sources/consumer tracking and storage technology. 

The web is used is every area of life today, and sensors exist on every kind of device, 

from watches to cars to prescription medicine; all facilitate creation of big data. The 

myriad sources of big data will be discussed shortly. Today, one doesn’t even have to pay 

to store small to medium amounts of data. All of the music ever created can be saved on a 

little flash drive today or stored for free with the creation of accounts on a cloud service 

provider such as Google (Franks, 2012).The availability of data has surpassed our ability 

to understand meaning from data (David Weinberger, 2017). However, certain sources of 

big data are still relatively expensive and investments in such sources may offer 

competitive advantage. For example, telematics devices being placed in cars can help 

insurance companies’ better estimate risk factors and insurance costs, rather than making 

very general estimates. Radio frequency identification (RFID) sensors are also still not 

widely used in some industries due to the low unit price of the products the firms market 

compared to the current cost of RFID devices. RFID data is therefore rare in industries 

selling low cost items and only available to few large organizations. Also, new uses for 

already existing big data can offer competitive advantages for example a ride sharing 
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company acquiring telematics data from an insurance provider would offer heterogenous 

customer knowledge and long run competitive advantage and profitability. 

2.2.1.3 Are Big Data Valuable? 

Third, big data, by themselves, are not valuable. Several challenges are faced by 

those tasked to create value from big data: (1) compatibility, (2) integration, and (3) the 

unstructured nature of big data. The lack of structure and compatibility is because most 

big data sources were not originally created to drive the decisions marketers are 

interested in. Integration of big data with marketing metrics and outcomes is challenging. 

For example, social media are not created so companies can finally understand what 

consumers think of their brands. As a result, the data are usually unstructured data or at 

best, semi-structured data as opposed to the structured nature of primary data. A 

classification schema will help marketers impose structure on big data and hence better 

tame the data to meet their needs. The most important challenge faced however is the 

difficulty of establishing casual relationships in large pools of overlapping observational 

data (Lambrecht and Tucker, 2017). In a world of big data, the voluminous correlations 

surface almost by themselves and although many firms have access to big data and 

subsequent correlations, such data are not objectively useful because of the difficulty in 

distilling truly actionable insights from the data. For example, Oremus and Glaser (2017) 

write about grievous mistakes that were made by companies relying on big data in their 

article; “how big data went bust.” Stories involved Target sending coupons for baby 

items to the family of a girl who had not told anyone she was pregnant, while another 

involved Pinterest congratulating single women on their impending marriages. Machine 

learning algorithms used to analyze big data identify correlations that may not necessarily 
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offer causal, and therefore, actionable managerial insights and should only be used as a 

guide to further investigation that we might be able to predict the effect of our actions. In 

other words, the skill in making big data valuable is being able to move from mere 

observational correlations to correctly identifying, potentially outside of big data, what 

correlations are nonspurious and can form the basis for positive strategic action 

(Lambrecht and Tucker, 2017).  

FP 3: Big Data are operand resources and customer knowledge is acquired from the 

application of operant resources to big data. 

2.2.1.4 Are Big Data Non-substitutable? 

Lastly, big data are not non-substitutable resources. Successful companies have 

been established in several industries with little to no big data access despite major 

players with big data access. In the communications industry where data always offered 

operational advantages, WhatsApp and Snapchat beat the companies with big data like 

Skype and Facebook to launch very successful services without big data and very few 

employees by offering superior value propositions. Even in sectors where there has 

historically been little data, big data still are not non-substitutable. Meaning in the 

absence of big data, other strategic advantages can offer superior performance. The rise 

of the sharing economy in industries where major players existed and had big data 

advantage is evidence that big data are not non-substitutable. Uber, Lyft, and Airbnb are 

disrupting large hotel chains and cap companies with a long history and big data. Google 

owned massive amounts of data and acquired ITA Software to break into the hotel search 

business, yet Kayak launched with less data and owned the largest market share as of 

December 2019. In the sharing economy, the advantage comes not from owning big data, 
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but from systems that can ensure trust and reputation among users. For example, in 

industries where data is important to delivering a personalized experience, such as online 

dating, Tinder quickly became a dominant player in this industry by offering a better 

product that required double opt-in which reduced nonresponses and rejections. A focus 

on big data acquisition may hinder value creation as this requires consumers to be 

vulnerable and consumers so far have not had much of a choice in the matter. Increasing 

awareness of business tracking will lead to an unwillingness by consumers to be 

vulnerable. Taking advantage of consumer vulnerability reduces the very trust necessary 

for relationship building in the sharing and digital economy. 

FP 4: Acquisition of big data requires consumers to be vulnerable and consumers’ 

willingness to be vulnerable is dependent on how much they trust the organization. 

Firms in possession of big data have yet to understand how to leverage this 

resource to gain superior customer knowledge. In industries with high switching cost, 

such as social networking sites, incumbents with big data have frequently been displaced 

by new companies without big data access. Big data is not even necessary for attracting 

capital investment today. For example, Jet has received lots of funding despite major 

players such as Google express and Amazon Fresh in the local delivery industry. Overall, 

big data is not non-substitutable, not even for offering online services, though ownership 

of big data is often the natural consequence of being successful in offering such online 

services. Instead, in a similar manner to the offline world, what determines success is a 

superior ability to understand and meet customer needs (Lambrecht and Tucker, 2017). 

Superior competitive advantage lies in attracting employees who can visualize and train 

algorithms or design experiments that offer a resource advantage in customer knowledge 
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from consumer data. A classification will assist marketers use big data to look forward 

and understand evolving customer needs in a transformative marketing era.  

2.2.2 Need for A Classification of Big Data 

A classification of big data will lay the foundation for theory development for 

data-driven value creation.  This will enable marketers develop superior value 

propositions, and enable marketers communicate value in such a way that consumer trust 

is enhanced. The world will become increasingly connected as more and more everyday 

activities and devices become new sources of big data. The classification should also help 

marketers collect, store, share, and use consumer data in a way that does not take 

advantage of or abuse consumers’ vulnerability. The importance of ensuring privacy for 

the firm perhaps rests on the argument that privacy is an essential ingredient for forming 

relationships (Kumar, 2018). However, privacy is not only important to the firm and 

consumers, but also to society at large. What are the implications of big data and 

consumer vulnerability for democracy, elections and governments? New and more 

stringent regulations on privacy and data collection by governments around the world are 

some of the ways the immediate environment is reacting to the transformative marketing 

landscape. More importantly, what are the implications of big data for consumer 

freedom? The rise of nudge theory and behavioral interventions is evidence that big data 

could negatively affect freedom. Freedom is made up of choice, restrictions, and 

satisfactions (Lowe and Buckley, 1982) all of which are affected by big data collection. 

The potential to drive such decisions as consumer choice sets, prize differentiation, and 

elections makes a classification and subsequently a general theory of big data-driven 

value creation an important contribution. Marketing research should lead the discussion 
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on privacy and data use, and I believe a normative classification of consumer data is a 

great way to contribute to the discussion.  

Marketing ought to be a normative science; application of scientific principles to 

achieve ethical and moral goals (Robin, 1970). Robin predicted almost 50 years ago that 

the application of science in marketing will increase consumer satisfaction at first. 

However, consumer satisfaction will start to decrease due to the privacy implications of 

explaining, predicting, and controlling consumer behavior. Sampling reduces the number 

of consumers affected and is a potential solution to the problem. The continued 

application of science in marketing will continue to decrease consumer satisfaction and 

eventually result in a net negative satisfaction from marketing activities (Robin, 1970). 

Mayer and White (1967) in their article on the law of privacy and marketing research 

state that; “…we are able to collect our research data only because the general public 

continues to be willing to submit to our interviews. This acceptance of us by the public is 

the basic natural resource on which our industry is built. Without it we would be out of 

business tomorrow. This natural resource is not limited, nor can it safely be assumed that 

it will remain continuously available. It is subject to the environmental constraints of 

privacy.” The same can be said for all big data today. Is marketing science getting closer 

to a point of declining consumer satisfaction and acceptance? Whether or not Robin 

thought the decline in consumer satisfaction had begun at the time of his writing, it is 

evident this is happening today. One only need take a look at the number of consumers 

protesting 5G installations and technology today to see that there is an increasing 

intolerance for technology that enables consumer tracking (Conklin, 2020). What ought 
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to be done to resolve this problem? A normative classification could help restore 

consumer trust, whilst ensuring firm benefits from big data in a transformative landscape. 

2.2.3 Foundational Premises for a Normative Classification of Big Data: 

1. FP1: Customer knowledge is essential to value creation using big data. 

2. FP2: Big data sources differ in terms of quality and reliability. 

3. FP3: Big Data are operand resources and customer knowledge is acquired from 

the application of operant resources to big data. 

4. FP4: Acquisition of big data requires consumers to be vulnerable and consumers’ 

willingness to be vulnerable is dependent on how much they trust the 

organization. 

2.3 The Value Argument for Big Data Classification 

Here, I develop an argument and propositions for how the firm can ensure that 

investments in consumer data are profitable. Firms acquire consumer data in the hopes of 

gaining greater customer knowledge, which can then be used to develop personalized 

value propositions. Recommendation systems are widely used in business today and there 

exist a large body of research on their efficacy or lack thereof. I discuss the 

characteristics of big data and demonstrate how my proposed classification helps the firm 

get value out of big data despite their characteristics. I also present several propositions 

associated with the classification of big data. But first, I introduce useful dichotomy 

commonly used in designing recommendation systems: 

2.3.1 User Data/Item Data Classification for Recommendation Systems 

Big data has been classified as either user data or item data. Classifying consumer 

data into users and items is useful for extracting value out of data through customization 
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and sub-segmentation (Malthouse and Elsner, 2006). Users are consumers who have 

interacted with a firm or of whom the firm has acquired data and are represented in terms 

of their preferences for options (products, likes, inclinations). Items in turn, can be 

represented in terms of which users like them and how the items are rated by users. 

Classifying data into users and items is very useful in matching consumers to products 

and products to consumers for recommendations. For example, in collaborative filtering 

(see Appendix A), items are recommended to users based on other users’ ratings of the 

items. Large firms like Amazon and Netflix use this method to make recommendations to 

their users. 

The user/item data classification is widely used in practice, for instance, in data 

mining for personalized recommendation systems (Stern, Herbrich, and Graepel, 2009). 

Content information together with collaborative filtering is used to recommend items to 

users online. The matching of users to items and items to users allows a model to identify 

groups of users with similar preferences for items and similarly identify collections of 

items that are all rated similarly by the same users. Yan, Liu, Wang, Zhang, Jiang, and 

Chen Madrid (2009) found that users who click a particular ad will exhibit similar 

behaviors on the website afterwards. The assumption for behavioral targeting (See 

Appendix A) is that users who have similar search or browsing behaviors will have 

similar interests and thus firms have a higher probability of predicting future behavior. 

Classifying data into users and items is very important for sampling, a concept 

that seems to be losing its value in the digital economy. Collaborative filtering allows 

predictions about users with little content information, called new users. Collaborative 

filtering is a method of making automatic predictions (filtering) about the interests of a 
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user by collecting preferences or taste information from many users (collaborating). New 

users are matched with older users, for whom a profile already exists, allowing firms to 

make appropriate recommendations to new users. Such sampling implies that firms do 

not necessarily need all the data on all consumers at a time when consumer trust is thin. 

Recommendation systems (See Appendix A) are very popular today. An 

appropriate recommendation is an item suggestion that a user is interested in. Most 

studies on recommendation systems use conversion rates as a proxy for interest or to 

indicate that a recommendation was appropriate. Appropriate recommendations increase 

the chances of consumer patronage. Stern, Herbrich, and Graepel (2009) used Bayesian 

probabilistic models to predict personalized recommendations of items to users of 

MovieLens and Netflix. The Matchbox system makes use of content information in the 

form of user and item meta-data in combination with collaborative filtering information 

from previous user behavior in order to predict the value of an item for a user. Users and 

items are represented by feature vectors which are mapped into a low-dimensional ‘trait 

space’ in which similarity is measured in terms of inner products. Bayesian probabilistic 

models are very helpful for improving personalized recommendations, and for dealing 

with “the cold start problem”. The cold start problem is a common problem in 

recommender systems where the lack of past behavior makes it hard for firms to make 

appropriate recommendations to new users or appropriate recommendations of new 

items. Matchbox models are also capable of incorporating real-time feedback information 

from users into item recommendations. Such customized systems outperform generic 

ones (Malthouse and Elsner, 2006; Ansari and Mela, 2003). 
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Recommendation systems are very useful, even when dealing with new users. 

Malthouse and Elsner (2006) found that customized offers for new users which are based 

on randomly guessing new user segment membership outperform generic offers. 

Guessing new user segment membership is called the labelling hypothesis; new users are 

labelled as belonging to one market segment or another and all marketing 

communications are customized to fit the randomly chosen market segment. Research 

needs to develop proxies for user interest. Portable devices may be important in 

developing proxies. However, privacy issues linked to behavioral targeting on these 

devices remain unresolved and hinder progress of behavioral targeting for appropriate 

recommendations and more precise marketing communication. 

P1: Users with similar content data will share similar item interests. 

P2: Content data allow firms to make appropriate item recommendations to users. 

P3: Collaborative filtering allows firms to make appropriate item recommendations to 

users with relatively little content data (new users). 

Future research should investigate if user similarity predicted by content data and 

collaborative data spans across domains. For example, if users have similar content data 

for music, will they like similar movies, food, and/or travel destinations? 

2.3.2 Nothing New; Bigger Is Not Always Better 

Recently published research claims that big data are the most disruptive 

technology in academic and business research and is pivotal to such activities as 

innovative product design, services, business opportunities and results in efficient and 

effective operations such as optimizing supply chains, customer relationship management 

(CRM), prize setting, quality management and choosing the right people for the job 
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(Guther et al., 2017; Baesens, 2014; Davenport and Kudyba, 2016). In some ways, big 

data indeed represent a disruptive technology. The availability of previously nonexistent 

big data has the potential to completely revolutionize certain industries as we would see 

when we discuss some of the major sources of big data. However, for the most part, an 

explosion of data is nothing new. Marketing and the business world have had to deal with 

data outburst before. For example, demographics, retail purchase data, ATM data, 

telephone network data, and telegraph data were thought of as disruptive in the early days 

of such datasets. Marketers learned to deal with the complexity of demographics, ATM, 

telephone, and telegraph data and today it is understood how to use such data to make 

better decisions. The insistence on calling big data the most disruptive technology blinds 

organizations and prevents the firm from making assessments of value gotten against the 

investments of money, time and other resources spent on big data acquisition and usage. 

Disruption seems to imply that mere possession of any kind of big data will lead to a 

competitive advantage. If anything, big data are more an incremental advancement that 

offer unique opportunities, but also comes with many challenges. Some of these 

challenges will be discussed in the following section that discusses some of the major 

sources of big data. 

2.3.3 Big Data Sources 

The use of the phrase “big data” is associated with the explosion of data available 

today. There are numerous sources of big data. Franks (2012) outlines 10 major sources 

of big and how they are being used in different industries today. For a full description of 

some big data sources and industry applications, see Franks, 2012. My discussion will 

group big data sources into five general categories for purposes of classifying big data.                                          
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2.3.3.1 Website Data 

 Known as the original big data, website data is the most widely used big data 

source today (Franks, 2012). Organizations across many different industries have 

integrated detailed, customer-level behavioral data sourced from websites to help them 

move past customer actions to understand customer intent. Website data helps the firm 

move past the traditional transaction view (recency, frequency, monetary value (RFM)) 

of a customer to begin to understand the processes that go into consumer decision 

making. For example, imagine a website where 95 percent of browsing sessions do not 

result in a basket being created. Of the remaining 5 percent, only half or 2.5 percent begin 

the checkout process and finally only two-thirds, or 1.7 percent complete a purchase. As 

Franks (2012) points out, this scenario is not unrealistic in most cases. Implying 98 

percent of the data are missing if we only analyze transactions. Combining website data 

therefore with traditional customer data could be very valuable to the firm. Imagine a 

retailer recording every aisle customers visit, every item they look at, pick up, put in cart, 

and remove from cart. Imagine knowing whether they read nutritional information, if 

they read laundry instructions, country of origin, if they read promotional information or 

any other information. The technology today makes all this possible on websites. As 

technology improves, mass adoption of eye-tracking and telemetry will only make 

website tracking more detailed. 

Website data gives organizations access to big data. Even for a very small website 

with very few visitors, once data are being collected across time and space, it grows 

quickly. Today organizations can track consumers outside of their website on other 

websites like social media websites using cookies. Behaviors that can be captured include 
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purchases, product views, shopping cart additions/removals, watching video, downloads, 

reading/writing reviews, requesting/accessing help, forwarding, posting comments, 

registering for events, and searches just to name a few. How should organizations handle 

such data? What is the reliability of website data? Are all website data created equal? Our 

classification will attempt to answer these questions. 

2.3.3.2  User-Generated Data 

User generated data are texts, images, audios, and videos intentionally created by 

consumers or end-users. An enormous amount of text data exists out there and more and 

more are created every day. Text is one of the primary ways we communicate with each 

other today and is one of the biggest and most common sources of big data. Text data 

includes documents, books, e-mails, texts messages, tweets, social media postings, instant 

messages, and transcribed audio. The amount of text data will only increase as 

technology makes it possible for text exchanges to happen between a human at one end 

and a message bot at the other. Two major challenges exist in getting value out of text 

data. First, the nature of text data makes it the most unstructured source of big data. 

Every text or post or email has a unique format and organizations that will benefit from 

text must first learn to impose structure on the data. Secondly, the interpretation of text is 

context dependent. This introduces lots of error into text data analysis. However, 

organizations can still benefit from the analysis of text data. Tools are available for the 

text analysis and organizations out there are using these tools to aid in their decision 

making and strategy. AI’s capacity to interpret texts continues to grow. 
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2.3.3.2.1 Sentiment Analysis 

One popular use of text today is in opinion mining and sentiment analysis. 

Sentiment analysis looks at the general direction of opinion across a large number of 

people to provide information on what the market is saying, thinking, and feeling about 

an organization (Pak and Paroubek, 2010). Consumer posts on social media (e.g. Twitter) 

about a specific brand and/or entity associated with the brand are mined and grouped into 

three classes: positive, neutral, and negative posts. For example, Starbucks performed 

sentiment analysis to determine the impact of Starbucks’ former CEO’s presidential 

election bid on the company. Such analyses are often used to understand consumer 

opinions about a company, specific products, corporate initiatives, or services. Sarah et 

al. (2015) perform sentiment analysis on Twitter for BMW, Mercedes, and Audi. They 

find that positive emotions are more associated with BMW than Mercedes and Audi, but 

that Audi and Mercedes have a higher percentage of positive tweets than BMW.  

How reliable is user-generated and more specifically sentiment data? How do we 

know that all the mentions of Apple on social media are talking about the company and 

not the fruit? How do we capture typos, sarcasm, word emphasis? More importantly, do 

consumers opinions on social media have any impact on company bottom-line? 

Companies like McDonalds, United Airlines, and Facebook continue to have exceptional 

financial performance quarter after quarter despite negative consumer sentiment on social 

media. Tirunillai and Tellis (2012) used time series analysis to investigate the impact of 

user-generated online chatter on stock market performance and trading activity. They 

found that the sentiment associated with user-generated chatter affected trading 

performance. Negative chatter has a stronger negative effect on trading performance than 
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the positive effect of positive chatter. However, the volume of chatter had the strongest 

effect on trading performance. A classification should help marketers understand how to 

value user-generated data and how reliable such data are? 

2.3.3.2.2 Pattern Recognition 

Another use of text data is pattern recognition. Pattern recognition can be very 

valuable for the complaint department (Franks, 2012). By sorting through complaints, 

repair notes, and other comments made by customers, an organization will be more 

quickly able to identify and fix problems before they become bigger issues. For example, 

by sorting through patterns online about specific product lunches, Samsung could identify 

battery problems and address them early. Lawyers use pattern recognition to identify 

specific topics in huge document sets. 

Audiovisual data such as videos or images are also generated by users. Search 

crawlers require alt texts that describe the content of images to identify images. However, 

advances in artificial intelligence will eventually make it possible for such data to be 

analyzed by firms. For example, Google can now identify images without the use of alt 

texts, and Samsung Lens allows users to automatically analyze pictures and videos for 

products and find where they can buy similar products. What are the implications for 

user-generated data for value creation and consumer privacy?  

2.3.3.3 Sensor Data:  

Franks, 2012 discusses sensor data separately from telematics data, smart grid 

data, radio frequency identification (RFID) data and telemetry data. The goal of this was 

to demonstrate how sensors are being used to create value in different industries such as 

telematics devices in insurance, smart grids in utilities, RFID in manufacturing and 



37 

supply chain and telemetry in gaming. Although this is not Franks’ intention, and he 

makes it quite clear in his discussion, I believe using specific industry examples to 

discuss big data sources limits the reader’s thinking to the specific industries and 

examples discussed. Sensors have much wider applications and more and more ways 

sensors can be used to improve business and processes are being found daily. 

Telematics involves putting a sensor (black box) in a car or other devices to 

record what is happening with car or device. This black box can monitor a wide range of 

metrics such as speed, mileage, braking, and location. Imagine the impact of telematics 

data in understanding driver risk levels as opposed to the very broad estimates car 

insurers currently use that lump very different consumers into the same risk and price 

group based on age, gender, and location. Many insurance companies such as StateFarm 

are already using these devices. StateFarm offers discounts if consumers agree to place 

StateFarm telematics devices in their cars which frequently upload their location and 

driving performance data to StateFarm through Bluetooth and a phone app. In the 

StateFarm example, the consumer volunteers to be tracked. However, car manufacturers 

are building newer vehicles with trackers already in them and consumers are in some 

cases not even aware. Such data will help in personalization of insurance costs. 

Telematics data also has implications for law enforcement, location and time targeting by 

marketers. What are the societal implications of sensors tracking every aspect of 

consumers’ lives? Should telematics data be used for example in insurance claims, 

speeding violations or by retailers to target consumers? 

Smart grids are advanced power infrastructure that use sensors to monitor many 

aspects of a power grid and the electricity flowing through it. Smart grids provide utility 
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companies more information than the traditional estimate of end of month usage and are 

more efficient and reliable (Gungor et al., 2011). By using smart meters that record 

power usage every fifteen to twenty minutes, data on electricity consumption throughout 

various times of the day can be known. Such data can be used to more accurately 

determine pricing, but more importantly gives utility companies the ability to segment 

price by time of day and by demand. Such pricing programs can be used to influence 

consumer behavior and identify patterns of consumption that can be used in personalized 

value propositions. 

Telemetry data are data obtained from tracking the activities of a character in a 

game. The data gotten include not just the controller or keyboard actions, but the time 

and space of the character in the game when the keys are pressed. Such data have major 

implications for the gaming industry and have myriad other applications for example, in 

advertising or video game product placement. Video games today make it possible for 

users to purchase items throughout the game. Item purchases and sales within the game 

are randomly decided by the programmers or by expert game testers. However, with the 

use of telemetry, game programmers can track user activity and performance and offer 

value propositions such as item discounts when a player arrives a difficult task in the 

game. A combination of telemetry and eye tracking can also be used to determine where 

to place ads in video games. 

The last type of sensor data involves the use of radio frequency identification 

(RFID) devices which are small tags placed on objects to track their movements. Franks 

(2012) details how RFID devices are revolutionizing the manufacturing, supply chain, 

retail, and casino gaming industries. When an RFID device sends out a signal, an RFID 
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tag responds by sending information back. This makes location tracking on shipments 

and inventory tracking very easy. For example, RFID devices are being used to track out 

of stock items and item availability on shelves. Retailers can quickly identify items that 

are in stock, but not available on shelves. Retailers also use RFID devices to understand 

how promotional products placed in different locations in the store perform. When a 

product on promotion sells, it is possible today to know what location it sold from, not 

just that a product on promotion sold. Product placement in retail environments can be 

optimized using this method. As these devices get cheaper, more and more industries and 

uses will appear.  

Sensors are also used to monitor machinery and environmental conditions. The 

amount of data generated by these sensors is large and the applications and opportunities 

are enormous. 

2.3.3.4 Time and Location Data:  

Advancements in GPS tracking technology have made time and location a 

growing source of data. GPS tracking today does not require a rugged and expensive 

device that was only used in such industries as the military or geology. Today, there are 

GPS trackers in almost every consumer device. They are embedded in everyday devices 

such as phones, cars, watches, and computers. Consumers are tracked at almost all times. 

Even for those who do not own or carry any of these devices around, a wide variety of 

services such as Google Places, or Facebook Places are centered on registering where a 

user is at a given point in time. Time and location data have huge potential and are being 

used by many organizations today. Such data could be valuable for personalizing value 

propositions not just by consumer segments, but by time and place. What if you could get 
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a limited time coupon for a restaurant you like at lunch time just as you walked past the 

restaurant? Some authors say this is the future of marketing communication; tailoring 

communications not just to consumer preference, but to the time and place. However, the 

potential uses of time and location data goes beyond tracking individual consumers. It is 

more interesting when such data are used to identify similarities in consumer movements. 

What consumers were at the same place at the same time? This can be used to find out 

consumers with similar habits and interests and to understand where they will be in the 

future. Imagine a ride-sharing service that knew for example that two neighbors from 

New Orleans drive to Florida once every year around the same time? Such information 

can be used to make unique value propositions, such as offering a discount to one 

neighbor if they plan their Florida trip at the same time as the other. Imagine a dating app 

that knows two people attend the same concerts and eat at the same Italian restaurants. 

Time and location data can be used by dating services to match users with similar 

interests. The opportunities are limitless. 

Time and location data have other uses in business. For example, tracking 

supplies and getting hourly updates on schedules and possible delays, tracking deliveries 

such as pizza delivery. Other uses exist outside of business. Parents can track kids or 

governments can track soldiers on a battlefield. Time and location data have enormous 

implications for society. Big data does not only allow consumers to be identified, but 

their specific location is also known. How should marketers handle time and location data 

to instill consumer trust? A classification should address this question. 
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2.3.3.5 Genomics and Biological Data:  

On April 9, 2019, the NASDAQ listed the Global X Genomics and Biotechnology 

ETF (GNOM). GNOM tracks the genomics index, which focuses on companies that 

potentially stand to benefit from increased use of genomic technology and data. Genomic 

data are data that provide information about genetic blueprint. The Human Genome 

Project of 2003 offered the first breakthrough in genetic sequencing. The project spent $3 

billion to sequence the DNA of a handful of volunteers. Today, one can sequence his/her 

DNA for about $100, giving rise to a rapidly emerging industry. The falling costs of 

genetic testing and ever-growing amounts of genetic data have the potential to completely 

transform the medical industry. Genomics offers the potential to cure previously 

incurable diseases such as cancer where breakthroughs have already started to emerge. 

Medicine and consumer health are no longer one size fits all, but customization at the 

individual level is possible with genomics (Jacobs, 2019).  

Data such as blood type, diagnoses, DNA all fall under biological data. The 

digitization of healthcare data has brought about so much change in the healthcare 

industry and promises to revolutionize this industry even more (Graham Hughes, 2019). 

Healthcare research is also vastly impacted by the explosion of biological data. Today, 

wearable devices can track consumers’ vitals, and alert them when they are in danger of a 

health problem. Home assistants such as Amazon’s Alexa are being used heavily in the 

healthcare industry to monitor vitals, record patient information, buy health insurance, 

and even offer diagnoses based on information from thousands of doctors.  

The explosion of biological and genomic data has major implications for 

companies whose principal business is in genomic sequencing, computational genomics 
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and genetic diagnostics, genetic medicine/therapies, gene editing, and biotechnology as 

tracked by GNOM (Jacobs, 2019).  

However, genomic data is also being used in other consumer industries. My 

conversation, and subsequent categorization of genomic data is limited to the potential of 

genomic data to predict consumer interests and not in the capability of genomics to 

determine biological solutions. DNA companies like Ancestry and 23andMe collect 

consumers DNA and use this to determine heritage. Consumers’ use of such companies 

to understand their genealogy is growing rapidly. DNA data collected by these companies 

is used in myriad other ways without consumers’ consent. For example, Spotify partnered 

with Ancestry in 2018 to improve music recommendations to its users. Airbnb recently 

partnered with 23andMe to offer consumers heritage travel packages. DNA companies 

frequently sell consumer data to drug manufacturers. Although biological data is useful in 

the healthcare and pharmaceutical industry, is there a logical reason to expect that 

biological data is useful in predicting consumer interests? Can DNA really predict such 

things as travel, music, movie, and food preferences? What should companies know 

before rushing out to acquire genomic data? Does starting with data and figuring out the 

context later imply all data are valuable in all contexts? More importantly, what are the 

implications of biological data on consumer privacy and freedom? 

2.3.4 Three Normative Dichotomies and the Characteristics of Big Data 

Which is more important in the phrase “big data,” the “big” or the “data”? Franks, 

2012 argues that if you say either big or data, you will be wrong. The value is in the 

application of insights gotten from big data to improve firm performance. FP3 echoes this 

sentiment by stating that big data are operand resources that require acting on to be 
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valuable. Although this is true, it is also true that a lot of importance seems to be attached 

to the “big” in today’s business environment. The misconception that bigger is always 

better when dealing with data is a result of the assumption that data size is the primary 

determinant of value in the current era (Hair et al., 2018). When the concept of data is no 

longer well-understood, business is confused (Provost and Fawcett, 2016). The “big” in 

big data does not only refer to the volume of data available today but is also a reference 

to the velocity at which said data are generated and the variety of the data available. Big 

data are often defined in terms of these 3Vs; volume, variety, and velocity (Hair et al., 

2018). The 3Vs of big data create some kind of a needle in a haystack effect, where it is 

not only difficult to sort through the data due to its rapid and unstructured nature, but also 

significant correlations emerge simply due to data size and chance. The value argument is 

therefore designed to demonstrate how firms can get value from big data, in spite of 

bigness (volume, velocity, and variety). After each one of the 3Vs is discussed, a 

dichotomous classification will be presented to aid in the extraction of value from big 

data that possesses that characteristic. 

2.3.4.1 Volume:  

This characteristic is most closely associated with the term “big data” considering 

the sheer magnitude of information being collected initiated the term. It is difficult to 

quantify the amount of data, but it is generally agreed upon that we are encountering 

amounts of data never seen before in human history. Forbes reports that 90 percent of 

recorded data was generated over the last two years (Marr, 2016). Fifteen of seventeen 

industry sectors in the United States have more data per company on average than the 

U.S. Library of Congress (Franks, 2012). As technology advances and becomes more 
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affordable, the volume of data will increase exponentially. Recent studies estimate we 

will be gathering ten times the amount of information annually by 2025. The increasing 

volumes of data make a classification ever timelier and more useful to understand 

information and to turn information into intelligence. 

The volume of data available in all industries today is an important resource to the 

firm. However, as mentioned earlier, the volume of data is not without costs. Several 

issues arise with the extraction of value from voluminous data. Wasteful data investment 

is one of the problems associated with the volume of data in today’s business 

environment. Many organizations and researchers today fail to do a cost benefit analysis 

when embarking on big data projects or choosing to acquire data. Secondly, analysis 

paralysis is another major problem associated with big data volume. Organizations collect 

data via so many routes and so many consumer touchpoints but never actually do 

anything with the data acquired. Big data acquisition that does not lead to analysis and 

improvement of firm processes and performance is not only wasted, but also takes away 

from other investments and exposes consumers to possible data breaches and violations 

of trust. However, by far the two most important problems associated with the volume of 

big data are the loss of sampling, and the difficulty of establishing causal conclusions 

from large, unstructured datasets. The fact that data can be collected on almost every 

consumer does not mean that data should be collected on all of them. As sample size 

calculations show, relatively smaller samples can be used to make inferences about the 

general population. Collecting data on every consumer increases the security risks of big 

data possession. Having data on every consumer is still important for personalized value 

creation, but this is not how most organizations are using big data. Why then do we 
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collect large volumes of data, when this phenomenon creates obscurity in establishing 

causal conclusions, and how should marketing researchers establish causal conclusions 

when dealing with big data? The mythology around bigger data and the increasing 

reliance on machine learning algorithms that feed on data to build models without any 

prior theories is the reason for current insistence to record any and all data. How is 

business intelligence and predictability affected by data volume at the expense of logical 

explanation? Our first conceptual dichotomy attempts to answer this question. Big data 

can be split into broad and narrow classes. 

2.3.4.1.1 Broad Vs Narrow Data 

Broad and narrow data lie on the same dimension of the normative dichotomy 

with varying specificity. 

 

 

 

 

The broad /narrow dichotomy is based on the relevancy of the data to the item of 

interest. In the big data era, data mining allows researchers to run analyses on large 

datasets whether or not there is a logical explanation for an expected relationship. The 

broad/narrow dichotomy helps shed light on when such processes should be used. 

Narrow data are item-specific or item dependent data (for example all users who clicked 

Ford F150 ad) and category-specific or category dependent data (for example all users 

who clicked truck ads) that capture all the facts gathered about an item or category. Broad 

data are item or category independent facts that capture all the gathered facts about all the 
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Figure 2-1: Broad and Narrow Data Category 
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items of interest to the firm, for example, clickstream data on all Google ads. Classifying 

consumer data into broad and narrow classes helps the firm to better organize consumer 

data and in the extraction of value from data. Depending on the goals of the firm, broad 

or narrow data classes offer different advantages and disadvantages. Narrow data are 

used to train algorithms that predict users’ item dependent interests, while broad data may 

be more useful in training algorithms for predicting more general item independent 

models. The purpose of this classification is not to say that data are inherently broad or 

narrow, or that there is a clear boundary between broad and narrow data as narrow data 

are a subset of broad data. For example, category-specific data are broader than item-

specific data, while category independent data are broader than category-specific data. 

The goal is simply to show that broader or narrower data can be used to build models 

with different levels of accuracy, based on the features that determine user interest in the 

item, category, or topic. 

2.3.4.1.2 Behavioral Targeting: 

In today’s data-rich technology driven world, marketing can target, and segment 

consumers based on their past behaviors. This is known as behavioral targeting. 

Behavioral targeting is used to divide users into topic-specific segments, where users in a 

segment are selected based on prior behaviors or other features to be interested in a topic. 

Probabilistic models use features of the user and the item (for example an advertisement) 

to compute the probability of the user’s interest in the item. Differing opinions exist as to 

whether separate models should be built for each individual topic or item, or a single 

model that simultaneously predicts membership in all or a subset of the topics or items 

for which segments are built. For example, Svensen et al. (2011) use broad and narrow 
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data classes to train Matchbox Bayesian probability models for ad clicks. They write; 

“When we build a single topic model, the model will be solely devoted to make optimum 

prediction for the chosen topic. A model built to make predictions for multiple topics may 

have to trade off the performance on one topic against the performance on another topic. 

On the other hand, if the probability of a click is topic-independent with respect to some 

of the features, a model built using multi-topic data should be able to better capture the 

relationship between these features and the probability of click, and thus provide a more 

accurate model. Moreover, so called multitask learning, where multiple related tasks are 

learnt simultaneously, has proven useful for determining suitable data representations 

(selecting which item features to include in the prediction models). If there were to be 

strong topic specific dependencies on some features, we would expect that Match box 

models trained on corresponding multi-topic data would discover and exploit such 

dependencies, provided it had a sufficient number of latent traits at its disposal. 

However, in situations where such topic specific dependencies are only weakly reflected 

in the data, a model attempting to exploit these may end up overfitting to the training 

data.” 

Svensen, Xu, Stern, Hanks, and Bishop (2011) test different strategies for 

constructing click-prediction models used for audience segmentation and behavioral 

targeting on the Bing and Microsoft display networks. Using click-through rates (CTRs) 

as a proxy for interest to test the differences in prediction power of broad vs narrow 

models; they found that topic specific models predict interest (CTRs) better than topic 

independent models. Although these differences are small, where they exist, they will 

represent large differences in profitability. Conceptually, topic independent models 
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should offer better prediction as they are able to capture both topic-dependent and topic-

independent latent constructs which can be used to determine traits that lead to consumer 

preferences. However, topic independent models that capture all topic-dependent and 

topic-independent features or constructs are difficult to achieve in practice due to 

endogeneity. It is difficult for all topic independent latent constructs that affect the 

outcome to be measured in the data.  

Intelligence is the goal of data gathering. Gathering data should enable better 

prediction of consumer interests and consequently better tailoring of marketing 

communications. Differences exist in the prediction power of models trained on broad or 

narrow data based on the feature dependencies present in data. Factor analytic techniques 

and cluster analysis are useful in determining the feature dependencies or underlying 

factor structure of the data. Factor structures predict latent dependencies which will 

inform the analyst on the choice of broad or narrow data classes for model training. 

P4: Predictive models for user interests have higher predictive power when built on 

narrow data. 

P5: Factor analytic models are more accurate at determining suitable representations 

(features that capture user interests) of user interests when built on broad data. 

P6: Predictive models built on broad data have better predictive power when user interest 

is topic-independent with respect to some features. 

2.3.4.2  Variety:  

In the past, analysts relied on primary data and in some cases secondary data 

gathered expressly for the purposes of research. In the age of big data, marketers have 

access to myriad sources from inside the organization and from outside the organization; 
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for example, data offered by third parties, user-generated data, open data, and sensor data 

are available (Gunther et al., 2017). In most cases, these data were never intended to be 

used together. Rather than rely on respondents’ replies to questions, actual behaviors can 

be measured directly. The variety of big data offers opportunities for the firm to reach the 

consumer through different channels, quickly respond to consumer problems, better know 

the consumer, and corroborate their knowledge of the consumer with different data types 

and sources. 

However, big data variety leads to several challenges. First, how can we 

incorporate hundreds or even thousands of variables into the analyses, especially if 

explanation and interpretability is required? As a result, techniques in data reduction will 

play an increasingly important role (Hair et al., 2018). A classification will be helpful in 

this regard as classification schemas reduce large universes into smaller classes or 

groups. Next, the variety includes nonmetric quality (text) data such as social media 

posts. What types of measures can we obtain from social media posts, search queries, and 

past product purchases? The analyst now faces the task of managing the data to represent 

constructs beyond the actual measures themselves (Hair et al., 2018) and here in lies the 

problem with big data variety. Marketing researchers can fall into the trap of thinking that 

simply because the data is secondary; it is of good quality and a good representation of 

desired constructs or user interest. Data quality is one of the most important 

characteristics of valuable data, and this seems to be losing its importance in the big data 

era. Ultimately, greater variety could be negative and at best is an obstacle to extracting 

value from big data. How can marketing researchers better understand the quality of big 
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data varieties and how to get value out of big data in spite of its variety? This brings us to 

our next conceptual dichotomy, which splits big data into behavioral and attitudinal data. 

2.3.4.2.1 Behavioral Data and Attitudinal Data 

Behavioral and attitudinal data lie on the second dimension of the normative 

dichotomy with varying accuracy and reliability. 

 

 

 

 

 

This dichotomy is based on data quality. Drawing from the theories of planned 

behavior and reasoned action, behavior is a much better predictor of consumer interests 

than attitudes. Attitudes can predict the general direction of consumer interests over time. 

This dichotomy is important because most of what marketing researchers and 

practitioners call behavioral targeting today can more appropriately be termed attitudinal 

targeting. This is not to say that attitudinal targeting is not a very powerful marketing 

tool, but that it should not be regarded as evidence of specific brand directed intentions 

and preferences. Behavioral data are data left behind by consumers during specific brand-

directed interactions both online and offline. For example, clickstream data on the new 

F150 truck indicates actual behavior. Behavioral data can be used to personalize 

marketing communications to the specific needs of the consumer and also to segment 

consumers. Attitudinal data are data that show consumers’ preferences or intentions. For 
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Figure 2-2:  Attitudinal and Behavioral Data Category 
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example, recording when consumers like the new F150 truck on Facebook represents 

attitude. 

The confusion between behaviors and attitudes in a transformative marketing era 

is the result of the fact that both behavioral and attitudinal data can be collected through 

the four sources of big data without overtly asking for consumers’ attitudes towards an 

entity as used to be the case with surveys. The rise of big data and the internet of things 

have introduced wider varieties of attitudinal data alongside behavioral data that are both 

often the artifacts of consumer actions. The fact that consumer actions such as liking 

content online or retweeting can now be tracked and associated with specific, identifiable 

consumers has blurred the lines between behavior and attitude. Small actions do not 

always represent behavioral data. Attitudinal data, therefore, are themselves artifacts of 

consumer actions (such as filling out a survey about your attitude towards a restaurant or 

liking Facebook posts) but cannot be taken as evidence of future brand specific 

intentions. 

How can marketing researchers transform the different varieties of consumer data 

into constructs that can predict user interest and future behavior with high confidence? 

How much should the firm be willing to pay for social media targeting versus search 

engine targeting? Predicting interest helps in personalizing marketing communications, 

this in turn improves the success of marketing efforts. In a perfect world, a firm would 

only direct marketing communications at consumers who wanted to receive them. In such 

a world, every firm-consumer interaction will lead to a conversion of some kind. The 

firm will therefore be willing to pay more for customized marketing communications 

because a conversion was guaranteed, and the cost/profit calculations could be made 
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easily. Although such a perfect world does not exist, firms are willing to pay more for 

personalized communications through media channels such as TV, social media, search 

engines, and even contextual targeting on websites. Large investments in personalized 

communications based on data are justified by the expected increase in conversion rates 

and profitability.  

Table 2-1: Behavioral Vs Attitudinal Data Examples 

Behavioral Data Attitudinal Data 

Web Data: 

Shopping behaviors e.g. customers who bought the 

new F150. 

Search behaviors e.g. consumers who searched for 

a comparison between the F150 and RAM 1500. 

Web Data: 

Feedback behaviors e.g. consumers who rated the 

F150 truck on Ford’s website or who liked a video 

on the F150 on Instagram. 

Browsing behaviors e.g. consumers who watched 

videos on the best performing trucks in the USA. 

Sensor Data e.g. consumers who drive over ten 

thousand miles a year as indicated by telematics 

devices in the new F150. 

User-Generated Data e.g. users who 

mentioned the F150 in their Twitter feed. 

Time and Location Data e.g. consumers who 

attended Mardi Gras in New Orleans as indicated by 

the GPS trackers in their F150 trucks. 

Genomics Data e.g. consumers of Scottish and 

French decent, as indicated by data from 

Ancestry.com, who have purchased an F150. 

 

Kaptein et al. (2015) discuss how value propositions and persuasive technologies 

can be made adaptive to users using persuasion profiling. This type of persuasion can be 

based on explicit measures of users’ tendencies to comply with distinct persuasive 

strategies: measures based on standardized questionnaire scores of users (attitudinal 
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targeting). However, persuasion profiling can also be implemented using implicit, 

behavioral measures (behavioral targeting). When designing studies that rely on implicit 

data (assess persuasion profiles during user interactions), a feedback loop that monitors 

the outcome and updates the persuasion profile of the user is needed. Both these methods 

can be effective in improving the effect of persuasion attempts; however, implicit 

personalization is increasingly being used due to technological advances embedded in 

consumers’ everyday lives and higher quality of behavioral data over attitudinal data. 

Ethical issues arise with the use of implicit techniques or behavioral data as consumers 

are not always aware that a profile is being assessed. These ethical issues are not the 

object of the current and will be discussed later. 

However, some authors find that personalized marketing communications are not 

as successful as generic, non-personalized communications (Tucker, 2014). Tucker, 2014 

used social media profiles to personalize targeted communications and found that 

personalized communications were less effective than generic communications. The 

behavioral/attitudinal dichotomy is a possible explanation for the differential results 

reported by users of data personalized systems. Kaptein et al., (2015) found that search 

behavior is a better predictor of ad efficiency than browsing behavior, more than 670% 

more efficient. 

P7: Behavioral data more accurately predict user interests than attitudinal data. 

P8: Within the behavioral data category, shopping behaviors more accurately predict user 

interests than research behaviors. 

P9: Within the attitudinal data category, feedback behaviors more accurately predict user 

interests than browsing behaviors. 
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Search engine ads such as Google ads are shown when a consumer types a search 

phrase in the search engine homepage. Ad impressions or views are based on the 

relevancy of the keyword phrase entered and the relevancy and quality of the ad to the 

particular keyword. The search engine knows what the consumer is interested in because 

of the search query entered and tries to show ads that match search behavior. However, 

on social media, most of the information used in targeting is provided by the 

user/consumer. Advertisers rely not only on the honesty of the user, but on the user’s 

ability to accurately assess their knowledge. 

2.3.4.3 Velocity:  

Big data velocity refers to the rate at which data are transmitted and received. All 

the big data sources mentioned above do not only generate extremely large volumes of 

data with different varieties, but they are also generated and transmitted at very high 

speed. For example, there are over two billion daily active users on Facebook alone. The 

velocity characteristic has its greatest impact in the implementation of analytics since 

decisions must be made in an automated fashion (e.g. online web auctions for ad 

placement taking only milliseconds, product recommendations available immediately and 

other benefits the customer now expects instantaneously) (Hair et al., 2018).  

Big data velocity can be an obstacle to big data value creation. Trying to capture 

all the data generated by consumers in real time can deter a firm from getting value out of 

big data for several reasons. First, most of the big data generated and transmitted is 

worthless (Franks, 2012). Real time information may be integral to decision making in 

certain areas but may pose a barrier to timely decision making in others. A classification 

of data should help the firm deal with the high velocity of consumer information in the 
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digital age. Our next conceptual dichotomy splits big data into synchronous versus 

asynchronous data classes. The synchronous and asynchronous data dichotomy should 

help marketers take advantage of big data in spite of its velocity by deciding what data 

should be synchronous and what data shouldn’t to ensure prompt, yet profitable decision 

making. 

2.3.4.3.1 Synchronous Data and Asynchronous Data 

Synchronous and asynchronous data lie on the third dimension of the normative 

dichotomy. 

 

 

 

 

The synchronous/asynchronous data dichotomy is based on the timeliness of big 

data. Synchronous data are perfect data required in real time for the smooth functioning 

of organizational processes. Asynchronous data are data that are not required in real-time 

for the smooth functioning of the organization. Asynchronous data involves recording 

events, facts, taking place at a different point in time or not needed immediately. 

Originally, timeliness meant that the data were not so old that they were irrelevant. 

Highly current data is required for effective decision making. Imagine car companies 

currently trying to predict the types of cars that would interest consumers. So many 

changes have happened in the operating environment since 2008. For example, fuel 

prices are believed to be relevant to the automotive market and have fluctuated wildly. 

Car preference will change with these environmental factors, so data collected in one 
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Figure 2-3: Synchronous and Asynchronous Data Category 
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time period may not be entirely accurate. Significant changes happened in the automotive 

industry between January 2020 and March 2020 due to the COVID-19 pandemic. Data 

that were collected in January are now obsolete can cannot be used to make accurate 

predictions the car market in March. Similarly, the dramatic pace of technological change 

in the electronics industry hinders predicting consumer acceptance of new mobile 

models. It is therefore very important, especially in dynamic markets, to ensure that data 

are timely. 

In the transformative marketing, big data era, several big data sources provide 

consumer data almost instantaneously, illustrating the velocity characteristic of big data. 

The problem today then isn’t acquiring data that is timely with respect to the operating 

environment, but how big data might be used in real time to deliver value to consumers. 

The use of algorithms that analyze real-time data from consumer interactions to 

personalize consumer experiences is very common today. The types of AI systems 

underlying service robotics like the famous Japanese robot, Pepper, require real-time 

data. Newer vehicles like the Hyundai Palisade collect and analyze real-time data from 

the road and the vehicles environment to determine tire traction and vehicle temperature. 

The ability to collect and process real-time data is very important in technologies like 

self-driving cars. Highly sophisticated recommendation systems used by companies like 

Amazon, Google, Netflix are based on real-time data. Customer relationship management 

software has become very common in tracking customers and the data collected affect 

decision making almost immediately and in some cases automatically. Despite the hype 

surrounding real-time information enterprises, the fact is that few companies need perfect 

data throughout their customer-relationship cycles (Rigby, 2004). Not all data are useful 
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for short term decision making. For example, a hotel needs real-time data on room 

availability, but does not need real-time data on what customers think of the carpet color 

in their room. A cable company needs real-time figures on service outages that demand 

immediate repairs but not on the profitability of its pay-per-view programs. Real-time 

information priorities should be driven by real-time business opportunities and must be 

customized to each individual business (Rigby, 2004). 

2.3.5 Value Argument Discussion 

The 3Vs of big data are a representation of the perception that abundance, not 

scarcity, is the driver of value in this new era. As such the analysts must embrace these 

new sources of data and expand their perspectives on the types of information applicable 

to their research questions (Hair et al., 2018). The idea that the bigness of data is what 

drives value is a risky one for the firm that seeks long run competitive advantage in the 

current era. Without the right capabilities, big data may be a stumbling block to success 

(Lambrecht and Tucker, 2017). Big data does not absolve marketing researchers from 

proper practice as regards to the handling and analysis of data.  The principles and 

objectives are similar anywhere you engage in data analysis (Hair et al., 2018). Problems 

arise with the implicit assumptions analysts may take for granted such as overrating 

accuracy if we ignore false positives, replacement of causation with correlation, ignoring 

sampling bias, and letting the data speak and ignoring the presence of spurious 

correlations (Hair et al., 2018). While there are obvious challenges in translating data into 

organizational value, organizations must be willing to evolve and reorient their processes 

as there is little doubt that data-driven decision-making is here to stay (Hair et al., 2018). 
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The 3 normative dichotomies of big data just discussed are meant to help organizations in 

extracting value out of big data despite its bigness (volume, variety, and velocity). 

2.4 The Societal Argument for Big Data Classification 

We have hinted at the potential negative impacts of big data collection, storage 

and usage on consumers and society, but have on till now postponed discussion on the 

normative, ethical aspect of big data driven decision making and how organizations 

should deal with the problems that may arise. In this section, we will discuss two 

important, but often ignored characteristics of big data and offer two additional 

conceptual dichotomies that ought to help the organization that engages with big data 

proactively handle the negative effects of big data on consumers and society at large. 

2.4.1 The Forgotten Vs of Big Data 

2.4.1.1 Vulnerability:  

Vulnerability refers to the quality or state of being exposed to the possibility of 

being attacked or harmed, either physically or emotionally, or being taken advantage of. 

In marketing, vulnerable consumers are those who fail to understand their own 

preferences and/or lack the knowledge, skills or freedom to act on them (Ringold, 2005). 

There are those who argue that vulnerable consumers are unable to make the best 

decisions and should be protected by the governments, consumer interest groups and/or 

other organizations (Ringold, 2005). Leading to the rise in behavioral economics and 

mass adoption of interventions and nudges (Sepp and Wrobel, 2001; Ratner et al., 2008; 

Griffiths and West, 2015). The acceleration of big data volume, variety, and velocity 

increases consumer vulnerability. Consumers are not just vulnerable to the firm to whom 

they knowingly or unknowingly provide data, but to third parties who can access this data 



59 

with or without the consent of the consumer and/or the parent organization. In 2018, 

Google revealed to US lawmakers that hundreds of apps and companies have access to 

consumers’ Gmail inboxes, despite the fact that Google had stopped inbox scanning for 

their own use (Cuthberson, 2018). Facebook has been involved in several privacy 

scandals over the last few years. Facebook is known for sharing user data with third party 

firms without users’ consent. Consumers’ willingness to provide data is dependent on 

how much they trust the organization to protect their privacy and freedoms. 

Consumer privacy is one of the biggest challenges in today’s big data era. Privacy 

is often ignored. When it is not ignored, it is simply mentioned as an area that is 

becoming increasingly important, but no advice on how firms, governments, and society 

at large should deal with it. Value for society in the near future will depend on 

organizations ensuring consumers privacy is protected. Even companies that profit from 

selling consumer information such as Facebook are taking the privacy conversation 

serious. Facebook CEO, Mark Zuckerberg and Google CEO Sundar Pichai recently made 

commitments to consumer privacy (Constine, 2019). While Facebook’s commitment was 

to ensure privacy in the future, Google promised to build systems that protect privacy 

today. Privacy is an area of competition for internet firms and holds the potential for long 

term competitive advantage. Value in a customer-centered economy should not be 

created at the expense of the consumer.  

Many authors suggest consumers’ personal data should be kept private, but never 

actually define personal data, nor suggest how such data should be kept private. The 

increasing amount of consumer protection groups protesting 5G technology and the 

capabilities it will enable is evidence of a rapidly growing problem. How can businesses 
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protect individual consumers in a data-centered climate? The next conceptual dichotomy 

broadens our understanding of what is and what is not personal data. 

2.4.1.1.1 Personal Data and Impersonal Data 

Personal and impersonal data lie on the fourth dimension of the normative 

classification. 

 

 

 

Figure 5 

The European Commission defines personal data as any information that relates 

to an identified or identifiable living individual.4 Different pieces of information, which 

collected together can lead to the identification of a particular person, also constitute 

personal data. Personal data is therefore not limited to such information as names, social 

security numbers, images, IP addresses, but when several pieces of impersonal 

information are put together, the resulting data can result in identification of a particular 

individual. For example, a targeted marketing communication that does not mention Ellis 

by name, but as an African, business doctoral student in Louisiana Tech is, in many 

cases, more personal than identifying him by the name Ellis. Businesses that use personal 

data in marketing communication must be careful not to engender reactance from the 

consumer. 

 

 
4 In more detail – ICO detailed guidance on determining what is personal data. 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-

regulation-gdpr/key-definitions/what-is-personal-data/  
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Figure 2-4: Impersonal and Personal Data Category 

https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/what-is-personal-data/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/key-definitions/what-is-personal-data/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/key-definitions/what-is-personal-data/
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Impersonal data is data that cannot be used to identify any particular individual or 

consumer. Consumers do not have to be identified for big data to be used in analyses and 

value creation. Aggregate analysis or faceless customer analysis can be performed on 

consumer data to understand consumer preferences without identifying the particular 

consumer (Franks, 2012). Such analyses serve the purposes for which most organizations 

acquire big data. Organizations should consider replacing specific identifiable data with 

anonymous codes that match to specific, unknown consumers. This way, the consumer 

remains anonymous, but personalized value offerings can still be made by the firm to the 

consumer. 

Reactance theory posits that consumers react negatively to persuasion attempts 

that they perceive as manipulative. Reactance is an unpleasant motivational arousal to 

offers, persons, rules, or regulations that threaten or eliminate specific behavioral 

freedoms. Reactance occurs when a person feels that someone or something is taking 

away their choices or limiting the range of alternatives (Levav and Zhu, 2009; Allen et 

al., 1992; Murray and Haubl, 2011; Liu et al., 2012). Tucker, 2014 found that internet 

users reacted negatively to persuasion attempts that used personal information. She 

investigated Facebook users’ likeliness of clicking on advertisements on Facebook and 

found that when the ad was customized with users posted personal information on 

Facebook, click through rates were lower than for a generic ad. However, when Facebook 

started to give users more control of their personally identifiable information, by allowing 

users to opt out of targeted advertisements that used their personal information, the 

reverse relationship was observed. When participants perceive that they are in control of 
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their personal information, they are more accepting of personalized persuasion attempts. 

This brings us to our second often neglected characteristic of big data. 

2.4.1.2 Volition: 

 Big data volition refers to consumers’ conscious awareness and approval for data 

to be collected and where and when the data could be used. Consumers often have 

difficulty in conceptualizing exactly what types of information are generated while 

engaging with digital technologies (Lupton, 2017). Although most users of online 

technologies are aware of how their interactions are monitored by companies for 

targeting them with customized advertising, they are unaware of what happens to their 

personal data beyond this and what actors and agencies have access to and may be using 

their personal data.  

For legal reasons, most companies require data collection to be volitional. 

However, as evidenced in the Facebook example above, being on the right side of the law 

does not protect a company from consumer reactance. My fifth and final conceptual 

dichotomy therefore addresses the difference between implicitly and explicitly volitional 

data. 

2.4.1.2.1 Implicit Volitional and Explicit Volitional Data 

 

 

 

 

Implicit volitional data are collected without the willingness of the consumer and 

do not inform the consumer exactly how the data will be used and by whom. For 
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Figure 2-5: Implicit and Explicit Volitional Data Category 
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example, consumers are unable to use most online services today unless they agree to 

user agreements. Most consumers never read these agreements are even if they did, most 

companies use intentionally vague language in these agreements. Consumers who used 

the services of Ancestry.com could never have expected that they gave the company the 

right to sell their data not just to medical researchers, but companies like Spotify. 

Explicitly volitional data on the other had are data willingly provided by 

consumers, not because they are forced to, and the consumer is made aware of how these 

data will be used and who has access to their data. Adopting explicitly volitional policies 

should protect firms from consumer reactance. As of March 2020, some firms like EBay 

and Google have buttons that allow consumers to delete their data or decide or long it is 

stored. This is a good step, but not enough. Giving consumers control over the data does 

not protect the firm from reactance when consumers find out the data is being used in 

unexpected ways by unexpected parties. 

In the past, consumers were mostly always aware when data were collected, 

maybe because they were mailed a questionnaire. Consumers also had to give their 

approval for the data to be used. When data were not volitional, such as video footage for 

example, the data were impersonal and/or seldom used in personalized targeting efforts 

by organizations. However, the rise of social media, behavioral tracking, the internet of 

things and the digitization of data make it possible for firms to acquire personal data 

without the explicit consent or awareness of the consumer. A picture posted on Instagram 

for example belongs to the company and they can sell that image or consumer data to 

whomever they see fit. 
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It is difficult for firms to get consent because often they are not sure how the data 

will be used in the future (Gunther et al., 2017). Some organizations require consumers to 

sign very vague user agreements that give the organization the right to collect data 

beyond specific interactions with the organization. For example phone apps that track 

behavior even when the app is not being used. Consumer consent, for example in the 

form of signing a user agreement, should not be considered awareness of the extent of 

how data are used. Most user agreements and consent forms today fall in the implicit 

volition category. In 2014, Facebook revealed an experiment in which the website 

manipulated the content of users feed. This experiment provided evidence for massive-

scale emotional contagion via social networks (Booth, 2014). Users were furious at the 

breach of trust, although Facebook claimed the study was not illegal as its users had 

agreed to such studies in their user agreement. The company had to apologize for the 

study. Privacy is important to build trust and trust is an important element of relationships 

(Kumar, 2018). Organizations should consider volition an important characteristic of 

valuable data. Consumer data should be collected and used in a way that fosters trust 

between the organization and the consumer. 

P10: Consumers react negatively to persuasion attempts that use their personal data 

without their permission (implicit-personal data usage) 

Nudging consumers using big data and technology limits consumer freedom and 

the freedom to decide for oneself is one of the core foundations of a healthy society 

(Sætra, 2019). However, when consumers perceive that they are in control of their 

personal information, they could be more welcoming to persuasive attempts that use such 

personal information. Tucker (2014) found that when ads on Facebook were customized 
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using user-posted personal information, ad clicks were lower than if the ads were not 

personalized at all. However, when Facebook changed their policy and gave consumers 

more control over user-posted personal information, ad clicks were significantly higher 

for ads personalized with user-posted personal information, despite the fact that the 

company’s policy for providing personal information to third parties remained the same.  

P11: When consumers perceive that they are in control of their personal data, they 

respond positively to persuasion attempts that use their personal data. 

Consumers who have a relationship with a firm or organization develop trust for 

the organization over time as they become more familiar with the organization. For 

example, most consumers today are familiar with personalized email communications 

that mention the consumer by name. If the consumer does not have a relationship with the 

sender of the email, the consumer’s reaction to personalization that uses personal data 

will be negative. However, if the consumer has a relationship with the sender, maybe 

he/she subscribes to a service that the sender offers, the consumer will expect 

communications to reflect the history of their relationship. The reaction to personalized 

marketing communications will be positive in this situation and using generic 

communications may even hurt the relationship. Komiak and Benbasat (2006) found that 

perceived personalization and familiarity increase consumers’ intention to adopt product 

recommendations from a recommendation agent, but this relationship is mediated by 

cognitive and emotional trust.  

P12: When consumers have a relationship with a firm, marketing communications that 

use personal data from past interactions will have a positive effect. 
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2.5 Conclusion 

The current essay presented five conceptual dichotomies of big data. These 

dichotomies were called normative as I do not claim they are inherent characteristics of 

big data. Rather, they are useful ways businesses can classify consumer data to ensure 

that the data lead to heterogeneous resources in customer knowledge and subsequently 

long run competitive advantage in today’s digital environment. The first three 

dichotomies (broad/narrow, behavioral/attitudinal, and synchronous/asynchronous data) 

are meant to help the firm benefit from the big data phenomenon despite the 

characteristics of volume, variety, and velocity. 

The classification also attempts to address issues of consumer vulnerability and 

consumer freedom that are inherent in the big data phenomenon. The last two normative 

dichotomies (personal/impersonal and implicit volitional/explicit volitional data) are 

based on the characteristics of volition and vulnerability. These dichotomies ought to 

protect consumers and society at large from the risks associated with real time data 

gathering and consumer tracking. The goal of this essay is not to identify the one and true 

way big data must be classified, but an attempt to shed light on issues of big data 

efficiency in a climate where data is considered more valuable than money and must be 

acquired at all cost. This essay contributes to the literature by drawing attention to issues 

of theory and context in the acquisition, and analysis of big data. 

2.6 Limitations and future research 

An obvious limitation of a normative classification is that it is subjective by 

nature. The five conceptual dichotomies discussed in this essay are in no way exhaustive. 

I also do not claim the five dichotomies are the best possible way big data can be 
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classified. However, a classification of big data does not only make a significant 

contribution to business research, but to all disciplines. Future research should therefore 

propose alternative ways big data can be classified. Relying on the old primary/secondary 

data classification is misleading in the current data-rich environment as it often leads to 

the false assumption that data are accurate and reliable and hence valuable simpler 

because they are secondary. 

 Another major limitation of the current essay is that it puts forward twelve 

propositions that accompany the normative classification but does not empirically test 

any of these propositions. Although I relied on past research to develop all these 

propositions, further investigation of the propositions is needed. Also, the boundary 

conditions of the propositions should be investigated. For example, P1 states that users 

with similar user data will have similar item interests. This implies that for a company 

like Netflix, those users who have similar characteristics will like the same type of 

movies. Does this similarity span across industries? Can the restaurant industry for 

example rely on movie data to develop personalized value propositions? 

 Lastly, the five dichotomies proposed in this essay are not strictly separate 

from one another. Future research should investigate whether consumers actually 

perceive differences in the proposed dichotomies. For example, do consumers perceive 

differences between implicit vs explicitly volitional data? Do consumers perceive 

differences in the synchronous (real-time) vs asynchronous data usage
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CHAPTER 3 

 

ESSAY 3: THE EFFECT OF PERCEIVED DATA INTERVENTIONS 

ON FREEDOM AND SATISFACTION 
 

3.1 Introduction 

“A puppet is free as long as he loves his strings” (Harris, 2012; Hill, 2019). 

Business ethics has long been interested in the concepts of free will and consumer 

freedom, yet the study of how free will and freedom influence consumer affect or 

behavior is scant (Hill, 2019). The right to freedom is a fundamental human right and the 

cornerstone of every economic theory (Lacroix, 1974). More specifically, for the free 

market to operate as a legitimate means of social organization, the right for the consumer 

to be independent and to be free is, for all intent and purpose, sacred (Caruana et al., 

2008). However, researchers do not agree on how freedom manifests in the marketplace. 

Those who believe freedom in manifested in the sovereignty of the consumer argue that 

freedom can only be guaranteed by the absence of any form of external intervention 

(Sepp and Wrobel, 2001; Ringold, 2005). Others, who fall along different points from 

libertarian paternalism to paternalism, argue that consumers are not always equipped to 

make the best decisions for themselves and need assistance (Thaler and Sustein, 2008). 

Intervention is, therefore, necessary to ensure freedom (Sustein 2015). The latter 

viewpoint has led to the rise of behavioral economics and nudging research. 
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In his seminal work on liberty and the exercise of power or control over 

individuals, Mill states: “the sole end for which mankind are warranted, individually or 

collectively, in interfering with the liberty of action of any of their number is self-

protection … The only purpose for which power can be rightfully exercised over any 

member of a civilized community, against his will, is to prevent harm to others. His own 

good, either physical or moral, is not sufficient warrant” (Mill, 1859). However, as the 

opening vignette/quote shows, freedom is not absolute as Mill seems to imply. Freedom 

is made up of a combination of choice, restrictions, and satisfactions, (Lowe and 

Buckley, 1982) and must be studied in relation to feelings and emotions of the subject. 

However, research on freedom focuses overwhelmingly on the nature and number of 

choices (Wicklund, 1970; Reibstein et al., 1975; Walton et al., 1979; Houdek et al., 2018) 

and on choice restriction (Argouslidis et al., 2018; Eroglu and Michel, 2018; Font and 

Hindley, 2016) at the expense of satisfaction. Freedom cannot be imposed or apportion 

on consumers. Therefore, manipulating choice and restrictions, though important is not 

enough.  

Perhaps the reason for the disproportionate focus on choice and restrictions as 

surrogates for freedom is because the concept of freedom, or free-will, proves elusive. 

Before proceeding to discuss consumer freedom, it is, therefore, important to attempt to 

define freedom.  

3.1.1 What is Freedom? 

The definition of freedom is elusive, probably because as Gill (1971) points out; 

freedom, like a vacuum, represents the absence, not the presence of something. Gill 

(1971) put forward a definition of freedom that attempted to reconcile conflict around the 
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conceptualization of freedom at the time and sparked decades of discussion on freedom 

in myriad disciplines. A brief summary of the key ideas from Gill’s definition of freedom 

will be presented in this section. Specifically, an argument is presented for whether the 

definition of freedom presented by Gill (1971) can logically be extended to conversations 

around big data and algorithmic decision making or value propositions. 

Gill (1971) points out that freedom and its contradictory (unfreedom as he calls it) 

are clearly commands or permissions. Whether a simple command or some very 

complicated process is used when persuading someone, fundamentally, we are dealing 

with permissions, obligations, prohibitions, and options, with laws, principles, rules, and 

rights. Liberty, or freedom, in its simplest form, stands for relief from some restriction. 

The idea of freedom is fundamentally tied to human wants. Individuals who demand 

freedom want to do what they want to do; that is, act as they please, free from onerous 

restrictions or limitations. However, since wants cannot be measured or precisely 

compared, a change in wording can express the original intent and produce a definition 

more suited to scientific use (Gill, 1971). If for “want,” we substitute “choose,” we get a 

clearer statement that still describes the same idea. Choice implies considered judgement, 

rather than want. 

If freedom implies intentional, considered judgment, then for an individual A to 

be free, A must control A. For a society B to be free, B must control B. Freedom is self-

control. From the definition of freedom as self-control, Gill (1971) put forward three 

theorems: 

1. If A controls A, then A exists, is structured, and enduring. 
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2. If A controls A, A’s commands, prohibitions, permissions, and options are 

consistent, necessary, and universal. 

3. Anomie, violence, fatalism, suicide, slavery, tyranny and imperialism – 

contradictories of freedom – are all equivalent in that sense. 

If we replace A in the above theorems with consumer, we immediately see, just as 

Gill (1971) argues, that for any one consumer to be free, he/she must exist, is structured 

and is enduring (remains the same through time). Theorem 2 also follows that the 

consumer should be able to apply consistent judgment according to the rules and norms 

of nature and society. These rules and norms impose boundaries on consumer freedom, 

but the consumer controls himself or herself within these rules and, therefore, is free. 

His/her freedom is decision by necessary norms; to decide and formulate an intelligent 

plan of action constitutes part of mature wants. Theorem 2 makes a fundamental 

difference between a wish and a want. To want, the consumer must know what he/she 

wants and be able to decide. 

Theorem 3 addresses the argument that consumers may not know what is best for 

them or may not be able to make good decisions. Gill, (1971) argues that such an 

argument requires that the value system of individuals be similar. Compulsion, whether 

in the form of imperialism, violence, fatalism, suicide or tyranny, essentially attacks 

freedom and is wrong. An action which denies norms or contradicts a person’s own 

values constitutes an assault on life-affirmation, which should be at the basis of every 

consistent system. Such an attack, whatever its external consequences (good or bad), is 

directed primarily at the individual’s own norms and the structure of his personality, ends 
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his continuity, and he ceases to be responsible for what he does (essentially what Gill 

refers to as suicide).  

3.1.2 Consumer Freedom 

The definition of freedom put forward by Gill (1971) as applied to the consumer 

can be understood as follows; a free consumer must know what he/she wants within the 

boundaries of societal norms. His or her wants must be consistent, implying the consumer 

cannot both want a thing and its antithesis. Lastly, his/her wants must be free from 

external influence as any external influence is an assassination of the individual’s value 

system. It will therefore seem that interventions, whether based on personal data gathered 

about the consumer or insights on how consumers make decisions, represents an assault 

on the consumer’s value system no matter the intention or outcome (Sætra, 2019). Gill’s 

definition addresses choice and restrictions but does not address satisfaction. How do we 

know that the consumer knows what he/she wants or that his/her wanting is consistent? 

Satisfaction gives us a gateway into consumers wants, values and decision freedom. 

Some researchers argue that the consumer is more satisfied when successful interventions 

lead to better choices if freedom is not limited. 

3.1.3 The Nuffield Intervention Ladder and Freedom 

The Nuffield intervention ladder distinguishes between interventions based on 

intervention intrusiveness. Providing information is low on intrusiveness, for example a 

GPS signal. These are the types of interventions advocated by Sustein and Thaler (2008) 

in their best-selling book; “Nudge: Improving Decisions about Health, Wealth, and 

Happiness.” Proponents of nudges argue that such low intrusiveness interventions do not 

limit freedom but enhance freedom and have gained a lot of traction in recent years. 



73 

Guiding choice by providing incentives and disincentives is moderate on intrusiveness, 

for example seat belt mandates. Finally restricting choice is high on intrusiveness, for 

example not selling alcohol to people below a certain age (Griffiths and West, 2015). 

There is a wide stream of research grounded on reactance theory that investigates 

participants’ reactions to such interventions. However, there is no research on whether 

consumers perceive big data driven value propositions as interventions and how they 

respond to them. 

The theory on consumer sovereignty initially relied on the consumer’s 

information processing capabilities (Caruana et al., 2008) and Pareto optimality was used 

to assess decision success (Von Furstenberg and Spulber, 1973). However, in the 

postmodern era, consumer sovereignty or independence is viewed not as rational choice, 

but as an identity project, shaped and constrained by consumers in the context of 

potentially constraining social and institutional structures (Caruana et al., 2008). Nudging 

consumers towards healthy lifestyles, savings, or the benign nudge (Sugden, 2017; Smith, 

Johnston and Goldstein, 2013), is oxymoronic. Any intervention is as an attack on 

personality and requires consumers to have similar value systems and the extinction of 

the self.  

As the introductory quote from Mill points out, not even the individual’s own 

“good will” is a good enough reason for such an attack on his/her freedom (Mill, 1859).  

In a world where consumer choices are based on big data and algorithms and consumer 

purchases are habitual and/or controlled by large firms, consumer freedom or the 

probability of freedom is reduced (Potter, 1970). The consumer is unfree. Taken to its 

logical conclusion, the consumer is dead. He/she is a puppet being strung along in what 
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could more suitably be called a meat robot or a collective set of meat puppets (Foster, 

1993). Such a consumer is not only unfree to pursue self-identity but is no longer 

responsible for his/her actions (Gill, 1971). 

3.1.4 Research Questions 

The current essay investigates how consumers’ perceptions of puppeteer strings in 

the form of companies’ data collection practices to drive persuasion attempts/value 

propositions affect consumer freedom and satisfaction. Three research questions are 

addressed in this essay: 

1. Do consumers perceive big data driven value propositions as limiting their 

freedom of choice? 

2. Do consumers’ perceptions of big data usage affect their satisfaction with value 

propositions? 

3. Finally, are consumers willing to trust algorithms to make decisions in their best 

interest if they perceive such decisions to be driven by big data? 

3.1.5 Contributions of Research 

The current essay contributes to marketing theory, practice and methodology. 

First, a review of the literature on consumer freedom synthesizes current understanding 

of consumer freedom research into unified body of work. This leads to identification of 

areas in need of future research and broadens theoretical understanding of consumer 

independence research. This is the first study to investigate consumers’ perceptions of big 

data driven interventions and how these perceptions affect freedom and satisfaction with 

value propositions. Two experiments manipulate participants’ perceptions of data 

volition, the timeliness of data collection and intervention and lastly how personal the 



75 

intervention or proposition is. Only the personal variable has been tested previously 

(Tucker, 2018) is a social media context. How do consumers perceive data driven 

interventions that are volitional versus non-volitional; real-time versus lagged and 

personal versus impersonal? 

Secondly, the current essay contributions to marketing practice by testing 

consumers’ reactions to value propositions that consumers perceive to be driven by big 

data. Given the current rush to acquire data and reliance on algorithms trained on big data 

to make recommendations and personalized value propositions, it is important for firms, 

organizations and governments to understand how consumers perceive such practices. Do 

consumers perceive such interventions as threats to their freedom? Are consumers willing 

to allow algorithms to make choices for them? Do big data driven value propositions lead 

to more satisfied consumers? The current essay also contributes to practice by providing 

useful data characteristics that affect consumers’ perceptions and consumer satisfaction. 

Finally, the current essay contributes to measurement by manipulating three of the 

five dichotomies proposed in essay two. This is also the first study that conceptualizes 

consumer freedom not just as the oft-used perception of threat to decision freedom 

(Dillard and Shen, 2005; Kim et al., 2017), but also as a combination of perceived threat 

and intention to adopt propositions or to verify claims.  

3.1.6 Organization of the Essay 

The introduction explains the purpose of the research and puts forward research 

questions. The literature review section summarizes extant literature on consumer 

freedom and/or different manifestations of freedom from myriad disciplines. This section 

also presents the conceptual framework of the two studies carried out in this essay. The 
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methodology section discusses the design of the experiments, data collection, 

measurement and finally the analysis to be conducted. The results section presents the 

findings and lastly the discussion section discusses the implications and future research 

directions. 

3.2 Literature review and hypotheses 

This section reviews the extant literature on consumer freedom from different 

disciplines. A brief summary of reactance theory and supporting evidence is presented 

along with the major themes from consumer freedom research. A general model that 

captures the current state of knowledge on consumer freedom is then presented. Finally, 

variables of interest in this essay are introduced and the hypotheses and conceptual 

models are discussed.  

3.2.1 Reactance theory 

Reactance theory explains how individuals value their perceived freedom to make 

choices, and why they react negatively to any threats to their freedom (Font and Hindley, 

2016). The theory was first developed by Brehm (1966) to help explain aspects of human 

behavior that the dominant behaviorism paradigm at the time could not explain. 

Behaviorism was primarily concerned with the conditions that produce influence, and 

oppositional effects were largely ignored despite the prevalence of oppositional behaviors 

in daily life (Miron and Brehm, 2006) 

Reactance theory posits that if individuals feel that any of their free behaviors, in 

which they can engage at any moment or in the future, are eliminated or threatened with 

elimination, the motivational state of psychological reactance will be aroused (Miron and 

Brehm, 2006). The reactance state is directed towards the restoration of threatened or 
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eliminated behavior. The motivational state of reactance drives the individual to engage 

in freedom restoring activities. Freedom restoring can take several forms. Individuals 

may directly attempt to reassert freedom by engaging in the option that is threatened such 

as last chance tourism to destinations threatened by climate change (Font and Hindley, 

2016). Individuals can also restore freedom indirectly by observing others’ freedom 

restored from the threatened freedom. If the individuals perceive that the threat is 

illegitimate, they will have negative attitudes towards the threatening agent or even 

aggress them. When the freedom cannot be restored, individuals tend to devalue the 

imposed option and the restricted option increases in attractiveness. For example, 

participants in an experiment demonstrated post-choice attitude change when the 

experimenters impose a barrier on an initially less-preferred option (Walton, Berkowitz 

and Cvar, 1979). When asked to rate the items post choice, the initially less-preferred 

option, on which a barrier had been imposed, was rated as more attractive. This effect 

was not the influence of dissonance as Wicklund (1970) found; there was no post-choice 

attitude change when the barrier was removed. 

Reactance as the term suggests is reactive not proactive; the individual must 

possess the freedom to begin with for reactance to be aroused when freedom is threatened 

(Miron and Brehm, 2006). Some researchers argue that the phrase “consumer freedom” is 

a misnomer as the consumer is only able to choose between options that are decided by 

external factors such as education (Marshall, 1996; David et al., 1997), or in business 

contexts, where consumer choice is a reflection of consumers’ reactions to demand 

forecasts, political systems, income, technological advances, and inequality, amongst 

other things (Potter, 1970).  Marshall (1996) suggests rather than investigating freedom, 
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research should focus on choice autonomy because autonomy does not require free will. 

Gill’s (1971) definition of freedom, however, as decision by necessary norms, is 

consistent with reactance theory and does not claim the existence of freewill as a 

necessary condition for consumer freedom. For example, consumers may have no choice 

about whether to get auto insurance, but they are free to pick what company to get 

insured with. Reactance exist only in the context of other forces motivating the individual 

to give up freedom and comply with threat or elimination (Brehm and Brehm, 2013). 

When legal drinking age in the United States was increased from 18 to 21 (limiting 

underage college students’ behavioral freedom), under-age students consumed 

significantly more alcohol than over-age peers, but did not consume more of any other 

illicit drug (Allen et al., 1992). 

In the more than 50 years since reactance theory was put forward, there has been 

substantial research in myriad disciplines documenting the effects of reactance on human 

behavior. The preceding sections of this review will discuss some of the extant research 

as it applies to consumer freedom. Most definitions of freedom in the literature agree that 

freedom is relative, that it involves some degree of individual control over choice or the 

decision-making process, and a feeling of self-satisfaction or reward (Lowe and Anspach, 

1973). Our review of the relevant literature will attempt to separate previous work into 

different groups to show areas of consumer freedom research that are heavily researched 

and areas in need of research. More importantly, grouping past research on consumer 

freedom will lay the foundation for a general theory of consumer freedom. 
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3.2.2 Freedom and Cognition 

Marshall (1996) defines the autonomous chooser as a person who is presumed 

capable of deliberating between alternatives according to individual needs and interests, 

and qualities of alternatives to choose the best quality alternative in accordance with 

his/her needs and interests. The quality of chooses made by such a consumer are superior 

to those made by providers (Marshall, 1996). Autonomy comes from two words: autos 

meaning self and nomos meaning principles and values. The term was initially only 

applied to geographic territories but eventually became associated with the self. When 

applied to the self, the idea of autonomy implies an independent self, pursuing and 

acquiring principles and values through self-governance, independent of authority.  

Marshall (1996) argues against the concept of an autonomous chooser as a 

consumer of education because the autos (self) is politically or socially construed, hence 

not independent, and lastly because the nomos (principles and values) cannot not be 

separated from the autos (self). However, there is substantial evidence supporting 

consumer reliance on both cognitions and emotions in decision making (system 1 and 

system 2 processes) in marketing and psychology. Cognitive research on consumer 

freedom investigates consumers interactions with choices/alternatives and restrictions. 

3.2.2.1 Freedom and Choice/Alternatives  

Potter (1970) defined consumer freedom of choice as the alternatives available to 

consumers on which disposable income can be spent. Freedom increases with disposable 

income as the number of choices available increases. Disposable income reduces when 

large firms control consumer purchases or when the number of habitual purchases 

increases. Danner (1970) disagrees with Potter that freedom increases with income as 
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human wants increase faster than income. As the saying goes: “more money, more 

problems.” 

Lowe and Anspach (1973) define offer several definitions freedom. One 

definition of freedom states that freedom in the presence of unlimited choice. Market 

freedom defined as unlimited choice does not exist and is more a reflection of consumers’ 

reaction to the alternatives or choices made available by social and political factors 

(Lacroix, 1974). Whether options are unlimited or not, it does not matter if the options 

are not equally valued (Reibstein et al., 1975). Reibstein et al. (1975) randomly assigned 

participants in one of two experimental conditions; one condition had to pick from 2 soft 

drink choices and the other from 4.  They found that higher decision freedom (defined as 

the presence of a larger number of equally valued alternatives) led to higher consumption. 

Walton et al. (1979) attempted to replicate the results of Reibstein et al. (1975) 

while controlling for the quantity of soft drinks and similarity of preferences participants 

were exposed to. Participants were still required to choose between 2 and 4 soft drink 

alternatives, however, the number of cans presented were the same in both conditions 

(every soft drink option in the 2 condition was presented twice). The researchers had 

participants rate soft drink choices and participants were latter asked to choose between 

the options that fell in the middle of their preference ratings to create options that were 

valued equally. They found that a linear relationship does not exist between decision 

freedom and number of alternatives. Implying freedom is not the presence of unlimited 

choice, but rather decision freedom is highest for moderate number of alternatives that 

are seen as similar attractive. More choice does not mean more freedom (Markus and 
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Swartz, 2010). Harvey and Jellison (1974) also reported a nonmonotonic relationship 

between decision freedom and number of alternatives. 

Lowe and Buckley (1982) used factor analytic methods to determine the most 

important dimensions of freedom in dress. They found that of the 3 dimensions of 

freedom in dress (choice, restrictions, and satisfactions), choice was the most important. 

They also found that conformity in dress is orthogonal to freedom in dress. Conformity is 

therefore not the opposite of freedom, but an alternative consumers desire. Consumers 

desire options and are happy when they have options. Even in areas where certain options 

have historically been limited for the welfare of individuals, consumers still want options.  

Taub et al. (1985) found that when adult patients were free to choose whether to use 

anesthesia during dental procedures, success rates were just as good as when anesthesia 

was required. 

However, consumer sovereignty does not imply every option the consumer 

desires must be made available. We have already mentioned useful discourse of freedom 

must consider the environment (decision by necessary norms). Researchers in medicine 

who argue against the idea of the patient as a consumer or the sovereignty of the patient 

coined the term informed consent. Informed consent is a reactive concept; you cannot do 

something to me without my permission (Weber, 1990). However, the patient should not 

be allowed to request for options that were not proposed because the doctor has superior 

knowledge. The doctor’s specialized knowledge however does not entitle him/her to 

attribute ignorance, incompetence, or false consciousness to people who make what seem 

to be self-defeating choices about consumption (Hove, 2012). The “ought” of scientific 

improvement cannot be determined from the “is” of scientific understanding (Hove, 
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2012). Informed consent, whether in making considerations about medical, mental health, 

or professional services implies the consumer must know what options are being offered, 

the alternatives to the offerings, and must be given the opportunity to make as 

knowledgeable a decision as possible about whether or not to accept the offerings (Haas, 

1991). 

In estimating the marginal utility of public projects, Miyagi and Mirosogi (1996) 

define choice freedom as a special case of option value in the context of utility theory. 

Choice freedom is thought to represent the number of alternatives present in an 

individual’s choice set and is valued as the maximum amount the a consumer is willing to 

pay for the option which is infrequently or not at all used by the consumer. For example, 

the amount a consumer who always uses the bus is willing to pay to retain the train 

option (Miyagi and Mirosogi, 1996). 

Humans and animals value the opportunity to choose by preferring alternatives 

that offer more rather than fewer options (Fujiwara et al., 2013). Fujiwara et al. (2013) 

used human neuroimaging to investigate the neural basis of preference for choice as well 

as for the number of items that could be chosen. Neural activations in the mid striatum 

increased with the value of the opportunity to choose and preference for items. 

Conversely, activation in the dorsolateral striatum was not related to the value of the 

items but was elevated when participants were offered more choices, particularly in those 

participants who “overvalue” the opportunity to choose (people who value the 

availability of options more than preference for options).  

According to economic theory, a Pareto optimal system is one that cannot be 

improved without leaving a stakeholder worse off. More choice makes some stakeholders 
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better off but does not hurt other stakeholders and is therefore good.  Argouslidis et al., 

(2018) investigate consumers’ reaction to perceived variety reductions in grocery product 

categories and found that mild (let alone aggressive or conspicuous) variety reductions 

were perceived as threats to prior freedom. However, as we have seen, perceived decision 

freedom is highest for a moderate number of choices. Choice offers means not only for 

navigating among alternative paths and options but also pursuing one’s desire to be an 

“authentic self” (Briley et al., 2017). 

3.2.2.2 Freedom and Restrictions 

Wicklund (1970) was the first to investigate the existence of reactance to freedom 

restriction. Male undergraduate students at Duke University were asked to give 

continuous ratings of 8 consumer items for 15 minutes prior to choosing between 2 of the 

items designated as choice alternatives by the researcher. Freedom was limited by 

imposing a fee on the initially less preferred option. Wicklund (1970) posited that if 

reactance is at work, imposing a fee will lead to the initially less desired option being 

rated as more desirable post choice (post choice reversal), but if cognitive dissonance 

theory is at work, the fee will serve as a cognition consonant, strengthening the initially 

preferred option. The researcher found that restricting choice led to post-choice decision 

reversal or regret. 

Allen et al. (1992) define behavioral freedom as the extent to which consumers’ 

choices are limited. They had participants fill out the drug and alcohol consumption 

survey and found that when legal drinking age was increased from 18 to 21 (restricting 

underage college students’ behavior), underage drinking among college students was 

significantly higher than their overage peers. Underage students did not consume more of 
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any other illicit drugs. Restricting behavior is perceived as a threat to freedom and 

therefore engenders reactance. 

Reinders et al. (2008) found that restricting consumers’ freedom leads to negative 

attitudes towards service provided and service provider. In the context of forced use of 

technology-based-self-service (TBSS), they investigated railway customers attitudes 

when customers were only allowed to use TBSS to acquire tickets and travel information 

(the option of interacting with frontline employee was limited). Customers who were 

forced to use TBSS (no choice/restricted choice) had negative attitudes towards TBSS, 

the railway company, higher intentions to switch and lower word of mouth intentions 

than those who had the human option (freedom condition). However, when interaction 

with a service provider was included as a backup option (limited choice) offset these 

negative effects. Even customers who use TBSS react negatively to restriction. 

Levav and Zhu (2009) investigated the effects of restricted the amount of space in 

shopping aisles. They found that when shoppers are spatially confined to narrower 

shopping aisles, they attempt to restore freedom by making more varied and unique 

choices than those in wider aisles. More importantly, they found that the effect of spatial 

confinement is higher for shoppers who score highly on the Hong Psychological 

Reactance Scale (Hong and Faedda, 1996). The effect of restricted choice is therefore 

higher for individuals high on trait reactance. Fortin et al. (2011) using thematic analysis 

found that the freedom from restrictions is one of the main reasons for the Anti-

Vaccination Movement (AVM).  Multiple possible vaccines, therefore, as an available 

option to a single vaccine, may be more effective for individuals high on trait reactance. 
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In the context of choosing information system interfaces, Murray and Haubl 

(2011) randomly assigned participants to either a free condition where they could use 

interface A or B or a restricted condition where participants were forced to use a 

particular interface. They found that participants whose freedom was limited react 

negatively towards the brand. However, overtime limited freedom leads to mastery of the 

interface, ease of use and higher market share (for example we buy a computer with 

Microsoft Office already installed). The negatively feelings towards the brand remain, 

but perceived difficulty of learning a new interface limits users’ intention to switch. 

Competitive brands that can offer skill transferability should be able to offset the benefits 

of ease of use or build expertise and take advantage of negative perceptions towards 

dominant player by offering free choice to consumers (Murray and Haubl, 2011). 

Liu et al. (2012) found that consumers primed to think about money before 

deciding to perceive a threat to their autonomy and react against sources of influence. 

Money invokes thoughts of scarcity or restriction and hence, reactance. Other than 

money, stock outs can also engender feelings of restriction and lost freedom. Moore and 

Fitzsimons (2014) found that consumers experience source negativity in response to 

stock outs. There was however a differential response to stock out-restoration. In term of 

store and product evaluations and store choice, high reactance consumers respond 

positively to stock out-restoration, while low reactance consumers respond negatively to 

stock out-restoration. However, when high reactants attribute a stock out to the store, 

thereby increasing source negativity relative to product desirability, they respond 

negatively to stock out-restoration. In the case of the recent toilet paper stock outs 

associated with the COVID-19 pandemic, if high reactants attribute the stock out to the 
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pandemic, they will buy a lot more toilet paper when it is in store. However, if they 

blame the store for not rationing after stock outs had begun, they are less likely to keep 

buying from the same store. 

Finally, other environmental factors can restrict consumers’ choices. For example, 

Font and Hindley (2016) use reactance theory to understand how tourists’ perceptions of 

climate change affect their travel decisions. They found that when travel to certain 

locations was restricted or threatened due to a climate change threat, travelers restore 

their freedom to travel through three incremental stages: denying the climate change 

threat, reducing tensions arising from travel and heightening demand particularly for the 

most visibly threatened destinations. Reactance theory suggests a fourth stage, 

helplessness, reached when consumers dismiss the value of destinations once they can no 

longer be enjoyed. Restrictions therefore reduce freedom and mandatory policies such as 

a seatbelt mandates create the allusion of tyranny and must be carefully weighed 

(Mendoza, 2019) 

3.2.2.3 Freedom, Information/Information Processing Capabilities and Perceived 

Expertise or Fairness/Effectiveness of Interventions 

Almost all definitions of freedom we have discussed imply that individuals must 

have access to the right information on choices and alternatives and must also deliberate 

over said choices to be free (Haas, 1991). However, consumers do not all have access to 

the same information and neither do they have the same ability to process information. 

Consumers who lack the information (information asymmetry) or ability to deliberate 

between choices to make decisions that serve their needs are called vulnerable consumers 

(Ringold, 2005). 
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Proponents of nudging argue that low invasive interventions that provide 

information are well received by consumers because the increase freedom (Griffiths and 

West, 2015; Sustein, 2015; Venema et al., 2019). Providing people with more 

information and more options may seem as a good policy. However, because of limited 

attention and cognitive resources, people are not able to use all available information and 

freedom of choice effectively to achieve their own best interests (Houdek et al., 2018). 

Houdek et al. (2018) argue that depleted cognitive resources and attention lead to an 

inability to take important aspects of given situations into account – even when readily 

available. Intuitive decision-making leads to suboptimal outcomes by overestimating the 

importance of the most salient cues and disregarding the less obvious future 

consequences. This creates a demand for decision making aides by markets and policy to 

regulate these markets (Houdek et al., 2018). Protecting vulnerable consumers in a noble 

goal, however organizations, consumer interest groups or governments who want to 

protect consumers should educate them, rather than sacrificing the freedom of all 

consumers (Sepp and Wrobel, 2001; Ringold, 2005). 

Beuckels et al. (2019) intriguingly state that “freedom makes you lose control” 

and investigated research claims that heavy media multitaskers (HMMs) perform worse 

on tasks that require executive control, compared to light media multitaskers (LMMs). 

They found that when given high autonomy (freedom) over attention control, HMMs 

perform worse on inhibition tasks and are more susceptible to ads in general, but not so 

when the experimenter guides attention control. Information can overwhelm consumers 

and reduce rather than increase choice likelihood. Nardini and Sela (2019) found that in 

the context of self-customization to give consumers more options, when the companies 
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try to avoid overwhelming consumers by breaking the self-customization into smaller 

steps, this activates a maximizing that increases desire to find a best option and reduces 

their satisfaction with available ones. However, when one option is clearly better, 

consumers went for the better option. 

Consumers typically prefer freedom of choice, but when faced with a choice that 

they may regret, or feel like they lack information to make, consumers prefer freedom 

from choice (Steffel and Williams, 2017). Steffel and Williams (2017) found that across 

8 experiments, participants delegate difficult decisions, regardless of the decision’s 

importance and their potential surrogate’s expertise. They found that the motivation to 

delegate comes from both the fear of making the wrong decision and the desire to avoid 

responsibility for the decision, with the later effect much stronger. When asked to choice 

between giver and receiver roles, Conlon et al. (2012) found that participants who 

perceived that the receiver may have more information or uncertainty associated with the 

attractiveness of outside options were more likely to select the receiver role (have another 

choose for them). 

The effect of intervention intrusiveness on acceptance is motivated by perceived 

personal and societal effectiveness and perceived fairness of interventions (Bos et al., 

2015). They investigated consumers’ acceptance of intervention strategies for low-calorie 

snack choices that vary regarding the effect on consumers’ freedom of choice (providing 

information, guiding choice through (dis)incentives, and restricting choice). When 

participants perceive that the intervention was fair and will be effective in controlling not 

just their behavior, but the behavior of others, they were more accepting. Consumers are 
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also less prone to accept interventions from large entities such as governments (Bos et al., 

2015). 

3.2.3 Freedom and Satisfaction 

When freedom is defined solely in terms of cognitions, we run the risk of thinking 

of freedom as absolute and using rational economic theory to determine decision success. 

A solely economic view of freedom is not sufficient, and a philosophical view is needed 

to determine human values (Potter, 1970). A purely cognitive approach is lacking in 

several respects. First the nirvana approach of static pareto-optimum used to judge 

decision making only exist in neoclassical economic theory and not in the real world 

(Sepp and Wrobel, 2001).  

Secondly, consumer choice in the postmodern era is how identity is created and 

maintained. Consumer choice is defined in terms of liberation of the self from the market 

institution. Independence is viewed not as rational choice, but as an identity project, 

shaped and constrained by consumers in the context of potentially constraining social and 

institutional structures (Caruana et al., 2008). According to Gill (1971), limiting freedom 

is tantamount to an association of the individual (self). It would appear then that the 

“best” choice is not the one predetermined by experts (paternalism) but the one that gives 

the consumer the most feeling of freedom. Affect is therefore very important to the 

conversation on freedom. 

In home economics research, the concept of freedom in dress is thought to have 

three components: choice, restrictions, and satisfactions (Lowe and Anspach, 1973; Lowe 

and Buckley, 1982). Most empirical studies on consumer freedom manipulate freedom by 

controlling choice architecture (Djupegot and Hanson, 2019) or imposing restrictions. 



90 

Research that measures perceived freedom and/or emotions associated with freedom is 

scant. Several studies however measure post choice satisfaction and attitude change as 

outcomes of freedom. 

Reibstein et al. (1975) found no effect of decision freedom on post-choice 

satisfaction. When Walton et al. (1979) replicated their study while controlling for a 

variety and quantity effect, they found evidence of a relationship between decision 

freedom and post choice attitude change. In the already mentioned study by Argouslidis 

et al. (2008), they found that variety reduction led to reduced satisfaction with grocery 

stores and the restricted option. Nardini and Sela (2019) also found that participants 

reduce their satisfaction with available options when a maximizing mindset is activated, 

causing them to seek the best possible option. Negative affect towards TBSS and service 

provider was also found by Reinders et al. (2008). 

3.2.4 A General Model of Consumer Freedom Research 

A general model that summarizes the extant literature on consumer freedom of 

choice is proposed in this section. The preceding sections introduced the key themes of 

freedom research in myriad disciplines. Evidence of the effects of choice, restrictions, 

information processing and satisfaction on the arousal of reactance and subsequently 

attitude/behavior change was presented (reactance mediates the relationship). However, 

everything happens somewhere (Becker, 2008) and to have a more comprehensive model 

of consumer freedom research, we must investigate the context. 

In other words, what are the moderating factors if any? Is experience of freedom 

the same amongst all peoples at all times? Markus and Schwartz, 2010) observe that 

Americans in college are overwhelmingly the targets of research on freedom and 
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reactance. They argue that freedom and choice are socially, culturally, and educationally 

construed. Markus and Schwartz (2010) state that the syllogism: 

• The more freedom and autonomy people have, the greater their well-being, 

• The more choice people have, the greater their freedom and autonomy, 

• Therefore, the more choice people have, the greater their well-being is only true among 

college educated Americans.  

In more interdependent cultures around the world, freedom and choice do not 

have the same importance that they hold in America. For example, in one study when 

where participants were asked to choose a pen and denied the pen of their choice, North 

Americans gave lower ratings to the restricted pen, while Indian participants rated both 

pens equally post choice. Also, while North Americans use choices to establish a unique 

self of self, East Asians use choice to establish belonging. See Markus and Schwartz 

(2010) for an overview of decades of research on how different cultures construal choice, 

restrictions, and self-identity. 

Individual differences also exist in how freedom is experienced. We have already 

discussed how individual differences in trait reactance affect consumers’ feelings about 

freedom and eventually their behavior. Atik and Vicdan (2012) through a qualitative 

study found that while some consumers experience freedom in structure, others 

experience freedom in chaos. For example, Griffin et al. (2018) demonstrate that 

discourses of freedom underlie the increasing prevalence of music festivals and oft-illegal 

free parties. Some consumers get feelings of freedom from the chaotic festival 

experience, while others feel overwhelmed and congested.  
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Based on the above review, I propose the following general model of consumer 

freedom: 
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Figure 3-1: A General Model of Consumer Freedom
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3.2.5 Hypotheses Development 

This section presents the conceptual models and hypotheses to be tested in this 

essay. First, a brief summary of one aspect of the general model that we have not covered 

will be presented. 

3.2.5.1 Predictive Analysis and Freedom 

Reactance can be aroused when one’s behavior is predicted or when one is seen 

by self or others as possessing a particular trait that implies a stereotyped, predictable, 

inflexible pattern of behavior (Miron and Brehm, 2006). Explanations of behaviors in 

terms of stable attributes may be particularly threatening if they have restricting 

implications for behavior. Individuals may attempt to behave inconsistently with the 

prediction (Miron and Brehm, 2006; Snyder and Wicklund, 1976). Miron and Brehm 

(2006) document evidence of how individuals react under group categorization. 

Stereotype reactance results when individuals sense stereotype threat.  

Consumer research has ignored the effect on predicting behavior on perceived 

freedom and eventual reactance. The lack of research on the negative aspects of 

predictive analysis on consumer freedom is to be expected considering quite often the 

goal of consumer research is to predict behavior. On the contrary, there is a lot of 

evidence of the positive effects of prediction. Most of the research on recommendation 

systems (some of which is covered in essay two) is based on the idea that group 

membership can be predicted effectively, and consumers are more accepting of 

interventions or propositions that match their group. For example, Malthouse and Elsner 

(2006) find that even when dealing with new users on whom the firm has no prior data, 
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propositions that are based on randomly guessing new user segment membership 

outperforms generic propositions.  

Mick (2007) posits that the market, the internet, and powerful corporations limit 

consumer freedom by reducing the probability of selection that is purely random. 

Randomness is the most stringent proof of consumer independence (Mick, 2007). The 

research on the effects of predictive analysis on reactance is mixed. On one side, theory 

tells us that predicting segment member should arouse reactance, but on the other hand, 

there is evidence of successful behavior prediction in consumer research. When are 

consumers more likely to perceive prediction strategies as a threat to their decision 

freedom? In essay two, a normative classification of big data was proposed. The 

normative classification consisted of 5 conceptual dichotomies that are meant to help the 

firm get value from big data without losing consumer trust. 

3.2.5.2 Three Dichotomies of Big Data 

3.2.5.2.1 Synchronous/Asynchronous Data 

Big data synchronicity is based on the velocity of big data. The rise of the big data 

phenomenon, the internet and computing power have enabled firms to collect and 

implement data-driven interventions in real-time. Synchronous data are perfect data 

required in real time for the effective function of an organization, while asynchronous 

data are not required in real time. For example, a hotel needs real-time data on room 

availability, but not on consumers’ thoughts on the carpets in the rooms. Rigby (2004) 

found that collecting and implementing asynchronous data in real-time is one of the main 

reasons salespeople give for the failure of CRM systems. 
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From the consumer side, there is no research on how consumers perceive the 

timeliness of data-driven interventions/propositions. Yet most internet users have 

experienced a situation where they searched for a product or asked a voice assistant about 

a product and latter get bombarded with ads about the product. Consumers often wonder; 

“how did they know I looked that up?” Some consumers even say it is creepy when they 

see ads that imply some entity is monitoring their behavior. Consumers appreciate ads 

that provide value. However, when the timing between data collection and data driven 

propositions is short consumers, consumers become aware their behavior is being 

predicted and may react negatively towards the intervention.  

3.2.5.2.2 Personal/Impersonal Data 

Personal/Impersonal data are based on consumer vulnerability. Personal data are 

data that relate to an identifiable individual. The ability to single out individuals increases 

consumer vulnerability. When consumers perceive that they are being targeted personal, 

they may experience negative emotions towards the intervention and could attempt to 

reestablish their decision freedom by changing their preferences. Tucker (2014) suggests 

that personalized ads that used personal data posted by users on Facebook are 

significantly less successful than generic ads. 

3.2.5.2.3 Volitional/Non-Volitional Data 

Big data volition is based on the consumer’s willingness to provide the data and 

the relationship history between the consumer and the firm. Most companies collect data 

today without the explicit awareness of the consumer. Even when the consumer is 

required to sign a user agreement before data is collected, consumers are often not aware 

what data are collected and how the data will be used (Lupton, 2017). Tucker (2014) 
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found that when consumers perceive that they are in control of their personal data, 

personalized ads where more successful than generic ones. Using psychological reactance 

theory, Youn and Kim (2019) investigate why consumers avoid ads on Facebook. They 

find that ad intrusiveness and freedom threat to use Facebook have a positive effect on 

reactance. However, users’ perceived autonomy decreases their perceptions of ad 

intrusiveness. Therefore, when consumers perceive they are in control, they are less 

likely to rebel against personal (intrusive ads) even when they do not use their control to 

limit ad intrusiveness. 

3.2.5.3 Study One Hypotheses and Model 

Summarizing from the rationale presented above, I present the following hypotheses: 

H1: Data timeliness has a negative effect on consumers’ perceptions of freedom. 

H2: Personal data has a negative effect on perceived freedom. 

H3: Data volition has a positive effect on perceived freedom. 

H4: Data volition moderates the relationship between personalization and perceived 

freedom such that when data are provided volitionally, the relationship between 

personalization and perceived freedom is more positive relative to non-volitional data. 

H5: Perceived freedom positively affects consumer satisfaction. 
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Figure 3-2: Study One Proposed Model 
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3.2.5.4 Study Two Hypotheses and Model 

Rather than perceived freedom, study two investigates how restrictions on 

freedom interact with perceptions of data-driven behavioral prediction. 

H6: Big data characteristics influence consumer anxiety such that archaic or less invasive 

(asynchronous, impersonal, and volitional) data interventions have a negative effect on 

consumer anxiety and futuristic or high invasive (synchronous, personal, and non-

volitional) data interventions positively affect consumer anxiety. 

Hypothesis 6 predicts that big data invasiveness creates anxiety in the mind of the 

consumer. When data are non-volitional, personal, and synchronous, consumers feel 

discomfort which is usually referred to as big data creepiness. 

H7: Freedom restriction positively affects consumer anxiety. 

H8: Consumer anxiety negatively affects consumer satisfaction.  

H9: Freedom moderates the relationship between consumer anxiety and consumer 

satisfaction such that when decision making is not restricted, the relationship between 

anxiety and satisfaction is positive. 
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Figure 3-3: Study Two Proposed Model 
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CHAPTER 4 

 

METHODOLOGY 
 

This section presents the research methodology used in this essay. Two 

experiments were carried out to empirical test the hypotheses developed in this essay. 

The first part of this section will discuss study 1. The context, experimental design, and 

manipulations will be presented. Next study 2 along with a discussion the experimental 

design and manipulations will be presented. Finally, measurement scales, manipulation 

checks and analysis to be performed will be discussed. 

4.1 Study One: Perceived Freedom Study 

The first study addresses the first two research questions and tests the hypotheses 

that go with these research questions (H1 – H5). An experiment was used to investigate 

whether consumers’ perceptions of big data driven intervention affect their perceptions of 

freedom and satisfaction. Specifically, this experiment investigates whether participants 

perceptions of the three dichotomies of big data (synchronous/asynchronous, 

volitional/non-volitional, and personal/impersonal) affect perceived freedom of choice 

and satisfaction with data driven interventions. 

4.1.1 The Experimental Context/Design 

Participants in this study were asked to roleplay a toilet paper buying task on an e-

commerce marketplace. An online scenario was selected due to the increasing prevalence 
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of online commerce in America. Also, as discussed in the website data section of essay 2, 

website data is by far the largest category of big data collected today. Websites enable the 

firm to go beyond the transactional view of consumers (recency, frequency, monetary 

value) to understand consumer preferences and behaviors more specifically (Franks, 

2012). In a transformative landscape, the firm’s ability to customize value propositions to 

the specific needs of the consumer offers long run competitive advantage (Kumar, 2018). 

Websites and website data play a vital role in a transformative landscape. 

E-commerce companies collect data on users through asking the user to create an 

account with the website that allows the company to track the history of the user’s 

interactions with the company. Most websites also place cookies on user’s devices that 

allow the company to track not only users’ activity on the website, but other activity on 

the device. The data collected is then used to target the consumer with personalized value 

propositions. The assumption here is that the consumer is happier as they are only 

exposed to interventions that are of interest to them (Franks, 2012). 

Group buying websites emerged out of the rise of e-commerce to give the 

consumer even more power to control the value propositions firms put forward. Group 

buying websites are built on the idea that consumers can come together and bargain for 

lower prices from retailers and are, therefore, powerful and can decide exactly what deals 

they want (Draper, 2012). Draper (2012) argues that when surveillance technologies are 

used to collect data that can be used to define consumers’ interests, consumer 

power/autonomy is reduced, even on group buying websites that are meant to empower 

the consumer. About 80 million Americans use group buying websites every year 
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(Draper, 2012). This experiment investigates consumers’ perception of the three 

dichotomies on an American group buying website, Groupon. 

The experimental design is a 2 (synchronous/asynchronous) by 2 (volitional/non-

volitional) by 2 (personal/impersonal) factorial design of experiments. Participants are 

asked to roleplay a toilet paper buying task. Liu et al. (2012) found that participants who 

were not vested in the decision are neutral to attacks on their decision freedom. Liu et 

al.’s (2012) findings imply that the choice of toilet paper would not engender reactance 

from consumers as most people buy toilet paper without much consideration (consumers 

are not vested in the decision to buy toilet paper). However, this study was conducted 

during the toilet paper mania of the earlier months of the COVID19 pandemic in 

America. Consumers’ were clearly vested in the buying task at this time due to stock outs 

and the fear of being locked-in without toilet paper for an uncertain amount of time. 

Toilet paper was chosen because it is a neutral enough product that all consumers use and 

was on the mind of most consumers as they attempted to exercise their power by stocking 

up. Using toilet paper during this time also made the experimental scenarios that ask 

participants to imagine they had searched for toilet paper online and couldn’t find any 

believable. Lastly, before exposure to the experimental scenarios, participants were asked 

to rank the following features: price, durability, softness (quality), length (quantity), and 

environmentally friendly as concerns their toilet paper preferences. The ranking exercise 

was meant to get participants vested in the decision and give the impression data were 

being collected about their preferences. 
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4.1.2 Experimental Manipulations 

The experiment was conducted online using Qualtrics. The volition manipulation 

was introduced after participants agreed to participate in the study. Participants were 

presented a short summary of Groupon and told they could sign up to allow the company 

place cookies on their devices to track their online activity and location to provide them 

with personalized deals. They were then asked to select whether they were mostly likely 

to sign up and say yes to cookies or to say no if faced with the scenario. This scenario 

was modified from Groupon’s website. Participants who clicked yes to sign up and to 

cookies fall in the volition category, while those who clicked no fall in the non-volition 

category. The advantage of manipulating volition this way is that volition becomes a 

behavioral rather than a perceptual variable. 

Participants were then randomly assigned evenly to one of four scenarios. The 

scenarios required participants to imagine they received an email from Groupon with 2 

toilet paper coupon ads during the toilet paper stock outs in the early months of the 

COVID19 pandemic. Both toilet paper deals were of the same brand (Cottonelle) and the 

prices were the same ($10.49). The most noticeable difference was in packaging color 

(purple and blue). They were also slight differences in the description of the toilet paper. 

These differences do not matter as participants’ attitudes toward the toilet paper are not of 

interest in this study. Pictures from the scenario are included in Appendix B. 

Synchronicity was manipulated by asking participants to imagine the toilet paper 

ad was received  seven days (a week) after participants had searched for toilet paper in 

retail outlets and online but couldn’t find toilet paper, or, one day after they searched in 

retail outlets but immediately after they searched online. Personalization was manipulated 
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by piping in the participant’s first name (which they had earlier provided when they 

agreed to participate in the survey) and geolocation in the text of the ad. All manipulation 

scenarios are included in Appendix B. 

Personal/Asynchronous 

Name, location, and 7 days later 

Personal/Synchronous 

Name, location, and immediate 

Impersonal/Asynchronous 

No name, no location, and 7 days later 

Impersonal/Synchronous 

No name, no location, and immediate 

 

After reading the scenario, participants were then asked to select which one of the 

toilet-paper deals they were most likely to choose of the two shown in the ad. Participants 

then responded to the other variables of interest; perceived freedom, and satisfaction. 

4.2 Study Two: Actual Freedom Study 

The second study replicates some of the findings from study one and addresses 

the third and final research question along with hypotheses 6 through 8. Specifically, this 

experiment investigates whether consumers’ perceptions of data driven interventions 

creates negative emotions in the consumer’s mind and whether consumer satisfaction and 

emotion are affected by restrictions on decision freedom.  

The context of study two is like the toilet paper buying task from study one. 

However, study two is a 2 (freedom/no freedom) by 2 (archaic/futuristic data 

interventions) design of experiments. Archaic data intervention represents a scenario 

where data collected are volitional, impersonal and are not immediately used to 

Table 4-1: Study One Experimental Scenarios 
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personalize value propositions (less invasive data strategy). A futuristic data strategy 

collects personal data that are non-volitional, and, these data are immediately used to 

drive interventions (more invasive data strategy). 

4.2.1 Experimental Manipulations 

The three big data dichotomies are manipulated in this experiment just like in 

experiment one. However, only participants who indicate that they are not likely to sign 

up or disagree to cookies being used to track their online activity (non-volitional) are 

exposed to the personal/synchronous manipulation. Those who indicate they are likely to 

sign up and do not mind cookies being used to track their activity to offer personalized 

value propositions are only exposed to the impersonal/asynchronous manipulation. The 

two groups are archaic or less invasive data (volitional, impersonal, and asynchronous) 

and futuristic or more invasive data (non-volitional, personal, and synchronous). 

Actual freedom is manipulated by restricting choice. In the no freedom condition, 

when the participant picked which toilet paper deal they were most likely to buy, they 

were redirected to a screen that informed them their choice was not the best for them 

based on their toilet paper preferences. Participants were also informed that insistence on 

their initially chosen option will require payment of an additional $2. They were then 

asked to select the choice that was not initially chosen for Groupon to best serve their 

needs. Manipulating freedom by restricting choice and/or imposing a fee is consistent 

with previous research on freedom (Wicklund, 1970; Bos et al., 2015). In the freedom 

condition, participants were allowed to choose, from between the two toilet- paper deals, 

the one they were most likely to buy. 
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No Freedom/Futuristic 

Name, location, immediate, and restricted 

choice 

Freedom/Futuristic 

Name, location, immediate, and free choice 

No Freedom/Archaic 

No name, no location, 7 days later, and 

restricted choice 

Freedom/Archaic 

No name, no location, 7 days later, and free 

choice 

 

4.3 Conceptual Definition and Measurement Scales 

The conceptual models presented hypothesize that the three dichotomies of big 

data affect consumer emotion, perceived freedom, and satisfaction. This section defines 

these concepts and the measurement scales used to capture them are also discussed. 

4.3.1 Perceived Decision Freedom 

Perceived decision freedom describes the extent to which a decision maker 

perceives that there are viable alternative choices or lines of action (Harvey, 1976; 

Walton et al., 1979). To assess participants’ perceptions of decision freedom to choose 

between alternative soft drink options, Walton et al. (1979) asked participants “How 

much freedom did you feel you had in selecting a soft drink?” Kim et al. (2017) measure 

a similar concept called perceived threat to freedom. They measured perceived threat to 

freedom using 7-point scales (1 = strongly disagree and 7 = strongly agree) in response to 

Table 4-2: Study Two Experimental Scenarios 
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statements adopted from Dillard and Shen (2005) (“The ad message threatened my 

freedom to choose” and “The ad message tried to make a decision for me”). 

Perceived decision freedom is measured in this essay by adapting the statements 

from Walton et al. (1979) and Kim et al. (2017). Additionally, statements that capture the 

participants’ intention to search for alternatives to the propositions in the Groupon email 

are included in the measure of decision freedom. For example, “How likely are you to 

verify if toilet paper is back in stock on other platforms outside of Groupon?” All scales 

used in this essay are included in Appendix C. 

4.3.2 Negative Emotion (Consumer Anxiety) 

This essay hypothesizes that predictive interventions will engender negative 

emotions in the consumer. Negative emotions associated with intervention or freedom 

threat will then lead to behaviors that attempt to restore freedom by resisting the 

intervention. In the literature review section, substantial evidence for the motivational 

state of reactance when freedom is threatened was presented. This essay measures 

another negative emotion, consumer anxiety. 

Anxiety, a state of suspense, tension, and apprehension, arises from a diffuse 

sense of threat (Arkin and Ruck, 2007). Anxiety plays a crucial role in the stereotype 

threat effect among individuals who are part of disadvantaged groups (Steele, 1997). Lee 

et al. (2011) found that transaction related anxiety plays a unique role in generating an 

avoidance response, more so than other negative emotions such as sadness or anger. In 

line with previous research, the toilet paper stock outs context being investigated in this 

essay should create the feeling of being vulnerable in the minds of the consumer. When 
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vulnerable consumers perceive that an out-group (in our case an algorithm) is making 

decisions for them, this essay hypothesizes that feelings of anxiety will be aroused. 

Lee et al. (2011) measure anxiety using 3 items; “I am tense,” “I feel at ease” 

(reverse coded), and “I am presently worrying over possible misfortunes.” Participants 

rated their agreement using scales with anchors of 1 = “not at all” and 4 = “very much 

so.” The current essay adopted items from Lee et al. (2011) to measure anxiety. Items 

capturing the specific transaction related anxiety and participants’ anxiety towards data 

collection were also included (see Appendix C). 

4.3.3 Consumer Satisfaction 

Consumer satisfaction has been studied extensively in consumer research. 

However, there is a lack of consensus on the definition of satisfaction and how it should 

be measured (Giese and Cote, 2000). All definitions share three elements: (1) consumer 

satisfaction is a response (emotional or cognitive); (2) the response pertains to a 

particular focus (expectations, product, consumption experience, etc); and (3) the 

response occurs at a particular time (after consumption, after choice, based on 

accumulated experiences, etc).  

Satisfaction is measured in this study using four items from Babin and Griffin 

(1998) and Babin et al. (2005). The items are adapted to capture participants satisfaction 

with Groupon, given the experimental scenarios. A hundred-point scale, two 5-point 

scales and one 7-point scale are used to capture responses to the 4 questions. For 

example, “Use the following percentage scale to indicate your level of satisfaction with 

Groupon; Please select the percentage best describing your level of satisfaction, (0 = “Not 

at all satisfied” and 100 = “Completely satisfied”). 
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4.4 Demographic Information 

Demographic information about participants’ gender, age, race, income, and 

education were also collected. “I prefer not to answer” was included in the demographic 

questions for consumers who prefer not to reveal any of that information. A question was 

also included to capture the browser and device used in taking the survey. Grant (2017) 

found that nonconformists are less likely to use the default browser option that came with 

their devices and most often download their own browser. Trait reactance was not 

measured in this study; however, browser information may shed some light on a tendency 

towards reactance or nonconformity (originals as Grant calls them). 

4.5 Manipulation Checks 

The experiment manipulated the three dichotomies of big data: 

synchronous/asynchronous, volitional/non-volitional, and personal/impersonal. 

Participants were asked several questions to verify that each of these manipulations was 

accurately perceived. For the personal manipulation, the participants’ first name was 

asked again at the end of the survey to see if it matched the first name provided at the 

beginning. Responses that did not match were deleted. Participants also answered 

questions on whether the email ad from Groupon was personal, whether Groupon 

mentioned them by name, and whether Groupon knew what city they currently resided in. 

The synchronicity manipulation checks asked participants how long after they 

searched for toilet paper did, they get the email ad from Groupon, and how fast Groupon 

is in recognizing customer needs. Finally, the volition checks thanked respondents for 

agreeing to let Groupon track them to offer personalized deals. Participants were given 

the option to say yes, I agreed or no, I did not agree. Participants also answered questions 
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on how likely they are to say yes to websites that use cookies to track their behavior and 

how likely they are to take measures to mask themselves when browsing the internet. All 

manipulation checks are included in Appendix C along with the measures used in the 

study. 

4.6 The Analysis 

All analyses will be performed using IBM SPSS. Prior to analyzing the data, the 

data will be cleaned. All respondents who fail attention checks and speeders will be 

removed from the dataset. Also, respondents will be asked what they think the purpose of 

the experiment is and those who figure out the purpose of the experiment will be 

eliminated from the dataset. After the data are cleaned, reverse coded items will be 

recoded, and descriptive analysis will be run on all variables. Experimental variables will 

be computed, and the experimental manipulations will be checked using the crosstabs 

function in SPSS. 

AMOS, analysis of moment structures, will be used to validate the measurement 

models used in this essay. Most of the measures used in this research are adapted from 

previous research and there is no need for an initial exploratory factor analysis. 

Confirmatory factor analysis with maximum likelihood estimation will be employed to 

assess scale validity. Standardized loading estimates and average variance extracted 

(AVEs) will be used to assess convergent validity and construct reliability. Discriminant 

validity will be assessed using the Fornell and Larcker (1981) test; comparing AVEs to 

squared correlation between constructs. 

For study one, a 2 (synchronicity) by 2 (volition) by 2 (personalization) analysis 

of variance (ANOVA) will be used to test hypotheses 1 through 4. This should reveal the 
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direct effect of the manipulations on perceived decision freedom and consumer 

satisfaction. This essay is particularly interested in the interaction effects and so the 

interaction effects will also be interpreted. A simple regression analysis will be used to 

assess the effect of perceived decision freedom on consumer satisfaction (H5). PROCESS 

macro model 12 can also be used to test all study one hypotheses in a single step. 

Finally, a 2 (big data characteristics) by 2 (freedom) ANOVA will be performed 

to test the main effects of freedom and big data characteristics on consumer anxiety and 

consumer satisfaction for study two. Regression analysis will also be used to test 

hypotheses 7 through 9. Again, the PROCESS macro, with model 8, can be used to test 

the hypotheses in study two in a single step. 
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CHAPTER 5 

 

MAIN STUDY AND RESULTS 
 

The main study and results section of this essay presents the pretests, two 

experiments and findings from the studies in detail. The online surveys were designed in 

Qualtrics. Prior to collecting panel data through Qualtrics for the two main studies, data 

were collected from a convenience sample of business students from four universities 

across the United States. The goal of the pretest was to ensure that respondents perceived 

the experimental manipulations appropriately.  

5.1 Pretests 

109 undergraduate business students from the University of Tennessee at Martin, 

Western Carolina University, and McNeese State University provided data for the first 

pretest for extra credit. Immediately after agreeing to participate in the study, respondents 

were introduced to online marketplace company Groupon. Respondents read about how 

Groupon tracks consumers who choose to sign up to provide them the best deals in their 

area. They were then asked to imagine they were faced with the scenario and to either 

select yes to creating an account and being tracked by Groupon or whether they were 

more likely to say no. This initial request represents the volition manipulation. Request to 

create an account and to be tracked were adapted from the message Groupon’s website 

presents customers. Respondents were also asked for their first name which they entered 
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manually. Next, respondents were told to imagine Groupon asked them to rank five 

factors that are frequently used in toilet paper advertisements in order of importance to 

them. The goal of this question was to create the feeling in the respondents’ minds that 

Groupon was collecting data on their preferences. 

Respondents were then randomly assigned evenly between one of the four 

scenarios in Table 3-1. Respondents in the impersonal/asynchronous group were told to 

imagine they had been unable to buy toilet paper for a week due to stock outs associated 

with the COVID19 pandemic. They had looked in retail stores and even looked online a 

week ago, but toilet paper was out of stock. The respondents further had to imagine they 

received an email from Groupon. The email stated Groupon had been tracking their 

online activity and noticed they tried to buy toilet paper a week ago but could not due to 

stock outs. The email then offered two Cottonelle toilet paper deals that cost $10.49 each. 

The two toilet paper deals were slightly different. Choice 1 had purple packaging, and 

contained 36 regular rolls, while choice 2 had blue packaging and contained 36 double 

rolls. Participants could select either choice 1 or 2 and their response was recorded in the 

data as either 1 or 2 to the impersonal/asynchronous question. 

Participants in the personal/asynchronous group saw the same scenario, except 

this time, the respondents name was piped into the email scenario from Groupon. The 

geolocation feature of Qualtrics was also used to pipe in the respondent’s location. The 

name and location information are used in this study to personalize the email from 

Groupon. Receiving personalized marketing communications that mention consumers by 

name and know one’s location is very common today. The email started out by 

mentioning the respondents name and then telling them Groupon noticed they searched 
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for toilet paper before offering the deals. The email also informed the respondent that 

other consumers in their location had taken advantage of the deals they were being 

offered. 

Participants in the impersonal/synchronous group saw the same scenario as those 

in the impersonal/asynchronous, except instead of a week ago, the scenario told them to 

imagine they had searched for toilet paper 1 day ago and the email was received only 1 

day after they searched online. Finally, participants answered manipulation check 

questions.  

5.1.1 Pretest analysis 

Upon downloading the data from Qualtrics, the first step was to compute the 

experimental variables in SPSS. The synchronicity, and personalization variables were 

created using the transform function to assign a 1 to respondents who answered 1 or 2 to 

any of the conditions (implying they were exposed to that condition and picked one of the 

two toilet paper offers) and 0 otherwise. The volition variable was created by simply 

recoding the first question. Participants who said they were likely to say no to being 

tracked were recoded to 0 and those who said yes were recoded to 1. 

In the next step of the pretest analysis, the crosstabs function was used to test the 

manipulations. First the volition manipulation was checked by crossing the initial volition 

manipulation described above with a manipulation check question that thanked 

participants for agreeing to creating an account and being tracked by Groupon. They 

could either select yes, I agreed or no I did not agree. The crosstabulation indicated most 

respondents remembered which choice they selected. 
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 Check: Yes Check: No Total 

Volition: Yes 32 7 39 

Volition: No 3 67 70 

Total 35 74 109 

 

As indicated in the table above, 99 of the 109 respondents remembered whether 

they are okay being tracked by Groupon or not. The volition manipulation worked. The 

next manipulation is the synchronicity manipulation. To check this manipulation, 

respondents were asked whether the email ad from Groupon was received the same day, 

2 days, 3 days, 5 days, or one week after they had searched for toilet paper online. 

 Same 

Day 

2 Days 3 Days 5 Days One 

Week 

Total 

Same Day 22 17 6 5 3 53 

One Week 20 6 6 0 24 56 

Total 42 23 12 5 27 109 

 

As seen in the table, only 46 of the respondents remembered precisely which 

scenario they were exposed to, implying the synchronicity manipulation is not perceived 

appropriately by the respondents. Running a t-test on a question that asked how fast 

Groupon is in responding to customer needs showed that those in the 1-week (mean = 

3.81) condition actually perceive Groupon to be faster than those in the same day 

Table 5-1: Volition Manipulation crosstabs 

Table 5-2: Synchronicity Manipulation Crosstabs 
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condition (mean = 3.14). Thus, adjustments to the design were made based on this 

finding. The adjustments are examined in another pretest described below. 

Next, the personalization manipulation was checked against two questions that 

asked respondents if the email deal from Groupon mentioned them by name and if 

Groupon knew what city they currently resided in. 

Name Yes Maybe No Total 

Impersonal 4 14 37 55 

Personal 30 9 15 54 

Total 34 23 52 109 

 

As the table shows, more respondents remember if the saw a personalized email. 

However, the manipulation still is not working quite as well. Thus, slight adjustments 

were made to the design based on the pretest results. 

City Yes Maybe No Total 

Impersonal 5 26 24 55 

Personal 25 12 17 54 

Total 30 38 41 109 

 

Using the city to test the personalization manipulation confirms that respondents 

are perceiving the mention of their city as intended. Further investigation into the large 

number of respondents who selected maybe when asked if Groupon knows what city they 

Table 5-3: Personalization Manipulation Crosstabs (Name) 

Table 5-4: Personalization Manipulation Crosstabs (City) 
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currently reside in showed that the geolocation function in Qualtrics is not perfect and 

depending on where the respondent lives, the geolocation could indicate they live in 

another city close by. The goal of the second pretest was to try and fix all the issues with 

the experimental manipulations. 

5.1.2 Final Pretest 

33 undergraduate students from Louisiana Tech University provided data for a 

second pretest. The volition manipulation worked in the initial pretest, so the final pretest 

only focused on the synchronicity and personalization manipulations. After providing 

their first name and answering the volition question, respondents were again randomly 

assigned between the four groups. This time, the asynchronous manipulation was 

changed to 7 days instead of 1 week to create a larger psychological distance in the mind 

of the respondent. The synchronous manipulation stayed the same (today). The 

personalization manipulation was emphasized by piping in the respondent’s first name 

and geolocation two times each within the email communication. 

City Yes Maybe No Total 

Impersonal 3 8 6 17 

Personal 10 3 3 16 

Total 13 11 9 33 

 

 

 

 

 

Table 5-5: Personalization Manipulation Crosstabs (Name) II 
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City Yes Maybe No Total 

Impersonal 3 7 7 17 

Personal 10 4 2 16 

Total 13 11 9 33 

 

Performing crosstabs on the synchronicity manipulation and a question that asked 

respondents how fast Groupon is in recognizing customer needs produced the following 

results. 

 Average Fast Very Fast Total 

Today 11 6 2 19 

7 Days 7 2 5 14 

Total 18 8 7 33 

 

The result show that a higher percentage of participants remember when their 

name is mentioned. However, the two times used in the synchronicity manipulation do 

not register as different in the minds of the respondents. Once again, it appears 

respondents in the 7-day condition perceive Groupon to be faster than those in the 1-day 

condition. The reason for this discrepancy could be because most participants do not 

remember what condition they were exposed, quite possibly due to speeding through the 

survey and not taking time to read the scenarios. Also, 1 day and 7 days may not be far 

enough apart to create a significant difference in the minds of the respondents. 

Table 5-6: Personalization Manipulation Crosstabs (City) II 

Table 5-7: Synchronicity Manipulation Crosstabs II 
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To address the problems mentioned above, some changes were again made to the 

survey. In the asynchronous condition, participants were told they tried to buy toilet 

paper in January and could not find any due to the stocks caused by COVID19. This 

month (May) they received an email from Groupon saying they tracked their online 

activity and noticed they tried to buy toilet paper. Also, in the synchronous condition, the 

word suddenly was added to make the email ad seem timelier and respondents were 

informed the email came in a few seconds after they tried to buy toilet paper online. More 

importantly, the survey was set up so that respondents who do not remember which 

experimental condition they were assigned were kicked out of the survey as it is assumed 

that these respondents are not paying sufficient attention to provide useful responses to 

the outcomes of interests. There will, therefore, be no need for manipulation checks in the 

main studies. The manipulations used here are objective and routing respondents who fail 

manipulation checks out of the survey before measuring the outcomes ensures that 

personalization, volition, and synchronicity are captured perfectly. 

5.2 Experiment One: Perceived Freedom Study 

This first experiment tests the theory that the effects of the three big data 

dichotomies on consumer satisfaction is mediated by the consumers’ perceptions of 

freedom. A sample of U.S. household consumers 18 years and older was collected 

through Qualtrics. First, I will discuss the sample characteristics, then the measurement 

model and finally the analysis and results. 

5.2.1 Sample Characteristics 

One hundred and fifty-eight subjects responded to the online survey through 

Qualtrics. The data only consist of respondents who remembered which experimental 
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block they were randomly assigned to. As earlier mentioned, there is no need for 

checking the manipulations in the main studies. Also, a soft launch with fifteen 

respondents indicated that the average time taken to complete the survey was seven 

minutes. A speeding check was then included in the survey to automatically eliminate all 

responses that were completed in less than 1.5 times the average completion time or more 

than 1.5 times the average completion time. The final data set only includes respondents 

who passed all manipulation and attention checks and took between 3 minutes 30 seconds 

and 10 minutes 30 seconds to complete the survey. The demographic characteristics of 

the sample are reported in table 3-10. The resulting sample profile is generally consistent 

with that of the U.S. consumer population although the modal age is 50 and above, 

suggesting perhaps the sample is slightly older than the median U.S. age. 

Characteristics Frequency Percentage Cumulative Percentage 

 Gender   

Male 76 48.1 48.1 

Female 82 51.9 100.0 

No response    

 Age   

18 - 24 22 13.9 13.9 

25 - 29 12 7.6 21.5 

30 - 34 14 8.9 30.4 

35 - 39 14 8.9 39.2 

Table 5-8: Demographic Characteristics Study One 
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40 – 44 12 7.6 46.8 

45 – 49 12 7.6 54.4 

50 and above 72 45.6 100.0 

 Ethnicity   

White/Caucasian 116 73.4 73.4 

Black/African American 26 16.5 89.9 

American Indian/Alaska Native 3 1.9 91.8 

Asian 7 4.4 96.2 

Native Hawaiian/Pacific Islander 1 .6 96.8 

Hispanic or Latino 5 3.2 100.0 

No response    

 Education   

Less than high school degree 14 8.9 8.9 

High school graduate or GED 50 31.6 40.5 

Some college but no degree 29 18.4 58.9 

Associate degree in college (2-year) 9 5.7 64.6 

Bachelor’s degree in college (4-year) 36 22.8 87.3 

Master’s degree 15 9.5 96.8 

Doctoral degree 2 1.3 98.1 

Professional degree (JD, MD) 3 1.9 100.0 
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5.2.2 Measurement Model Assessment 

A measurement model with two (perceived freedom and consumer satisfaction) 

variables was assessed to show the psychometric properties of the scales. Note that the 

measurement model only has two variables because the other three variables in the study 

were experimentally manipulated dichotomous variables. IBM SPSS Amos was used to 

perform a CFA on perceived decision freedom and consumer satisfaction. First, reverse 

coded items were recoded, and variables were renamed. Secondly, the experimental 

variables were created. Next, descriptive statistics were run on the five variables that 

make up perceived decision freedom and the four variables that make up consumer 

satisfaction. 
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  N Range Min Max Mean Std. Deviation Skewness 
 

Kurtosis 
 

 
Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std. 

Error 

Statistic Std. 

Error 

PDF_1 158 9 1 10 7.28 3.03 -0.85 0.19 -0.53 0.38 

PDF_3 158 6 15 21 19.06 1.91 -0.75 0.19 -0.49 0.38 

PDF_4 158 6 1 7 5.16 1.74 -0.77 0.19 -0.28 0.38 

PDF2_R 158 6 1 7 3.76 2.00 0.23 0.19 -1.14 0.38 

PDF5_R 158 6 1 7 4.44 2.09 -0.27 0.19 -1.17 0.38 

SAT_1 158 4 1 5 2.70 1.40 0.35 0.19 -1.10 0.38 

SAT_2 158 100 0 100 55.22 33.07 -0.36 0.19 -1.08 0.38 

SAT_3 158 4 40 44 42.28 1.38 -0.43 0.19 -1.02 0.38 

SAT_4 158 6 19 25 22.32 2.07 -0.36 0.19 -1.14 0.38 

Table 5-9: Descriptive Statistics for Study One Variables 
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The statistics for skewness and kurtosis indicate that the distribution is not heavily 

skewed and the assumptions for ordinary least squares regression are met. The absolute 

values for skewness are all less than 1. This is important as the hypotheses will be tested 

using a series of regression analyses run simultaneously using the PROCESS macro in 

SPSS. Considering that all variables were measured using different scale types, the 

standardized variables were saved after the descriptive statistics were performed.  

CFA was performed on perceived decision freedom and consumer satisfaction 

(the multiple-item measures involved in the analyses). The initial measurement model 

produced a chi-square of 196.5 (p = .000) with 26 degrees of freedom. The fit indices for 

the model are CFI = .803, TLI = .727 and RMSEA = .204. Using the cut-off values 

suggested by Hair et al. (2006), the values reported above for goodness of fit (CFI and 

TLI) and badness of fit (RMSEA) indicate reasonable but not excellent fit. Values for 

CFI or TFI when estimating a measurement model with less than twelve variables should 

be greater than .97 and RMSEA should be less than .08 (Hair et al., 2006, pp 753). This 

implies the measurement model could be improved.  

Table 3-11 provides estimates for standardized factor loadings to assess internal 

consistency of the measurement scales. Hair et al. (2006) indicate that as a rule of thumb, 

standardized loading estimates should be 0.5 or higher, and ideally 0.7 or higher.  
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  Perceived Decision Freedom Satisfaction 

PDF_1 1.016 
 

PDF_2R 0.082 
 

PDF_3 0.086 
 

PDF_4 0.314 
 

PDF_5R 0.150 
 

SAT_1 
 

0.883 

SAT_2 
 

0.946 

SAT_3 
 

0.878 

SAT_4 
 

0.920 

  
  

CR 0.415 0.949 

  
  

AVE 0.233 0.823 

 

According to Hair et al. (2006, pp 779) construct reliabilities should be .7 or 

higher and variance extracted should be .5 or higher to indicate adequate convergence or 

internal consistency. All four variables measuring satisfaction have standardized factor 

loadings greater than .85. The composite reliability for satisfaction is .95 which almost 

indicates redundancy and the variance extracted is .82. However, only one of the 

standardized factor loadings for perceived decision freedom meets the standards for 

Table 5-10: Standardized Factor Loadings of Perceived Decision Freedom and 

Satisfaction 
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internal consistency. The two variables (PDF_3 and PDF_4) meant to capture 

respondents’ intentions to exercise their freedom by searching for alternatives to the 

proposition from Groupon load very poorly on perceived decision freedom. These two 

items did not come from any previous research. The rational for adding these items was 

that consumers who perceive themselves to be free to decide will tend to search for 

alternatives more so than those who perceive they have limited decision freedom. The 

finding that propensity to search does not have a positive relationship with perceived 

decision freedom is perhaps explained by reactance theory. Previously used measures of 

decision freedom only include the other three measures (PDF_1, PDF_2R, and PDF_5R).  

The reason for adding these two variables was because I believed that consumers 

who are free will exercise their freedom by considering alternatives to value propositions. 

It is quite interesting that these variables load very poorly on perceived decision freedom. 

This implies that respondents who have a higher perception of freedom are less likely to 

search for alternatives. Although this initially sounds counterintuitive, reactance theory 

posits exactly that. According to reactance theory, when consumers perceive that their 

freedom is restricted, they react negatively to the source of influence and attempt to 

restore their freedom by actively performing behaviors counter to source of influence 

(searching for alternatives is a freedom restoring activity). I therefore deleted these two 

items from the measurement and ran the CFA again. 

The new CFA suggests that standardized factor loadings for PDF_2R and 

PDF_5R are lower than .2, indicating low internal consistency. The model fit indices did 

not improve when compared to the five-item model. One possible reason for the poor 

measurement of perceived freedom is the fact that freedom to buy toilet paper was 
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measured during the toilet paper stock outs associated with COVID19. Maybe 

respondents did not perceive they were lots of alternatives considering the scenario 

explicitly informed them that they had tried to buy toilet paper and could not find any due 

to stock outs. PDF_2R and PDF_5R are, therefore, dropped from the study and only 

PDF_1 (“Based on the scenario, how free do you feel to choose how you buy toilet 

paper?”) is left as a measure of perceived decision freedom. Using the single item 

(PDF_1) to capture perceived decision freedom is in line with previous research.  

To establish discriminant validity, Fornell and Larcker (1981) proposed that the 

squared correlations between variables should be less than the average variance extracted 

for the variables. Table 3-13 shows the correlations between 3-item PDF scale and the 

items for satisfaction. Also, the correlation between the 3-item perceived decision 

freedom scale and satisfaction is 0.54. The high correlation between freedom and 

satisfaction is expected as freedom is conceptualized as made up of cognitions and 

satisfactions. However, this correlation is low enough to indicate discriminant validity 

between perceived decision freedom and consumer satisfaction. The squared correlation 

is .3 which is less than the AVE for satisfaction and the factor loading of the single 

PDF_1 item. 
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 PDF5_R PDF2_R PDF_1 SAT_1 SAT_2 SAT_3 SAT_4 

PDF5_R 1.000       

PDF3_R .012 1.000      

PDF_1 .150 .079 1.000     

SAT_1 .071 .037 .477 1.000    

SAT_2 .076 .040 .511 .835 1.000   

SAT_3 .071 .037 .474 .775 .830 1.000  

SAT_4 .074 .039 .497 .812 .870 .807 1.000 

 

PDF_1, which is the only perceived decision freedom scale used in the analysis is 

not highly correlated with satisfaction and this serves as proof of discriminant validity. 

5.2.3 Analysis and Results 

As figure 3-2 shows, experiment one posits that three dichotomous antecedents 

(volition, synchronicity, and personalization) affect satisfaction through perceived 

decision freedom. The 2 by 2 by 2 moderated-mediated univariate analysis of variance or 

regression supplies the results. The methodology section described how each of these 

analyses could be done separately using the univariate function within the general linear 

model function in SPSS. However, the PROCESS macro was used to analyze the data as 

PROCESS offers several advantages over ordinary regression in SPSS. 

PROCESS runs several regression models simultaneously (but independently). 

This enables the user to test moderation and mediation analyses all in one step as opposed 

to running several different regression analyses. PROCESS also automatically calculates 

Table 5-11: Standardized Implied Correlations 
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the indirect effects and saves the researcher from computing these effects manually. 

Specifically, PROCESS model 12 was used to analyze the data from experiment one 

using 2000 bootstraps.  

 

R 

.349 

R-sq 

.121 

MSE 

.926 

F 

2.576 

df1 

8 

df2 

149 

P 

.012 

       

Model Coeff BootMean BootSE p BootLLCI BootULCI 

Constant -.059 -.513 .338 .109 -1.197 .107 

Vol (X) .079 .097 .329 .801 -.555 .715 

Pers (W) .296 .310 .280 .333 -.243 .843 

Figure 5-1: Statistical Diagram for PROCESS Model 12 from Hayes, 2013. 

Table 5-12: Model Summary with Outcome ZPDF_1 (Perceived Freedom) 
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Vol*Pers -.928 -.954 .449 .037 -1.811 -.055 

Synch (Z) .311 .317 .333 .319 -.338 .985 

Vol*Synch -.518 -.537 .461 .232 -1.479 .360 

Pers*Synch -.146 -.160 .408 .740 -.960 .616 

Vol*Pers*Synch .576 .599 .609 .350 -.603 1.760 

Covariate (Age) .070 .070 .038 .053 -.003 .143 

 

As seen in the model summary above, over 12 percent of the variance in 

(perceived decision freedom) PDF_1 is explained by the antecedents; with an F = 2.576 

(df = 8, 149) and p = .012, the model results reject the null of 0 variance explained. 

However, all direct effects on PDF_1 are statistically insignificant as can be seen in the 

confidence intervals, which all include 0. However, the effect of the interaction between 

volition and personalization on perceived decision freedom is statistically significant and 

negative (b = -.928; CI95[-1.81: -.56]). The effect suggests that personalization reduces 

the effect of volition on perceived freedom. All other two and three-way interactions are 

statistically insignificant. The effect of age on perceived decision freedom is used as an 

instrumental control variable and suggests that older subjects perceived more freedom 

(zero barely in the confidence interval). 
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R 

.703 

R-sq 

.495 

MSE 

7.428 

F 

16.095 

df1 

9 

df2 

148 

P 

.000 

       

Model Coeff BootMean BootSE p BootLLCI BootULCI 

Constant 3.22 3.22 .77 .000 1.70 4.75 

Vol (X) -3.97 -3.99 .94 .000 -5.88 -2.17 

ZPDF_1 1.78 1.78 .24 .000 1.29 2.23 

Pers (W) -.79 -.79 .87 .362 -2.53 .85 

Vol*Pers 2.87 2.89 1.27 .03 .36 5.38 

Synch (Z) -1.18 -1.19 .82 .18 -2.84 .39 

Vol*Synch 2.14 2.16 1.24 .08 -.22 4.64 

Pers*Synch 2.75 2.77 1.14 .03 .58 5.13 

Vol*Pers*Synch -5.24 -5.25 1.70 .00 -8.62 -2.02 

Covariate (Age) -.22 .22 .10 .04 -.42 -.02 

 

The antecedents and mediator explain about 50 percent of the variance in 

satisfaction (R-sq = .495), which accounts for a significant portion of the variance in 

customer-experience satisfaction F = 16.095 (df = 9, 148) and p = .000. Volition (b = -

3.97; CI95[-5.881: -2.174]) and perceived decision (b = 1.78; CI95[1.291: 2.226]) freedom 

both have very robust positive effects on satisfaction. Also, the interactions between 

volition and personalization, personalization and synchronicity, and the three-way 

Table 5-13: Model Summary with Outcome ZSAT (Consumer Satisfaction) 
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interaction between volition, personalization and synchronicity all have statistically 

significant effects on satisfaction (Table 3-15). Next, the conditional direct and indirect 

effects of volition on satisfaction will be presented. Age, as control, has a statistically 

significant, negative effect on satisfaction. 

Pers Synch Effect SE t p LLCI ULCI 

0 0 -3.965 .879 -4.509 .000 -5.703 -2.228 

0 1 -1.826 .907 -2.013 .046 -3.619 -.033 

1 0 -1.091 .907 -1.203 .231 -2.884 .702 

1 1 -4.193 .881 -4.757 .000 -5.934 -2.451 

 

The table above shows the direct effects of volition on satisfaction at different 

levels of personalization and synchronicity. All conditional direct effects are statistically 

significant and negative, except the effect of volition on satisfaction when personalization 

is held constant at 1 and synchronicity held constant at 0. In particular, the effects of 

volition on satisfaction are strongest when either both synchronicity and personalization 

are absent (b = -3.97) or present (b = -4.19). 

Pers Synch Effect BootSE BootLLCI BootULCI 

0 0 .140 .597 -.983 1.367 

0 1 -.783 .620 -2.009 .429 

1 0 -1.511 .552 -2.620 -.512 

Table 5-14: Conditional Direct Effects of Volition on Satisfaction 

Table 5-15: Conditional Indirect Effects of Volition on Satisfaction Through PDF_1 
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1 1 -1.409 .518 -2.429 -.420 

 

The index of moderated moderated-mediation is 1.024, BootSE = 1.114, 

BootLLCI = -1.051, and BootULCI = 3.349, which does not support the general 

moderated, moderated mediation theory. However, the effect of volition on satisfaction 

when personalization and synchronicity are held constant at 0 is significant when PDF_1 

is introduced into the model. Also, the indices for conditional moderated-mediation by 

personalization are significant when synchronicity is held constant at 0 (-1.651, BootSE = 

.862, BootLLCI = -3.494, and BootULCI = -.094). However, when synchronicity is held 

at 1, this effect is insignificant (-.627, BootSE = .799, BootLLCI = -2.203, and ULCI = 

1.001). Also, the effect of volition on satisfaction when personalization and synchronicity 

are held constant at 0 reverses (changes sign) when perceived decision freedom is 

introduced into the model. 

Volition Personalization Synchronicity ZSAT 

0 0 0 1.691 

1 0 0 -2.274 

0 0 1 .509 

1 0 1 -1.317 

0 1 0 .901 

1 1 0 -.191 

0 1 1 2.473 

1 1 1 -1.720 

 

Table 5-16: Visualizing the Conditional Effects of the Predictors 
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The negative effect of volition on satisfaction is so robust that whenever volition 

is held constant at 1 (volition present), no matter the value for personalization or 

synchronicity, satisfaction is negative. When volition is 0 (volition absent), at all values 

for personalization and synchronicity, satisfaction is positive. However, personalization 

significantly mitigates the negative effect of volition on satisfaction. 

5.3 Experiment Two: Actual Freedom Study 

The second experiment tests the theory that the effects of the three big data 

dichotomies on consumer satisfaction are moderated by consumer freedom (whether 

consumers are free to make choice, or their choice is restricted). The Nuffield 

intervention ladder seen in the literature review introduces three levels of intervention 

invasiveness. Less invasive interventions are benign nudges that simply provide 

information, moderate interventions use incentives and/or disincentives to control choice, 

and finally highly invasive interventions restrict choice. For this study, two levels of big 

data characteristics were created from the three dichotomies from study one. Less 

invasive big data were volitional, asynchronous, and impersonal. High invasive big data 

were non-volitional, impersonal, and synchronous. 

Two levels of consumer freedom where used in this study: free and unfree. In the 

unfree condition, consumers could choose between the two toilet paper deals from 

Groupon. In the free condition, after the consumer chose what toilet paper deal they 

wanted, a pop-up message appeared that informed them that due to limited availability, 

and their previously established preferences for toilet paper, there was an additional fee 

of $2 associated with their selected option. For Groupon to best serve them, the consumer 

had to select the previously unselected option to proceed with the survey.  
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The goal of this experiment is to test how much consumers trust algorithms to 

make decisions that are in their best interest and whether the consumers’ perceptions of 

volition, and personalization affect their likelihood to accept algorithmic propositions. A 

2 (less invasive vs high invasive data) by 2 (free vs unfree) experimental design was 

used. Negative emotion was hypothesized to mediate the relationship between the 

antecedents and consumer satisfaction with the intervention. Specifically, consumer 

anxiety was proposed to mediate the relationship. A sample of U.S. household consumers 

18 years and older was collected through Qualtrics. First, we will discuss the sample 

characteristics, then the measurement model and finally the analysis and results. 

5.3.1 Sample Characteristics 

Qualtrics was used again to collect data for this study. During the pretests, 

students were relatively evenly split between volition and non-volition. However, 

collecting data on volition proved challenging with the general population. Turns out 

when given the option to use an online service without any data tracking, consumers are 

much more likely to select no to data collection. Less than five percent of consumers 

agree to data collection. This finding is important for online companies. In most cases, 

consumers do not have a choice. They can either agree to the terms and conditions or not 

use the service. So, participants agree to these terms without even reading them because 

they do not have a choice and need to use the service. When enough data had been 

collected on the invasive data group, that section of the survey was frozen and only the 

respondents who fall in the less invasive group (impersonal, asynchronous, and 

volitional) were collected.  
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One hundred and sixteen subjects responded to the online survey through 

Qualtrics. As earlier mentioned, there is no need for checking the manipulations in the 

main studies. Also, a soft launch with twenty respondents indicated that the average time 

taken to complete the survey was seven minutes. A speeding check was then included in 

the survey to automatically eliminate all responses that were completed in less than 1.5 

the average completion time or more than 1.5 the average completion time. The final data 

set only includes respondents who passed all manipulation and attention checks and took 

between 3minutes30seconds and 10minutes30seconds to complete the survey. The 

demographic characteristics of the sample are reported in table 3-18. 

Characteristics Frequency Percentage Cumulative Percentage 

 Gender   

Male 76 47.5 47.5 

Female 84 52.5 100.0 

No response    

 Age   

18 - 24 18 11.3 11.3 

25 - 29 11 6.9 18.1 

30 - 34 22 13.8 31.9 

35 - 39 16 10.0 41.9 

40 – 44 26 16.3 58.1 

45 – 49 11 6.9 65.0 

Table 5-17: Demographic Characteristics Study Two 
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50 and above 56 35.0 100.0 

 Ethnicity   

White/Caucasian 135 84.4 84.4 

Black/African American 4 2.5 86.9 

American Indian/Alaska Native 2 1.3 88.1 

Asian 14 8.8 96.9 

Hispanic or Latino 4 2.5 99.4 

Prefer not to answer 1 .6 100.0 

 Education   

Less than high school degree 2 1.3 1.3 

High school graduate or GED 21 13.1 14.5 

Some college but no degree 27 16.9 31.4 

Associate degree in college (2-year) 15 9.4 40.9 

Bachelor’s degree in college (4-year) 42 26.3 67.3 

Master’s degree 43 26.9 94.3 

Doctoral degree 5 3.1 97.5 

Professional degree (JD, MD) 4 2.5 100.0 

 

5.3.2 Measurement Model Assessment 

A measurement model with two variables (consumer anxiety and consumer 

satisfaction) was assessed to show the psychometric properties of the scales. Note that the 

measurement model only has two latent variables because the other two variables (big 

data invasiveness and freedom) in the study were experimentally manipulated 
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dichotomous variables. IBM SPSS Amos was used to perform a CFA on consumer 

anxiety and consumer satisfaction. First, reverse coded items were recoded, and variables 

were renamed. Secondly, the experimental variables were created. Next, descriptive 

statistics were run on the five variables that make up perceived decision freedom and the 

four variables that make up consumer satisfaction. 

  N Range Min Max Mean Std. 

Deviation 

Skewness 
 

Kurtosis 
 

 
Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std. 

Error 

Statistic Std. 

Error 

SAT_1 160 4 1 5 2.61 1.46 0.38 0.19 -1.25 0.38 

SAT_2 160 100 0 100 54.78 33.68 -0.19 0.19 -1.32 0.38 

SAT_3 160 4 40 44 42.08 1.47 -0.19 0.19 -1.39 0.38 

SAT_4 160 6 19 25 22.18 2.18 -0.12 0.19 -1.39 0.38 

ConAnx_1 160 3 1 4 2.65 0.99 -0.02 0.19 -1.12 0.38 

ConAnx_2 160 6 1 7 5.09 1.60 -0.64 0.19 -0.23 0.38 

ConAnxR_3 160 6 1 7 3.9 1.98 0.09 0.19 -1.07 0.38 

ConAnxR_4 160 6 1 7 4.18 2.03 -0.09 0.19 -1.21 0.38 

ConAnx_5 160 6 1 7 5.26 1.63 -0.85 0.19 -0.00 0.38 

 

The descriptive statistics for skewness and kurtosis indicate that the distribution is 

not heavily skewed and the assumptions for ordinary least squares regression are met 

(distribution is normal). The absolute values for skewness are all less than 1. This is 

important as the hypotheses will be tested using a series of regression analyses run 

simultaneously using the PROCESS macro in SPSS. Considering that all variables were 

Table 5-18: Descriptive Statistics for Study Two 
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measured using different scale types, the standardized variables were saved after the 

descriptive statistics were performed.  

CFA was performed on consumer anxiety and consumer satisfaction. The initial 

measurement model produced a chi-square of 161.3 (p = .000) with 26 degrees of 

freedom. The fit indices for the model are CFI = .898, TLI = .859 and RMSEA = .181. 

Using the cut-off values suggested by Hair et al. (2006) the values reported above for 

goodness of fit (CFI and TLI) and badness of fit (RMSEA) indicate reasonable but not 

great fit. Values for CFI or TFI when estimating a measurement model with less than 

twelve variables should be greater than .97 and RMSEA should be less than .08 (Hair et 

al., 2006, pp 753). This implies the measurement model is not very good.  

Table 3- provides estimates for standardized factor loadings to assess internal 

consistency of the measurement scales. Hair et al. (2006) indicate that as a rule of thumb, 

standardized loading estimates should be 0.5 or higher, and ideally 0.7 or higher.  

  Consumer Anxiety Satisfaction 

ConAnx_1 0.009 
 

ConAnx_2 0.340 
 

ConAnx_3R 0.918 
 

ConAnx_4R 0.910 
 

ConAnx_5 0.255 
 

SAT_1 
 

0.924 

SAT_2 
 

0.941 

Table 5-19: Standardized Factor Loadings of Consumer Anxiety and Satisfaction 
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SAT_3 
 

0.920 

SAT_4 
 

0.954 

  
  

CR 0.653 0.965 

  
  

AVE 0.370 0.874 

 

According to Hair et al. (2006, pp 779) construct reliabilities should be .7 or 

higher and variance extracted should be .5 or higher to indicate adequate convergence or 

internal consistency. All four variables measuring satisfaction have standardized factor 

loadings greater than .9. The composite reliability for satisfaction is .96 which is good, 

and the variance extracted is .87. However, the factor loadings for consumer anxiety are 

not all greater than .5. ConAnx_1 has a factor loading of .009 and the composite 

reliability for consumer anxiety is less than .7 (.65).  The first item for consumer anxiety 

asks respondents to indicate how tense they feel when faced with a scenario similar to the 

one in the study, while the other items asked how worried, or at ease they were. 

Participants may not have appropriately understood the word tense, and so this item will 

be deleted from the analysis and the CFA rerun before evidence of discriminant validity 

is presented. 

The new CFA had chi-square 98.1 with 19 degrees of freedom which is an 

improvement from the last measurement model. The model fit indices also improved 

when compared to the five-item model. CFI was .938 and RMSEA was .162. All the 

factor loadings were still not greater than .5 as indicated in the table below. However, the 
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estimates for average variance extracted and composite reliability are approximately 

equal to the cut-off values; 0.7 and 0.5, respectively. 

  Consumer Anxiety Satisfaction 

ConAnx2 0.340 
 

ConAnx3R 0.918 
 

ConAnx4R 0.910 
 

ConAnx5 0.255 
 

SAT_1 
 

0.924 

SAT_2 
 

0.941 

SAT_3 
 

0.920 

SAT_4 
 

0.954 

   

CR 0.732 0.965 

   

AVE 0.463 0.87 

 

The composite reliabilities and variance extracted values all meet the guidelines 

suggested by Hair et al. (2006). The 4-item anxiety scale will be used for the analysis. To 

establish discriminant validity, Fornell and Larcker (1981) proposed that the squared 

correlations between variables should be less than average variance extracted for the 

variables. Table 3-22 shows the correlations between the 4-item anxiety scale and the 

items of satisfaction. The squared correlation between anxiety and satisfaction is .81, 

which is higher that the AVE for anxiety. However, the high correlation between anxiety 

Table 5-20: Standardized Factor Loadings Without ConAnx1 
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and satisfaction (-.9) is expected and lower than the AVE for satisfaction. This 

correlation is low enough to indicate discriminant validity between perceived decision 

freedom and consumer satisfaction using the less stringent correlation criterion. 

 ConAnx_2 ConAnxR_3 ConAnxR_4 ConAnx_5 SAT_1 SAT_2 SAT_3 SAT_4 

ConAnx_2 1.000        

ConAnxR_3 .312 1.000       

ConAnxR_4 .309 .835 1.000      

ConAnx_5 .087 .234 .232 1.000     

SAT_1 -.290 -.784 -.777 -.218 1.000    

SAT_2 -.280 -.756 .750 -.210 .878 1.000   

SAT_3 -.286 -.773 -.767 -.215 .897 .866 1.000  

SAT_4 -.281 -.760 -.753 -.211 .882 .851 .870 1.000 

 

5.3.3 Analysis and Results 

Figure 3-3 shows the model to be tested in this experiment. This model will be 

tested using PROCESS model 8. PROCESS will be used to test the effect of consumer 

anxiety on consumer satisfaction and the moderation effect of freedom on this 

relationship. 

Table 5-21: Implied Correlations 
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R 

.559 

R-sq 

.312 

MSE 

6.431 

F 

17.595 

df1 

4 

df2 

155 

P 

.000 

       

Model Coeff BootMean BootSE p BootLLCI BootULCI 

Constant -2.04 -2.07 .90 .01 -3.80 -.32 

Data Invasiveness (X) 4.37 4.39 .57 .00 3.28 5.45 

Freedom (W) .66 .68 .52 .25 -.39 1.70 

DataInvasiveness*Freedom -2.66 -2.69 .80 .00 -4.27 -1.11 

Covariate (Age) .03 .03 .12 .78 -.172 .23 

 

Figure 5-2: Statistical Diagram for PROCESS Model 1 (Hayes, 2013) 

Table 5-22: Model Summary with Outcome ZConAnx 

M 

Y X 

W 

XW 
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The model has an R-sq of .312 with F = 17.595 (4,155) and p = .000; this, it 

explains a significant portion of the variance in anxiety. Data invasiveness has a very 

robust, positive effect on consumer anxiety as expected. This effect is completely 

reversed to an even more robust, negative effect in the presence of consumer freedom as 

hypothesized. 

Freedom Effect SE t p LLCI ULCI 

0 4.365 .572 7.636 .000 3.235 5.494 

1 1.702 .564 3.019 .003 .588 2.816 

 

The effect of data invasiveness on anxiety is much stronger in the no freedom 

condition (4.365) than in the freedom condition (1.702). The finding is consistent with 

the hypotheses. The effect of data invasiveness on anxiety is positive in both freedom 

conditions. However, visualizing the conditional effect of data invasiveness on anxiety 

shows when data are less invasive, consumer anxiety is low, and when data are more 

invasive, consumer anxiety is high. In particular, invasive data collection with no 

freedom produces relatively high anxiety. 

 

 

 

 

 

 

Table 5-23: Conditional Effects of Data Invasiveness on Anxiety at Values of Freedom 
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Table 5-24: Visualizing Conditional Effects of Predictors 

Data Invasiveness Freedom ZConAnx 

0 0 -1.861 

1 0 2.504 

0 1 -1.202 

1 1 .500 

R 

.783 

R-sq 

.613 

MSE 

5.786 

F 

48.796 

df1 

5 

df2 

154 

P 

.000 

       

Model Coeff BootMean BootSE p BootLLCI BootULCI 

Constant 1.88 1.91 .91 .012 .21 3.79 

Data Invasiveness (X) -3.68 -3.71 .76 .000 -5.24 -2.32 

Consumer Anxiety (M) -.54 .54 .09 .000 -.69 -.36 

Freedom (W) .91 .91 .55 .096 -.24 1.97 

DataInvasiveness*Freedom .98 .97 .83 .216 -.67 2.60 

Covariate (Age) -.12 -.11 .10 .235 -.30 .078 

 

The model summary above shows that over 60 percent of the variance in 

satisfaction is explained by the antecedents and mediator. Also, as expected, the effects of 

data invasiveness and anxiety on satisfaction are robust and negative. Next, the direct and 

indirect effects of data invasiveness on satisfaction at different levels of freedom will be 

presented. 

Table 5-25: Model Summary with Outcome ZSAT 
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Freedom Effect SE t p LLCI ULCI 

0 -3.684 .636 -5.792 .000 -4.941 -2.428 

1 -2.703 .550 -4.911 .000 -3.791 -1.616 

Freedom Effect BootSE LLCI ULCI 

0 -2.375 .431 -3.235 -1.541 

1 -.926 .320 -1.610 -.329 

 

All the direct and indirect effects of data invasiveness on satisfaction are 

significant and negative. However, the indirect effects at all levels of freedom are smaller 

than the direct effects, implying that anxiety partially mediates the effect of data 

invasiveness on satisfaction as expected. The values of satisfaction at different levels of 

data invasiveness and freedom will be presented. 

Data Invasiveness Freedom ZSAT 

0 0 1.152 

1 0 -2.532 

0 1 2.064 

1 1 -.639 

 

Table 5-26: Conditional Direct Effects of Data Invasiveness on Satisfaction 

Table 5-27: Conditional Indirect Effects of Data Invasiveness on Satisfaction through 

Anxiety 

Table 5-28: Visualizing Conditional Effects of Predictors 
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As seen above, consumer satisfaction is negative when data are highly invasive, 

but positive when data are less invasive irrespective of whether the consumer is free to 

choose or not. However, when the consumer is free, the positive effect of less invasive 

data on satisfaction is higher and the negative effect of high invasive data is less negative 

in line with the hypotheses. Invasive data with no freedom produces relatively low 

satisfaction. 

The table below shows a summary of the hypotheses tested in experiment one and 

two of essay three and the results. Note that many of the relationships of interest are not 

listed as hypotheses in the hypotheses section nor in the table below for parsimony. The 

analysis and results sections present a more complete picture of the findings from essay 

three. 

Hypothesis Study Result 

1 1 Not Supported 

2 1 Not Supported 

3 1 Not Supported 

4 1 Supported 

5 1 Supported 

6 2 Supported 

7 2 Not Supported 

8 2 Supported 

9 2 Supported 

 

Table 5-29: Summary of Essay Three Hypotheses 
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CHAPTER 6 

 

CONCLUSIONS  
 

When asked about consumer tracking, most consumers agree they will rather not 

be tracked. However, consumers continue to engage in activities that allow tracking and 

continue to contribute to the big data phenomenon. Companies like Facebook frequently 

get accused of abusing consumers’ rights to privacy and profiting from consumer data 

without the explicit permission of the consumer. Saetra (2019) argues that big data limits 

consumer freedom. Yet Facebook and other companies whose business model is based on 

consumer data continue to have great success quarter after quarter. Some argue that 

consumers do not really care and only say they do because it seems like the right thing to 

say. As the opening vignette suggest, the consumer may not even notice attempts to use 

their data to control their choices and behavior and even if they do recognize such strings, 

they are free if they love their strings. 

The third essay of my dissertation attempts to investigate whether consumers 

perceive big data characteristics in value propositions and whether consumer emotion and 

satisfaction are negatively affected by the three big data characteristics of personalization, 

synchronicity, and volition. The first interesting finding from the experiments conducted 

in this essay is that when given a choice, consumers are much more likely to reject 

tracking than they are to agree to it. Of course, this essay did not measure the utility 

consumers get from being tracked. There is obviously a trade-off between utility or 
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convenience consumers make when faced with similar scenarios in real life. However, it 

is worth noting that all things being equal, consumers will rather not be tracked.  

In experiment one, volition had no effect on perceived decision freedom but a 

very robust negative effect on satisfaction. Consumers who volunteered to create an 

account with Groupon, tracking and to receiving personalized deals were not satisfied 

with the toilet paper advertisement from Groupon. The negative satisfaction could have 

resulted from the fact that the toilet paper deals were not customized to the respondents’ 

preferences. Also, the scenario described in situation in which respondents had been 

unable to get toilet paper due to the stock-outs of the early months of the COVID19 

pandemic. Respondents who agree to tracking may expect the firm to be proactive in 

providing them with the products they need so they do not have to go without. 

Respondents who did not want to have a relationship with the firm and indicated they did 

not want to be tracked or be targeted by personalized deals were much more satisfied 

with the toilet paper email when they had been dealing with a stock-out. 

The interaction effect of volition and personalization on perceived decision 

freedom and satisfaction was positive and significant. Personalized, volitional data had a 

significant positive effect on perceived decision freedom (see figure 3-6). Perceived 

decision freedom in turn had a robust positive effect on consumer satisfaction with big 

data driven value propositions. When consumers perceive that they are free, they are 

more satisfied with value propositions. The effect of synchronicity on satisfaction was 

not significant. This was contrary to the hypotheses that synchronicity has negative effect 

on satisfaction. The rational for this hypothesis was that when data tracking occurs in 

real-time, the consumer is more aware that tracking is going on and this leads to 
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reactance. The measure of synchronicity failed to appropriately capture this often-

expressed creepiness aspect of big data. However, the effect is still negative even after 

2000 bootstrap samples were taken. 

 

Figure 6-1: Plot of Effects of Volition, Personalization, and Synchronicity on 

Freedom  

 

The effect of the interaction of personalization and synchronicity on satisfaction 

was positive and significant. This implies consumers appreciate timely interventions that 

are customized to their specific needs. When real-time ads were personalized with their 

first name and city, consumers were more satisfied. The practice of using consumers’ 

names and geolocation is quite pervasive in business communication today. Business that 
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engage in real-time data tracking are better off personalizing value propositions. 

However, consumer satisfaction is hurt when they are targeted by personalized ads when 

the no longer need the product, have already purchased the product, or never needed it is 

the first place. Technology that determines how long personalized or retargeted ads 

should be run and that let the firm know when the consumer is no longer in need of a 

product could be very valuable in today’s data driven business environment. Paying more 

for personalized ads that are no longer needed is one of the reasons bad data costs the 

USA economy billions of dollars annually. 

The final finding from experiment one is the three-way interaction of volition, 

synchronization, and personalization has a significant negative effect on satisfaction. This 

implies that consumers who gave permission for data to be collected or have a 

relationship with the firm, were less than satisfied with personalized, synchronous ads 

(see figure 3-7). Age also had a significant negative effect on consumer satisfaction with 

targeted communications as expected. 
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Experiment two investigated the effect of big data characteristics on consumer 

anxiety and consumer satisfaction. The two extremes of the three dichotomies were 

manipulated in this experiment to get less invasive (asynchronous, impersonal, and 

volitional) data and high invasive (synchronous, personal, and non-volitional) data. 

Freedom was manipulated by forcing imposing an additional fee of $2 on the participants 

initial choice of toilet paper post choice. Participants when then forced the pick the 

initially less preferred option. 

Figure 6-2: Plot of Effects of Volition, Personalization, and Synchronicity on 

Satisfaction 
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The effect of consumer freedom on anxiety was positive as expected, but not 

significant. This makes sense as my hypotheses posit that it is data invasiveness that leads 

to anxiety, but freedom. Data invasiveness had a robust positive effect on consumer 

anxiety as hypothesized. However, the interaction between data invasiveness and 

freedom had a significant negative effect on anxiety. This implies that when consumers 

are free to make decisions for themselves, the positive effect of data invasiveness on 

anxiety is wiped out as predicted. 

 

Figure 6-3: Plot of the Effects of Data Invasiveness and Freedom on Anxiety 
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Using satisfaction as the outcome, data invasiveness and consumer anxiety had 

significant negative effects on satisfaction as predicted. The effect of freedom was 

positive, but again not significant. When respondents could make decisions for 

themselves, the effect of anxiety on satisfaction was attenuated compared to when 

respondents could not choose. There is an increasing push toward algorithmic decision 

making in business. Firms like Amazon claims their algorithms can make purchases for 

consumers as they have enough data to know what consumers want, when they need 

them, and what their preferences are. What these firms fail to consider, is the satisfaction 

consumers get from decision freedom and the high anxiety algorithmic decisions 

powered by big data creates in consumers. 
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Saetra (2019) points out, proponents of algorithmic decision making, and nudging 

assume that our rational faculty is our authentic faculty. They therefore argue that making 

rationally smarter decisions frees the consumer from his irrationality (negative freedom). 

However, there is no reason why any mix of irrational, emotional, and/or feelings are less 

valuable than rational or cognitive processes. Even if the possessor of data knows better 

than the consumer, there is no link between the positive knowledge and the normative 

intervention. More importantly, consumers clearly perceive the strings of big data at the 

Figure 6-4: Plot of the Effects of Data Invasiveness and Freedom on Satisfaction 
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two extremes of the three dichotomies and these extremes affect consumer anxiety and 

subsequently satisfaction. 

6.1 Limitations 

This essay has several limitations worth mentioning. First, the perceived decision 

freedom scale did not meet the standards for internal consistency. This scale was created 

by combining three items from previous research to two items created by the researcher. 

All but one item was dropped, and a single measure of perceived decision freedom was 

used in experiment one. The single measure used was from Wicklund (1970), who also 

used a single item measure to capture perceived decision freedom. However, post-hoc 

analysis on the models in experiment one using the items for perceived decision threat 

which were dropped show that the results and conclusions will be different if perceived 

decision threat was used instead of perceived decision freedom. The results are 

completely different when two different items were used, indicating that the items do not 

capture the same latent construct. 

 Another limitation of the study is that the conclusions drawn are based on 150 

subjects per experiment. The variance explained is usually inflated with small samples 

and could be affecting the results presented. Also, the experimental manipulations failed 

to capture the creepiness factor associated with big data as initially intended. The best 

way to study the hypotheses put forward in this essay will be to use secondary data in 

combination with an online experiment like the one described in this essay. That way, the 

manipulations are all purely behavioral variables and capture real life experience of big 

data driven interventions versus using perceptual variables in an online experiment. 

Finally, the three dichotomies of big data manipulated in this essay are from the five 
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conceptual dichotomies from essay two. These dichotomies are normative and therefore 

by very nature, subjective. 

6.2 Future Research 

One obvious avenue for future research is in the development of a 

psychometrically sound measure of consumer freedom and how that differs from a 

measure of decision threat. Freedom is very important in the world we live in today. 

Consumers all over the world, in the Americas, Europe, Africa, and Asia are currently 

protesting the limitations on their freedom imposed by governments in response to the 

COVID19 pandemic. The opening quote stated that the only reason mankind is justified 

in limiting the freedom of any of its members is the protection of others. Clearly 

consumers do not agree with this assertion. If the protests are any indication, freedom is 

more important to consumers than the possibility of harm. 

As the literature review indicates, there is scant research on consumer freedom, 

independence, or autonomy. Essay three proposes a general model for consumer freedom 

got from the literature in myriad disciplines. Future research will test various aspects of 

this model and the intervening mechanisms. One possible avenue will be to test whether 

suspicion or reactance is responsible for attitude change in the face of restrictions. I am 

also interested in measuring the effect of trait reactance on consumer behavior and need 

for freedom. How does the belief in freewill affect experience of freedom? 

Sustein and Thaler (2016) state that nudging is unavoidable as some version of 

choice architecture must exist and if choice shaping is unavoidable, then it is permissible. 

Do consumers agree with this assertion? I am interested in investigating consumers 

perceptions of default options and choice architecture. Do consumers perceive default 
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options as limiting their freedom? Or does the presence of one option make life easier 

and consumers happier. How does the presentation of options no longer available affect 

consumer behavior? In a pandemic or stock out scenarios as experienced during 

COVID19, how does consumer decision-making change? 

Big data creepiness is talked about quite a lot in the managerial press and 

consumers frequently express this sentiment. Yet, there is no research on what big data 

creepiness really is and how it manifest. I would like to investigate big data creepiness 

and the dark side of big data as a currency of exchange. The experiments in this essay 

required participants to roleplay a toilet paper buying task on Groupon. Toilet paper is an 

everyday, inexpensive item. As earlier mentioned, when consumers are not vested in the 

decision, their tendency to experience reactance is diminished. Toilet paper was chosen 

due to the recent stock outs which caused most consumers to be vested in the toilet paper 

buying task. However, when some consumers talk about creepy ads, they usually express 

targeted ads that push products no one else could have known they needed unless their 

interactions were being monitored. Testing the hypotheses in this third essay using 

different product types is an interesting avenue for future research. 

Finally, voice assistants have become prevalent in our society today. These 

devices are increasingly acting as gatekeepers between consumers and choice. They also 

track and remember consumer preferences and make recommendations based on data 

collected. Do consumers perceive these devices as limiting their freedom? What is the 

tradeoff between freedom and the convenience these devices offer?   



160 

 

 

 

  

 

TECHNICAL APPENDIX 
 

A.1 Big Data  

A cultural, technological, and scholarly phenomenon that rests on the interplay of: 

1. Technology: maximizing computation power and algorithmic accuracy to gather, 

analyze, link, and compare large data sets. 

2. Analysis: drawing on large data sets to identify patterns in order to make economic, 

social, technical, and legal claims. 

3. Mythology: the widespread belief that large data sets offer a higher form of 

intelligence and knowledge that can generate insights that were previously 

impossible, with the aura of truth, objectivity, and accuracy (Boyd and Crawford, 

2012). 

A.2 Customer Knowledge 

 A firm’s understanding of customers that informs its business decisions. Customer 

knowledge, broadly construed, encompasses a firm’s insights into or understanding of 

customers’ attitudes, behaviors, beliefs, demographics, desires, emotions, habits, 

interests, involvement, lifestyles, motives, needs, perceptions, preferences, 

psychographics, tastes, values, wants, and more (Varadarajan, 2018). 
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A.3 Recommendation Systems 

 Recommendation systems (RS) are intelligent systems that exploit historical user 

ratings on items and/or auxiliary information to make recommendations on items to the 

users. Recommendation systems broadly refer to web-based tools that tailor vendors’ 

offerings to consumers according to their preferences. RS plays a critical role in a wide 

range of online shopping, e-commercial services, and social networking applications 

(Wei et al., 2016; Li and Karahanna, 2015).  

A.4 Content Based Filtering 

Arrives at recommendations based on a comparison between the content of items 

(features and attributes) to user profiles (Aggarwal, Tomar, and Kathuria, 2017). 

Content-based (CB) collaborative filtering is widely used in recommendation systems.  

A.5 Collaborative filtering 

Uses “User Behavior” for recommending items. Algorithms exploit behavior of other 

users and items in terms of transaction history, ratings, selection and purchase 

information. Other user’s behavior and preferences over the items are used to 

recommend items to the new users at a recommendation based on a model of prior user 

behavior (Aggarwal, Tomar, and Kathuria, 2017). Collaborative Filtering has one major 

limitation. The cold-start problem where a recommender does not have the adequate 

information about a user or an item to make relevant predictions. 

A.6 Behavioral Targeting 

Behavioral targeting records and analyzes recorded information from internet users’ 

past visits and activities online to determine behavioral patterns and user interests 
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which are used to target the user to provide a more meaningful and rich experience on 

the internet. It is believed that a behavior targeting system that serves advertisements 

benefits both the advertiser, who provides their message to a target audience, and a user 

that receives advertisements in areas of interest to the user. 

A.7 Data Mining 

 The process of discovering useful patterns, automatically or semi-automatically, in 

large quantities of data already present in databases (Witten et al., 2016. pp 8). 

A.8 Machine Learning 

Machine learning can be broadly defined as computational methods using experience to 

improve performance or to make accurate predictions. Here, experience refers to the 

past information available to the learner (machine), which typical takes the form of 

electronic data. The size and quality of the data are crucial to the success of predictions 

(Mohri, Rostamizadeh, and Talwalkar, 2018). 

A.9 Transformative Marketing 

Transformative marketing is the confluence of a firm’s marketing activities, concepts, 

metrics, strategies, and programs that are in response to marketplace changes and future 

trends to leapfrog customers with superior value offerings over competition in 

exchange for profits for the firm and benefits to all stakeholders (Kumar, 2018). 

A.10 VRIN Resources 

Resources that are valuable, rare, inimitable, and non-substitutable. Possession of 

VRIN resources can create long run competitive advantage (Warnier, Weppe, and 

Lecocq, 2013). 
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A.11 User-Generated Content (UGC) 

The body of information created by consumers on online platforms such as social 

media, blogs, product reviews, wikis, and communities (Tirunillai and Tellis, 2012). 

A.12 Click-Through Rate (CTR) 

Click-through rate (CTR) is the ratio of users who click on a specific link to the number 

of total users who view a page, email, or advertisement. It is commonly used to 

measure the success of an online advertising campaign for a particular website as well 

as the effectiveness of email campaigns5  

A.13 Primary Data 

Primary data are data collected firsthand by the researcher for a specific investigation. 

Despite the enormous amounts of data on almost any topic today, primary data remains 

very important for marketing research for several reasons. Primary data can address 

questions that secondary data cannot and primary data provide further insights into 

phenomena documented through secondary data analysis (Houston, 2016). 

A.14 Secondary Data 

Secondary data were collected in the past by someone other than the researcher and 

may or may not have been intended to be used in the manner used by the researcher. 

Secondary data is data already in existence and shares some similarities with big data. 

 

 
5 For other uses see https://en.wikipedia.org/wiki/Click-through_rate 

https://en.wikipedia.org/wiki/Click-through_rate
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A.15 Ad Impressions 

Impression, sometimes called a view or an ad view, is a term that refers to the point in 

which an ad is viewed once by a visitor or displayed once on a web page. The number 

of impressions of an advertisement is determined by the number of times the page is 

located and loaded. 
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EXPERIMENTAL MANIPULATIONS 
 

B.1 Personalization Manipulation 

What is your first name (open ended question which was piped into the experimental 

manipulations along with the respondent’s geolocation) 

B.2 Volition Manipulation 

 

 

 

 

Figure B-1: Volition Manipulation 
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B.3 Impersonal - Asynchronous Manipulation 

 

B.4 Impersonal - Synchronous Manipulation 

 

 

Figure B-2: Impersonal - Asynchronous Manipulation 

Figure B-3: Impersonal-Synchronous Manipulation   
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B.5 Personal – Asynchronous Manipulation 

 

B.6 Personal – Synchronous Manipulation 

 

Figure B-4: Personal- Asynchronous Manipulation  

Figure B-5: Personal-Synchronous Manipulation 
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B.7 Freedom Manipulation A 

 

B.8 Freedom Manipulation B 

 

 

Figure B-6: Freedom Manipulation A 

Figure B-7: Freedom Manipulation B 
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MEASUREMENT SCALES 
 

C.1 Perceived Decision Freedom (Walton et al., 1979; Kim et al., 2017) 

• Based on the scenario, how free do you feel to choose how you buy toilet paper? 

(1 = not at all free, 10 = very free) 

• Based on the scenario, please indicate your level of agreement with the following 

statement: The ad message from Groupon tried to make a decision for me (1 = 

strongly disagree, 7 = strongly agree) 

• How likely would you be to search for other toilet paper alternatives before 

placing an order? (1 = extreme unlikely, 7 = extremely likely) 

• How likely would you be to verify, before deciding to buy, if the toilet paper sent 

by Groupon is the best choice for you? (1 = extremely unlikely, 7 = extremely 

likely) 

• Based on the scenario, please indicate your level of agreement with the following 

statement: The ad message from Groupon threatened my freedom to choose (1 = 

strongly disagree, 7 = strongly agree) 



170 

 

 

 

C.2 Consumer Satisfaction (Babin and Griffin, 1998) 

• Which of the following best describes the level of satisfaction you experience 

from today’s shopping scenario with Groupon? (1 = no satisfaction, 5 = extreme 

satisfaction) 

• Use the following percentage scale to indicate your level of satisfaction with the 

Groupon scenario. Please select the percentage best describing your level of 

satisfaction (0 = not at all satisfied, 100 = completely satisfied) 

• Please respond accordingly: I feel satisfied with the shopping scenario with 

Groupon (1 = strongly disagree, 5 = strongly agree) 

• Please respond to the following based on your satisfaction with the overall 

experience with the Groupon shopping scenario (1 = did not feel satisfaction, 7 = 

felt extreme satisfaction) 

C.3 Consumer Anxiety (Lee et al., 2011) 

• When you find yourself being targeted with ads based on your online activity 

such as the Groupon email, do you feel tense? (1 = not at all tense, 4 = extremely 

tense) 

• On the scale below, how worried would you be that you are being monitored in 

the Groupon scenario? (1 = not at all worried, 7 = extremely worried) 

• Based on the Groupon email scenario, please select the answer that would most 

closely match your response to the following statement: I feel at ease (1 = not at 

all at ease, 7 = very much at ease) 
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• On the scale below, how worried are you that ill-intentioned parties could be 

monitoring you while you shop on Groupon? (1 = not worried at all, 7 = 

extremely worried) 

C.4 Volition Manipulation Check 

• Thank you for agreeing to let Groupon track you so we can offer personalized 

deals (1 = yes, I agreed to allow Groupon track me, 2 = no, I did not agree to 

being tracked) 

• When faced with a website that requests to use cookies to track your online 

behavior, how likely are you to say yes? (1 = extremely unlikely, 7 = extremely 

likely) 

• How likely are you to take measures to prevent your online activity from being 

tracked? (1 = extremely unlikely, 7 = extremely likely) 

• Please indicate your level of agreement with the following sentence: I prefer not 

to be tracked when I browse the internet or shop (1 = strongly disagree, 7 = 

strongly agree) 

C.5 Personalization Manipulation check 

• On the scale below, how personal was the toilet paper email from Groupon? (1 = 

extremely impersonal, 7 = extremely personal) 

• Did the toilet paper deal from Groupon mention you by name? (1 = yes, 2 = 

maybe, 3 = no) 

• Does Groupon know what city you currently reside in? (1 = yes, 2 = maybe, 3 = 

no) 
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C.6 Synchronicity Manipulation Check 

• How long after you searched for toilet paper did you receive an email from 

Groupon with toilet paper deals? (1 = same day, 5 = months) 

• How fast is Groupon in recognizing customer needs? (1 = extremely slow, 7 = 

instantly) 
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