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Abstract 

For future reactor designs and for planning of operational scenarios in the present and future 

machines, impurity fractions in the tokamak divertor plasma, cZ, is an essential input for 

predictive scalings of divertor detachment. A new quantitative scaling law for cZ , averaged 

over the SOL, required to attain detachment is developed for high power H-mode plasmas 

operated at high densities close to the density limit. It is based on a simple SOL radiation model 

which uses the combination of the empirical scaling laws for the H-mode power threshold and 

the separatrix density limit imposed by MHD instabilities. Additionally, it assumes, in 

agreement with experimental observations that the width of the power conducting layer outside 

of the separatrix scales approximately with the ion poloidal gyro-radius. The derived expression 

for cZ scales strongly with toroidal magnetic field, B, major radius R, the factor of access of the 

power flow through the separatrix over that required for the L-H transition, fLH, and isotope 

mass A: 

𝑐𝑐𝑍𝑍 ∝ 𝐵𝐵1.47 𝑅𝑅1.59  𝑓𝑓𝐿𝐿𝐿𝐿
1.38 / 𝐴𝐴1.38. 

Estimates of required impurity fractions for divertor detachment for an number of impurity 

species (N2, Ne and Ar) in future tokamak reactors ITER and DEMO are made in the paper. 
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1. Introduction 

Tokamak operation at high density and high power with a partially or completely detached 

divertor is considered as the baseline scenario for ITER [1], DEMO [2] and other future fusion 

https://www.sciencedirect.com/topics/materials-science/impurity
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power plants. Divertor detachment enables the conversion of high parallel heat fluxes within 

the plasma into radiation, preventing localized deposition of heat loads onto divertor targets. 

The successful reduction of heat loads in the divertor was demonstrated in many present-day 

machines [3-8]. However, much higher parallel heat fluxes entering the divertor in fusion 

reactors make it more challenging to dissipate them. Another concern is long term erosion due 

to physical sputtering by fuel ions and impurities. This requires the electron temperature at the 

target to be low enough to bring the erosion of the divertor down to acceptable levels. It is also 

well known that high radiative power losses within the confined plasma can detrimentally affect 

the plasma energy confinement and fuel dilution, as well as stability of the plasma discharge. It 

is therefore all the more urgent to understand physical processes in highly radiative discharges 

to provide the recipe for controlled seeding of impurities with a reasonable reduction in the 

power flux and target temperature while minimizing the impact on the confined plasma. 

High power operation in fusion devices such as ITER and DEMO will require extrinsic impurity 

seeding to ensure safe operation where stationary surface heat flux densities normal to divertor 

targets remain at or below 5−10 MWm−2 [9,10] to avoid divertor damage. Impurities, such as 

nitrogen (N2), neon (Ne) and argon (Ar), are considered as candidate divertor radiators in ITER 

[11]. Nitrogen and neon proved to be appropriate divertor radiators thanks to their maximum 

radiative efficiency being at low temperatures, Te ~ 10-20 eV and Te ~ 30-50 eV, respectively 

[12]. On the other hand, the cooling efficiency of Ar reaches peak values at Te ~ 10-20 eV and 

Te ~ 200 eV [12]. Ar is also considered as an important applicant for simultaneous increase of 

core and divertor radiation, when a certain amount of radiation in the main chamber is 

requested.  

Impurity concentrations necessary to exhaust power to enable detachment is of central 

importance for future fusion devices, including ITER and DEMO. Knowledge of the impurity 

concentrations is necessary in order to design and operate future fusion power plants in such a 

way that the heat and particle flows to the material surfaces are safely limited. In addition, 

understanding the cZ is important in assessing fuel dilution and the effects of impurities on key 

plasma parameters, including parameters that determine the pedestal, and therefore core 

performance. Recently, several scalings for the impurity fraction required to attain detachment 

have been developed. They predict the impurity fraction cZ, defined as the ratio of impurity to 

electron density, for different plasma parameters [13-15].  These scalings assumed that cZ is 

constant along the magnetic field in the SOL and therefore represents the averaged value of the 

impurity fraction in the scrape-off layer. It should be noted, however, that for conductive 
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parallel heat flow the plasma radiation in the scrape-off layer will peak in the region of the 

largest parallel temperature gradients which  are expected to be close to the divertor and around 

the X-point [16,17]. Consequently, the variations of cZ along field lines are also expected. In 

our analysis variations in Te and ne along field lines in the SOL are taken into account. Similar 

to [14,15], the proportionality between SOL and divertor cZ is assumed in order to be able to 

examine the dependence of cZ on the average ion mass. To get an insight into variations of cZ 

along field lines dedicated experiments in JET and subsequent EDGE2D-EIRENE runs are 

planned.  

In [13] the recipe is presented to predict the seed impurity fraction required to achieve partial 

detachment for a given PSOL (power flowing through the last closed magnetic flux surface to 

the scrape-off layer) in devices with a closed divertor similar to that of ASDEX Upgrade 

(AUG). One of the main results of this study was the dependence of cZ on the neutral pressure 

in the divertor, which is not taken into account in the other two studies [14, 15]. Goldston et al. 

[14] predict the impurity fraction in terms of scrape-off layer (SOL) plasma parameters such as 

upstream density, separatrix power flow and poloidal magnetic field, with no explicit size 

scaling. Their scaling assumes that the width of the power conducting layer outside the 

separatrix scales with poloidal gyro-radius, 𝜌𝜌𝑝𝑝 ,  [18,19] and correspondingly it has a clear 

isotope dependency due to 𝜌𝜌𝑝𝑝~𝐴𝐴0.5. In [15], empirical scalings for the heat flux width and the 

H-mode power threshold, PLH, are used alongside a simple SOL radiation model to estimate 

required impurity fractions. These scalings yield the 𝐵𝐵0.88𝑅𝑅1.33 dependence for a given density 

at the separatrix (or the Greenwald fraction, fGW). No isotope mass or effective charge Zeff 

dependencies are considered in this approach. 

A profitable thermonuclear reactor should operate at maximal possible plasma density to 

maximise the fusion power which scales quadratically with density [20]. However, the density 

at the separatrix is limited due to MHD instability in the SOL close to the separatrix, 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝 <

 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

, as shown in [21]. Note that the critical separatrix density 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  has a strong dependence 

on the isotopic mass: it is up to 35% lower in the hydrogen (protium) than in the deuterium 

plasma [22]. Additionally, the critical density depends on the ‘effective charge’ Zeff and 

‘average charge’ �̅�𝑍. By reaching the critical separatrix density 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝 =  𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , ballooning 

instability triggers SOL turbulence which is spreading into the transport barrier and, by coupling 

of the transport between core and SOL throughout the pedestal [23] resulting in the back H-L 

transition. Therefore future fusion devices will have to operate at or close to this limit, so one 
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can assume 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝 =  𝑓𝑓𝑛𝑛𝑒𝑒 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  with fne <1. It is therefore important to predict cZ in terms of 

operation parameters including the isotope dependence (average mass �̅�𝐴), the ‘effective charge’ 

Zeff and ‘average charge’ �̅�𝑍, as well as 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  based on the MHD instability analysis. This work 

concentrates on the development of the scaling for impurity fractions necessary to exhaust 

power in the SOL and divertor enabling plasma detachment from divertor targets in high power 

and high density plasma which will fulfil the above mentioned requirements. The proposed 

scaling is based on a simple SOL radiation model by using empirical scalings for the power 

scrape-off width, H-mode power threshold and the scaling for 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . 

The outline of the present paper is as follows. Section 2 briefly describes a simple model for 

the power exhaust in the SOL. Section 3 introduces a 1D model for impurity radiation. In 

section 4 an empirical scaling for impurity fraction cZ required to prompt the pronounced 

detachment in the divertor is developed using the combination of empirical scaling laws for the 

SOL heat flux width, H-mode power threshold and the critical density 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . In section 5 we 

discuss projections of the obtained scaling onto future tokamak reactors ITER and DEMO. A 

summary of the work is given in section 6. 

2. Power flux balance in the SOL  

A model for the power exhaust in the SOL is based on the equality between the power flow 

across the plasma boundary, which may be the magnetic separatrix or, more generally, last 

closed flux surface (LCFS) , PSOL, and parallel (to the magnetic field) power flow to divertor 

targets. An exponential radial decay of the parallel power flow is assumed. Since the power 

flow across the LCFS is known to be mostly conductive, it can be represented in the diffusive 

form as: 

𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 = 𝑞𝑞⟘𝑆𝑆 ≈ −𝑛𝑛χ⟘∇⟘𝑇𝑇 𝑆𝑆        (1) 

where 𝑞𝑞⟘ is the perpendicular (across magnetic surfaces) power flux,  𝜒𝜒⊥ is perpendicular 

thermal diffusivity, and 𝑆𝑆 is the area of the LCFS:  

𝑆𝑆 = 4𝜋𝜋2𝑅𝑅𝑅𝑅 �(1 + κ2) 2⁄          (2) 

where κ=b/a is plasma elongation, with a being  horizontal minor radius and b the height of the 

plasma measured from the equatorial plane. In Eq. (1) n is electron density and T≡Te is electron 

temperature. 



– 5 – 

The power flowing through the SOL to the divertor along magnetic field lines typically (in the 

conduction limited regime) is also diffusive and can be expressed as: 

𝑞𝑞||𝑆𝑆|| = 𝐾𝐾||∇||𝑇𝑇𝑆𝑆|| ≈ −𝑛𝑛χ||∇||𝑇𝑇𝑆𝑆||       (3) 

where q|| is parallel power flux, 𝜒𝜒|| and 𝐾𝐾|| = 𝑛𝑛𝜒𝜒||  are parallel thermal diffusivity and 

conductivity,  𝑆𝑆|| is the SOL cross-sectional area perpendicular to magnetic field 𝐵𝐵�⃗ , given by: 

𝑆𝑆|| ≈ 2𝜋𝜋𝑅𝑅λ𝑞𝑞 sin 𝛾𝛾 ≈ 2𝜋𝜋𝑅𝑅λ𝑞𝑞 𝐵𝐵𝜃𝜃/𝐵𝐵 

where γ is the field line angle at the outboard mid-plane, Bθ and B are poloidal and total 

magnetic field strengths, and λ𝑞𝑞 is the (exponential) perpendicular decay length of the power 

flux. 

Approximating ∇⊥T ≈ − T/λT, where λT  is the electron temperature perpendicular decay 

length in the SOL, perpendicular (from the plasma core into the SOL) and parallel (along 

SOL flux tubes to the divertor target) power flows to be balanced (𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 = 𝑆𝑆𝑞𝑞⟘ = 𝑆𝑆||𝑞𝑞||) can 

be expressed by the following equations: 

𝑞𝑞|| = 𝑛𝑛χ||∇||𝑇𝑇 = 𝐵𝐵
𝐵𝐵𝛳𝛳

𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆
4𝜋𝜋𝜋𝜋 λ𝑞𝑞

         (4) 

𝑞𝑞⟘ = 𝑛𝑛χ⟘
𝑇𝑇
λ𝑇𝑇

= 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆
4𝜋𝜋2𝜋𝜋𝑅𝑅 ((1+κ2)/2)1/2  .      (5) 

The factor 4𝜋𝜋𝑅𝑅λ𝑞𝑞 in the denominator of Eq. (4), instead of  2𝜋𝜋𝑅𝑅λ𝑞𝑞,  reflects an assumption that 

the power crossing the SOL goes to both inner and outer divertors.  

For parameters typically used in recent JET seeding experiments: B=2.5 T, Bθ=0.39 T, 

PSOL=14 MW, R=2.9 m and λq=2.5 mm we calculate  𝑞𝑞|| = 985 𝑀𝑀𝑀𝑀 𝑚𝑚−2. 

 

3. Simple 1D model for impurity radiation 

In the conduction-limited regime the plasma power flux parallel to the magnetic field can be 

written as [24,25]: 

𝑞𝑞|| = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆||

= −𝑘𝑘0𝑒𝑒𝑇𝑇𝑒𝑒
5/2∇||𝑇𝑇𝑒𝑒       (6) 
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where the electron thermal conductivity constant, k0e, has a value of ≈ 2046 (for ions k0i ≈ 59) 

in the plasma with ion species of charge Zi =1 and Te in eV. The electron heat conduction is 

typically the dominant channel for power flux to the target. 

For ion species with Zi ≠ 1, the electron thermal conductivity constant should be corrected [25]:  

𝑘𝑘0,𝑒𝑒 = 2046 ∙ 𝐺𝐺𝑍𝑍(𝑍𝑍𝑐𝑐) � 𝑊𝑊

𝑚𝑚 𝑒𝑒𝑒𝑒
7
2
�         (7) 

where 𝐺𝐺𝑍𝑍  is the correction factor which was discussed in Ref. [26] (in that paper it was denoted 

as  𝑓𝑓𝑅𝑅𝑝𝑝𝑝𝑝(𝑍𝑍𝑐𝑐) instead of GZ). 

The function GZ is given by: 

𝐺𝐺𝑍𝑍(𝑍𝑍𝑐𝑐) = 4.295
𝑍𝑍𝑖𝑖

 �𝑍𝑍𝑖𝑖+0.21
𝑍𝑍𝑖𝑖+4.2

� .        (8) 

A similar expression 𝑓𝑓𝐿𝐿𝐻𝐻(𝑍𝑍𝑐𝑐) = � 5
𝑍𝑍𝑖𝑖+4

� was used in [19], which is larger by factors 1.001, 

1.089, 1.119, 1.134 and 1.164 than  𝐺𝐺𝑍𝑍(𝑍𝑍𝑐𝑐)  for Zi=1,2,3,4 and ∞, respectively. For a multi-

component plasma in [26] it was proposed to use Zeff instead of some simple average of 

individual ion states with charge Zi. 

Since we will later use the expression for the SOL power width predicted by the heuristic 

particle drift-based model [19] which uses the ratio � 5
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

�, we are adopting here the 

correction function 𝐺𝐺𝑍𝑍 = � 5
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

�. The expression for the electron thermal conductivity 

constant then becomes:  

𝑘𝑘0,𝑒𝑒 = 2046 � 5
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

� � 𝑊𝑊

𝑚𝑚 𝑒𝑒𝑒𝑒
7
2
� = 𝑘𝑘0 𝐺𝐺𝑍𝑍 � 𝑊𝑊

𝑚𝑚 𝑒𝑒𝑒𝑒
7
2
�      (9) 

where 𝑘𝑘0 = 2046 is the electron thermal conductivity constant at Zeff=1 given in 

𝑀𝑀 𝑚𝑚−1 𝑒𝑒𝑒𝑒−7/2. 

The heat flux 𝑞𝑞|| is reduced by impurity radiation as well as by hydrogenic ionization radiation 

RH, 

𝑑𝑑𝑞𝑞‖

𝑑𝑑𝑑𝑑
= 𝑛𝑛𝑒𝑒𝑛𝑛𝑍𝑍𝐿𝐿𝑍𝑍(𝑇𝑇𝑒𝑒) + 𝑅𝑅𝐿𝐿         (10) 
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where l is the distance along the field line, 𝑛𝑛𝑍𝑍 = 𝑛𝑛𝑒𝑒𝑐𝑐𝑍𝑍 is impurity density, 𝑐𝑐𝑍𝑍 = 𝑛𝑛𝑍𝑍 𝑛𝑛𝑒𝑒⁄  is the 

impurity density fraction, 𝐿𝐿𝑍𝑍(𝑇𝑇𝑒𝑒) is the cooling rate coefficient due to impurities, which 

depends only on electron temperature assuming coronal equilibrium. In the coronal equilibrium, 

when transport processes are slow enough, ionisation stages of impurities are in the equilibrium 

determined by electron temperature. This typically occurs in the plasma core.  At the same time, 

in the plasma edge and in the divertor region the impurity residence time may be shorter than 

time scales of ionisation and recombination. Consequently the local equilibrium cannot be 

assumed for the calculation of radiative power losses. We will come back for the detailed 

discussion of this issue in section 4. We assume, in agreement with experimental data, that the 

volumetric power loss (the right hand side (RHS) of Eq. 10) is dominated by impurity radiation 

and neglect RH. 

In this paper, we will use the technique known as the Lengyel model [27] for deriving an 

equation relating the drop in the parallel power flux with the radiated power, which was also 

used in Refs. [14,15]. The Lengyel model assumes that the main energy loss mechanism is 

radiation loss, neglecting other energy loss mechanisms such as neutral losses, radial transport, 

and convective energy losses near the target. Therefore, the model may overestimate the cZ 

required for divertor detachment. By multiplying Eqs. (6) and (10) and integrating the 

product 𝑞𝑞‖  𝑑𝑑𝑞𝑞‖

𝑑𝑑𝑑𝑑
= 1

2
𝑑𝑑𝑞𝑞‖

2

𝑑𝑑𝑑𝑑
 along the magnetic field line from the target (t) to the upstream (u), we 

obtain: 

𝑞𝑞‖,𝑢𝑢
2 − 𝑞𝑞‖,𝑐𝑐

2 = 2  𝑝𝑝𝑒𝑒,𝑢𝑢
2 𝑘𝑘0,𝑒𝑒𝑐𝑐𝑍𝑍 ∫ 𝐿𝐿𝑍𝑍

𝑇𝑇𝑒𝑒,𝑢𝑢
𝑇𝑇𝑒𝑒,𝑡𝑡

(𝑇𝑇′
𝑒𝑒)�𝑇𝑇′𝑒𝑒𝑑𝑑𝑇𝑇′𝑒𝑒.    (11) 

Here cZ is assumed to be constant along the magnetic field, and parallel pressure balance is 

used,  

𝑝𝑝𝑒𝑒,𝑢𝑢 = 𝑛𝑛𝑒𝑒𝑇𝑇𝑒𝑒 = 𝑛𝑛𝑒𝑒,𝑢𝑢𝑇𝑇𝑒𝑒,𝑢𝑢.          (12) 

Using the standard two point model approach of assuming 𝑇𝑇𝑒𝑒,𝑢𝑢 ≫  𝑇𝑇𝑒𝑒,𝑐𝑐 and 𝑞𝑞‖,𝑢𝑢 ≫  𝑞𝑞‖,𝑐𝑐  during 

the advanced detached divertor state, the left hand side (LHS) of Eq. (11) can be simplified: 

 (𝑞𝑞‖,𝑢𝑢
2 − 𝑞𝑞‖,𝑐𝑐

2 ) = �𝑞𝑞‖,𝑢𝑢 − 𝑞𝑞‖,𝑐𝑐��𝑞𝑞‖,𝑢𝑢 + 𝑞𝑞‖,𝑐𝑐� ≈ (𝑞𝑞‖,𝑢𝑢 − 𝑞𝑞‖,𝑐𝑐) 𝑞𝑞‖,𝑢𝑢 = 𝑓𝑓𝑐𝑐𝑅𝑅𝑑𝑑,𝑆𝑆𝑆𝑆𝐿𝐿 𝑞𝑞‖,𝑢𝑢
2 . 

            (13) 
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Here it is assumed that the radiation fraction frad,SOL is equal to the fraction of 𝑞𝑞‖ which is 

removed by radiation, (𝑞𝑞‖,𝑢𝑢 − 𝑞𝑞‖,𝑐𝑐) / 𝑞𝑞‖,𝑢𝑢. 

Substituting this into Eq. (11) we obtain: 

𝑓𝑓𝑐𝑐𝑅𝑅𝑑𝑑,𝑆𝑆𝑆𝑆𝐿𝐿 = 2 𝑝𝑝𝑒𝑒,𝑢𝑢
2  𝑘𝑘0,𝑒𝑒𝑐𝑐𝑍𝑍

𝑞𝑞‖,𝑢𝑢
2 ∫ 𝐿𝐿𝑍𝑍

𝑇𝑇𝑒𝑒,𝑢𝑢
𝑇𝑇𝑒𝑒,𝑡𝑡

(𝑇𝑇′
𝑒𝑒)�𝑇𝑇′𝑒𝑒𝑑𝑑𝑇𝑇′𝑒𝑒 = 2𝑝𝑝𝑒𝑒,𝑢𝑢𝑘𝑘0,𝑒𝑒𝑐𝑐𝑍𝑍

𝑞𝑞‖,𝑢𝑢
2  𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇   (14) 

where we defined   𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 = ∫ 𝐿𝐿𝑧𝑧
𝑇𝑇𝑒𝑒,𝑢𝑢

𝑇𝑇𝑒𝑒,𝑡𝑡
(𝑇𝑇′

𝑒𝑒)�𝑇𝑇′𝑒𝑒𝑑𝑑𝑇𝑇′𝑒𝑒. 

A scaling for impurity fraction cZ for the advanced detached divertor state can be derived from 

Eq. (14) by assuming that frad,SOL=1: 

𝑐𝑐𝑍𝑍 =
𝑞𝑞‖,𝑢𝑢

2

2 𝑛𝑛𝑒𝑒,𝑢𝑢
2 𝑇𝑇𝑒𝑒,𝑢𝑢

2  𝑘𝑘0,𝑒𝑒 𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇
 .         (15) 

The upstream separatrix temperature, Te,u=Te,sep, may be evaluated using the two point model  

of the SOL transport [28]: 

𝑇𝑇𝑒𝑒,𝑢𝑢 ≈ �7 𝑞𝑞‖,𝑢𝑢 𝐿𝐿‖

2𝑘𝑘0,𝑒𝑒
�

2/7
         (16) 

where L|| is the upstream to target connection length.  

Substituting the upstream temperature, Te,u, into Eq. (15), one obtains: 

𝑐𝑐𝑍𝑍 =
𝑞𝑞‖,𝑢𝑢

10/7

4.09  𝑘𝑘0,𝑒𝑒 
3/7 𝑛𝑛𝑒𝑒,𝑢𝑢

2  𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 𝐿𝐿‖
4/7 =

𝑞𝑞‖,𝑢𝑢
10/7

4.1  𝑘𝑘0 
3/7 𝐺𝐺𝑍𝑍

3/7 𝑛𝑛𝑒𝑒,𝑢𝑢
2  𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 𝐿𝐿‖

4/7 .    (17) 

 

The dependence on the upstream separatrix density ne,sep=ne,u can be eliminated by using the 

definition of the Greenwald fraction for the separatrix density, 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 = 10−14 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝/( 𝐼𝐼𝑝𝑝

𝜋𝜋𝑅𝑅2), 

where a is minor radius and Ip is plasma current, both given in SI units: A and m-3. The plasma 

current dependence in turn can be eliminated by using the cylindrical approximation for the 

safety factor: 

𝑞𝑞𝑐𝑐 =  �2𝜋𝜋𝑅𝑅2𝐵𝐵)/(𝑅𝑅𝐼𝐼𝑝𝑝 𝜇𝜇0�(1 + κ2)/2       (18) 
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where 𝜇𝜇0 = 4𝜋𝜋 ∙ 10−7𝐻𝐻/𝑚𝑚 is magnetic permeability. Thus, the upstream separatrix density can 

be expressed by: 

𝑛𝑛𝑒𝑒,𝑢𝑢 = 1014 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝
𝐵𝐵 (1+𝑘𝑘2)

𝑞𝑞𝑐𝑐 𝜇𝜇0 𝜋𝜋
  or        (19) 

𝑛𝑛𝑒𝑒,𝑢𝑢 = 𝑓𝑓𝑛𝑛𝑒𝑒 𝑛𝑛𝑒𝑒,𝑢𝑢
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1014𝑓𝑓𝑛𝑛𝑒𝑒 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 

𝐻𝐻𝐿𝐿 𝐵𝐵 �1+𝑘𝑘2�
𝑞𝑞𝑐𝑐 𝜇𝜇0 𝜋𝜋

       (20) 

where 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿  is the density limit caused by an MHD instability in the SOL close to the 

separatrix. The expression for 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿  will be given below in section 4. 

Combining Eqs. (17) and (20) to eliminate ne,u and taking 𝐿𝐿‖ = 𝑙𝑙‖
∗

  
𝜋𝜋𝑞𝑞𝑅𝑅 , corresponding to the 

case of the poloidally constant flux density across the separatrix, we arrive at: 

𝑐𝑐𝑍𝑍 = 7.65 × 10−43 𝑞𝑞‖,𝑢𝑢
10/7𝑞𝑞𝑐𝑐

10/7𝜋𝜋10/7

 �𝑓𝑓𝑛𝑛𝑒𝑒 𝑓𝑓𝐺𝐺𝐺𝐺,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐷𝐷𝑆𝑆 �

2
  𝐵𝐵2 (1+𝑘𝑘2)2   𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 𝑑𝑑‖

∗4/7

1

𝐺𝐺𝑍𝑍
3/7    (21) 

where we introduced the dimensionless factor 𝑙𝑙‖
∗ to account for a possibility of extended field 

lines in some alternative configurations. The heat flux 𝑞𝑞|| here is given in units W/m2, B in T 

and LINT in Wm−3 eV3/2.  Note that similar results to Eqs. (15) and (21) were obtained in the 

previous study in [15] (Eqs. 8 and 9), which is expected since the same Lengyel model was 

used in this work as in [15]. 

Substituting 𝑞𝑞‖ (Eq. 4) into Eq. (21) we obtain for the impurity fraction:  

𝑐𝑐𝑍𝑍 = 2.06 × 10−44 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆
10/7

𝜆𝜆𝑞𝑞
10/7

𝐵𝐵−4/7

𝐵𝐵𝜃𝜃
10/7

𝑞𝑞𝑐𝑐
10/7

 �𝑓𝑓𝑛𝑛𝑒𝑒 𝑓𝑓𝐺𝐺𝐺𝐺,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐷𝐷𝑆𝑆 �

2
  (1+𝑘𝑘2)2   𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 𝑑𝑑‖

∗4/7

1

𝐺𝐺𝑍𝑍
3/7 .  (22) 

 

4. Analytical scaling for impurity fractions at the onset of detachment in high density H-

mode seeded plasmas  

Tokamak operation at high density with a semi-detached or completely detached divertor is 

considered as the baseline scenario for ITER [1] and DEMO [2] as well as for other future 

fusion power plants. Because fusion power scales quadratically with ne, the density limit also 

restricts the fusion power attainable for a given plasma current Ip. Therefore the establishment 
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of a detached divertor at densities close to the Greenwald limit, nGW, is unavoidable for 

maximising the fusion power. 

Goldston et al. [21] have recently developed a model for the density limit based on the heuristic 

drift-based model for the power scrape-off width. It assumes that the H-Mode density limit is 

caused by an MHD instability in the SOL close to the separatrix and that the SOL total plasma 

beta (β, the ratio of plasma pressure to magnetic pressure) limit is characterized by the MHD 

ballooning parameter α as 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 𝐶𝐶𝛼𝛼(1 + κ2)𝛾𝛾. Goldston et al. introduced a factor Cα, which 

includes the dependence of the ballooning parameter on the magnetic shear s. The derived 

density limit fraction is given by: 

𝑓𝑓𝐺𝐺𝑊𝑊 
𝐻𝐻𝐿𝐿 = 8.13 𝐶𝐶𝛼𝛼

𝑛𝑛�
𝑛𝑛𝑠𝑠𝑒𝑒𝑝𝑝

�
𝑞𝑞𝑐𝑐 𝑅𝑅𝐵𝐵

𝑅𝑅
𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿�

−1/8
(1 + κ2)𝛾𝛾−3/2 �

2�̅�𝐴
(1 + �̅�𝑍)

�
9/16

�
𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓 + 4

5
�

−1/8

 

            (23) 

where  𝑛𝑛� 𝑅𝑅𝑛𝑛𝑑𝑑 𝑛𝑛 𝑠𝑠𝑒𝑒𝑝𝑝 are the line-averaged and separatrix densities, Zeff and �̅�𝑍 are the ‘effective 

charge’ and ‘average charge’ of all ions. In our case the above density limit fraction is 

normalized to the separatrix density rather than to the line-averaged density, hence we are 

removing the ratio 𝑛𝑛� 𝑛𝑛𝑠𝑠𝑒𝑒𝑝𝑝⁄   from this equation: 

𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿 = 4.85 𝐶𝐶𝛼𝛼   �𝑞𝑞𝑐𝑐 𝜋𝜋𝐵𝐵

𝑅𝑅
𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿𝑙𝑙‖

∗�
−1/8

(1 + κ2)𝛾𝛾−3/2 � 2�̅�𝐴
(1+𝑍𝑍�)�

9/16
�𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

5
�

−1/8
 . 

 (24) 

The density limit scaling Eq. (23) was derived for 𝑙𝑙‖
∗ = 1 and using a different definition for the 

connection length, 𝐿𝐿‖ = 𝜋𝜋 2⁄ ∙ 𝑞𝑞𝑐𝑐𝑅𝑅 , in [21]. In addition, an error in the expression of Te,u from 

the two-point model was discovered in [21]: mistakenly an additional term of 𝜋𝜋 was used in the 

denominator of Te. The scaling is updated here by including the dependence on 𝑙𝑙‖
∗ , by correction 

of the Te,u term and by using the current definition of the connection length 𝐿𝐿‖ = 𝑙𝑙‖
∗ 𝜋𝜋𝑞𝑞𝑐𝑐𝑅𝑅 (see 

Appendix A), resulting in the appearance of new factor 4.85 in Eq. (24). The derived 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿  

scaling, Eq. (24), shows little variation with key plasma parameters. At the same time, it shows 

a relatively strong dependence on the average atomic mass of plasma ion species �̅�𝐴. It has to be 

noted that Greenwald fractions observed in JET-ILW experiments in deuterium and hydrogen 

plasmas are consistent with the Goldston’s prediction [22].  
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A stability limit 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 0.4𝑠𝑠(1 + κ2) was proposed in [29] for elliptical plasmas with 

elongation κ and magnetic shear 𝑠𝑠 = 𝑑𝑑 𝑙𝑙𝑛𝑛 𝑞𝑞/𝑑𝑑 𝑙𝑙𝑛𝑛 𝑟𝑟  (typically s=2). This formula for the 

ballooning stability parameter was used in some previous publications, e.g. in [30], for the 

evaluation of the scaling of the Greenwald density limit in the H–mode. The 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈

𝐶𝐶𝛼𝛼(1 + κ2)𝛾𝛾 formula used by Goldston matches the expression given in [29] when 𝐶𝐶𝛼𝛼 ≈ 0.4𝑠𝑠 

and 𝛾𝛾 = 1 are assumed. Following Ref. [30] we will use this assumption in our derivations. 

Taking s=2 for the magnetic shear gives: 

𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿 = 3.88 �𝑞𝑞𝑐𝑐𝜋𝜋𝐵𝐵

𝑅𝑅
𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿𝑙𝑙‖

∗�
−1

8  𝐹𝐹𝐴𝐴𝑍𝑍

�(1+κ2)
       (25) 

where FAZ is defined as: 

𝐹𝐹𝐴𝐴𝑍𝑍 = � 2�̅�𝐴
(1+𝑍𝑍�)

�
9/16

� 5
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

�
1/8

= 29/16  𝐺𝐺𝐴𝐴
9/16 𝐺𝐺𝑍𝑍

1/8     (26) 

with 𝐺𝐺𝐴𝐴 = �̅�𝐴
1+𝑍𝑍�

  and 𝐺𝐺𝑍𝑍 = 5
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

. 

Substituting 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿  from Eq. (25) into Eq. (22)  gives the following expression for cZ: 

𝑐𝑐𝑍𝑍 = 1.37 × 10−45 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆

47
28

𝜆𝜆𝑞𝑞

10
7

   𝐵𝐵− 9
28

𝐵𝐵𝜃𝜃

10
7

1
𝑓𝑓𝑛𝑛𝑒𝑒

2
𝑞𝑞𝑐𝑐

47
28

  (1+𝑘𝑘2)   𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 𝑑𝑑‖
∗

9
28

  𝜖𝜖−1/4

𝐹𝐹𝐴𝐴𝑍𝑍
2

1

𝐺𝐺𝑍𝑍
3/7   (27) 

where 𝜖𝜖 is the inverse aspect ratio a/R.  

Then, substituting the same 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿  into Eq. (20) and taking fne=1, the maximum (or critical) 

separatrix density can be expressed as: 

𝑛𝑛𝑒𝑒,𝑢𝑢
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3.88 × 1014  

𝐵𝐵 7/8 𝑅𝑅1/8 �𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑‖
∗�−1/8

𝑞𝑞𝑐𝑐9/8  𝜋𝜋9/8  𝜇𝜇0 
√1 + 𝑘𝑘2  𝐹𝐹𝐴𝐴𝑍𝑍 .    (28) 

The power flow across the LCFS, PSOL, is calculated as:  

𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 = 𝑃𝑃𝑆𝑆𝐿𝐿 + 𝑃𝑃ℎ𝑒𝑒𝑅𝑅𝑐𝑐 − 𝑑𝑑𝑀𝑀𝑑𝑑𝑐𝑐𝑅𝑅 𝑑𝑑𝑑𝑑⁄ − 𝑃𝑃𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 = 𝑃𝑃ℎ𝑒𝑒𝑅𝑅𝑐𝑐

𝑐𝑐𝑡𝑡𝑐𝑐 − 𝑃𝑃𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘   (29) 

with POH being the Ohmic power, Pheat the auxiliary heating power either from neutral beam 

heating (NBI) or from ion cyclotron resonance heating (ICRH), 𝑃𝑃𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 the radiated power from 
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the bulk plasma, 𝑃𝑃ℎ𝑒𝑒𝑅𝑅𝑐𝑐
𝑐𝑐𝑡𝑡𝑐𝑐 = 𝑃𝑃𝑆𝑆𝐿𝐿 + 𝑃𝑃ℎ𝑒𝑒𝑅𝑅𝑐𝑐 the total heating power and dWdia/dt the rate of change 

of the total plasma energy. Under stationary conditions, dWdia/dt=0, we obtain: 

𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 = 𝑃𝑃ℎ𝑒𝑒𝑅𝑅𝑐𝑐
𝑐𝑐𝑡𝑡𝑐𝑐 − 𝑃𝑃𝑐𝑐𝑅𝑅𝑑𝑑

𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 = 𝑃𝑃ℎ𝑒𝑒𝑅𝑅𝑐𝑐
𝑐𝑐𝑡𝑡𝑐𝑐  (1 − 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑

𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘)      (30) 

where 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 is the radiation fraction from the confined plasma.  

We introduce the dimensionless parameter fLH by replacing 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 in Eq. (30) with fLHPLH, where 

PLH is the threshold power required for the L-H transition; 

fLH = PSOL/PLH .             (31) 

For the H-mode power threshold we will use the empirical ITPA scaling 𝑃𝑃𝐿𝐿𝐿𝐿 =

0.049 𝑛𝑛𝑒𝑒���0.72𝐵𝐵0.8𝑆𝑆0.94  [31], where 𝑛𝑛𝑒𝑒��� denotes the line-averaged electron density in units of 1020 

m-3 and S is the separatrix surface area. Rewriting this scaling in SI units gives 1.95 ×

10−16  𝑛𝑛𝑒𝑒���0.72𝐵𝐵0.8𝑆𝑆0.94 . Since the ITPA scaling was obtained for D plasmas, we are adding the 

2/A factor, according to the dependence first established in [32]:  

𝑃𝑃𝐿𝐿𝐿𝐿 = 2
𝐴𝐴

 1.95 × 10−16  𝑛𝑛𝑒𝑒���0.72𝐵𝐵0.8𝑆𝑆0.94        (32) 

in order to track the (hydrogen) isotope dependence of the cZ scaling.  

PLH in Eq. (32) must be larger than the power through the separatrix PSOL at the L-H transition, 

since it is understood to be the total input power into the discharges, and a fraction of this power 

is radiated in the core (Eq. (32)). The average value of the 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 parameter in the database used 

to construct the Martin scaling [31] is not known, except that data points with 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 >  0.5 were 

excluded from the database. 

In our analysis of the SOL plasma we are using the separatrix electron density ne,u instead of 

the line-average density 𝑛𝑛𝑒𝑒���. To relate the two, we are introducing the dimensionless parameter 

fsep = ne,u/𝑛𝑛𝑒𝑒���. Combining Eqs. (2), (28) and (32) to eliminate 𝑛𝑛𝑒𝑒��� (𝑛𝑛𝑒𝑒��� = 𝑛𝑛𝑒𝑒,𝑢𝑢 𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝⁄ =

𝑓𝑓𝑛𝑛𝑒𝑒𝑛𝑛𝑒𝑒,𝑢𝑢
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝� ) and S and Eq. (30) for PSOL, we arrive at: 

𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 =            (33) 

 4.41  𝑓𝑓𝐿𝐿𝐿𝐿
0.92 � 𝑓𝑓𝑛𝑛𝑒𝑒

𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝
�

0.66
 
𝑑𝑑‖

∗−0.083

𝑞𝑞𝑐𝑐
0.74  𝐵𝐵1.31 𝑅𝑅1.06 (1 + 𝑘𝑘2)0.76 𝜀𝜀0.95  𝐹𝐹𝐴𝐴𝑍𝑍

0.66

𝐴𝐴0.92 .  
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It should be noted that the fsep parameter may be significantly different in a much larger size 

fusion reactor than in the present existing machines, e.g., due to the difference in neutral opacity 

and transport at the edge. Hence, it is an important parameter in the scaling of cZ required for 

divertor detachment from the point of view of the implications of such a high cZ on future fusion 

reactors. 

4.1 Scalings for the tokamak near scrape-off layer H-mode power width 

The most commonly used scaling for the power width is a multi-machine scaling for upstream 

power fall-off length derived by Thomas Eich [18] (see Appendix B). A comparison of this 

scaling with a heuristic drift-based model [19] (HD model) shows satisfactory agreement in 

both absolute magnitude and power-law dependencies on plasma parameters achieved in a wide 

range of experiments in D plasmas.  Note that in contrast to the HD model, the Eich scaling has 

no explicit isotope mass dependence. Therefore in this paper for the derivation of cZ we will 

use the power width scaling based on the HD model with an explicit isotope mass dependence. 

This model predicts the following power width, expressed as a decay length of the power flux 

λq: 

λ𝑞𝑞
𝐿𝐿𝐻𝐻 = 

5671 (𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿𝑙𝑙‖
∗)1/8 �1+κ2�5/8𝑅𝑅17/8𝐵𝐵1/4

𝐼𝐼𝑝𝑝
9/8𝜋𝜋

� 2𝐴𝐴
1+𝑍𝑍

�
7/16

�
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

5
�

1/8
   (34) 

where dimensional variables are expressed in SI units, Zeff and �̅�𝑍 are ‘effective charge’ and 

‘average charge’ of all ions. In the case of only singly charged ions  �̅�𝑍 = 𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓. Note that the 

HD model’s result shown in Eq. (34) represents the poloidally averaged value of the power 

scrape-off width.  

Eliminating the plasma current dependence by using Eq. (18) the above equation can be 

written as: 

λ𝑞𝑞
𝐿𝐿𝐻𝐻 = 

3.6 × 10−4 (𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿𝑙𝑙‖
∗)1/8 𝑞𝑞𝑐𝑐

9/8(𝑅𝑅/𝑅𝑅)1/8𝐵𝐵−7/8 1
(1 + κ2)1/2 �

2𝐴𝐴
1 + 𝑍𝑍

�
7/16

�
𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓 + 4

5
�

1/8

 

            (35) 
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where qc is the cylindrical approximation for the safety factor. 

The most recent publication [33] discusses the applicability of the HD model’s expression for  

λq at  high collisionality expected  in high density plasmas reaching the H-mode density limit. 

Thomas Eich derives a generalized power width scaling 𝜆𝜆𝑞𝑞 ∝  𝜌𝜌𝑝𝑝 (1 + 2.1𝛼𝛼𝑐𝑐
1.7) where αt is the 

normalized collisionality 𝛼𝛼𝑐𝑐 = 3 ∙ 10−18 𝑅𝑅𝑞𝑞𝑐𝑐
2 𝑛𝑛 𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓𝑇𝑇𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝

−2 . In the limit of low edge 

densities (αt ≤ 0.2) the experimental the data base shows a good agreement of this scaling with 

the IR based multi-machine  power  width scaling. At elevated separatrix densities (αt ≥ 0.2) 

the power width is broadened.  

 

4.2 Scaling of impurity fractions by using Heuristic drift-based model for the heat flux width 

Inserting λ𝑞𝑞
𝐿𝐿𝐻𝐻 (Eq. 35) and PSOL (Eq. 33) into Eq. (27) and using Eqs. (26) with the definition 

of FAZ, GA and GZ parameters, together with the expression for the poloidally averaged poloidal 

magnetic field  

𝐵𝐵𝜃𝜃 = 𝜇𝜇0𝐼𝐼𝑝𝑝 

2𝜋𝜋𝑅𝑅�(1+𝑘𝑘2)/2
=  𝐵𝐵 𝜖𝜖

𝑞𝑞𝑐𝑐
�(1 + 𝑘𝑘2)/2       (36) 

we obtain:  

𝑐𝑐𝑍𝑍 =  

0.76 × 10−39    𝐵𝐵1.47

𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇
  𝑅𝑅1.59 𝑓𝑓𝑆𝑆𝐿𝐿

1.38

𝑓𝑓𝑛𝑛𝑒𝑒 𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝

  𝑞𝑞𝑐𝑐
0.39(1+𝑘𝑘2)0.14

     𝑑𝑑‖
∗0.62  1

𝜖𝜖0.08  1
𝐴𝐴1.38

1
  𝐺𝐺𝐴𝐴

1.19𝐺𝐺𝑍𝑍
0.38 .  (37) 

This scaling, with an explicit isotope mass dependence, will be used to predict the required 

impurity fractions for divertor detachment for diverse impurity species in future tokamak 

reactors ITER and DEMO in the following section. The presence of the fsep parameter in the 

above equation compensates for the appearance of the line-average density 𝑛𝑛𝑒𝑒��� in the H-mode 

power threshold scaling Eq. (32) instead of the separatrix density ne,u, which is a more relevant 

parameter for the L-H transition physics. 

Potential implications of the model projections to a fusion reactor that may need to operate at a 

density limited by other physical and technological challenges is discussed in Appendix E.  
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5. Discussion 

By retaining only the main dependences, Eq. (37) can be written as: 

𝑐𝑐𝑍𝑍 ∝ 𝐵𝐵1.47

𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇
  𝑅𝑅1.59  𝑞𝑞𝑐𝑐

0.39(1+𝑘𝑘2)0.14

    𝜖𝜖0.08  
  1

𝐴𝐴1.38    𝑓𝑓𝑆𝑆𝐿𝐿
1.38

𝑓𝑓𝑛𝑛𝑒𝑒 𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝
 .     (38) 

Note that parameter fLH  can be below unity, since it gives the ratio of the power flux to the 

SOL, PSOL, to the H-mode power threshold on the total input power, PLH, which includes core 

radiation. Parameter 𝑙𝑙‖
∗, figuring in Eq. (37), is not present in the above scaling. It can be 

considered constant unless one is interested in advanced magnetic configurations with very long 

divertor legs.  

As shown in Appendix C, the last term 1
  𝐺𝐺𝐴𝐴

1.19𝐺𝐺𝑍𝑍
0.38 on the RHS of Eq. (37) doesn’t deviate 

strongly from unity and therefore can be ignored. 

Assuming operation above the L-H threshold power at fixed fLH (values of ≈ 1.2 are often quoted 

in projections for future machines), the scalings Eqs. (37,38) exhibit a strong dependence on 

toroidal field, B, and the machine size: 𝑐𝑐𝑍𝑍 ∝  𝐵𝐵1.47𝑅𝑅1.59. Note that the cZ scaling derived by 

Reinke [15] is different: 𝑐𝑐𝑍𝑍 ∝  𝐵𝐵0.88 𝑅𝑅1.33.The main reason for the divergence of our scaling 

from that of Reinke is our use the scaling expression for 𝑛𝑛𝑒𝑒,𝑢𝑢
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 instead of ne,u or fGW, which is 

dependent on both B and R. Nevertheless, both scalings carry the same message of how to solve 

the heat exhaust problem in the fusion devices. Since the cost-effective approach to the reactor 

design requires 𝐵𝐵𝑅𝑅 ~𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑑𝑑𝑅𝑅𝑛𝑛𝑑𝑑, similarly to [15], the scaling obtained in this work predicts 

(albeit marginally) that the reactor would benefit more from higher toroidal field than from 

larger machine size.  

Extrapolation from existing medium-size devices such as JET-ILW to a reactor-scale tokamaks 

such as DEMO (EU DEMO 1 design) (𝐵𝐵 = 2.5 𝑇𝑇 → 5.7 𝑇𝑇;  𝑅𝑅 = 2.9 𝑚𝑚 → 9.1 𝑚𝑚) implies the 

need to increase impurity fractions by factor 21, based only on magnetic field and machine size 

dependencies (𝑐𝑐𝑍𝑍 ∝  𝐵𝐵1.47𝑅𝑅1.59). This factor however is strongly reduced (down to 7) when an 

expected increase of the integral LINT (see Eq. (14)) in DEMO is taken into account (𝑐𝑐𝑍𝑍 ∝

 𝐵𝐵1.47𝑅𝑅1.59/𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇):  𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 = 6.63 × 10−30 𝑀𝑀 𝑚𝑚3𝑒𝑒𝑒𝑒3/2 → 18.8 × 10−30  𝑀𝑀 𝑚𝑚3𝑒𝑒𝑒𝑒3/2 (see 

Table 1, which will be discussed later) due to 𝑇𝑇𝑒𝑒,𝑢𝑢 = 138 𝑒𝑒𝑒𝑒 (𝐽𝐽𝐽𝐽𝑇𝑇 − 𝐼𝐼𝐿𝐿𝑀𝑀) →316 eV (DEMO) 

for fLH=1.2 (for the N2 seeding). Here, the upstream separatrix temperature, Te,u, is calculated 

by using Eq. (16), and λq is evaluated from the Eich scaling [18].  
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As has already been pointed out in Sec. 3, at the plasma edge the local coronal equilibrium 

cannot be assumed for the calculation of radiative losses. In H-mode plasmas ELMs regularly 

expel particles into the SOL leading to frequent reorganization of profiles. Additionally, fast 

parallel transport in the SOL leads to a significant reduction of the impurity residence time 

below the time scales for ionisation and recombination. Hence, the local equilibrium cannot be 

established and one expects impurities to enter the plasma as neutrals and emit line radiation 

during an early ionisation phase. Usually, the radiative loss function LZ is enhanced by 

deviations from coronal equilibrium. The deviation can be described by the product of the 

electron density and residence time, 𝑛𝑛𝑒𝑒𝜏𝜏, which in turn is proportional to the ratio of impurity 

residence (τ) and ionisation times. Large value of this ratio ensures coronal equilibrium. Under 

non-coronal conditions, radiation increases with decreasing τ.  

Fig. 1 shows the cooling rate coefficient LZ for a number of impurities with several values of 

the non-coronal parameter ne τ taken from the ADAS database [34], assuming electron density 

of 1020 m-3, as the sum of line radiation, recombination-induced and bremsstrahlung radiation. 

In this paper we use polynomial fits applied in [35] which were calculated from ADAS for 

electron density of 1020 m−3, which is a typical value for the divertor SOL. The influence of the 

residence time of impurities on radiation has been intensively discussed in [36]. ELMs flush 

out impurities from the pedestal and cause a reorganization of profiles after each ELM crash. 

The residence time at the pedestal cannot exceed the inverse of the ELM frequency, 1/fELM.  
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Figs. 2 show the function LINT calculated for nitrogen, neon and argon for different assumptions 

about neτ: 1.0×1020 and 10.0×1020 m-3ms (times are given in milliseconds). These graphs exhibit 

a strong increase of LINT with the decrease in 𝑛𝑛𝑒𝑒𝜏𝜏.  

 

Fig. 1. The cooling rate coefficient LZ for N2, Ne and Ar and several assumptions of neτ: 
0.1×1020 m-3 ms, 1.0×1020 m-3 ms and 10.0×1020 m-3 ms. 
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Similarly to the paper [14] we compare our empirical scaling with results of Kallenbach’s model 

[13] (see Fig. 4 inside this Ref.), which has been successfully calibrated against AUG 

experimental data.  Plasma parameters discussed in [13] are the following: PSOL=10.8 MW, 

ne,sep=7×1019 m-3, 𝐿𝐿‖=20 m (calculated as 𝜋𝜋𝑞𝑞95𝑅𝑅) and cZ=7 =4%. The plasma current of 1.2 MA 

results in the Greenwald density limit of 𝑛𝑛𝐺𝐺𝑊𝑊 = 𝐼𝐼𝑝𝑝

𝜋𝜋𝑅𝑅2 =1.44×1020 m-3. The density limit achieved 

in the experiment at Ip=1.2 MA is about 0.85 of the Greenwald density limit and corresponds 

to the central line-averaged density of about 𝑛𝑛�𝑒𝑒 = 1.2×1020 m-3. With 𝑛𝑛�𝑒𝑒 = 1.2×1020 m-3 and 

toroidal field of B=2.5 T we obtain PLH=4.1 MW from Eq. (32) and correspondingly fLH=2.63. 

Note that such a large fLH factor is not possible in future reactors due to economic cost 

considerations, where the operation is to take place at fLH factors slightly above 1.0. Using the 

derived scaling Eq. (38), the reduction of PSOL down to 4.9 MW (corresponding to fLH=1.2), 

 

Fig. 2. LINT as a function of Te,u for N2, Ne and Ar and two values of the non-coronal parameter of 
neτ: 1.0×1020 m-3 ms and 10.0×1020 m-3ms. 
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with all other parameters of the AUG discharge being fixed, will imply the reduced impurity 

fraction of cZ=7=1.6%. Instead of the numerical coefficients in Eq. (37), here we have 

normalized our empirical scaling to match the experimentally measured value cZ=7 = 4%, which 

was achieved in AUG by approximating the ratio of the D and N valve flows under quasi 

stationary conditions [13]. 

In order to estimate impurity fractions required for detachment in existing and future tokamaks, 

we use AUG, JET-ILW, ITER and DEMO machine engineering parameters listed in Table 2 of 

Ref. [14].  One of the uncertainties in Eq. (37) is a poorly defined parameter fLH. In Eq. (31) it 

is defined as a ratio of the total power flux through the separatrix by the H-mode power 

threshold. It would be natural to assume that fLH has to exceed 1 for the discharge to be in the 

H-mode. As was pointed out in Sec. 4, owing to non-zero 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 the degree of excess of fLH over 

unity cannot be quantified. Here, we will be assuming that it is not large, and, following [14,15] 

we will be neglecting 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘. Such an approximation can be justified by a number of 

simplifications we adopted in our model.  

In ITER, PSOL=100 MW  is expected in the baseline scanario, and PLH values calculated by Eq. 

(32) are 89 MW and 71.5 MW at the nominal density of 1020m-3 (fGW=0.85) for deuterium and 

deuterium-tritium (DT) discharges, respectively. Thus, the parameter fLH is 1.12 for the D 

plasmas and 1.4 for the DT plasmas. On the other hand, in DEMO with an ITER-like divertor 

configuration, to keep the heat flux density on target below 5−10 MW m−2, up to 70% of the 

loss power Ploss has to be radiated on closed field lines (Ploss=Pheat+Pα ≈450 MW) [37], making 

it impossible to neglect 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘. In our calculations we will use  (𝑃𝑃ℎ𝑒𝑒𝑅𝑅𝑐𝑐 + 𝑃𝑃𝛼𝛼  )/𝑃𝑃𝐿𝐿𝐿𝐿 ≈ 4. 

Assuming 𝛾𝛾𝑐𝑐𝑅𝑅𝑑𝑑
𝑏𝑏𝑢𝑢𝑑𝑑𝑘𝑘 = 0.7 we obtain 𝑓𝑓𝐿𝐿𝐿𝐿 ≈ 1.2, when PLH in Eq. (31) is understood to be the critical 

power for PSOL necessary for the L-H transition.  The proper analysis which takes into account 

the core radiation was done by H. Zohm [38, 39] delivering 𝑓𝑓𝐿𝐿𝐿𝐿 = 1.2 for the DEMO reactor. 

Therefore, for the cross comparison of these tokamaks we will use factors fLH=1.2 and fne=0.9.  

Taking into account that the electron density of 1020 m−3 is typical for the divertor SOL in 

tokamaks with the pronounced detachment, the non-coronal enhancement of the radiation could 

be approximated by setting the non-coronal parameter 𝑛𝑛𝑒𝑒𝜏𝜏 = 1.0 × 1020 𝑚𝑚−3 𝑚𝑚𝑠𝑠. It should be 

noted that the residence time τ cannot be specified precisely. However, there are factors that 

limit the degree of the variation of the product 𝑛𝑛𝑒𝑒𝜏𝜏. The residence time at  the target plate can 

be lower, below ~ 1 milisecond, due to the back-streaming of the plasma to the target at densities 

above 1020 m - 3 [13]. At the same time the density decreases towards the outer mid-plane and τ 
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can increase up to a limit 𝜏𝜏 =  1/fELM. Therefore the value of the non-coronal parameter 𝑛𝑛𝑒𝑒𝜏𝜏 =

1.0 × 1020 𝑚𝑚−3 𝑚𝑚𝑠𝑠 is the most likely value and will be used for further study. 

Table 1 shows comparisons among recent operating parameters in existing tokamaks and those 

expected in reactor projects. The estimated nitrogen fraction cZ=7  required to prompt the 

divertor detachment is normalized to the AUG discharge parameters from [13] assuming  

fLH=1.2 and 𝑛𝑛𝑒𝑒𝜏𝜏 = 1.0 × 1020 𝑚𝑚−3 𝑚𝑚𝑠𝑠. The upstream separatrix temperature, Te,u, is calculated 

by using Eq. (16) with 𝐿𝐿‖ = 𝜋𝜋𝑞𝑞𝑐𝑐 𝑅𝑅 and λq evaluated from the Eich’s scaling [18]. Please note 

that in the expression of Te,u (Eq. 4) it was assumed that the power crossing the SOL flows 

equally to inner and outer divertors. If some in-out asymmetry occurs, e.g.  by 2/3’s of PSOL 

going to the outer divertor (in-out power asymmetry of 1: 2), it will lead to an increase in the 

upstream electron temperature by 8.6%.  In ITER, with PSOL=100 MW, the increase in Te,u by 

8.6% (from 270 eV to 293 eV) leads to an increase in LINT. This in turn leads to the cZ fraction 

being reduced. In the case of the Ne seeding in ITER, cZ will be reduced from 4.9% to 4.5%. 

JET data used in this table are taken from Ref. [40] for the plasma in the ITER-like wall: 

Ip/B=2.5MA/2.5T, fGW=0.85, qc=2.79, k=1.73, nGW=9.82×1019 m-3 and PSOL=11.6 MW at 

fLH=1.2. The planned ITER operation [41] assumes Pfus=500 MW and the fusion energy gain 

factor Q=10. The EU Demo1 reactor allows core radiation to limit PSOL to the value just above 

the H-mode power threshold to sustain the H-mode confinement [42].  

Table 2 shows, in addition to the nitrogen data, also estimated impurity fractions for Ne and 

Ar. Calculations for these two gases were done by taking into account corresponding radiative 

  Bt 
(T) 

Ip 
(MA) 

Bθ 
(T) 

a 
(m) 

R 
(m) k qc 

nGW Te,u LINT cZ=7 (%) cZ=7 (%) 

(1020m-3) (eV) 
(10-30 

Wm3 
eV3/2) 

in D 
plasmas 

in D-T 
plasmas 

ASDEX-U 2.5 1.2 0.34 0.52 1.6 1.63 3.16 1.44 115.0 5.7 1.6 1.2* 

JET-ILW 
2.5 2.5 0.39 0.9 2.9 1.73 2.79 0.98 138.5 6.6 3.4 2.5 

ITER 5.3 15 1.03 2.0 6.2 1.8 2.42 1.19 270.0 14.9 14.7 10.8 

EU  
DEMO 1 5.7 20 0.98 2.94 9.1 1.7 2.62 0.74 316 18.8 24.3 17.9 

 

Table 1. Estimated nitrogen fraction cZ=7 required for detachment in existing and future 
tokamaks. Here fLH=1.2, fne=0.9  and 𝑛𝑛𝑒𝑒𝜏𝜏 = 1.0 × 1020 𝑚𝑚−3 𝑚𝑚𝑠𝑠 are assumed. 
Calculations are done for pure D and mixed D-T (50%D/50%T) plasmas. 
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functions LINT. The usage of neon and argon reduces the impurity fractions in the SOL due to 

an increase in LINT. Assuming that ITER will operate in the deuterium-tritium (D-T) mixture 

with 50% of D and 50% of T, the required calculated impurity fractions are 10.1%, 3.4% and 

1.0% for N2, Ne and Ar, respectively. Tables 1 and 2 give cZ for pure D and mixed D-T 

(50%D/50%T) plasmas. The dependence on the isotope mass 𝑐𝑐𝑍𝑍 ∝ �̅�𝐴 −1.38 was taken into 

account in these estimates. It originates from scalings 𝑃𝑃𝐿𝐿𝐿𝐿  ∝ 𝐴𝐴−1, 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿 ∝ 𝐴𝐴9/16 and 

 λ𝑞𝑞
𝐿𝐿𝐻𝐻 ∝ 𝐴𝐴7/16. 

 

As shown in Tables 1 and 2, the model predicts a significantly higher cZ for achieving 

detachment in a fusion reactor relative to the present experiments. The injection of such a large 

amount of impurities into the plasma could have two main effects:  

• impact on the sputtering yield of tungsten assuming that the target material is made of W and  

• impact on the impurity screening by the divertor plasma and thus the transport of impurities 

into the confined plasma region. 

 Nitrogen  Neon  Argon  

  

LINT cZ=7 (%) cZ=7 (%) LINT cZ=10 (%) cZ=10 (%) LINT cZ=18 (%) cZ=18 (%) 

(10-30 

W m3 
eV3/2) 

in D 
plasmas 

in D-T 
plasmas 

(10-30 

W m3 
eV3/2) 

in D 
plasmas 

in D-T 
plasmas 

(10-30 

W m3 
eV3/2) 

in D 
plasmas 

in D-T 
plasmas 

ASDEX-U 5.7 1.6 1.2* 24.2 0.38 0.28* 44.8 0.18 0.13* 

JET-ILW 
6.6 3.4 2.5 27.6 0.83 0.61 52.9 0.38 0.28 

ITER 14.9 14.7 10.8 44.5 4.9 3.6 131.8 1.48 1.1 

EU DEMO 1 18.8 24.3 17.9 50.6 9.0 6.6 163.6 2.5 1.8 

 

Table 2. Estimated impurity fractions required for detachment for N2, Ne and Ar assuming 
fLH=1.2, fne=0.9 and 𝑛𝑛𝑒𝑒𝜏𝜏 = 1.0 × 1020 𝑚𝑚−3 𝑚𝑚𝑠𝑠. Calculation are made for pure D and mixed 
D-T (50%D/50%T) plasmas. 
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Increased radiative losses lead to lower electron temperatures and thus to much lower sputtering 

yields. On the other hand, the increased fraction of impurities with a higher net charge and mass 

causes erosion with higher impact energies and leads to lower sputtering thresholds. Even if 

sputtering yields of W can be strongly reduced during the inter-ELM phase with advanced 

detachment at low target Te, the tungsten sputtering during ELMs will significantly increase the 

impurity fraction. It should be mentioned that the dominant W erosion mechanism in the 

divertor is the intra-ELM sputtering induced by impurities as well as hydrogenic ions with 

energies determined by the pedestal temperature. According to the free streaming model [43], 

during ELMs electrons, on their way to the divertor target, transfer their parallel energy to ions 

to maintain quasi-neutrality. It is experimentally observed in type I H-mode discharges that the 

maximum sum of the ion and electron energy linearly depends on the pedestal electron 

temperature: max(Ei+Ee) = 5.23×Te,ped [44]. The model assumes that only Ee,⊥ is left in Ee, 

resulting in almost mono-energetic ions with Ei,max  up to 4.23×Te,ped . Assuming the average 

incident energy of ions, <Ei>, of 1keV, the sputtering yield (number of atoms removed from 

the target surface per incident ion) for Ne is factor 40 larger than for T ions [45]. Accordingly, 

the fluence of sputtered tungsten per ELM (atoms / ELM) due to neon is at least 1.4 and 2.6 

times larger than due to T ions for cZ = 3.6% (ITER) and cZ = 6, 6% (DEMO) respectively. 

Additionally, the injection of large amounts of impurities into the plasma could have strong 

impact on the impurity screening by the divertor plasma. The screening is determined by the 

diffusion and convection of impurity ions in the SOL which competes with parallel ion flow 

towards the divertor targets. The latter is determined by the balance between the thermal force, 

Ftherm, and the friction force, Ffric, along magnetic field lines [28]. The thermal force, induced 

by the ion temperature gradient, pushes impurity ions towards higher temperatures, that is, to 

the main plasma (core-SOL plasma boundary). On the other hand, the frictional force, caused 

by the plasma flow from the main plasma to the divertor plates, pushes impurity ions to the 

divertor area. The large fraction of injected impurities could strongly impact the balance 

between the thermal force, Ftherm, and the friction force, Ffric, along magnetic field lines due to 

the increased ion temperature gradient. The increased thermal force could push the impurity 

ions up the temperature gradients, dTe,i/dl to the main plasma (core-SOL plasma boundary) and 

to the confined plasma region, thereby reducing the impurity screening. This could lead to an 

increase of the radiative power losses within the confined plasma and consequently could affect 

the plasma confinement and the fuel dilution.  
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It should be noted that the power width length  𝜆𝜆𝑞𝑞 can be widened [33] in the case of high 

collisionality expected in high density plasmas. As shown in Appendix D, the broader  𝜆𝜆𝑞𝑞 could 

lead to a strong reduction of the cZ required to drive the divertor into the detachment. More 

investigation of the broadening of 𝜆𝜆𝑞𝑞 at   high collisionality is required. 

 

 

6. Summary 

The goal of this work is to contribute to theoretical understanding of scaling laws for the power 

exhaust in the plasma boundary necessary to achieve divertor detachment in terms of impurity 

fractions, for projections onto future machines such as ITER and DEMO. In order to estimate 

the required impurity fractions a new quantitative scaling law for cZ in high density H-mode 

operation close to the density limit was derived. It is based on a simple SOL radiation model 

and uses dimensionless parameters normalized by empirical scalings for the heat flux width in 

the SOL, H-mode power threshold, and separatrix density limit caused by an MHD instability. 

The derived cz scaling shows strong dependencies on toroidal field,  major radius, power to the 

SOL normalized to the H-mode power threshold, fLH, and to the radiative parameter LINT:    

 𝑐𝑐𝑍𝑍 ∝ 𝐵𝐵1.47

𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇
  𝑅𝑅1.59  𝑞𝑞𝑐𝑐

0.39(1+𝑘𝑘2)0.14

    𝜖𝜖0.08  
  1

𝐴𝐴1.38    𝑓𝑓𝑆𝑆𝐿𝐿
1.38

𝑓𝑓𝑛𝑛𝑒𝑒 𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝
 . The scaling also predicts a strong 

dependence on the average atomic mass �̅�𝐴 of plasma species, 𝑐𝑐𝑍𝑍 ∝ �̅�𝐴 −1.38. This strong 

dependence on the isotopic mass mixture is significant, with cZ being up to 27% lower in 

deuterium-tritium (D-T) mixtures using 50% of D and 50% of T, and being 43% lower in the 

100% tritium plasmas compared to pure deuterium plasmas. The strong dependence on the 

isotope mass is attributed mostly to lower H-mode power threshold for larger isotope mass (𝑃𝑃𝐿𝐿𝐿𝐿 ∝

𝐴𝐴−1)  . 

The formulation of the impurity fraction in this paper can be used as a guideline for the machine 

design and for planning of operational scenarios. 

Acknowledgements 

This work has been carried out within the framework of the EUROfusion Consortium and has 

received funding from the Euratom research and training programme 2014-2018 and 2019-2020 



– 24 – 

under grant agreement No 633053. The views and opinions expressed herein do not necessarily 

reflect those of the European Commission. 

 

  



– 25 – 

 

Appendix A 

Goldston’s model for the density limit [21] is based on the heuristic drift-based model for the 

power scrape-off width assuming that the H-mode density limit is caused by an MHD instability 

in the near SOL [21]. An expression for the ballooning parameter α was derived under the 

assumption that the pressure gradient scale length at the separatrix is approximately equal to 

λq: 

𝛼𝛼 ≡ − 𝜋𝜋𝑞𝑞2𝛽𝛽
𝜆𝜆𝑞𝑞

= 𝑒𝑒 𝜋𝜋𝑞𝑞𝑐𝑐
22𝑛𝑛𝑒𝑒,𝑢𝑢𝑇𝑇𝑒𝑒

𝜆𝜆𝑞𝑞𝐵𝐵𝑡𝑡
2 2𝜇𝜇0⁄ = 4𝜇𝜇0𝑒𝑒 𝜋𝜋𝑞𝑞𝑐𝑐

2𝑛𝑛𝑒𝑒,𝑢𝑢𝑇𝑇𝑒𝑒
𝜆𝜆𝑞𝑞𝐵𝐵𝑡𝑡

2  .      (39) 

Combining Eqs. (16) and (4) to eliminate 𝑞𝑞‖,𝑢𝑢 and applying  𝐿𝐿‖ = 𝑙𝑙‖
∗ 𝜋𝜋𝑞𝑞𝑐𝑐𝑅𝑅  we arrive at: 

𝑇𝑇𝑒𝑒,𝑢𝑢 ≈ �7 𝑞𝑞‖,𝑢𝑢 𝐿𝐿‖

2𝑘𝑘0,𝑒𝑒
�

2
7

= �𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿
𝐵𝐵

𝐵𝐵𝜃𝜃
�  

𝑞𝑞𝑐𝑐𝑑𝑑‖
∗

�2
7�𝑘𝑘0,𝑒𝑒 4𝜆𝜆𝑞𝑞

 �

2
7

 .      (40) 

Substituting 𝐵𝐵𝜃𝜃 (Eq. 36) and 𝑘𝑘0,𝑒𝑒  (Eq. 9) into this equation gives: 

𝑇𝑇𝑒𝑒,𝑢𝑢 ≈ � 2
1
2

�8
7� �𝑘𝑘0

�

2
7

 �
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 𝑞𝑞𝑐𝑐

2𝑑𝑑‖
∗

𝐺𝐺𝑍𝑍𝜖𝜖 √1+𝑘𝑘2 𝜆𝜆𝑞𝑞
�

2
7

= 0.12 �
𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆 𝑞𝑞𝑐𝑐

2𝑑𝑑‖
∗

𝐺𝐺𝑍𝑍𝜖𝜖 √1+𝑘𝑘2 𝜆𝜆𝑞𝑞
�

2
7
 .     (41) 

Introducing the above expression for Te,u into Eq. (39) gives: 

𝛼𝛼 = 9.68 × 10−26 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿
2/7𝜆𝜆𝑞𝑞

−9/7𝑞𝑞𝑐𝑐
18/7𝑅𝑅9/7𝑅𝑅−2/7𝑛𝑛𝑒𝑒,𝑢𝑢𝐵𝐵−2(1 + 𝑘𝑘2)−1/7𝐺𝐺𝑍𝑍

−2/7𝑙𝑙‖
∗2/7 .  (42) 

Assuming 𝛼𝛼 = 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≈ 𝐶𝐶𝛼𝛼(1 + κ2)𝛾𝛾, at which the upstream separatrix density reaches the 

maximum (critical) density, ne,u= ne,u
crit,  Eq. (42) reads: 

𝐶𝐶𝛼𝛼(1 + κ2)𝛾𝛾 = 9.68 × 10−26 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿
2/7𝜆𝜆𝑞𝑞

−9/7𝑞𝑞𝑐𝑐
18/7𝑅𝑅9/7𝑅𝑅−2/7𝑛𝑛𝑒𝑒,𝑢𝑢

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐵𝐵−2(1 + 𝑘𝑘2)−1/7𝐺𝐺𝑍𝑍
−2/7𝑙𝑙‖

∗2/7.

            (43) 

Using the expression for 𝜆𝜆𝑞𝑞 (Eq. 35) which has an 𝑙𝑙‖
∗ dependence and  𝑛𝑛𝑒𝑒,𝑢𝑢

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑒𝑒,𝑢𝑢|(𝑓𝑓𝑛𝑛𝑒𝑒=1) (Eq. 

20), the Goldston’s equation can finally be obtained: 

𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿 = 4.85 𝐶𝐶𝛼𝛼 �𝑞𝑞𝑐𝑐 𝜋𝜋𝐵𝐵

𝑅𝑅
𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿𝑙𝑙‖

∗�
−1/8

(1 + κ2)𝛾𝛾−3/2 � 2�̅�𝐴
(1+𝑍𝑍�)�

9/16
�𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

5
�

−1/8
 .  (44) 
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This density limit scaling has the dependence on the dimensionless factor 𝑙𝑙∗ which takes into 

the account a possibility of extended field lines in alternative configurations. 

 

Appendix B 

The most commonly used scaling for the upstream power fall-off length in the SOL is a multi-

machine scaling obtained for the OMP position [18]: 

λ𝑞𝑞,𝑚𝑚𝑝𝑝 = 0.73 𝐵𝐵−0.78𝑞𝑞𝑐𝑐
1.2𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿

0.1 𝑅𝑅0.0       (45) 

where λ𝑞𝑞 is in units of mm, mapped to the OMP position, and PSOL is in MW. This empirical 

scaling is based on extensive infrared thermography measurements of the power decay length 

in the SOL on several machines including JET and AUG [18]. Here we also present it in SI 

units: 

λ𝑞𝑞,𝑚𝑚𝑝𝑝 = 1.83 × 10−4 𝐵𝐵−0.78𝑞𝑞𝑐𝑐
1.2𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿

0.1 𝑅𝑅0.0 .      (46) 

At the same time, the power decay length in the SOL λ𝑞𝑞 used in Eq. (27) is the poloidally 

averaged quantity. As it is shown in [18], the two decay lengths are connected by: 

λ𝑞𝑞,𝑚𝑚𝑝𝑝 = 𝜋𝜋
(𝜋𝜋+𝑅𝑅)    𝐵𝐵𝜃𝜃

𝐵𝐵𝜃𝜃,𝑚𝑚𝑝𝑝
 λ𝑞𝑞         (47) 

where 𝐵𝐵𝜃𝜃,𝑚𝑚𝑝𝑝 is the poloidal magnetic field at the outer midplane and  

 𝐵𝐵𝜃𝜃 = 𝜇𝜇0𝐼𝐼𝑝𝑝 

2𝜋𝜋𝑅𝑅�(1+𝑘𝑘2)/2
=  𝐵𝐵 𝜖𝜖

𝑞𝑞𝑐𝑐
�(1 + 𝑘𝑘2)/2        (48) 

is the poloidal field poloidally averaged around the plasma. Numerically, as it is found in [18], 

on average λ𝑞𝑞,𝑚𝑚𝑝𝑝 = (0.55 ± 0.05)  × λ𝑞𝑞 for all data points used in [18]. For comparison of 

experimental and theoretical power width, it is required to map λ𝑞𝑞
𝐿𝐿𝐻𝐻 to the outer midplane. 

For further usage of this experimental scaling for the comparison with theoretically predicted 

power width (HD), we rewrite Eq. (46) via the poloidally averaged λ𝑞𝑞: 

λ𝑞𝑞 = λ
𝑞𝑞,𝑚𝑚𝑝𝑝

/0.55 = 3.33 × 10−4 𝐵𝐵−0.78𝑞𝑞𝑐𝑐
1.2𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿

0.1 𝑅𝑅0.0 .     (49) 
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A comparison of this scaling with a heuristic drift-based model [19] (HD model) shows a 

satisfactory agreement in both absolute magnitude and power-law dependencies on plasma 

parameters achieved in a wide range of experiments.  

Appendix C 

In this section we review expressions for 1
𝐺𝐺𝐴𝐴

1.19𝐺𝐺𝑍𝑍
 0.38 , the final term on the RHS of Eq. (37),  

where   

𝐺𝐺𝐴𝐴 = �̅�𝐴
1+𝑍𝑍�

  and 𝐺𝐺𝑍𝑍 = 5
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

 

�̅�𝐴 = ∑ 𝑛𝑛𝑐𝑐𝑐𝑐 𝐴𝐴𝑐𝑐 ∑ 𝑛𝑛𝑐𝑐𝑐𝑐⁄ , �̅�𝑍 = 𝑛𝑛𝑒𝑒 ∑ 𝑛𝑛𝑐𝑐𝑐𝑐⁄ ,      𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓 = ∑ 𝑛𝑛𝑖𝑖𝑍𝑍𝑖𝑖
2

𝑛𝑛𝑒𝑒
 .  (50) 

Assuming the plasma with the mix of hydrogen isotopes with the average atomic mass AH and 

a single dominant impurity we find: 

1 + �̅�𝑍 = 1 + 𝑛𝑛𝑒𝑒
𝑛𝑛𝐿𝐿+𝑛𝑛𝑍𝑍

         (51) 

�̅�𝐴 = 𝑛𝑛𝐿𝐿𝐴𝐴𝐿𝐿+𝑛𝑛𝑍𝑍𝐴𝐴𝑍𝑍 
𝑛𝑛𝐿𝐿+𝑛𝑛𝑍𝑍

          (52) 

𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓 = 𝑛𝑛𝐿𝐿
𝑛𝑛𝑒𝑒

+ 𝑛𝑛𝑍𝑍𝑍𝑍2

𝑛𝑛𝑒𝑒
 .          (53) 

We can express nH via cZ and ne, using the plasma ambipolarity condition:
eZHZHe nZcnZnnn +=+= . Here we used the definition of the 𝑐𝑐𝑍𝑍 = 𝑛𝑛𝑍𝑍/𝑛𝑛𝑒𝑒.  

Hence  

𝑛𝑛𝐿𝐿 = 𝑛𝑛𝑒𝑒 − 𝑍𝑍𝑐𝑐𝑍𝑍𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑒𝑒(1 − 𝑐𝑐𝑍𝑍𝑍𝑍) .       (54) 

Inserting nH into Eqs. (51-53) gives new expressions for 1 + �̅�𝑍, �̅�𝐴 and 𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓 : 

1 + �̅�𝑍 = 2−𝑐𝑐𝑍𝑍 (𝑍𝑍−1)
1−𝑐𝑐𝑍𝑍(𝑍𝑍−1)

          (55) 

�̅�𝐴 = 𝐴𝐴𝐿𝐿(1−𝑐𝑐𝑍𝑍𝑍𝑍)+𝐴𝐴𝑍𝑍 𝑐𝑐𝑍𝑍
1−𝑐𝑐𝑍𝑍(𝑍𝑍−1)

         (56) 

𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓 = 1 + 𝑐𝑐𝑍𝑍 (𝑍𝑍2 − 𝑍𝑍) .        (57) 

From these equations it follows that: 

 𝐺𝐺𝐴𝐴 = �̅�𝐴
1+𝑍𝑍�

= 𝐴𝐴𝐿𝐿(1−𝑐𝑐𝑍𝑍𝑍𝑍)+𝐴𝐴𝑍𝑍𝑐𝑐𝑍𝑍
2−𝑐𝑐𝑍𝑍(𝑍𝑍−1)

 .         (58) 
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 𝐺𝐺𝑍𝑍 = 5
𝑍𝑍𝑒𝑒𝑒𝑒𝑒𝑒+4

= 5
5+𝑐𝑐𝑍𝑍 (𝑍𝑍2−𝑍𝑍)

 .        (59) 

 

Combining these results in a new expression for 1
𝐺𝐺𝐴𝐴

1.19𝐺𝐺𝑍𝑍
 0.38 , which is the final term on the RHS 

of Eq. (37), gives: 

1
𝐺𝐺𝐴𝐴

1.19𝐺𝐺𝑍𝑍
 0.38 = � 2−𝑐𝑐𝑍𝑍(𝑍𝑍−1)

𝐴𝐴𝐿𝐿(1−𝑐𝑐𝑍𝑍𝑍𝑍)+𝐴𝐴𝑍𝑍𝑐𝑐𝑍𝑍
�

1.19
� 5

5+𝑐𝑐𝑍𝑍 (𝑍𝑍2−𝑍𝑍)
�

−0.38
 .    (60) 

Fig. 3 shows the dependence of this term on the impurity fraction cZ in pure deuterium (AH=2) 

and mixed (50%/50%) deuterium-tritium plasmas (AH=2.5). The calculation is done for 

 

Fig. 3 Dependence of the function 1/(𝐺𝐺𝐴𝐴
1.19𝐺𝐺𝑍𝑍

0.38)  on impurity fraction cZ . 
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different impurities with Z=7, 10 and 18 (nitrogen, neon and argon) and corresponding to 

impurity masses AZ=14, 20 and 40, respectively. 

Dashed lines represent cZ  fractions for each species (Z) at which 50% of deuterons are 

replaced with impurity ions, 𝑐𝑐𝑍𝑍
∗ . For 𝑐𝑐𝑍𝑍 ≤ 𝑐𝑐𝑍𝑍

∗  deviations from unity are very moderate: 

• D plasmas: maximum 10% and 6% reduction in c7 and c10, respectively, and 5% 
increase in c18.  

• D-T plasmas: maximum 7%, 11% and 18% increases in c7, c10, and  c18 , respectively.  

Due to smallness of these variation we will neglect this term in Eq. (37). 

Appendix D 

The normalized collisionality αt could have an impact on the cZ scaling.  Here we will extract 

the dependence of the most important parameters such as PSOL,  𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿 and 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  on the 

collisionality αt. 

As already shown in section 4.1, 𝜆𝜆𝑞𝑞 ∝  (1 + 2.1𝛼𝛼𝑐𝑐
1.7) in the experiment. The following 

dependencies could be derived from 𝜆𝜆𝑞𝑞 and Eq. (43): 

𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∝  (1 + 2.1𝛼𝛼𝑐𝑐

1.7)
9
7  × 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿

−1/8         (61) 

𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿 ∝  (1 + 2.1𝛼𝛼𝑐𝑐

1.7)9/7 × 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿
−1/8       (62) 

By using Eqs. (31,32) and 𝑛𝑛𝑒𝑒��� ∝  𝑛𝑛𝑒𝑒,𝑢𝑢
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  one obtains 

𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 ∝  (1 + 2.1𝛼𝛼𝑐𝑐
1.7)0.85         (63) 

Eqs. (61) and (62) could be rewritten as:  

 𝑛𝑛𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∝  (1 + 2.1𝛼𝛼𝑐𝑐

1.7)1.18          (64) 

𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 
𝐻𝐻𝐿𝐿 ∝  (1 + 2.1𝛼𝛼𝑐𝑐

1.7)1.18         (65) 

Finally, from Eq. (22) one obtains the following dependence of cZ on the normalized 
collisionality αt 

𝑐𝑐𝑍𝑍 ∝  (1 + 2.1𝛼𝛼𝑐𝑐
1.7)−2.725         (66) 

The αt above is the normalized collisionality 𝛼𝛼𝑐𝑐 = 3 ∙ 10−18 𝑅𝑅𝑞𝑞𝑐𝑐
2 𝑛𝑛 𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝𝑍𝑍𝑒𝑒𝑓𝑓𝑓𝑓𝑇𝑇𝑒𝑒,𝑠𝑠𝑒𝑒𝑝𝑝

−2 , where R 

and ne,sep are given in SI units, m and m-3 and Te in eV.  

For the cZ=𝑐𝑐𝑍𝑍
∗  fractions for each species (Z) at which 50% of deuterons are replaced with 

impurity ions, the Zeff values , calculated from Eq. (51), are 3.98, 5.5 and 9.5 for N2, Ne and Ar 
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seeded species respectively. Such Zeff values could lead to a strong reduction of the 

(1 + 2.1𝛼𝛼𝑐𝑐
1.7)−2.725 factors.  For example these factors in the Neon seeded case are  

(1 + 2.1𝛼𝛼𝑐𝑐
1.7)−2.725=0.48 and (1 + 2.1𝛼𝛼𝑐𝑐

1.7)−2.725=0.60 for ITER and DEMO plasmas, 

respectively, indicating the strong reduction of cZ to achieve the pronounced detachment.  

 

Appendix E 

In this section we discuss potential implications for our model projections to a fusion reactor 

which have to be operated at densities limited by other physical and technological challenges. 

These can be included by deriving the cZ scalinlg vs.  ne,u or 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝. 

We will use Eq. (22) and  replace λ𝑞𝑞  with the expression λ𝑞𝑞
𝐿𝐿𝐻𝐻 (Eq. 35): 

𝑐𝑐𝑍𝑍 = 1.11 × 10−39 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿
5/4  𝐵𝐵19/28

𝐵𝐵𝜃𝜃
10/7

 𝜖𝜖5/28 (1+𝑘𝑘2)−9/7

 𝑓𝑓𝐺𝐺𝐺𝐺,𝑠𝑠𝑒𝑒𝑝𝑝 
2   𝑞𝑞𝑐𝑐

5/28     𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇 𝑑𝑑‖
∗3/4

𝐺𝐺𝑍𝑍
−1/4

𝐺𝐺𝐴𝐴
5/8     (67) 

Combining Eqs. (19), (31) and (32) we arrive at: 

𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿 = 1.9  𝑓𝑓𝑆𝑆𝐿𝐿
𝐴𝐴

�𝑓𝑓𝐺𝐺𝐺𝐺,𝑠𝑠𝑒𝑒𝑝𝑝 

𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝
�

0.72
𝐵𝐵1.52 𝑅𝑅1.16  �1+𝑘𝑘2�1.19

𝜀𝜀0.94

𝑞𝑞𝑐𝑐
0.72          (68) 

 Inserting the above expression for PSOL into Eq. (67) gives: 

𝑐𝑐𝑍𝑍 = 4.06 × 10−39 𝑓𝑓𝐿𝐿𝐻𝐻
5/4

𝐴𝐴5/4

𝐵𝐵1.15𝜋𝜋1.45

𝑓𝑓𝐺𝐺𝑀𝑀,𝑠𝑠𝑒𝑒𝑝𝑝 
1.1𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝

0.9   𝑞𝑞𝑐𝑐
0.35 

    𝜖𝜖0.075(1+𝑘𝑘2)0.51 𝑑𝑑‖
∗3/4  1

𝐿𝐿𝐼𝐼𝐼𝐼𝑇𝑇

𝐺𝐺𝑍𝑍
−1/4

𝐺𝐺𝐴𝐴
5/8   (69) 

Similar results for the cZ scaling were obtained in the previous study in [15] (Eqs. (10)). It 

should be noted that the scaling for cZ in [15] shows the 𝑓𝑓𝐺𝐺𝑊𝑊  dependence and, for comparison 

with Eq. (69), 𝑓𝑓𝐺𝐺𝑊𝑊  should be replaced by 𝑓𝑓𝐺𝐺𝑊𝑊 = 𝑓𝑓𝐺𝐺𝑊𝑊,𝑠𝑠𝑒𝑒𝑝𝑝 𝑓𝑓𝑠𝑠𝑒𝑒𝑝𝑝. Small differences in the cZ 

scalings can be explained by Matt Reinke’s using the multimachine scaling for the upstream 

heat flux width λ𝑞𝑞 = 1.35 × 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿
−0.02  𝑅𝑅0.04 𝐵𝐵𝜃𝜃

−0.92𝜖𝜖0.42 instead of λ𝑞𝑞
𝐿𝐿𝐻𝐻. In contrast to the 

heuristic drift based model power width scaling (λ𝑞𝑞
𝐿𝐿𝐻𝐻 ∝ 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿

1
8  , 𝐽𝐽𝑞𝑞. 35) as well as to the Eich 

scaling ( λ𝑞𝑞 ∝ 𝑃𝑃𝑆𝑆𝑆𝑆𝐿𝐿
0.1  , 𝐽𝐽𝑞𝑞. 45), this scaling has practically no PSOL dependence. The main 

advantages of the scaling in Eq. (69) is the presence of the isotope mass dependence which 

originates from the scalings 𝑃𝑃𝐿𝐿𝐿𝐿  ∝ 𝐴𝐴−1 and λ𝑞𝑞
𝐿𝐿𝐻𝐻 ∝ 𝐴𝐴7/16. 
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