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We present an algorithm for data-driven identification and reduction of nonlinear cascaded systems with Hammerstein struc-
ture. The proposed algorithm relies on the Loewner framework (LF) which constitutes a non-intrusive algorithm for identifi-
cation and reduction of dynamical systems based on interpolation. We address the following problem: the actuator (control
input) enters a static nonlinear block. Then, this processed signal is used as an input for a linear time-invariant system (LTI).
Additionally, it is considered that the orders of the linear transfer function and of the static nonlinearity are not a priori known.
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1 Introduction

In some engineering applications that deal with the study of dynamical control systems, the control input enters the differential
equations in a nonlinear fashion [5]. It is of interest to identify the hidden nonlinearity while at the same time reduction is
needed for robust simulations and control design [1]. The LF [2–4] constitutes a non-intrusive method that uses only input-
output data. The matrix pencil composed of two Loewner matrices reveals the minimality (in terms of McMillan degree) of
the LTI system. By means of a singular value decomposition (SVD), one can find left and right projection matrices that are
used to construct a low order model.

The Hammerstein system is characterized by two blocks connected in series, where the static nonlinear (memoryless) block
is followed by a linear time-invariant system (LTI) as in Fig. 1. The scalar control input-u(t) is used as an argument to the
static nonlinearity-F and then the signal F(u(t)) passes through a linear time-invariant (LTI) system. The static polynomial
map approximates other non-polynomial maps (Taylor series expansion) s.a. tanh(·), exp(·), etc. The aim is to identify the
cascaded system by estimating the coefficients of the polynomial map ki, i = 1, 2, . . . , n and the hidden LTI system by using
only input-output data (u(t), y(t)) , t ≥ 0.

u(t) F(·) :→ k1(·) + k2(·)2 + . . .+ kn(·)n
input

LTI
F(u(t))

y(t)
output

Fig. 1: The input-output scheme of a cascaded system with a static nonlinear (polynomial) map of nth order followed by an LTI. The
connection describes a Hammerstein nonlinear model.

The steady state output solution can be computed explicitly with the convolution integral1, the impulse response h(t), t ≥ 0
and the linear transfer function H(jω), jω ∈ C of the LTI as:

y(t) =
(
(k1u(t) + k2u

2(t) + . . .+ knu
n(t)) ? h

)
(t) = k1(u ? h)(t) + k2(u

2 ? h)(t) + . . .+ kn(u
n ? h)(t)

= k1

∫ ∞

−∞
h(τ)u(t− τ)dτ + . . .+ kn

∫ ∞

−∞
h(τ)un(t− τ)dτ =

n∑

i=1

ki

∫ ∞

−∞
h(τ)ui(t− τ)dτ. (1)

Let the singleton real input be defined as u(t) = A cos(ωt) = αejωt+αe−jωt with the amplitude α = A/2, the imaginary
unit j, the driving frequency ω > 0 and time t ≥ 0. By substituting the above input in Eq. (1) and by making use of the
binomial theorem, we conclude that:

y(t) =
n∑

i=1

ki

∫ ∞

−∞
h(τ)

(
αejω(t−τ) + αe−jω(t−τ)

)i
dτ =

n∑

i=1

i∑

m=0

kiα
i i!

(i−m)!m!
H(jω(2m− i))ejω(2m−i) (2)
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−∞ f(τ)g(t− τ)dτ
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At frequency ω the `th harmonic is computed by applying the single-sided Fourier transform in Eq. (2) as:

Yω,`(j`ω) = H(j`ω)δ(j`ω)
n∑

`≤i 6=0

kiφi,`, ` = 0, . . . , n,

φi,` =

{
2αi · iC(i+`)/2, (i ≥ `) and (i+ `)(even)

0, (else)
, where nCm =

n!

(n−m)!m!

(3)

2 The Loewner-Hammerstein identification method

As we have computed the total output of the Hammerstein cascaded system, we proceed with the method of determining the
unknowns from input-output data. The symmetry in Eq. (3) allows the cancellation of the unknown contribution of the transfer
function. Thus, we first determine the unknown coefficients ki, and afterwards, we fit the LTI system by means of the LF. For
this purpose, it is important to define the following invariant frequency quantities λp,q .

Definition 2.1 (Frequency invariant quantities)
The Yp,q denotes the qth harmonic at p frequency.

λp,q =
Yp,q
Yq,p

=

∑n
i=p kiφi,p∑n
i=q kiφi,q

, p 6= q. (4)

The entries λp,q are independent of ω.

input \ harmonic 1st 2nd 3rd 4th · · · nth

1ω → N Y1ω,1 Y1ω,2 Y1ω,3 Y1ω,4 · · · Y1ω,n

2ω → N Y2ω,1 Y2ω,2 Y2ω,3 Y2ω,4 · · · Y2ω,n

...
...

...
...

...
. . .

...

nω → N Ynω,1 Ynω,2 Ynω,3 Ynω,4 · · · Ynω,n

The above harmonic map allows the construction of the following linear system. Due to the mixing linearities (i.e. k1u(t)
and (u ? h)(t)), we can fix k1 to an arbitrary value. For p = 1 and q = 2, . . . , n results:




φ21 − λ12φ22 φ31 − λ12φ32 · · · φn1 − λ12φn2

φ21 φ31 − λ13φ32 · · · φn1 − λ13φn3

φ21 φ31 · · · φn1 − λ14φn4

...
...

. . .
...

φ21 φ31 · · · φn1 − λ1nφnn







k2
k3
k4
...
kn


 = −k1φ11




1
1
1
...
1


 , ∀k1 ∈ R \ {0}. (5)

Finally, as we have identify the scaled (k1 arbitrary) coefficient vector k = (k1, k2, . . . , kn), we can transform the above
harmonic map into a measurement map for the linear transfer function as H(j`ω) = Yω,`/

∑n
`≤i 6=0 kiφi,`. The identification

and reduction of the LTI system is done by applying the LF [2–4].

Algorithm 1: Hammerstein identification with the Loewner framework
Input: Apply signals u(t) = α cos(ωit) with driving frequencies ωi, i = 1, . . . , n where n is the maximum nonzero harmonic index.
Output: An identified Hammerstein system.

1 Apply FT and measure U(jωi), Y1st (jωi), Y2nd (2jωi), . . . , Ynth (njωi) from the power spectrum.;
2 Fix k1 to an arbitrary value and determine the scaled coefficient vector k = (k1, k2, . . . , kn) by solving the system in Eq. (5).;
3 Estimate the measurements of the linear transfer function from H(j`ω) = Yω,`/

∑n
`≤i 6=0 kiφi,`. ;

4 Apply the linear Loewner framework for identification and reduction of the LTI.
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Fig. 2: The singular value decay of the
Loewner matrices. σ3/σ1 ∼ 1e− 10.
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Fig. 4: The simulated identified Hammerstein system in
comparison with the original one. ‖y−yr‖∞ ∼ 1e−7.

3 Numerical example
To illustrate the proposed method, we choose the following static nonlinearity as F(·) = e(·) − 1 along with the transfer
function H(jω) = 1/((jω)2 + jω + 1). By exciting the system with u(t) = 2 cos(ωit), ωi = 2π[1, 2, . . . , 10] and with
collecting the steady state snapshots, we perform Fourier transform for each signal and we solve the linear system in Eq. (5)
for n = 10 (Y10th ∼ 1e−10). The solution is k̂ = (1, 0.5, 0.167, 0.0417, 0.0083, 0.0014, 1.9676e−4, 2.4001e−5, 3.1005e−
6, 3.7401e− 7) which constitutes a very good approximation of the Taylor expansion coefficients of the F . Next, we estimate
the linear transfer function with the LF [2–4]. The singular value decay in Fig. 2 allows the assignment of the order r = 2 (dt =
1e− 3). In Fig. 3 for the biased k1 = 1 solution, we show that the identification of the transfer function is accurate. The time
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domain simulation in Fig. 4 is independent of the choice of k1. The large input as u(t) = 2sawtooth(0.1 ·2πt)e−0.01t cos(0.1 ·
2πt) certifies that the method is able to perform well under large inputs for nonlinear Hammerstein systems.
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