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Abstract. The hypergeometric solutions of the KZ equations were constructed almost 30
years ago. The polynomial solutions of the KZ equations over the finite field Fp with a prime
number p of elements were constructed recently. In this paper we consider the example of the
KZ equations whose hypergeometric solutions are given by hyperelliptic integrals of genus
g. It is known that in this case the total 2g-dimensional space of holomorphic solutions is
given by the hyperelliptic integrals. We show that the recent construction of the polynomial
solutions over the field Fp in this case gives only a g-dimensional space of solutions, that
is, a ”half” of what the complex analytic construction gives. We also show that all the
constructed polynomial solutions over the field Fp can be obtained by reduction modulo p

of a single distinguished hypergeometric solution. The corresponding formulas involve the
entries of the Cartier-Manin matrix of the hyperelliptic curve.

That situation is analogous to the example of the elliptic integral considered in the clas-
sical Y.I.Manin’s paper in 1961.
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1. Introduction

The hypergeometric solutions of the KZ equations were constructed almost 30 years ago,
see [SV1, SV2]. The polynomial solutions of the KZ equations over the finite field Fp with
a prime number p of elements were constructed recently in [SV3]. In this paper we consider
the example of the KZ equations whose hypergeometric solutions are given by hyperelliptic
integrals of genus g. It is known that in this case the total 2g-dimensional space of holomor-
phic solutions is given by the hyperelliptic integrals. We show that the recent construction
of the polynomial solutions over the field Fp in this case gives only a g-dimensional space of
solutions, that is, a ”half” of what the complex analytic construction gives. We also show
that all the constructed polynomial solutions over the field Fp can be obtained by reduction
modulo p of a single distinguished hypergeometric solution. The corresponding formulas
involve the entries of the Cartier-Manin matrix of the hyperelliptic curve.

That situation is analogous to the example of the elliptic integral considered in the classical
Y.I.Manin’s paper in 1961.

The paper is organized as follows. In Section 2 we describe the KZ equations, and construct
for them two types of solutions: over C and over Fp. In Section 3 we show that the solutions,
constructed over Fp, form a module, denoted by Mg,p, of rank g. In Section 4 useful formulas
on binomial coefficients are collected. In Section 5 a new basis of the module Mg,p is
constructed. In Section 6 the Cartier-Manin matrix of a hyperelliptic curve is defined. In
Section 7 we introduce a distinguished holomorphic solution of the KZ equations, reduce its
Taylor expansion coefficients modulo p and express this reduction in terms of the polynomial
solutions over Fp and entries of the Cartier-Manin matrix.

The author thanks R.Arnold, F.Beukers, N.Katz, V. Schechtman, J. Stienstra, Y. Zarhin,
and W.Zudilin for useful discussions. The author thanks MPI in Bonn for hospitality in
May-June 2018 when this work had been finished.

2. KZ equations

2.1. Description of equations. Let g be a simple Lie algebra over the field C, Ω ∈ g⊗2

the Casimir element corresponding to an invariant scalar product on g, V1, . . . , Vn finite-
dimensional irreducible g-modules.

The system of KZ equations with parameter κ ∈ C× on a⊗n
i=1Vi-valued function I(z1, . . . , zn)

is the system of the differential equations

∂I

∂zi
=

1

κ

∑

j 6=i

Ω(i,j)

zi − zj
I, i = 1, . . . , n,(2.1)
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where Ω(i,j) is the Casimir element acting in the i-th and j-th factors, see [KZ, EFK]. The KZ
differential equations commute with the action of g on ⊗n

i=1Vi, in particular, they preserve
the subspaces of singular vectors of given weight.

In [SV1, SV2] the KZ equations restricted to the subspace of singular vectors of given
weight were identified with a suitable Gauss-Manin differential equations and the corre-
sponding solutions of the KZ equations were presented as multidimensional hypergeometric
integrals.

Let p be a prime number and Fp the field with p elements. Let gp be the same Lie algebra
considered over Fp. Let V p

1 , . . . , V
p
n be the gp-modules which are reductions modulo p of

V1, . . . , Vn, respectively. If κ is an integer and p large enough with respect to κ, then one can
look for solutions I(z1, . . . , zn) of the KZ equations in ⊗n

i=1V
p
i ⊗Fp[z1, . . . , zn]. Such solutions

were constructed in [SV3].
In this paper we address two questions:

A. What is the number of independent solutions constructed in [SV3] for given Fp?
B. How are those solutions related to the solutions over C, that are given by hypergeo-

metric integrals?

We answer these question in the example in which the hypergeometric solutions are presented
by hyperelliptic integrals.

The object of our study is the following systems of equations. For a positive integer g
and z = (z1, . . . , z2g+1) ∈ C2g+1, we study the column vectors I(z) = (I1(z), . . . , I2g+1(z))
satisfying the system of differential and algebraic linear equations:

∂I

∂zi
=

1

2

∑

j 6=i

Ω(i,j)

zi − zj
I, i = 1, . . . , 2g + 1, I1(z) + · · ·+ I2g+1(z) = 0,(2.2)

where

Ω(i,j) =

















...
i ...

j

i · · · −1 · · · 1 · · ·
...

...
j · · · 1 · · · −1 · · ·

...
...

















,

and all other entries equal zero.
The system of equations (2.2) is the system of the KZ differential equations with parameter

κ = 2 associated with the Lie algebra sl2 and the subspace of singular vectors of weight 2g−1
of the tensor power (C2)⊗(2g+1) of two-dimensional irreducible sl2-modules, up to a gauge
transformation, see this example in [V2, Section 1.1].

2.2. Solutions of (2.2) over C. Consider the master function

Φ(t, z1, . . . , z2g+1) =

2g+1
∏

a=1

(t− za)
−1/2(2.3)

and the 2g + 1-vector of hyperelliptic integrals

I(γ)(z) = (I1(z), . . . , I2g+1(z)),(2.4)
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where

Ij =

∫

Φ(t, z1, . . . , z2g+1)
dt

t− zj
, j = 1, . . . , 2g + 1.(2.5)

The integrals are over an element γ of the first homology group γ of the hyperelliptic curve
with equation

y2 = (t− z1) . . . (t− z2g+1).

Starting from such γ, chosen for given {z1, . . . , z2g+1}, the vector I(γ)(z) can be analytically
continued as a multivalued holomorphic function of z to the complement in Cn to the union
of the diagonal hyperplanes zi = zj .

Theorem 2.1. The vector I(γ)(z) satisfies the KZ equations (2.2).

Theorem 2.1 is a classical statement probably known in the 19th century. Much more
general algebraic and differential equations satisfied by analogous multidimensional hyper-
geometric integrals were considered in [SV1, SV2]. Theorem 2.1 is discussed as an example
in [V2, Section 1.1].

Theorem 2.2 ([V1, Formula (1.3)]). All solutions of the KZ equations (2.2) have this form.
Namely, the complex vector space of solutions of the form (2.4) is 2g-dimensional.

This theorem follows from the determinant formula for multidimensional hypergeometric
integrals in [V1], in particular, from [V1, Formula (1.3)].

2.3. Solutions of KZ equations (2.2) over Fp. We always assume that the prime number
p satisfies the inequality

p > 2g + 1.(2.6)

Define the master polynomial

Φp(t, z1, . . . , z2g+1) =

2g+1
∏

a=1

(t− za)
(p−1)/2 ∈ Fp[t, z](2.7)

and the 2g + 1-vector of polynomials

P (z) = (P1(t, z), . . . , P2g+1(t, z)), Pj(t, z) =
1

t− zj
Φp(t, z1, . . . , z2g+1).(2.8)

Consider the Taylor expansion

P (t, z) =
∑(p−1)/2+gp−g−1

i=0
P i(z)ti, P i(z) = (P i

1(z), . . . , P
i
2g+1(z)),(2.9)

with P i
j (z) ∈ Fp[z].

Theorem 2.3 ([SV3]). For every positive integer l, the vector P lp−1(z) satisfies the KZ
equations (2.2).

This statement is a particular case of [SV3, Theorem 2.4]. Cf. Theorem 2.3 with [K].
Theorem 2.3 gives exactly g solutions P p−1(z), . . . , P gp−1(z). We denote

Im(z) = (Im1 (z), . . . , Im2g+1(z)),
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where

Im(z) := P (g−m)p−1(z), m = 0, . . . , g − 1.(2.10)

3. Linear independence of solutions Im(z)

Denote Fp[z
p] := Fp[z

p
1 , . . . , z

p
2g+1]. The set of all solutions I(z) ∈ Fp[z]

2g+1 of the KZ

equations (2.2) is a module over the ring Fp[z
p] since equations (2.2) are linear and

∂zpi
∂zj

= 0

in Fp[z] for all i, j. Denote by

Mg,p =
{

g−1
∑

m=0

cm(z)I
m(z) | cm(z) ∈ Fp[z

p]
}

,

the Fp[z
p]-module generated by Im(z), m = 0, . . . , g − 1.

Theorem 3.1. Let p > 2g+1. The solutions Im(z), m = 0, . . . , g−1, are linear independent

over the ring Fp[z
p], that is, if

∑g−1
m=0 cm(z)I

m(z) = 0 for some cm(z) ∈ Fp[z
p], then cm(z) = 0

for all m.

Proof. Form = 0, . . . , g−1, the coordinates of the vector Im(z) are homogeneous polynomials
in z of degree (p− 1)/2 +mp− g and

Imj (z) =
∑

Imj;ℓ1,...,ℓ2g+1
zℓ11 . . . z

ℓ2g+1

2g+1 ,

where the sum is over the elements of the set

Γm
j = {(ℓ1, . . . , ℓ2g+1) ∈ Z

2g+1
>0 |

2g+1
∑

i=1

ℓj = (p− 1)/2 +mp− g,

0 6 ℓj 6 (p− 3)/2, 0 6 ℓi 6 (p− 1)/2 for i 6= j}

and

Imj;ℓ1,...,ℓ2g+1
= (−1)(p−1)/2+mp−g

(

(p− 3)/2

ℓj

)

∏

i 6=j

(

(p− 1)/2

ℓi

)

∈ Fp.

Notice that all coefficients Imj;ℓ1,...,ℓ2g+1
are nonzero. Hence each solution Im(z) is nonzero.

We show that already the first coordinates Im1 (z), m = 0, . . . , g−1, are linear independent
over the ring Fp[z].

Let Γ̄m
1 ⊂ F2g+1

p be the image of the set Γm
1 under the natural projection Z2g+1 → F2g+1

p .

The points of Γ̄m
1 are in bijective correspondence with the points of Γm

1 . Any two sets Γ̄m
1 and

Γ̄m′

1 do not intersect, if m 6= m′. (The sets Γ̄m
1 are analogs in F2g+1

p of the Newton polytopes
of the polynomials Im1 (z).)

For any m and any nonzero polynomial cm(z) ∈ Fp[z
p
1 , . . . , z

p
2g+1], consider the nonzero

polynomial cm(z)I
m
1 (z) ∈ Fp[z1, . . . , z2g+1] and the set Γm

1,cm of points ℓ ∈ Z2g+1 such that

the monomial zℓ11 . . . z
ℓ2g+1

2g+1 enters cm(z)I
m
1 (z) with nonzero coefficient. Then the natural

projection of Γm
1,cm to F2g+1

p coincides with Γ̄m
1 . Hence the polynomials Im1 (z), m = 0, . . . , g−1,

are linear independent over the ring Fp[z
p]. �
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4. Binomial coefficients modulo p

In this section we collect useful formulas on binomial coefficients.

4.1. Lucas’s theorem.

Theorem 4.1 ([L]). For non-negative integers m and n and a prime p, the following con-
gruence relation holds:

(

m

n

)

≡

k
∏

i=0

(

mi

ni

)

(mod p),(4.1)

where m = mkp
k + mk−1p

k−1 + · · · +m1p + m0 and n = nkp
k + nk−1p

k−1 + · · · + n1p + n0

are the base p expansions of m and n respectively. This uses the convention that
(

m
n

)

= 0 if
m < n. �

Lemma 4.2. For a ∈ Z>0, we have
(

2a

a

)

6≡ 0 (mod p)

if and only if the base p expansion of a = a0 + a1p+ a2p
2 + · · ·+ akp

k has the property:

ai 6
p− 1

2
for i = 0, . . . , k.

In that case

(

2a

a

)

≡

k
∏

i=0

(

2ai
ai

)

(mod p).(4.2)

The lemma is a corollary of Lucas’s theorem.

4.2. Useful identities. For 0 6 k 6 (p− 3)/2, we have

(

(p− 3)/2

k

)

=

(

(p− 1)/2

k

)

(p− 3)/2− k + 1

(p− 1)/2
=

(

(p− 1)/2

k

)

p− 2k − 1

p− 1
(4.3)

≡

(

(p− 1)/2

k

)

(2k + 1) (mod p),

for 0 6 k 6 (p− 1)/2

(

(p− 3)/2

k − 1

)

=

(

(p− 1)/2

k

)

k

(p− 1)/2
=

(

(p− 1)/2

k

)

2k

p− 1
(4.4)

≡

(

(p− 1)/2

k

)

(−2k) (mod p).
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For a positive integer k,
(

−1/2

k

)

=
(−1/2)(−1/2− 1) · · · (−1/2− (k − 2))(−1/2− (k − 1))

k!
(4.5)

= (−2)−k 1 · 3 · 5 · ... · (2k − 1)

k!
= (−1)k2−k (2k)!/(2 · 4 · 6 · 8 · ... · 2k)

k!

= (−1)k2−k (2k)!/(2
kk!)

k!
= (−4)k

(

2k

k

)

,

for 0 6 k 6 (p− 1)/2
(

(p− 1)/2

k

)

≡ (−4)−k

(

2k

k

)

(mod p).(4.6)

5. Solutions Jm(z)

5.1. Sets ∆r
s. We introduce sets that are used later. For r = 0, . . . , g − 1, s = 0, . . . , g,

define

∆r
s = {(ℓ3, . . . , ℓ2g+1) ∈ Z

2g−1
>0 | 0 6

2g+1
∑

i=3

ℓi + s− rp 6 (p− 1)/2, ℓi 6 (p− 1)/2}.(5.1)

5.2. Definition. Introduce the vectors Jm(z) ∈ Fp[z]
2g+1, m = 0, . . . , g − 1, by the formula

Jm(z) =
m
∑

l=0

Im−l(z)zlp1

(

g −m− 1 + l

g −m− 1

)

,(5.2)

that is,

J0(z) = I0(z),

J1(z) = I0(z)zp1

(

g − 1

g − 2

)

+ I1(z),

J2(z) = I0(z)z2p1

(

g − 1

g − 3

)

+ I1(z)zp1

(

g − 2

g − 3

)

+ I2(z),

and so on.

Lemma 5.1. For m = 0, . . . , g − 1, the vector Jm(z) is a solution of the KZ equations
(2.2). Moreover, the Fp[z

p]-module spanned by Jm(z), m = 0, . . . , g − 1, coincides with the
Fp[z

p]-module Mg,p spanned by Im(z), m = 0, . . . , g − 1. �

For the vector P (t, z) in (2.9), consider the Taylor expansion

P (t+ z1, z) =
∑(p−1)/2+gp−g−1

i=0
P̃ i(z)ti.(5.3)

Lemma 5.2. For m = 0, . . . , g − 1, we have

Jm(z) = P̃ (g−m)p−1(z),(5.4)

cf. formula (2.10).
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Proof. We have P (t, z) =
∑(p−1)/2+gp−g−1

i=0 P i(z)ti, hence

P (t+ z1, z) =
∑(p−1)/2+gp−g−1

i=0
P i(z)(t + z1)

i =
∑(p−1)/2+gp−g−1

i=0
P i(z)

i
∑

j=0

(

i

j

)

tjzi−j
1 .

If p 6 |(i+ 1), then
(

i
(m−g)p−1

)

≡ 0 (mod p) by Lucas’s theorem. Hence

P̃ (g−m)p−1(z) = P (g−m)p−1(z)

(

(g −m)p− 1

(g −m)p− 1

)

+ P (g−m+1)p−1(z)zp1

(

(g −m+ 1)p− 1

(g −m)p− 1

)

+ P (g−m+2)p−1(z)z2p1

(

(g −m+ 2)p− 1

(g −m)p− 1

)

+ . . .

= Im(z) + Im−1(z)zp1

(

g −m

g −m− 1

)

+ Im−2(z)z2p1

(

g −m+ 1

g −m− 1

)

+ . . . ,

where the last equality holds also by Lucas’s theorem. This gives the lemma. �

5.3. Formula for Jm(z). Denote

λj =
zj − z1
z2 − z1

, j = 1, . . . , 2g + 1.(5.5)

Theorem 5.3. For m = 0, . . . , g − 1, we have

Jm(z) = (z2 − z1)
(p−1)/2+mp−gKm(λ),(5.6)

where

Km(λ) =
∑

ℓ∈∆m
g

Km
ℓ (λ),(5.7)

∆m
j is defined in (5.1), and

Km
ℓ (λ) = (−1)(p−1)/2+mp−g

(

(p− 1)/2
∑2g+1

i=3 ℓi + g −mp

)

∏2g+1

i=2

(

(p− 1)/2

ℓi

)

λℓ3
s . . . λ

ℓ2g+1

2g+1(5.8)

× (1,−2

2g+1
∑

i=3

ℓi − 2g, 2ℓ3 + 1, . . . , 2ℓ2g+1 + 1).

Using (4.6) we may rewrite formula (5.8) as

Km
ℓ (λ) = (−1)(p−1)/24−2

∑2g+1

i=3
ℓi−g+mp(5.9)

×

(

2
∑2g+1

i=3 ℓi + 2g − 2mp
∑2g+1

i=3 ℓi + g −mp

)

∏2g+1

i=2

(

2ℓi
ℓi

)

λℓ3
s . . . λ

ℓ2g+1

2g+1

× (1,−2

2g+1
∑

i=3

ℓi − 2g, 2ℓ3 + 1, . . . , 2ℓ2g+1 + 1).

Proof. We have

P ((z2 − z1)x+ z1, z) = (z2 − z1)
(p−1)/2+gp−g−1

× x(p−1)/2(x− 1)(p−1)/2

2g+1
∏

j=3

(x− λj)
(p−1)/2

(1

x
,

1

x− 1
,

1

x− λ3
, . . . ,

1

x− λ2g+1

)
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and

P ((z2 − z1)x+ z1, z) =
∑(p−1)/2+gp−g−1

i=0
P̃ i(z)(z2 − z1)

ixi.

Hence Jm(z) = P̃ (g−m)p−1(z) equals the coefficient of x(g−m)p−1 in

x(p−1)/2(x− 1)(p−1)/2

2g+1
∏

j=3

(x− λj)
(p−1)/2

(1

x
,

1

x− 1
,

1

x− λ3
, . . . ,

1

x− λ2g+1

)

(5.10)

multiplied by (z2 − z1)
(p−1)/2+mp−g. We have

(z2 − z1)
−(p−1)/2−mp+gJm

1 (z) =

(−1)(p−1)/2+mp−g
∑

(

(p− 1)/2

ℓ2

)

. . .

(

(p− 1)/2

ℓ2g+1

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 ,

where the sum is over the set

∆ = {(ℓ2, . . . , ℓ2g+1) ∈ Z
2g
>0 |

2g+1
∑

i=2

ℓi = mp− g + (p− 1)/2,

ℓj 6 (p− 1)/2, j = 2, . . . , 2g + 1}.

Expressing ℓ2 from the conditions defining ∆ we write

(z2 − z1)
−(p−1)/2−mp+gJm

1 (z) = (−1)(p−1)/2+mp−g

×
∑

(

(p− 1)/2
∑2g+1

i=3 ℓi + g −mp

)(

(p− 1)/2

ℓ3

)

. . .

(

(p− 1)/2

ℓ2g+1

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 ,

where the sum is over the set

∆m
g = {(ℓ3, . . . , ℓ2g+1) ∈ Z

2g−1
>0 | 0 6

2g+1
∑

i=3

ℓi + g −mp 6 (p− 1)/2,

ℓi 6 (p− 1)/2, i = 3, . . . , 2g + 1}.

Similarly we have

(z2 − z1)
−(p−1)/2−mp+gJm

2 (z) = (−1)(p−1)/2+mp−g

×
∑

(

(p− 3)/2

ℓ2

)(

(p− 1)/2

ℓ3

)

. . .

(

(p− 1)/2

ℓ2g+1

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 ,

where the sum is over the set

∆′ = {(ℓ2, . . . , ℓ2g+1) ∈ Z
2g
>0 |

2g+1
∑

i=2

ℓi = mp− g + (p− 1)/2,

ℓ2 6 (p− 3)/2 and ℓi 6 (p− 1)/2 for i > 2}.

Expressing ℓ2 from the conditions defining ∆′ we write

(z2 − z1)
−(p−1)/2−mp+gJm

2 (z) = (−1)(p−1)/2+mp−g

×
∑

(

(p− 3)/2
∑2g+1

i=3 ℓi + g −mp− 1

)(

(p− 1)/2

ℓ3

)

. . .

(

(p− 1)/2

ℓ2g+1

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 ,
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where the sum is over the set

∆′′ = {(ℓ3, . . . , ℓ2g+1) ∈ Z
2g−1
>0 | 0 6

2g+1
∑

i=3

ℓi + g −mp− 1 6 (p− 3)/2,

ℓj 6 (p− 1)/2, j = 3, . . . , 2g + 1}.

For j = 3, . . . , 2g + 1, we have

(z2 − z1)
−(p−1)/2−mp+gJm

j (z) = (−1)(p−1)/2+mp−g

×
∑

(

(p− 3)/2

ℓj

)

∏2g+1

i=2, i 6=j

(

(p− 1)/2

ℓi

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 ,

where the sum is over the set

∆′′′ = {(ℓ2, . . . , ℓ2g+1) ∈ Z
2g
>0 |

2g+1
∑

i=2

ℓi = mp− g + (p− 1)/2,

ℓj 6 (p− 3)/2 and ℓi 6 (p− 1)/2, i 6= j}.

Expressing ℓ2 from the conditions defining ∆′′′ we write

(z2 − z1)
−(p−1)/2−mp+gJm

j (z) = (−1)(p−1)/2+mp−g

×
∑

(

(p− 1)/2
∑2g+1

i=3 ℓi + g −mp

)(

(p− 3)/2

ℓj

)

∏2g+1

i=2, i 6=j

(

(p− 1)/2

ℓi

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 ,

where the sum is over the set

∆̄′′′′ = {(ℓ3, . . . , ℓ2g+1) ∈ Z
2g−1
>0 | 0 6

2g+1
∑

i=3

ℓi + g −mp 6 (p− 1)/2,

ℓj 6 (p− 3)/2 and ℓi 6 (p− 1)/2, i 6= j}.

Using identities (4.3), (4.4) we may rewrite Jm
j (z), j = 2, . . . , 2g + 1, in the form indicated

in the theorem. �

6. Cartier-Manin matrix

Consider the hyperelliptic curve X with equation

y2 = x(x− 1)(x− λ3) . . . (x− λ2g+1),

where λ3, . . . , λ2g+1 ∈ Fp, while, in the previous section, λ3, . . . , λ2g+1 were rational functions
in z, see fromula (5.5).

Following [AH] define the g × g Cartier-Manin matrix C(λ) = (Cr
s (λ))

g−1
s,r=0 of that curve.

Namely, for s = 0, . . . , g − 1, expand

xg−s−1
(

x(x− 1)(x− λ3) . . . (t− λ2g+1)
)(p−1)/2

=
∑

k
Qk

sx
k

with Qk
j ∈ Fp and set

Cr
s (λ) := Q(g−r)p−1

s , r = 0, . . . , g − 1.(6.1)
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The Cartier-Manin matrix represents the action of the Cartier operator on the space of
holomorphic differentials of the hyperelliptic curve. That operator is dual to the Frobenius
operator on the cohomology group H1(X,OX), see for example, [AH].

Lemma 6.1. We have

Cr
s (λ) =

∑

ℓ∈∆r
s

Cr
s; ℓ(λ),(6.2)

where ∆r
s is defined in (5.1) and

Cr
s; ℓ(λ) = (−1)(p−1)/2+rp−s

(

(p− 1)/2
∑2g+1

i=3 ℓi + s− rp

) 2g+1
∏

i=3

(

(p− 1)/2

ℓi

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 .(6.3)

�

The lemma is proved by straightforward calculation similar to the proof of Theorem 5.3.
We may rewrite (6.3) as

Cr
s; ℓ(λ) = (−1)(p−1)/24−2

∑2g+1

i=3
ℓi−s+rp(6.4)

×

(

2
∑2g+1

i=3 ℓi + 2s− 2rp
∑2g+1

i=3 ℓi + s− rp

) 2g+1
∏

i=3

(

2ℓi
ℓi

)

λℓ3
3 . . . λ

ℓ2g+1

2g+1 .

7. Comparison of solutions over C and Fp

Now we will

(1) distinguish one holomorphic solution of the KZ equations,
(2) expand it into the Taylor series,
(3) for any p > 2g + 1 reduce this Taylor expansion modulo p,
(4) observe in that reduction of the Taylor expansion all polynomial solutions, that we

have constructed and nothing more.

7.1. Distinguished holomorphic solution. Recall that holomorphic solutions of our KZ
equations have the form I(z) = (I1(z), . . . , I2g+1(z)), where

Ij(z) =

∫

γ

dt
√

(t− z1) . . . (t− z2g+1)

1

t− zj

and γ is an oriented curve on the hyperelliptic curve with equation y2 = (t−z1) . . . (t−z2g+1).
Assume that z3, . . . , z2g+1 are closer to z1 than to z2:

∣

∣

∣

zj − z1
z2 − z1

∣

∣

∣
<

1

2
, j = 3, . . . , 2g + 1.

Choose γ to be the circle
{

t ∈ C |
∣

∣

t−z1
z2−z1

∣

∣ = 1
2

}

oriented counter-clockwise, and multiply the

vector I(z) by the normalization constant 1/2π.
We call this solution I(z) the distinguished solution.
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7.2. Rescaling. Change variables and write

I(z1, . . . , z2g+1) = (z2 − z1)
−1/2−gL(λ3, . . . , λ2g+1),(7.1)

where

(λ3, . . . , λ2g+1) =
(z3 − z1
z2 − z1

, . . . ,
z2g+1 − z1
z2 − z1

)

,

L(λ) = (L1, . . . , L2g+1),

Lj =
−1

2π

∫

|x|=1/2

dx
√

x(x− 1)(x− λ3) . . . (x− λ2g+1)

1

x− λj
,

and we set 1
x−λ1

:= 1
x
, 1

x−λ2
:= 1

x−1
.

The function L(λ) is holomorphic at the point λ = 0. Hence

L(λ) =
∑

(k3,...,k2g+1)∈Z
2g−1

>0

Lk3,...,k2g+1
λk3
3 . . . λ

k2g+1

2g+1 ,

where the coefficients lie in Z[1
2
]2g+1. Hence for any p > 2g + 1, this power series can be

projected to a formal power series in Fp[λ]
2g+1.

We relate this power series and the polynomial solutions Jm(z), m = 0, . . . , g − 1, con-
structed earlier.

7.3. Taylor expansion of L(λ).

Lemma 7.1. We have

L(0, . . . , 0) = (−1)g
(

−1/2

g

)

(1,−2g, 1, . . . , 1).(7.2)

Proof. We have −1
2π

= (−1)−1/2

2πi
and

L1(0, . . . , 0) =
(−1)−1/2

2πi

∫

|x|=1/2

(x− 1)−1/2 dx

xg+1
=

1

2πi

∫

|x|=1/2

(1− x)−1/2 dx

xg+1

=
1

2πi

∫

|x|=1/2

∞
∑

k=0

(−1)kxk

(

−1/2

k

)

dx

xg+1
= (−1)g

(

−1/2

g

)

,

L2(0, . . . , 0) =
(−1)−1/2

2πi

∫

|x|=1/2

(x− 1)−3/2dx

xg
= −

1

2πi

∫

|x|=1/2

(1− x)−3/2 dx

xg

= −
1

2πi

∫

|x|=1/2

∞
∑

k=0

(−1)kxk

(

−3/2

k

)

dx

xg
= (−1)g

(

−3/2

g − 1

)

= (−1)g
(

−1/2

g

)

(−2g).

The coordinates Lj(0, . . . , 0) for j > 2 are calculated similarly. �

Lemma 7.2. We have

L(λ) =
∑

(k3,...,k2g+1)∈Z
2g−1

>0

Lk3,...,k2g+1
λk3
3 . . . λ

k2g+1

2g+1 ,(7.3)
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where

Lk3,...,k2g+1
= (−1)g

(

−1/2

k3 + · · ·+ k2g+1 + g

) 2g+1
∏

i=3

(

−1/2

ki

)

(7.4)

×(1,−2k3 − · · · − 2k2g+1 − 2g, 2k3 + 1, . . . , 2k2g+1 + 1).

Proof. The proof is similar to the proof of Lemma 7.1. �

Using formula (4.5) we may reformulate (7.4) as

Lk3,...,k2g+1
= 4−2(k3+···+k2g+1)−g(7.5)

×

(

2(k3 + · · ·+ k2g+1 + g)

k3 + · · ·+ k2g+1 + g

)(

2k3
k3

)

. . .

(

2k2g+1

k2g+1

)

× (1,−2k3 − · · · − 2k2g+1 − 2g, 2k3 + 1, . . . , 2k2g+1 + 1).

7.4. Coefficients, nonzero modulo p. Given (k3, . . . , k2g+1) ∈ Z
2g−1
>0 , let

ki = k0
i + k1

i p+ · · ·+ ka
i p

a, 0 6 kj
i 6 p− 1, i = 3, . . . , 2g + 1,

be the p-ary expansions. Assume that a is such that not all numbers ka
i , i = 3, . . . , 2g + 1,

are equal to zero. By Lemma 4.2, the product
∏2g+1

i=3

(

2ki
ki

)

is not congruent to zero modulo
p if and only if

kj
i 6

p− 1

2
for all i, j.(7.6)

Assume that condition (7.6) holds. Then for any j = 0, . . . , a, we have

2g+1
∑

i=3

kj
i 6 (2g − 1)

p− 1

2
= gp− g −

p− 1

2
< gp.

Define the shift coefficients (m0, . . . , ma+1) as follows. Namely, put m0 = g. We have
∑2g+1

i=3 k0
i + g < gp. Hence there exists a unique integer m1, 0 6 m1 < g, such that

0 6

2g+1
∑

i=3

k0
i + g −m1p < p.

We have
∑2g+1

i=3 k1
i + m1 < gp. Hence there exists a unique integer m2, 0 6 m2 < g, such

that

0 6

2g+1
∑

i=3

k1
i +m1 −m2p < p,

and so on. We have 0 6 mj < g for all j = 1, . . . , a+ 1.
We say that a tuple (k3, . . . , k2g+1) is admissible if it has property (7.6) and its shift

coefficients (m0, . . . , ma+1) satisfy the system of inequalities

2g+1
∑

i=3

kj
i −mj+1p+mj 6

p− 1

2
, j = 0, . . . , a.(7.7)
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Theorem 7.3. We have Lk3,...,k2g+1
6≡ 0 (mod p) if and only if the tuple (k3, . . . , k2g+1) is

admissible. The tuple (k3, . . . , k2g+1) is admissible, if and only if (kj
3, . . . , k

j
2g+1) ∈ ∆

mj+1

mj for
j = 0, . . . , a, where the sets ∆r

s are defined in (5.1). If the tuple (k3, . . . , k2g+1) is admissible,
then modulo p we have

Lk3,...,k2g+1
λk3
3 . . . λ

k2g+1

2g+1 ≡ (−1)a(p−1)/2

(

2ma+1

ma+1

)

(7.8)

×
(

a
∏

j=1

C
mj+1

mj ;k
j
3
,...,kj

2g+1

(λpj

3 , . . . , λpj

2g+1)
)

Km1

k0
3
,...,k0

2g+1

(λ3, . . . , λ2g+1),

where Cr
s; ℓ(λ) are terms of the Cartier-Manin matrix expansion in (6.2) and Km

ℓ (λ) are the
terms of the expansion in (5.6) of the solution Jm(z).

Proof. We have Lk3,...,k2g+1
6≡ 0 (mod p) if and only if each of the binomial coefficients in

(7.5) is not divisible by p. For all i = 3, . . . , 2g + 1, we have
(

2ki
ki

)

6≡ 0 (mod p) if and only if

property (7.6) holds.
The p-ary expansion of k3 + · · ·+ k2g+1 + g is

k3 + · · ·+ k2g+1 + g =
(

2g+1
∑

i=3

k0
i −m1p+ g

)

+
(

2g+1
∑

i=3

k1
i −m2p+m1

)

p+ · · ·+
(

2g+1
∑

i=3

ka
i −ma+1p+ma

)

pa +ma+1p
a+1.

By Lemma 4.2, the binomial coefficient
(

2(k3+···+k2g+1+g)
k3+···+k2g+1+g

)

is not divisible by p if and only if

inequalities (7.7) hold. Thus Lk3,...,k2g+1
6≡ 0 (mod p) if and only if the tuple (k3, . . . , k2g+1)

is admissible.
The statement that the tuple (k3, . . . , k2g+1) is admissible, if and only if (kj

3, . . . , k
j
2g+1) ∈

∆
mj+1

mj for j = 0, . . . , a, follows from the definition of the sets ∆r
s.

The last statement of the theorem is a straightforward corollary of Lucas’s theorem, for-
mulas for Cr

s;ℓ(λ), K
m
ℓ (λ), and the fact that 4kp ≡ 4k (mod p) for any k. �

7.5. Decomposition of L(λ) into the disjoint sum of polynomials. Define a set

M = {(m0, . . . , ma+1) | a ∈ Z>0, m0 = g, mj ∈ Z>0, mj < g for j = 1, . . . , a+ 1}.(7.9)

For any ~m = (m0, . . . , ma+1) ∈ M , define the 2g + 1-vector of polynomial in λ = (λ3, . . . ,
λ2g+1):

K~m(λ) = (−1)a(p−1)/2

(

2ma+1

ma+1

)

(7.10)

×
(

a
∏

j=1

Cmj+1

mj
(λpj

3 , . . . , λpj

2g+1)
)

Km1(λ3, . . . , λ2g+1).

Notice that for ~m, ~m′ ∈ M , ~m 6= ~m′, the set of monomials, entering with nonzero coeffi-
cients the polynomial K~m(λ), does not intersect the set of monomials, entering with nonzero
coefficients the polynomial K~m′(λ).
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Corollary 7.4. We have

L(λ) ≡
∑

~m∈M
K~m(λ) (mod p).(7.11)

Notice that by Lemma 7.2, L(λ) is a power series in λ with coefficients in Z2g+1
[

1
2

]

inde-
pendent of p, while the right-hand side in (7.11) is a formal infinite sum of polynomials in λ
with coefficients in F2g+1

p and with nonintersecting supports.

7.6. Distinguished solution over C and solutions Jm(z) over Fp. Let us compare the
distinguished solution I(z) = (z2 − z1)

−1/2−gL(λ(z)) in (7.1), and the expansion (7.11). For
any ~m = (m0, . . . , ma+1) ∈ M , define

J~m(z) = (z2 − z1)
(p−1)/2−g+ma+1pa+1+(p+···+pa)(p−1)/2K~m

(z3 − z1
z2 − z1

, . . . ,
z2g+1 − z1
z2 − z1

)

.(7.12)

Theorem 7.5. The following statements hold.

(i) For any ~m ∈ M , we have J~m(z) ∈ Fp[z]
2g+1.

(ii) For any ~m ∈ M , the polynomial vector J~m(z) is a solution of the KZ equations (2.2).
(iii) The Fp[z

p]-module spanned by J~m(z), ~m ∈ M , coincides with the Fp[z
p]-module Mg,p

spanned by Im(z), m = 0, . . . , g − 1.

Proof. We have

J~m(z) = (−1)a(p−1)/2

(

2ma+1

ma+1

)

×

a
∏

j=1

(z2 − z1)
((p−1)/2−mj+mj+1p)p

j

Cmj+1

mj

(

(z3 − z1
z2 − z1

)pj
, . . . ,

(z2g+1 − z1
z2 − z1

)pj
)

× (z2 − z1)
(p−1)/2−g+m1pKm1

(z3 − z1
z2 − z1

, . . .
z2g+1 − z1
z2 − z1

)

,

where

(z2 − z1)
(p−1)/2−g+m1pKm1

(z3 − z1
z2 − z1

, . . .
z2g+1 − z1
z2 − z1

)

= Jm1(z)

is a solution of the KZ equations (2.2), see (5.6), and each factor

(z2 − z1)
((p−1)/2−mj+mj+1p)pjCmj+1

mj

(

(z3 − z1
z2 − z1

)pj
, . . . ,

(z2g+1 − z1
z2 − z1

)pj
)

is a polynomial in Fp[z
p]. This proves parts (i-ii) of the theorem. Part (iii) follows from the

identity

K~m=(g,m1)(z) =

(

2m1

m1

)

Jm1(z).

�
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