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Abstract: In this paper, I attempt a reconstruction of the theory of intersections
in the geometry of Euclid. It has been well known, at least since the time of
Pasch onward, that in the Elements there are no explicit principles governing the
existence of the points of intersections between lines, so that in several propo-
sitions of Euclid the simple crossing of two lines (two circles, for instance) is
regarded as the actual meeting of such lines, it being simply assumed that the
point of their intersection exists. Such assumptions are labelled, today, as
implicit claims about the continuity of the lines, or about the continuity of the
underlying space. Euclid’s proofs, therefore, would seem to have some demon-
strative gaps that need to be filled by a set of continuity axioms (as we do, in
fact, find in modern axiomatizations).

I show that Euclid’s theory of intersections was not in fact based on any
notion of continuity at all. This is not only because Greek concepts of continuity
(such as the Aristotelian ones) were largely insufficient to ground a geometrical
theory of intersections, but also, at a deeper level, because continuity was
simply not regarded as a notion that had any role to play in the latter theory.
Had Euclid been asked to explain why the points of intersections of lines and
circles should exist, it would have never occurred to him to mention continuity
in this connection. Ancient geometry was very different from ours, and it is only
our modern views on continuity that tend to give rise to the expectation that this
latter must be included in the foundations of elementary mathematics.

We may hope to reconstruct Euclid’s views on intersections if we undertake
a critical examination both of the extension and of the limits of ancient dia-
grammatic practices. This is tantamount to attempting to understand to what
extent the existence of an intersection point may be inferred just from the
inspection of a diagram, and in which cases we need rather to supplement
such inference by propositional rules. This leads us to discuss Euclid’s definition
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of a point, and to work out the details of the complex interaction between
diagrams and text in ancient geometry. We will see, then, that Euclid may
have possessed a theory of intersections that was sufficiently rigorous to dispel
the main objections that could be advanced in antiquity.

Keywords: Euclid, geometry, continuity

The Theory of Intersections in Elementary
Geometry

The first proposition of Euclid’s Elements
teaches how to draw an equilateral triangle
on a segment assumed as its side. The
problem is solved by tracing two equal
circles having as their centers the ends of
the given segment and as their radius the
length of the segment itself. The two circles
intersect at a point above the segment, and
the triangle is drawn by connecting, with
straight lines, the newly-found point with the two endpoints of the given seg-
ment. The possibility of the construction is grounded in Euclid’s Postulate 3,
which allows the drawing of circles with any center and radius, and on Postulate
1, which allows the connection, by straight lines, of any pair of points. The
equality of all three sides of the triangle is grounded, in turn, in the definition of
a circle, all the radii of which are equal to one another (thus AB = AC and
AB = BC), and in Euclid’s Common Notion 1, which states that things equal to
the same thing are also equal to one another (thus AC = BC).

Despite the number of principles employed by Euclid to ground his first and
simplest proof, modern mathematicians and logicians – such as Pasch or Hilbert –
objected that one extremely important point was overlooked, namely the assump-
tion of the existence of the point of intersection C of the two circles.1 Three very
different issues are at stake here. The first is the problem of crossing. Euclid did
not prove, or even argue for, the fact that the two circles are in such a position as

1 See M. Pasch, Vorlesungen über die neuere Geometrie (Berlin: Springer, 1926), first ed. Leipzig
1882, § 6, 44–45; the 1926 edition of Pasch’s masterwork is complemented by an essay by M. Dehn,
Die Grundlegung der Geometrie in historischer Entwicklung, which has a further historical discussion
of continuity in Chapter 3, 239–48. Hilbert discussed the problem of continuity at length in his
Grundlagen der Geometrie, Leipzig, Teubner 1899, and subsequent editions.
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to overlap with one another, so that their circumferences cross at C. The missing
argument seems easy to provide by employing purely Euclidean means.
Nevertheless, the historical question as to the reasons for Euclid’s silence on the
subject are still worth investigating. The question seems to be connected with that
of the role played by the spatial features of figures in ancient geometry (i. e. the
determination of their respective positions) and we will briefly touch upon this
question later in the present paper. The second, deeper problem, however, is that
of intersections. According to modern authors, even if arguments could be
advanced proving that the two circumferences cross one another, this latter
crossing might not be an actual intersection. The two circumferences could, for
instance, have a gap at the point of their crossing, so that the two lines would
have no point in common at all: point C would simply not exist. It seems that
some assumption regarding the continuity of lines should necessarily be included
among the foundations of geometry; but Euclid provided no justification, either in
his system of principles (postulates and common notions), or in any of his proofs,
for the existence of the intersection points.2 The third problem, finally, concerns
the sort of intersection. Even if we admit that the two circles have something in
common (due to their continuity, for instance), it remains in fact to be proven that
their common part is actually one point, rather than, say, several points, a seg-
ment, a small surface, or other figures. As in the case of the problem of crossing,
this last issue seems to be workable using Euclidean means alone: if we assume
the existence of the intersection beforehand, it might be possible to prove that the
latter occurs at a point – even though Euclid himself did not offer any such proof.

Thus, modern authors claim, further axioms and further proofs should be
added in order to fill in the gaps in Euclid’s demonstration of Elements I, 1.
Among these modern authors, the main issue was to be that of adding new
principles bearing on the existence of the point of intersection (the second
problem above), since the other gaps could be filled without much effort. We
will therefore concentrate, in this paper, on the latter issue, even though, as we
will see, the other two were deeply intertwined with it in the ancient discussions.

These remarks reveal the important foundational problem of providing a
theory of intersections in elementary geometry. Such a theory of intersections
may, in turn, be grounded in a theory of continuity of the mathematical objects
(or space), since the existence of the intersection points between lines and
circles may be guaranteed by the continuity of such figures (or space). It is

2 In Elements III, 10, Euclid did prove that two circles meet (at most) at two points; but the
latter demonstration aims only at establishing the number of crossings of two circumferences,
and does not deal with the actual existence of points of intersection. Moreover, Elements III, 10,
logically depends on Elements I, 1.
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important, however, to keep the two theories distinct. Several modern notions of
continuity are not apt, in fact, to ground a theory of intersections and were
rather conceived in view of different aims. On the other hand, many treatments
of intersections in geometry do not refer to any notion of continuity and make
use of different conceptual tools to establish the existence of intersection points.

In modern terms, the simplest and most economical way of assuming that
all the intersection points required in elementary geometry exist is to adopt one
of the following (equivalent) geometrical axioms: the so-called Line-Circle inter-
section axiom, stating that

If a straight line has one point inside a circle, the line will meet the circle

(i. e. the point of their intersection exists); or the Circle-Circle intersection axiom,
stating that

If one of two circles has one point inside the other and one point outside it, the two circles
will meet.

These latter axioms may be immediately adduced in order to prove Elements I, 1
in a rigorous way and it can be easily proven that all the remaining propositions
of Euclid’s book may also be demonstrated using these axioms – at least as far
as the problem of intersections is concerned.3

It should be emphasized that the recourse to such ad hoc principles relieves
the mathematician of any obligation to provide a general definition of continu-
ity. Yet, if one wishes to ground the existence of any point of intersection
between any two curves whatsoever (be they circles, or ellipses, or cycloids, or
spirals, etc.), no list of ad hoc principles can possibly suffice to this end, and the
only way of achieving this aim is to define a general property of continuity of
those curves (or space) which might establish a complete theory of intersections.
In modern terms, such a requirement of continuity may be expressed by stating
that Euclidean space is metrically complete and assuming an axiom to this
effect. The notion of completeness involved here is rather delicate and was first
defined by Dedekind in his famous essay from 1872 on Stetigkeit und Irrationale
Zahlen. Completeness so understood requires the continuity of geometrical
space to be equated with that of real numbers, and therefore demands the
introduction into the domain of geometry of a few non-elementary considera-
tions regarding the infinite, as well as a principle that is extremely powerful
from a logical (and set-theoretical) point of view. Dedekind’s axiom is sufficient

3 A complete and perspicuous demonstration of this fact is to be found in R. Hartshorne,
Geometry: Euclid and Beyond (New York: Springer, 2000), 104–16.
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to rigorously prove all the Euclidean propositions in the Elements (and much
more), but it has been regarded as a threat to the purity of methods in geometry,
as it requires a difficult roundabout path through number theory and analysis.4

Needless to say, a theory of intersections grounded on ad hoc principles is
much easier to envision than a general notion of continuity as completeness,
and it comes as no surprise that specific intersection axioms were already added
to Euclid’s Elements in the early modern age, whereas a viable notion of
completeness had to wait for the nineteenth century.5

Intersections in Greek Mathematics

None of these two different approaches to the theory of intersections is to be
found in ancient mathematics. Euclid did not spell out the grounds for the
existence of the intersection points of the two circles in Elements I, 1, and he
made no appeal to either ad hoc axioms on intersections or to a general
definition of continuity.

4 An explicit proof that Dedekind’s completeness allows one to prove the existence of the
intersection points between circles and circles, and between circles and straight lines, is
given in T. L. Heath ed., Euclid. The Thirteen Books of the Elements (Cambridge: CUP, 19252),
vol. 1, 237–40. The problem of the purity of methods in geometry was famously raised by
Hilbert in his Grundlagen der Geometrie. On this topic, see M. Hallett, “Reflections on the
purity of method in Hilbert’s Grundlagen der Geometrie,” in The Philosophy of Mathematical
Practice, ed. P. Mancosu (Oxford: OUP, 2008), 198–255.
5 It is a serious historical mistake to think that the debate on intersections had to wait for Pasch’s
criticisms in the nineteenth century. As a matter of fact, already Oronce Fine, in his Protomathesis
from 1532, added a Line-Circle intersection principle to the other Euclidean axioms in order to
rigorously prove Elements I, 1. His example was widely followed in the early modern age, and we
find ad hoc intersection axioms in the commentaries on the Elements by Pedro Lastanosa de
Monzón (1569), Claude Richard (1645), John Wallis (1651), Blaise Pascal (1655), Giovanni Alfonso
Borelli (1658), Caspar Schott (1661), Gilles Personne de Roberval (1675), Thomas Simpson (1747),
Abraham Gotthelf Kästner (1758), and several others. On the contrary, I find the first attempt at
grounding the existence of the point of intersection between two circumferences on a general
notion of continuity (rather than on ad hoc axioms) in the geometrical studies by Leibniz – even
though these fell short of offering a fully-fledged notion of completeness. I have offered a
reconstruction of the theory of intersections in early modern editions of Euclid in my Has
Euclid proven Elements I, 1? The early modern debate on intersections and continuity, in Reading
Mathematics in the Early Modern Period, ed. P. Beeley, Y. Nasifoglu, and B. Wardhaugh (London:
Routledge 2020, (forthcoming)); and a discussion of the first introduction of the notion of
continuity in the theory of intersections in my Leibniz on the Continuity of Space, in Leibniz and
the Structure of Sciences. Modern Perspectives on the History of Logic, Mathematics, Epistemology,
ed. V. De Risi, “Boston Studies in Philosophy and History of Science,” (Berlin: Springer, 2019).
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It goes without saying that, far from
Elements I, 1 being the only instance of
this attitude, a huge number of Euclidean
propositions tacitly assume the existence of
the intersection points between the lines
and circles that Euclid constructs. In this
connection mention should at least be
made of Elements I, 22, in which Euclid teaches how to construct a triangle with
any three given sides. The demonstration of this theorem is, in fact, a variation
and generalization of Elements I, 1, and suffers from the very same missing
assumptions. Several theorems of Book III, which is entirely dedicated to the
properties of circles, likewise require the (unwarranted) existence of meeting
points among circumferences. The intersections of two circles (Circle-Circle
intersections) are not, however, the only cases that would require a better
axiomatic base. In Elements I, 12, Euclid shows how to draw the perpendicular
to a given infinite straight line from a point A that does not lie on it. In the
course of the demonstration, Euclid requires that there be taken, at random, a
point B which is on the other side of the straight line (with respect to A), and
that there be drawn a circle of center A and radius AB that intersects with the
given line at points C and D.6 Here the tacit assumption concerns the existence
of the meetings between a straight line and a circle (Line-Circle intersection).
The same assumption is also at work in other theorems.

Euclid did indeed have an explicit (Line-Line intersection) principle govern-
ing the meeting of straight lines, namely, the Parallel Postulate, which states the
conditions that need to obtain in order for two such lines to have a common
point. No mention of continuity is made in its formulation and it is not clear
whether Euclid took the Parallel Postulate to be a principle bearing specifically

6 Euclid never explicitly proved that a straight line and a circle cannot have more than two
intersection points. The proof, however, may be extracted from Elements III, 2, and it repre-
sented, in any case, an important point of discussion in Late Antiquity. Proclus tells of a
demonstration articulated in several cases that was envisaged in order to prove Elements I,
12, without directly assuming that straight lines and circles cannot intersect more than twice:
see Proclus, In Euclidis 286–89. Hartshorne, Geometry: Euclid and Beyond, 100–101, shows that
Elements I, 12 may be proven by assuming the possibility of taking points at random (see below,
note 34) and a Line-Line intersection principle (the “Crossbar Theorem”) that is almost equiv-
alent to Pasch’s axiom, but without making use of stronger intersection axioms. The main point
is that an isosceles triangle may be constructed by those weaker axioms, while the construction
of an equilateral triangle, as in Elements I, 1, essentially requires the Circle-Circle intersection
axiom. Pasch’s Axiom is required for several other demonstrations of Euclid, such as, for
instance, Elements I, 21.
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upon the existence of certain intersection points or, rather, regarded it as a
statement about the crossing of two straight lines – leaving to other continuity
assumptions the inference from the crossing to the actual intersection.
Moreover, the Postulate seems to only concern the crossing of two lines “at an
indefinite distance”. When two straight lines meet inside a given square, for
instance, Euclid does not mention the Parallel Postulate at all, and he seems to
assume their crossing and intersection without further ado.7

If Euclid seems to have remained silent about the intersections of figures, we
do not find any greater degree of awareness of the problem among other Greek
mathematicians, nor in the ancient commentaries on the Elements. These com-
mentaries criticized several foundational aspects of Euclid’s geometry but paid
no special attention to the existence of the points of intersections. In particular, I
am only aware of two episodes of problematization of the proof of Elements I, 1
in this respect: the first is a criticism attributed to the Epicurean philosopher
Zeno of Sidon (second century BC), and the second is an objection rebutted by
Alexander of Aphrodisias (third century CE).

Alexander mentions the fact that if the segment given in the hypothesis of
the proposition (on which we should construct an equilateral triangle) were the
diameter of the universe itself, then the apex of the constructed triangle would
end up outside the outermost heaven – which is impossible.8 The objection may
be associated with other similar concerns which we find expressed, for instance,
in Proclus’ commentary on the Elements and which revolve around the lack of
space to perform certain constructions.9 These objections are addressed, in a
sense, by Euclid’s postulates, which demand that the geometer be allowed to
draw lines without reservation and without engaging with the peculiar features
of the physical environment (or the limits of the world). In any case, it is easy to

7 Nowadays the Parallel Postulate is seldom regarded as a Line-Line intersection principle,
since principles of this latter type usually deal with specified points (e. g. the crossing of the two
circles in “point C”, in the example above), while the Parallel Postulate is an existential
statement about a point of intersection which is not given beforehand. This seems to be the
rationale behind Euclid’s explicit use of the Postulate in, say, Elements I, 44 (where the point of
intersection is not given beforehand), and the absence of any reference to it in Elements II, 4,
where the point of intersection is inside a given square.
8 The discussion is found in Simplicius (In phys. 511–12), which also reports Alexander’s reply
to the objection. On the topic, see H. Mendell, “What’s Location Got to Do with It? Place, Space,
and the Infinite in Classical Greek Mathematics,” in Mathematizing Space. The Objects of
Geometry from Antiquity to the Early Modern Age, ed. V. De Risi (Basel: Birkhäuser, 2015), 15–63.
9 See, for instance, Proclus, In Euclidis 275, 312, 323, 376.

Gapless Lines and Gapless Proofs 239



see that the objection mentioned by Alexander has nothing to do with continuity
or intersections in mathematical terms.

In Proclus’ commentary, we also learn
that Zeno had objected to Euclid’s proof of
Elements I, 1, arguing that it would only
work if we could assume the principle that
two straight lines may not have a common
segment; otherwise, the two newly drawn
segments (AC and BC) might merge into a
single line before reaching C, so that they
would no longer produce an equilateral
triangle. While this objection seems to be more geometrical than the one
mentioned by Alexander, it is important to stress that Zeno did not find any
problem with continuity in Euclid’s proof. Zeno’s objection is rather concerned
with the different problem of the nature of the locus of intersection between
lines (the third problem about intersections mentioned above). This latter
problem, indeed, does not even concern the intersection between the two
circumferences, which is at issue in all modern discussions of Elements I, 1,
but rather the meeting of straight lines. It seems, therefore, to have an entirely
different focus from that of the problem which mainly concerns us here.

We should also note that the oldest,
and possibly the most authoritative, manu-
script of Proclus’ commentary that we pos-
sess depicts the diagram expressing Zeno’s
objection without drawing the vertical seg-
ment: the diagram just adds a letter to the
standard Euclidean diagram for Elements I,
1. If we take it that this drawing actually
represents a version closer to Zeno’s (and
Proclus’) original diagram, then we may
suspect that Zeno’s objection may have
stemmed from his own Epicurean atomism. Zeno, accordingly, would not have
been objecting to the lack of an axiom required to ground the theory of
intersections. Rather, he would have been claiming that, since lines are com-
posed of atoms, we do not know what happens “in the small” at the inter-
section between circles and straight lines, so that it may well be that what we
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perceive as point C is actually a very small segment CD.10 This would be
enough to ruin the exactness of geometry.11

In sum, it seems that no thinker in Antiquity ever regarded the existence of
intersections among lines and other geometrical objects as a proper founda-
tional problem. The Middle Ages did not make substantial progress in this
respect, and the alleged gap in Euclid’s proof remained undetected until the
sixteenth century.12 Nevertheless, so conspicuous an absence of any problem-
atization of the topic, and the lack of any arguments in the related demonstra-
tions, demand a historical explanation. I think that only a clear assessment of
the epistemological reasons for the lack of a thematization of continuity in
ancient geometry can allow us to appreciate the enormous effort made by
modern mathematicians to make this notion explicit.

In this connection, it is crucial to consider how different classical geometry
was from this science as it came to be understood in the modern age. I will
especially insist upon the fact that, while modern geometry thematized space as

10 The statement that two straight lines do not have a common segment is made by Euclid
himself (not as a principle, but rather as a cursory assumption) in his proof of Elements XI, 1.
Proclus’ discussion of the whole matter is to be found in In Euclidis 215–18. Friedlein, the
modern editor of Proclus’ text, mentions in a footnote (p. 215) that the diagram is different in the
oldest manuscript Monacensis 427 (tenth century), which he normally followed when editing the
text, as opposed to in the other manuscript and printed sources (dating from the fifteenth
century onwards). R. Netz, “Were There Epicurean Mathematicians?,” Oxford Studies in Ancient
Philosophy 49 (2016): 283–319, advanced the hypothesis connecting the diagram in the Monac.
427 with Zeno’s atomism. The fragments of Zeno of Sidon have been collected in A. Angeli and
M. Colaizzo, “I frammenti di Zenone Sidonio,” Cronache Ercolanesi 9 (1979): 47–129.
11 The Stoic philosopher Posidonius (a contemporary of Zeno) tried to reply to this criticism by
proving the principle that two straight lines cannot have a common segment. He based his
reasoning, however, on the fact that the diameter bisects the circle, something that Euclid
himself had not proven and had rather assumed in the definition of the diameter. Posidonius, in
any case, did not suggest that a further axiom should have been assumed in order to better
ground geometry, and seems to have interpreted Zeno’s objections as an attempt to dismantle
geometry as a whole rather than as a punctual criticism of the system of principles. Netz, Were
There Epicurean Mathematicians?, advanced the hypothesis that the clause on bisection in
Euclid’s definition may be an interpolation engendered by Zeno’s and Posidonius’ dispute on
the matter. Proclus’ discussion is in In Euclidis 156–58, where he mentions “Thales’” proof that
the diameter bisects the circle. The further issue that Euclid should have proven that two circles
cannot have a common arc is to be found in In Euclidis 215.
12 See above, note 5. On the axioms added to the text of the Elements in the Middle Ages and
early modern age, see V. De Risi, “The Development of Euclidean Axiomatics. The systems of
principles and the foundations of mathematics in editions of the Elements from Antiquity to the
Eighteenth Century,” Archive for History of Exact Sciences 70 (2016): 591–676.
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its object of investigation, this was not the case for ancient geometry.13 Classical
geometry was concerned rather with single figures, namely with triangles,
squares, circles, polyhedra, and similar objects. These figures, moreover, were
not generally understood as being composed of points (i. e. of the points of an
underlying space), rather, they were understood as extended in their nature,
points being conceived of as the limits or boundaries of extension. In this
respect, the modern set-theoretical approach to geometry, which starts from a
set of points and constitutes a continuous manifold by means of a further set of
topological relations among points, is completely extraneous to the foundational
perspective of antiquity. The ancient understanding of a geometrical object is in
fact more closely related to “post-modern” mathematical theories, such as
pointless geometry, or region-based topology, which have developed tools alter-
native to the set-theoretical approach to deal with continuity.14 All ancient
geometers seem to share this point of view, and their mathematical construc-
tions are grounded in a multi-sorted ontology, in which points, lines, surfaces,
and solid bodies remain distinct from, and irreducible to, one another.

It is immediately clear, then, that the modern demand for axioms or for
other principles that might guarantee the continuity of space is completely wide
of the mark with respect to Greek geometry. Similarly, we cannot expect here
any set-theoretical approach to the continuity of figures, in the sense of
Dedekind’s approach to it as an ordering structure among unextended points.

We should, therefore, explore some “spaceless” approaches to the theory of
intersections that might have been envisaged by Euclid and the other Greek
geometers. While many modern interpreters, in fact, have merely restated
Pasch’s opinion that a gap is to be found in Euclid’s proof, a few of them
have attempted to vindicate Euclid’s geometry by devising solutions to the
problem of intersections that might have been accepted by the ancient mathe-
matician himself. The proposed solutions mimic contemporary foundationalism
insofar as they deal either with a general theory of continuity or with ad hoc
intersection principles. After briefly discussing the two approaches in order, I
will advance the idea of a third way which, I think, better accounts for the
understanding of the problem prevalent in ancient times.

13 A comprehensive history of the notion of a geometrical space is still to be written. For a short
summary of the main metaphysical developments, see my Introduction to Mathematizing Space,
pp. 1–13.
14 Among the numerous mathematical studies in these fields, I will mention here the recent
collection of essays by G. Hellman and S. Shapiro, Varieties of Continua. From Regions to Points
and Back (Oxford: OUP, 2018).
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Aristotelian Continuity and Euclid’s Elements

The continuity approach to the theory of intersections should, I think, be dismissed
outright. In the literature this approach is often based on Aristotle’s concept of
continuity. A few years before the composition of the Elements, in fact, Aristotle had
claimed that geometrical objects should be generally categorized as magnitudes
(μεγέθη), defining in turn amagnitude as a continuous quantity (or better, a quantity
whose parts are continuous with one another). Aristotle’s aim was to establish a
clear distinction between continuous geometrical magnitudes and natural numbers
(which are still quantities and yet discrete). In this way, the pure mathematical
sciences, the general subject of which is quantity, were divided into arithmetic on
the one hand and geometry on the other, understood respectively as the study of
discrete and of continuous quantities.15 Were we to attribute such a definitional
system to Euclid and to the other ancient geometers, then a trivial solution to the
problem of intersections would easily follow: circles and lines are magnitudes;
therefore they are continuous; hence they obviously meet when they cross.

There are, however, both historical and mathematical reasons to resist such
a solution.

The mathematical problems connected with the Aristotelian definition of a
magnitude in terms of continuity arise from the fact that it needs to be comple-
mented by a definition of continuity itself. Aristotle, however, only provided a
physical definition of the latter, which conceived of continuity as a relational
predicate between two objects having a boundary in common which “unifies”
them (the examples that Aristotle gives here are nails or glue keeping the parts
together). It is very hard to extract a mathematical meaning from such a definition
and even those modern interpreters who have tried to do so (with some interpre-
tative generosity, in my opinion) have only been able to construe Aristotle’s
continuity as corresponding to the modern topological notion of connectedness,
which is however still too weak to ground any geometrical theory of intersec-
tions.16 Aristotle also characterized a continuous whole as something which is

15 Arist. Cat. 6 and Metaph. Δ 13.
16 The main effort in this direction has been made by M. J. White, “On Continuity: Aristotle
versus Topology?” History and Philosophy of Logic 9 (1988): 1–12. White offered some more pieces
of evidence for his thesis in his later, and lengthier, work M. J. White, The Continuous and the
Discrete: Ancient Physical Theories From a Contemporary Perspective (Oxford: OUP, 1992), which
deals, however, mostly with the physical notion of continuity. I may also note that G. Hellman
and S. Shapiro, “The Classical Continuum without Points,” The Review of Symbolic Logic 6 (2013):
488–512, offer a region-based approach to the continuum, which in some sense may be seen as a
modern and formal reworking of some Aristotelian ideas, and such a theory manages to recover a
notion of completeness. In the following Ø. Linnebo, S. Shapiro, and G. Hellman, “Aristotelian
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infinitely divisible; this latter definition of continuity has a more immediate
mathematical meaning.17 Yet this too is insufficient to ground a theory of inter-
sections, for in modern terms infinite divisibility would amount to density and
lines and circles in the rational plane (for instance) may be dense without
necessarily meeting at a crossing. It should also be noted that a theory of
intersections (and continuity in general) does not need to assume density. We
do not have much information on those ancient philosophers who may have
denied infinite divisibility and in any case it does not seem that they shared
common reasons for supporting this claim (these philosophers ranged from
thoroughgoing Platonists to full-fledged materialists). Xenocrates’ indivisible
lines, whatever they may have been, seem to exclude density in the constitution
of a geometrical magnitude (since any line must be reduced to such indivisible
small lines) but also to admit continuity, and possibly also continuity in the first
Aristotelian sense – in the case where the indivisible lines happen to be in contact
with one another by reason of sharing a boundary. In any case, such a theory
seems not to preclude the existence of the meeting points of two crossing circles
or straight lines.18 Other perspectives on atomism might entail gaps in lines and
mathematical figures, due to their admitting the existence of a vacuum. It is very
hard to establish whether physical (or metaphysical) atomism ever, in the whole
course of antiquity, produced a geometry of minima: the extant traces of an
Epicurean mathematics are very scarce.19 In any case, we find no ancient claim
that two lines were incapable of intersecting with one another due to the lack of a

Continua,” Philosophia Mathematica 24 (2015): 214–46, however, the authors modify the previous
system by limiting the use of the actual infinite in the theory, in order to better comply with
Aristotelian conceptions of mathematics. In doing so the region-based continuum forfeits
Dedekind completeness and the authors claim that “in the Aristotelian setting” some form of
connectedness “is all the ‘completeness’ one can ask for” (p. 229). The two papers are now
collected in the above-mentioned Hellman, Shapiro, Varieties of Continua.
17 See for instance Arist. De cael. Α 1, 268a7–8; Phys. Α 2, 185b10–11; Γ 1, 200b20–21; and Ζ 8,
239a23.
18 Xenocrates’ theory is briefly expounded in ARIST. Metaph. Α 9, 992a19–24, and the pseudo-
Aristotelian essay De lines insecabilibus (968a–72b). The theory is ascribed to Xenocrates by
several late sources, such as Proclus (In Euclidis 29) or Simplicius (In phys. 140–42), but modern
scholars have raised some doubts regarding this attribution.
19 See G. Vlastos, “Minimal Parts in Epicurean Atomism,” Isis, 56 (1965): 121–47; I. Mueller,
“Geometry and Scepticism,” in Science and Speculation. Studies in Hellenistic theory and practice,
eds. J. Barnes, J. Brunschwig, M. Burnyeat, and M. Schofield (Cambridge: CUP, 1982), 69–95; and
Netz, Were There Epicurean Mathematicians?, which provides strong arguments against the claim
that a distinct Epicurean mathematics ever existed. For a more nuanced statement, see also
F. Verde, Elachista. La dottrina dei minimi nell’Epicureismo (Leuven: Leuven University Press, 2013).
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common point or atom.20 In this respect density, or the lack thereof, does not
seem to have played any role in the general theory of intersections.

The historical difficulties involved in accepting an Aristotelian solution to
the problem of intersections in Euclid’s Elements arise from the fact that
Aristotle’s works may have been partially or totally lost after Theophrastus’
death. We know that they were widely read again in the first century BC, and
that in the same years Andronicus of Rhodes and others prepared an “edition” of
some of Aristotle’s treatises, contributing to establishing a canon of works that
was later to be accepted and transmitted to the modern age. Our knowledge of
the circulation of Aristotle’s works in the centuries intervening between the third
and the first century BC is, however, very poor. Diogenes, for instance, had a
catalogue of Aristotelian works which is very different from the one we know
today. Epicurus may have had access to some parts of the Physics but this may
have happened before the loss of the works. It is still possible that copies of
some of the works of Aristotle existed in some Hellenistic libraries and if Euclid
lived in Alexandria (something which remains open to doubt) he may have had
access to them. But the hypothesis seems scarcely plausible, given that philos-
ophers of the age appear to know very little about Aristotle. It is much safer to
assume (in the absence of any evidence to the contrary) that the great Greek
mathematicians Euclid, Archimedes and Apollonius, who lived during the
period between the death of Theophrastus and the Aristotelian renaissance in
the first century, had no access to, or no interest in, the Stagirite’s works.21

20 The only atomistic discussion we have on this topic is one about the impossibility of
bisecting a line, since an odd number of indivisibles in this latter would prevent splitting it
into two equal parts. The discussion is to be found in ps-Arist. De lin. insec. 971a8–11,
apparently recurred again in the Epicurean criticisms of Euclid raised by Demetrius Lacon,
and were treated more extensively in Sext. Emp. Adv. Math. Γ 108–16 (possibly dependent on
Demetrius). The argument was to be repeated by Proclus (In Euclidis 278) and then by several
early modern atomists (such as Bruno). We know that Demetrius rejected several Euclidean
theorems (explicitly Elements I, 3, 9, and 10) on the grounds of atomism. On Demetrius Lacon’s
anti-Euclidean fragments, see A. Angeli and T. Dorandi, “Il pensiero matematico di Demetrio
Lacone,” Cronache Ercolanesi 17 (1987): 89–103.
21 On the circulation of Aristotle’s works in the Hellenistic period, see the classic E. Bignone,
L’Aristotele perduto e la formazione filosofica di Epicuro (Firenze: La Nuova Italia, 1936); and
P. Moraux, Der Aristotelismus bei den Griechen (Berlin: De Gruyter, 1973–1984). More recently,
see J. Barnes, “Roman Aristotle,” in Philosophia togata II: Plato and Aristotle at Rome, eds. J.
Barnes and M. Griffin (Oxford: Clarendon Press, 1997), 1–69; M. Rashed, “Aristote à Rome au
IIe siècle: Galien, De indolentia, §§15–18,” Elenchos 32 (2011): 55–77; and M. Hatzimichali, “The
Texts of Plato and Aristotle in the First Century BC,” in Aristotle, Plato and Pythagoreanism in
the First Century BC, ed. M. Schofield (Cambridge: CUP, 2013), 1–27.
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There is a further, more compelling reason to resist such an attribution:
Euclid never mentioned continuity at all in the Elements.22 Euclid at no point
ever defined a line, a surface or any other geometrical figure by using the notion
of continuity. And even if Euclid did employ the notion of a magnitude (μέγεθος)
in, apparently, the same general sense that it possessed in Aristotle (i. e. as a
characterization of any geometrical figure whatsoever), he did not define what
he took a magnitude to be. Euclidean magnitudes undoubtedly dovetail with the
Aristotelian characterization of these latter as continuous quantities as far as
mathematical practice is concerned. According to the Elements, for instance,
magnitudes are infinitely divisible; and figures are undoubtedly “connected” in
the sense of being one piece (two disconnected circles are not a figure, but two
figures), as Aristotle had claimed. These views on figures and magnitudes,
however, seem to be general enough not to have to be ascribed to Aristotle in
particular. In any case, Euclid never stated that magnitudes and figures, insofar
as they are divisible and connected, should be regarded as continuous (συνεχής).
Looking at further Greek geometers, such as Archimedes and Apollonius, noth-
ing changes in this respect.23

In the light of what we have seen, then, we may conclude that continuity
was not a notion employed in any foundational sense in ancient geometry. It
was of no use in grounding the theory of intersections (nor, explicitly, any other
mathematical procedure), and the alleged connection between the two notions,
continuity and the existence of intersection points, seems to be a modern idea.

22 The word only occurs in the Elements in the context of the technical expression “continuous
proportion”. Additionally, the Second Postulate explicitly states that a straight line may be
extended in a continuous way (κατὰ τὸ συνεχές) in a straight line. Euclid seems to mean that the
procedure of extending a straight segment consists in drawing a second segment and placing it
in such a way that the two are continuous. This notion of continuity seems to be compatible
with several remarks of Aristotle’s and, in particular, it is possible that by “continuity” here
Euclid meant the coincidence of the endpoints of the two segments. It hardly needs to be
remarked that this is the way in which a segment is actually extended with a ruler: one draws a
second segment on the same line. In modern parlance the second Euclidean postulate would
probably run: “To extend a given straight segment with another straight segment connected to,
and in a straight line with, the former”.
23 Euclid may have had a conception of magnitude similar to the Aristotelian one, since it
seems likely that this notion was originally developed by Eudoxus in order to systematize the
theory of proportions. Eudoxus may have been the teacher of Aristotle at the Platonic Academy
and Book V of the Elements, apparently, is a reworking of Eudoxus’ theory. Nonetheless, the
definition of continuity seems to be original to Aristotle; in any case it does not play any explicit
role in Elements V.
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Intersections as Diagrammatic Inferences

Modern interpreters, however, have also suggested a different approach to
explaining the ancient theory of intersections in geometry, one which relates
to the introduction of a few ad hoc intersection principles. Although at first more
promising than the preceding attempt, I think that it too ultimately fails to
account for Euclid’s practice, inasmuch as it misrepresents the role of space
and diagrams in ancient (as opposed to early modern) geometry.

Even in the absence – so it is claimed in this second approach – of the notion
of an underlying space existing prior to and beyond the figures, and thus also in
the absence of a continuity axiom that would guarantee pre-existing intersection
points, it might still be imagined that such points are constructed (and generated)
one by one through the act of drawing circles and straight lines. From this
perspective, the place and function of the absent “continuity of space” would
be taken over by a constructive approach to the existence of geometrical objects.
Through operations performed employing Euclid’s constructive Postulates (the
drawing of straight lines between points, the extension of such lines, the drawing
of circles with any radius), the points of the underlying structure would be
recursively generated. Since the postulates only concern straight lines and circles,
the resulting geometrical model would compare with a modern axiomatization
using Line-Circle and Circle-Circle intersection axioms.24

This constructive interpretation, of course, would itself require a proposi-
tional rule about the introduction of points in the occasion of intersections.
Since the latter is not to be found among the principles of the Elements, a further
important argument is advanced: intersection points would be assumed to exist,
by Euclid, by intuitively inspecting the diagram. That is to say, Euclid would just
have “seen” the existence of the meeting points of the circles in the drawings
representing Elements I, 1.25

There can be no doubt but that ancient geometry was a practice deeply
grounded in the use of diagrams. These latter did not just assist the mathematician

24 A historical presentation of Euclid’s geometry from this perspective is given, for instance, by
I. Mueller, Philosophy of Mathematics and Deductive Structure in Euclid’s Elements (New York:
Dover, 1981). An ampler and more formal reconstruction along these lines is presented in the
ground-breaking paper by M. Friedman, “Kant’s Theory of Geometry,” Philosophical Review 94
(1985): 455–506; now in M. Friedman, Kant and the Exact Sciences (Cambridge: Harvard
University Press, 1992), 55–95.
25 It may be noted that this historiographical hypothesis was raised at the very beginning of
the modern discussion of the subject, and that Pasch himself, after having noticed that an
axiom on intersections was lacking in Euclid’s Elements, commented that such an axiom would
be necessary “wenn man den Beweis ohne die Figur herzustellen versucht” (Vorlesungen, p. 45).
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in his proofs by presenting a certain property or configuration of the figures in an
intuitively graspable way; they were also an integral part of the demonstration,
which was conceived of as partly propositional and party diagrammatic. From this
perspective, it is not surprising that the existence of a meeting point between two
circles was not thematized in the propositional part of the proof (the ἀπόδειξις in
the strictest sense) and therefore did not require any propositional principle either.
Several modern studies on the use of diagrams in Euclid have dispelled the naïve
idea that Greek geometry might have inferred whatever geometrical properties
directly from the inspection of diagrams, thus dispensing with rigorous reasoning
altogether. These studies have stressed that diagrammatic inferences are only valid
in certain quite restricted domains of proof. One cannot, for instance, just look at
the triangle in Elements I, 1 and claim that it is equilateral because the three
segments look to be equal: one has rather to prove it through definitions and
Common Notions, as Euclid did. These rules of application of diagrammatic
inferences are not written down anywhere in ancient texts, but they seem to be
grounded in a consistent and widespread mathematical practice according to which
ancient geometers unfailingly developed their proofs. There have been several
modern attempts to offer a convincing, explicit reconstruction of these implicit
rules and practices.26

I would advance the claim that, according to these basic notions governing
correct diagrammatic inferences, continuity (i. e. completeness) cannot be a
diagrammatic property in the strict sense. This is a simple consequence of the
obvious, but highly important, remark of Dedekind’s to the effect that intuition
through the senses can provide us with no indication of anything relating to
completeness, since this latter is a purely conceptual (structural) notion.27 There
is, in other words, no way to perceptually distinguish a line the points of which
are in correspondence with the real numbers, the algebraic numbers or, say, the
rational numbers. As a matter of fact, the very problem of distinguishing

26 The literature on the use of diagrams in Euclidean geometry is quite extensive. The
contributions on the topic that have most shaped the contemporary discussion are probably
those by R. Netz, The Shaping of Deduction in Greek Mathematics: A Study in Cognitive History
(Cambridge: CUP, 1999); K. Manders, “The Euclidean Diagram in The Philosophy of
Mathematical Practice,” ed. P. Mancosu (Oxford: OUP, 2008), 80–133; D. Macbeth,
“Diagrammatic Reasoning in Euclid’s Elements,” in Philosophical Perspectives on
Mathematical Practice, eds. B. van Kerkhove, J. P. van Bendegem, and J. de Vuyst (London:
College Publications, 2010), 235–267.
27 This is especially emphasized in the Preface to Was sind und was sollen die Zahlen?, now in
R. Dedekind, Gesammelte Werke, vol. 3, ed. R. Fricke, E. Noether, and O. Ore (Braunschweig:
Bieweg, 1932), 339–40. Recently, a similar thesis has been advanced by P. F. Epstein, “A Priori
Concepts in Euclidean Proofs,” Proceedings of the Aristotelian Society 118 (2018): 408–17.
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perceptual content according to these notions is plainly meaningless. As a
consequence, a diagram cannot express the existence of an intersection point.

This latter argument is indeed highly theoretical and was advanced in the
nineteenth century after Dedekind’s outstanding success in separating off the
notion of density from that of completeness. In order to make it a viable argu-
ment for the historical Euclid, however, we do not need to employ it at full
strength. In fact, we have already observed that in ancient times (and probably
also before the age of Euclid) several atomistic arguments had been advanced
contending that lines are actually composed of a finite number of points,
possibly interrupted by gaps. Euclid clearly did not share this point of view.
Nevertheless, the Greek philosophical debates on the constitution of magnitudes
show with sufficient clarity that the perceptual inspection of a diagram could not
have been regarded by Euclid or his contemporaries as an actual proof that lines
are continuous or that their points of intersection exist. For the same reasons it
would have been impossible for Greek philosophers and mathematicians to
dismiss as useless, for example, Aristotle’s many arguments on the continuity
of matter by making an appeal to the senses, as if the continuity of bodies could
be directly and immediately intuited through these latter.

Let us now recall the oldest diagram employed in Zeno of Sidon’s objection
to Elements I, 1: it showed the very same drawing as the original Euclidean
proposition, whereas the thesis advanced by the text of Zeno’s criticism was
that the alleged point of intersection may well be an extended line. This seems
to constitute very strong evidence that in the mathematics of antiquity the theory
of intersections could not have been based upon diagrammatic inferences alone.

In short, continuity was regarded as a theoretical rather than perceptual
property long before Dedekind. Whereas Dedekind’s distinction between com-
pleteness and density did indeed provide new and more powerful arguments
against any perceptual account of continuity and intersections, the philosophical
and mathematical discussions of the fourth century BC were surely already
developed enough to have prevented Euclid from thinking that the actual inter-
section of two lines could simply be read off from a diagram without this latter
inference having to be supported by some other piece of theoretical evidence.

We might attempt to articulate this last point at somewhat greater length.
Nowadays, geometrical diagrams are generally considered to be icons (in an
approximately Peircean sense of this term), inasmuch as their observation and
manipulation may faithfully express certain properties of the represented
objects. Thus, for instance, by drawing two “circles” on paper I can say that
they cross at two points (rather than, say, at seven points) even if I have not
posited any explicit propositional principle to this effect. The shape and
position of the signs provide me with a certain amount of information which
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I did not possess before regarding the objects represented in the drawing. On
the other hand, not all properties of the objects so depicted may be faithfully
expressed by a geometrical icon. For instance, the exact length of the diameter
of the circle, or the ratio between it and the circumference, are not pieces of
information that can be extracted from the drawn signs: these are not dia-
grammatic properties.28 Now, my contention is that continuity necessarily
counts among the properties (or relations) that cannot be diagrammatically
inferred. This is so inasmuch as the manipulation of the signs themselves, or
their shape, cannot express in an iconic way whether the two circles are
complete or whether (say), they only possess points with rational coordinates;
or even whether they are made up by a large number of Epicurean atoms.

This does not mean, however, that diagrams play no role in establishing
intersections. We do, indeed, find a diagrammatic inference in the Euclidean
proof of Elements I, 1. But this amounts to the fact that the two circles con-
structed following Euclid’s instructions do cross one another, rather than being
apart. We have already noted that, in Euclid’s proof of Elements I, 1, the crossing
between the two circles is not propositionally proven; and this was regarded as a
gap (albeit a minor one) in Euclid’s demonstration. Nevertheless, inferring the
crossing of two lines from the inspection of the diagram is a legitimate infer-
ential move. Diagrams in Euclidean geometry operate as icons with respect to
the relative spatial position of figures and their crossing. No propositional
articulation of spatial properties is needed to this effect.

Since Euclid did make use of a kind of spatial vocabulary from time to time,
I should probably stress in this connection that these notions played no role
whatsoever in the demonstrations of the Elements.29 The rare occurrences of

28 This distinction comes from the seminal paper by Manders, The Euclidean Diagram.
Manders, however, seems to take continuity as a co-exact (i. e. diagrammatic) property (see
for instance p. 92), while I think that there is an important distinction between crossing and
meeting in a point, and that only the former is an authentic co-exact attribution in Manders’
sense. See below, note 31. Similarly, I would not agree that an intersection may be validated by
a perceptual concept of the circle, as suggested by M. Giaquinto, “Crossing Curves: A Limit to
the Use of Diagrams in Proofs,” Philosophia Mathematica 19 (2011): 281–307.
29 The only exception of which I am aware is Elements III, 2, which proves the convexity of the
circle by showing that a straight chord connecting two points of the circumference falls entirely
inside the circle. Such a proposition is quite unique in the demonstrative structure of the
Elements and it has been suggested that it may be a later interpolation or that it has somehow
been displaced into this Book from somewhere else (it seems to be necessary in order to prove
Elements III, 1). Moreover, Elements III, 2 is also strictly connected with Elements I, 12 (which has
no clear place in the First Book, and is never further employed there), which also has several
peculiarities, and in particular that of making use of an infinite straight line rather than a
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spatial terms in the Elements should be regarded as the predictable outcome of
the use of a natural, rather than a formal, language in definitions and theorems.
Thus, for instance, Euclid’s definition of a circle explicitly states that its center is
a point inside (ἐντός) the figure; moreover, we have already mentioned that, in
the demonstration of Elements I, 12, Euclid asks that we take a point which is on
the other side (ἐπὶ τὰ ἕτερα μέρη) of a given straight line. This notwithstanding,
Euclid did not make any use of this “topological” information. In the demon-
stration of Elements I, 1, he did not say (for instance) that since a circle passes
through the center of another circle then the two circles cross one another; nor
did he, in the proof of Elements I, 12, regard the fact that the point is on the other
side of the line as a way of establishing that there is a crossing. Rather, Euclid
simply stated that the point in question is on the other side and, later in the
proof, assumed the existence of the points of crossing without further ado. In
other words, no propositional articulation or proof-theoretical meaning is ever
attributed to these spatial properties by Euclid, who always assumed the exis-
tence of crossings by diagrammatic inspection.30

On the contrary, that the crossing of the two circles in Elements I, 1 is
actually a meeting (i. e. that there is a point of intersection), is a piece of
information that is not (and cannot be) expressed by an iconic diagram and
which Euclid never supplemented with any propositional axiom. It may be
worth noting that the modern Line-Circle or Circle-Circle continuity principles
are all expressed in conditional form. Thus, they state (for example) that if one of
two circles has one point inside the other and one point outside it, then the two
circles meet. The antecedent is a spatial property of the geometrical configura-
tion, inasmuch it concerns the respective positions of the two circles; in classical
Euclidean geometry, it may be assumed through a diagrammatic inference. It is

segment (which is the standard Euclidean meaning of “straight line”). I will not try to deal with
these difficult problems here.
30 A similar attitude is taken by Euclid in the proof of Elements III, 8, where Euclid joins with a
straight line a point which is outside (ἐκτός) a circumference with its center but then just
assumes without any comment that there will be a point of intersection between the line and
the circumference. The essay by A. Frajese, “Il sesto postulato di Euclide,” Periodico di
Matematiche 46 (1968): 150–59, claims that Euclid himself had stressed these properties
about the spatial disposition of figures in order to ground the existence of the intersection
points (therefore filling the alleged “gap” in his geometrical proofs). However, I am unable to
see any historical evidence of the latter claim, and would see it as rather applicable to the
geometry of the early modern age. A position similar to Frajese’s seems to be hinted at in the
remarkable paper by N. Sidoli, “Uses of construction in problems and theorems in Euclid’s
Elements I–VI,” Archive for History of Exact Sciences 72 (2018): 403–52.
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the consequent of the axiom, however, that provides the existence of the point of
intersection, and the latter is missing in the Elements.31

The intersections of lines in Elements I, 1 or in Elements I, 12, therefore, must
be grounded in the interaction between a diagrammatic inference and a propo-
sitional rule. I conclude that an appeal to Greek diagrammatic practices alone
cannot salvage the rigor of the Elements from Pasch’s criticisms.

Euclid Vindicated

We have already hinted that Euclidean plane geometry might be considered to be
similar to a modern formal system with multi-sorted variables ranging over three
different collections of objects: points, straight lines, and circles. In such a system
no reference to Dedekind completeness is required in order to ground the theory of
intersections; one needs, on the contrary, a set of rules on the introduction of new
objects under given conditions. The existence of a point of intersection between two
lines is not already a given by reason of the continuity of the lines (because lines are
not composed of points); it is rather so by reason of a particular rule postulating the
existence of an object of a certain sort (a point) once certain conditions have been
met: e. g. when two objects of a different sort (two lines) find themselves in a certain
reciprocal position (they cross one another). Such rules are, in fact, equivalent to
the ad hoc principles of intersections which we have mentioned above.

As a matter of fact, there exists an explicit passage in Aristotle which not
only highlights the multi-sortedness of geometrical objects but even stresses the
actual “creation” of the boundaries (as new objects) out of the intersections (or
disjunctions) of higher-dimensional geometrical objects:

But points, lines and planes, although they exist at one time and at another do not, cannot be
in process of being either generated or destroyed; for whenever bodies are joined or divided, at
one time, when they are joined one surface is instantaneously produced, and at another, when
they are divided, two. Thus when the bodies are combined the surface does not exist, but has
perished; and when they are divided, surfaces exist which did not exist before.32

31 We may recognize, therefore, that Manders’ claim that the existence of intersection points in
Elements I, 1 is grounded on diagrammatic inferences (see above, note 28) ensues from a
conflation of the antecedent of the intersection axiom, which is a co-exact attribution, with
the consequent of this axiom, which is an exact attribution. To get from the former to the latter
no diagrammatic inference suffices and a propositional principle (such as the Circle-Circle
intersection axiom itself) is in order.
32 Metaph. Β 5, 1002a28–b5: “… τὰς δὲ στιγμὰς καὶ τὰς γραμμὰς καὶ τὰς ἐπιφανείας οὐκ
ἐνδέχεται οὔτε γίγνεσθαι οὔτε φθείρεσθαι, ὁτὲ μὲν οὔσας ὁτὲ δὲ οὐκ οὔσας. ὅταν γὰρ ἅπτηται
ἢ διαιρῆται τὰ σώματα, ἅμα ὁτὲ μὲν μία ἁπτομένων, ὁτὲ δὲ δύο διαιρουμένων γίγνονται. ὥστ᾽
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We should be somewhat cautious, of course, in attributing to Euclid these
latter Aristotelian views, which are expressed, moreover, in the context of a
highly metaphysical inquiry into the nature of substances and mathematical
entities. Yet, it appears quite natural in a multi-sorted ontology of geometrical
objects (which we may easily surmise Euclid and other Greek mathematicians to
have subscribed to) to be inclined to accept this kind of “generation and
corruption” of boundaries in the theory of intersections. We may note that, in
this connection, the nature (or sort) of the newly-created object is given by the
definition of a boundary: two solid bodies (objects of a certain sort) are joined in
a surface (an object of another sort), since a surface is the boundary of a solid.

This geometrical context also provides a better explanation of the above-
mentioned objections raised by Zeno of Sidon to Elements I, 1. These objections,
we have seen, revolved around the possibility (left open by Euclid, according to
criticisms like Zeno’s) that two straight lines might meet in a segment. Zeno’s
problem, specifically, was not whether the circles intersected, but rather the
nature of this intersection. A theory of intersections grounded in a multi-sorted
ontology with ad hoc principles should, in fact, not only (and not much) account
for the existence of points of intersections, but rather for the sort of the new
objects introduced at the crossing of two other given objects (e. g. a point is
introduced, when two lines cross one another).

I should emphasize here that, while Euclid employed a wide array of terms to
express the meeting of two lines, the most common of these is “to cut” (τέμνειν)
rather than “to cross” or “to intersect”. He therefore thematized the disjunction of a
line on the occasion of its crossing another line, rather than the fact that the two
lines merge in some way. I would argue that it is this cut that allows for the
existence of a point, for it is only a cut that “creates” a boundary.33

οὔτε συγκειμένων ἐστὶν ἀλλ᾽ ἔφθαρται, διῃρημένων τέ εἰσιν αἱ πρότερον οὐκ οὖσαι …” (Engl.
transl. Tredennick). A parallel passage is to be found in Metaph. Κ 2, 1060b11–19, and a similar
theory was criticized by Plutarch (in relation to Stoic views) in Comm. not. 1080e–1081a.
33 Crossing and cutting are thus employed as synonyms. In modern terms we might define a
crossing by saying that a circle (for instance) crosses another circle if it has some points inside,
and some points outside, this latter (and by giving a non-trivial topological definition of interior
and exterior). Yet, no one would say, in common language, that a disconnected figure (e. g. two
points), that is partly inside and partly outside a circle, “crosses” the circle. I think that Euclid
(who only dealt with connected figures, as we have seen), understood the crossing of the two
circles as the cutting of their circumferences that we see in the diagram rather than as a more
abstract topological notion concerning the respective positions of the parts of the two circles –
something which would require a spatial understanding of geometry. It must be borne in mind
that Zeno had not objected to this point: circles in Elements I, 1 cross, and cut, one another
according to Zeno as well.
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But even considered from this other perspective Euclid is still lacking a
much-needed principle on which to base the theory of intersections. Euclid did,
indeed, propose explicit, propositional postulates for the introduction of lines
and circles (Postulates 1–3). One finds, however, no correspondent introduction
rules for points in Euclid’s system: i. e. there is no postulate allowing one to
draw them.34 Euclid might, of course, have assumed that every time there is a
crossing, then there is also an actual point of intersection. But this further
assumption is not iconically given: it is a convention regarding the use of
diagrams as signs and should have only the role of a propositional principle
of the system (just like the other postulates).

I would advance, then, the conjecture that Euclid possessed an explicit
principle which served this purpose. I am not able to provide much textual
evidence for this conjecture, however, and I can do no more than hint at it as a
possible solution to the historiographical problem of the lack of a discussion of
the existence of points of intersection in antiquity. I draw this hint from the first
definitions of the Elements, in which the notion of a point, rather oddly, is
defined not once but twice: first as something that has no parts and then as
the extremity (or boundary) of a line:

[1] A point is that which has no part. [2] A line is breadthless length. [3] The limits of a line
are points.35

I would suggest that this third definition, which is otherwise almost inexplicable
within the system of the Elements (and is, in any case, mathematically useless
therein, since Euclid never mentioned it again) functions as a principle govern-
ing the existence of points of intersection. When two lines cross one another

34 It should be remarked that Euclid, from time to time, also allows to take a point “at random”
in the plane or on a figure: in Book One, this happens for instance in propositions 9, 11, 12, 31.
There are, however, no postulates permitting such a procedure.
35 The numbering of the definitions should not be considered to be a feature of the original
text, which probably rather presented the definitions in the form of an unbroken flow of brief
phrases: Σημεῖόν ἐστιν οὗ μέρος οὐθέν, γραμμὴ δὲ μῆκος ἀπλατές, γραμμῆς δὲ πέρατα σημεῖα.
The reason for the duplication of the definition of a point has puzzled interpreters for a long
time and of course I do not claim that the theory of intersections was the only (or the main)
motive of its introduction. Nevertheless, this latter theory does offer a first explanation of such a
strange definitional structure. We may note that the existence of isolated points in Euclidean
geometry, such as those “taken at random” (see the above note), makes it impossible to define a
point just as the boundary of a line (Euclid’s Definition 3): in this sense Definition 1 is still
necessary in order to account for the various uses of points in the Elements. On the reading of
the first three definitions as a single piece of text, as is attested to even in the most ancient
papyri, see E. Turner, D. H. Fowler, L. Koenen, and L. C. Youtie, “Euclid, Elements I, Definitions
1–10 (P. Mich. III, 143),” Yale Classical Studies 27 (1985): 13–24.
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they have common limits, and this allows one to say that there is a point at their
meeting. Definition 3 thus works as a propositional rule for the introduction of
points into the system.

If this is really the case then, according to the reading that I give to Elements
I, 1, this latter’s proof should be supplemented by saying that, after the con-
struction of the circles: (1) they cross, and therefore (2) they have a boundary,
and (3) such a boundary is a certain point C.

The crossing of lines (step 1 above) is correctly inferred from the behavior of
diagrams on the basis of these latter’s iconic properties. The diagrammatic
inference shows that the two circles are not apart from one another and do
overlap. A diagrammatic inference is, therefore, at play in the demonstration of
Elements I, 1, as many ancient and modern commentators have already
remarked. Such a diagrammatic inference, however, does not, indeed cannot,
provide information about the actual existence of a point of intersection nor
about the fact that such an intersection will occur at a point rather than, for
instance, in a small segment (as objected by Zeno). The diagram only provides
an information about the crossing, and therefore the cutting, of the two lines.

The existence of a boundary wherever there is a crossing (step 2 above) is an
implicit principle embedded in antiquity’s very conception of a geometric object.
We have seen its explicit formulation in Aristotle’s statement about the “gen-
eration” of boundaries in the case of cuts and divisions. I argue that the latter
principle may be freely attributed to Euclid and other Greek mathematicians,
insofar as they seem to have shared some general views on geometrical objects
as not composed of points and in general a conception of geometry as a science
of figures rather than a science of space. The Aristotelian proposition is condi-
tional: it says that wherever there are sections there will be a boundary. The
antecedent of the conditional is validated by the diagrammatically inferred
crossing (i. e. step 1).36

36 It has been suggested to me that, at this stage in the demonstration, a further gap in the
proof might be identified: according to the Aristotelian quotation above, the cutting of a line
would produce two endpoints on the other line, and Euclid would have to prove that such
points do in fact coincide with one another. A possible solution would be that of employing
Definition 2 to this effect (“a line is breadthless length”), since the two endpoints would be
separated by something which has no breadth. Such an elegant solution would strengthen the
connection between the first three definitions, which would be employed all together in proving
the existence of the point of intersection. Nevertheless, in the absence of any evidence for this
line of reasoning in the text of the Elements, I would not dare to attribute such a solution to
Euclid himself. A weaker claim might suffice: the Aristotelian passage is simply meant to
confirm the multi-sortedness of ancient geometry, and the general idea that intersections and
cuts would produce new objects. This may be sufficient to show how a theory of intersections
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Finally, the existence of the point of intersection (step 3 above), which is the
main result at which we are aiming, is given in its turn by the definition of a
point as a boundary. Since (thanks to step 2) we know that there is a boundary,
we may infer that there is a point and that, in fact, the two circles intersect at
said point. We may, therefore, safely exclude the possibility that there exist gaps
such that the two circles might cross without meeting, just as we may also safely
exclude the possibility that the meeting of two lines might occur in a segment,
as Zeno had objected.

The definition of a point, then, coupled with the diagrammatic inference
regarding crossing, may also be seen as an explicit convention on signs stating
that, on any occasion on which two lines in a diagram cross, there will always
be a point at the intersection of the geometrical objects themselves. In this way,
new points acquire a proper rule of introduction in the system.37

It may well seem odd that an existential statement about points of inter-
section was expressed in the form of a definition. It should be remarked, how-
ever, that according to the ancient conceptions, definitions aimed at expressing
the nature of the defined objects and it is of the very nature of a line that it
should ground the existence of the intersection points. Moreover, it seems clear
that Euclid had no other logical place for such an assumption, inasmuch as his
epistemology of principles only admitted (besides definitions) postulates and
common notions. In this connection it should also be noted that points of
intersection are not constructed in the Euclidean sense, since there is no act of
the geometer that generates them. It is true, as we have seen, that these points
are not “already there” before the intersection (because lines are not composed
by points, and points are a different sort of beings with respect of lines, which

might have been conceived of in ancient times, without expecting this to remove all possible
difficulties. I might also note here that the “reformulation” of Definition 3 offered by Pappus
according to al-Nayrīzī (see below: “a line cuts a line in a point”), seems to overcome the above-
mentioned objection. If this is really the case, then a “gapless” theory of intersections might be
ascribed to Pappus rather than to Euclid.
37 The idea that Euclid’s Definition 3 could be employed to ground a theory of intersections is
not unprecedented. A hint in this direction is to be found already in Heath, The Thirteen Books
of the Elements, vol. 1, p. 165, who noted that according to Aristotle the intersection of two lines
is a point. More recently, the idea has been developed, again with a strong reference to
Aristotle, by M. Panza, “The Twofold Role of Diagrams in Euclid’s Plane Geometry,” Synthese
186 (2012): 55–102, who claims that a theory of intersections can be grounded on diagrammatic
inferences and Aristotelian continuity (conceived as expressible by a diagram). Panza agrees in
passing that Euclid’s system of definitions (the definitions of a boundary, a point, a line, etc.)
plays a role in establishing the existence of the intersection points (p. 85). As mentioned above,
I am more skeptical about the role of Aristotle’s views (and the concept of continuity) in this
connection.
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need a separate rule of introduction). Although, however, these points may be
generated by the intersection itself, they are not constructed out of it. Points of
intersection are rather found to exist as a result of previous constructions (the
drawing of lines and circles): there is no freedom left to the geometer, who is not
allowed to decide whether to draw a point or not. In this respect, the introduc-
tion of a point into the system is an operation of a different sort than the
introduction into it of straight lines and circles and it is not ruled by a postulate
(i. e. a rule licensing constructions) in the proper sense. On the other hand,
Euclidean common notions only concern very general principles about quantity
and mereology, which are intended to be common to both arithmetic and
geometry, and cannot therefore express a purely geometrical principle about
intersections. In conclusion, the principle governing intersections in the
Elements could not find its place either among the postulates or among the
common notions and had, therefore, to be labeled as a definition.

This reading of the Euclidean theory of intersections is corroborated by two
surviving references to a lost work by Pappus (fourth century CE), in which the
ancient mathematician added a number of principles to Euclid’s Elements. Both
Proclus (fifth century) and al-Nayrīzī (tenth century) had some (independent)
access to Pappus’ work and report these further axioms in slightly different
formulations. The principle that interests us here is the following:

A point divides a line. [Proclus]
A line cuts a line in a point. [al-Nayrīzī]

Proclus states that such an axiom is in fact pleonastic, given the Euclidean
definition of a point as the boundary of a line (for a line, he writes, is divided by
the element by which its adjacent parts are bounded).38 He considered, there-
fore, Pappus’ axiom to be an immediate consequence of Euclid’s Definition 3. On
the other hand, al-Nayrīzī’s commentary expands the argument a little further
and claims that, according to Pappus, “we shall need this result in the first
figure”, that is, in Elements I, 1.39

38 Proclus, In Euclidis 198: γραμμὴν μὲν διαιρεῖ σεμεῖον. The list of axioms goes on by stating
that a line divides a surface, and a surface divides a solid body.
39 The passage may be found in R. O. Besthorn and J. L. Heiberg eds., Codex Leidensis 399,1:
Euclidis elementa ex interpretatione Al-Hadschdschadschii cum commentariis Al-Nairizii
(Copenhagen: Gyldendel, 1893–1932), vol. 1, 31, and in English translation in A. Lo Bello ed.,
The Commentary of Al-Nayrizi on Book I of Euclid’s Elements of Geometry (Leiden: Brill, 2003),
100; or in Gerardo’s translation of the passage, in M. Curtze ed., Anaritii in decem libros priores
elementorum Euclidis commentarii ex interpretatione Gherardi Cremonensis (Leipzig: Teubner,
1899), 38, and in English translation in A. Lo Bello ed., Gerard of Cremona’s Translation of the
Commentary of Al-Nayrizi on Book I of Euclid’s Elements of Geometry (Leiden: Brill, 2003), 54. In
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It seems, therefore, that Pappus did explicitly introduce an axiom in order to
ground the theory of intersections in Euclid’s Elements. This is, just in itself, an
important piece of information about the foundations of mathematics in the
ancient world. Nevertheless, I would not describe Pappus’ attitude as a break-
through in this field. In fact, we have no evidence that Pappus claimed to have
detected a gap in the Euclidean proof (Proclus, who knew Pappus’ work on the
foundations of geometry, did not mention him in his lengthy discussion of
Elements I, 1). On the contrary, Pappus’ axiom is not a new principle on
intersections or continuity but rather, as Proclus recognized, an immediate
consequence (or a mere reformulation) of Euclid’s Definition 3. It seems to me,
therefore, that Pappus here was simply offering what he considered the standard
reading of this definition and had fully recognized its foundational role in the
proof of Elements I, 1. Pappus’ only innovation was the stating of such a
principle in the form of an axiom rather than a definition. We know that the
epistemology of principles was changing in late antiquity and Proclus informs
us that, already in the late Hellenistic Age, the Euclidean common notions had
begun to be regarded as axioms of geometry in the proper sense (i. e. they had
already lost their original status as the most general principles of quantity).40 In
this new epistemological context it seemed more natural to state an existential
principle in the form of an assertion, and to place it among the axioms.
Nevertheless, Pappus’ connection (by means of his axiom) of Definition 3 with
the proof of Elements I, 1 seems to me a significant piece of evidence that
Euclid’s theory of intersections may have been originally grounded in the
definition of a point as the boundary of a line (or, at least, Pappus thought so).

To sum up the main line of the argument, then, I would say that in Greek
geometry, which was grounded in diagrammatic practices, a small number of
propositional statements acted as bridges to fill the gap between diagrammatic
reasoning and propositional content. It is likely that Definition 3, later trans-
formed into Pappus’ axiom, played this role with regard to the theory of
intersections, acting as a Line-Circle and Circle-Circle principle.

Spelling out such a statement explicitly might at first seem a minor point
which has no great relevance to the foundations of geometry. Indeed, the
intersection of the two circles in Elements I, 1 (and cognate propositions) was
still partly grounded in diagrammatic inferences. It may be claimed, therefore,
that Euclid’s proof was still based on “intuition” rather than on a gapless,

the more recent critical edition by Tummers, the Latin wording mentions “lines” in the plural:
linea secat lineas super punctum (P. M. J. E. Tummers, The Latin Translation of Anaritius’
Commentary on Euclid’s Elements of Geometry, Books I-IV (Nijmegen: Ingenium, 1994, p. 34).
40 Proclus, In Euclidis 182–84.
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rigorous deduction. We have long since dispelled the idea, however, that dia-
grammatic practices were just commonsensical appeals to intuition and we
rather hold that reasoning with diagrams entailed exact rules about which
conclusions one could, or could not, legitimately draw from their inspection.
Since the existence of a point of intersection between two crossing lines is not a
fact that can be consistently inferred from the practices that govern the use of
diagrams, if it really is the case that Euclid has no other propositional principle
with which to ground the theory of intersections, then we must agree with Pasch
that a hidden gap is to be found in the deductive structure of the Elements. If,
however, on the other hand, we agree that Definition 3 may have been seen by
Euclid and Pappus (and subsequently by Proclus and al-Nayrīzī) as a tool to
complement a diagrammatic inference with a propositional norm, then we may
try to vindicate the ancient geometrical practices and, more importantly, may
attempt to explain why the alleged demonstrative gap had never been noticed
before the modern age.
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