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INTRODUCTION

It takes less than half a second to recognize your PI as the person next to the coffee 

machine. Usually it is a fast and effortless task. It starts with an image being projected 

on the retina of the eyes, which in its turn starts the recruitment of a cascade of 

visual regions and ends with us reaching a decision about whom or what we see 

(Figure 1 A). Visual perception, however, is not only influenced by the features (dark 

hair, brown eyes, etc.) that we process and combine together to form a unified 

percept (PI, for example). Prior information or beliefs one might have are known to 

influence visual perception too, and this influence can come in different flavors: 

experience (Figure 1, B), context (Figure 1, C) or cues (Figure 1, D). In the coffee machine 

example, prior information can lead to wrong recognition, for example, if you know 

the PI often hangs out at the coffee machine. If you see someone with those 

features, you tend to expect it is most likely your PI (which could be wrong because 

there might be another person with similar features who is also often at the coffee 

machine).

Figure 1. Bottom-up (A) An image being projected on the retina of the eyes starts recruiting 

a cascade of visual regions and ends with us reaching a decision about whom or what we see. 

Top-down (B-D) visual perception. Influences of prior information on perception: B) Experience 

effects: If you look at the picture, it is far easier to notice a dalmatian there if you have lots of 

experience with dogs. C) Context effects: depending if you pay attention to the letters (A, C) 

or the numbers (12, 14) you will perceive the middle symbols as a letter (B) or a number (13). 

D) Cue effects: You are faster and more accurate to decide about the direction of the dot 

motion if the word describing the direction of the moving dots (“rise”) corresponds with the 

direction of the moving dots (most of the dots moving up-wards).

rise

PiaiA

C

B

D
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For humans, words are important cues that we use for many reasons, and making 

things more clear is one of them. A simple instruction such as “now you will see a 

picture of a dalmatian” will help you to decide what you are about to see is (most 

likely) a dalmatian. Even if the things we see are not ambiguous or hard to perceive, 

words help us notice these things on time. For example, when seeing the road sign 

“Slow traffic ahead”/ “Fresh oil” (Figure 2) one is more likely to pay attention to the 

road, so she or he can make better decisions.  

What does it mean, we make better decisions? On the road it means we are faster 

to notice potentially dangerous things (slippery road) and react appropriately (not 

make any sudden moves). In other words, we process information faster and more 

efficiently. How can we get insight in how information is processed by looking only 

at reaction times and choice responses? And how does our brain compute the 

visual decisions affected by words? These are some of the questions that I address 

in this thesis. 

Sometimes words can serve not as attention pointers, like in the situation with the 

traffic signs, but as attention templates where we have to match the meaning of the 

word to the meaning of an image. Imagine, for example, that you are following a 

recipe and you have to pick a witlof, ignoring, for example, an avocado. It is a 

common finding that targets with semantically related words (we read “witlof”, see 

an avocado, and have to pass on the avocado, because it is obviously not a witlof) 

would take us more time to process in comparison to the targets with semantically 

unrelated words (we search for a spoon, see an avocado, and have to pass on the 

avocado because it is not a spoon). To succeed in this task, we have to resolve 

semantically similar representations. In this thesis I also examine a potential 

computational mechanism of an attention-template type of effect, relating it to the 

controlled semantic cognition framework (see further below). 

Figure 2. Road signs as an example of how words can affect our behavior.
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First, I will introduce visual perceptual decision making as a concept, capitalizing on 

one of the most influential computational frameworks of decision making – the 

drift diffusion model (DDM). Afterwards, I will illustrate how this approach can shed 

light on the mechanism of language based decision making, using behavioral and 

neuroimaging experiments.

Perceptual decision making

Perceptual decision making refers to the process of choosing an option based on 

available sensory evidence (see Figure 3 A). Visual categorization can be considered 

as a specific case of perceptual decision making: we refer to it as the ability to 

assign sensory stimuli to discrete groups that are behaviorally relevant (Freedman & 

Assad, 2016). For an example of visual categorization see Figure 3 B. 

Figure 3. A) While presented with the display where the dots move to the left or right, the 

person decides about the direction of the movement (left or right). Depending on the 

coherency of the movement, the decision about it can be easy (for example if the majority of 

the dots are moving right, it is easier to decide that they move to the right) or difficult (for 

example if it is not obvious that he majority of the dots is moving right, it is more difficult to 

decide that the dots move to the right). B) When one perceives a woman or a man when 

looking at the person’s face, she or he performs a binary decision, i.e., she or he decides 

whether the person is a man or a woman based on the visual features.

“Right”

“Are the dots moving 
upwards or downwards?”

“Man”

“Is it a man or 
  a woman?”

“Woman”

A B
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Regardless of what we decide about (low-level percepts such as the direction of 

the dot motion or more high-level perception such as the category of an animal), 

the process of perceptual decision making can be described as a sequence of 

processing stages (sensory, decision formation and motor execution) that unfolds 

over time (Figure 4).

Well-known theories of decision making, such as Signal Detection Theory or 

Probabilistic Population Codes [BOX1], are focused on describing the decision 

formation phase (red square in Figure 4) in the decision making process. Therefore 

the contributions of the sensory and motor systems are disregarded.

 
[BOX 1] Signal Detection Theory or Probabilistic Population Codes 

Signal detection theory (SDT) describes at which point we are able to detect a 

signal in the environment in terms of stimulus intensity and decision threshold 

placement. Let’s consider an example where we describe a process of recognizing 

your PI via a signal detection framework (i.e., PI is a “signal”). When seeing a 

person next to the coffee machine with her back to you, it is not clear whether 

she is your PI. There might be different scenarios: it can indeed be your PI and 

you correctly greet her: «Hi, Vitoria!1» (that is a hit!). It can be that it was Vitoria 

but you are deeply focused on your own thinking and say nothing (that is a 

miss!). It can be that it is not Vitoria, and you say «Hi, Vitoria!» (it is a false alarm!).  

It can be that it is not Vitoria and you asocially say nothing (that’s a correct rejection).  

1 Vitoria Piai is the PI in the “Language Function and Dysfunction” lab at the Donders Institute. She never 

hangs out at the coffee machine, so it is unlikely to develop this prior about her.  

Figure 4. Decision making as a process. When we are presented with a cloud of randomly 

moving dots, first, we encode sensory information, then make up our mind about this 

information, and finally respond.

Stimulus Sensory processing Decision Motor response
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Each choice (saying hi/not saying hi) gives rise to a normal distribution over 

many trials, i.e., multiple meetings at the coffee machine, and I give a response 

based on a strategy and strength of visual information (i.e., evidence). For example, 

I can say «Hi Vitoria» to all people remotely resembling Vitoria (liberal strategy), 

or I could greet her only when I am very sure it is her (conservative strategy). 

Decision strategies are defined in terms of a decision threshold, i.e., criterion. 

Setting it high would mean I adopt a conservative behavior, conversely a low 

threshold would mean I adopt a more liberal behavior. Regardless of the strategy, 

it can be just easy to notice Vitoria due to some circumstances like weather 

conditions or good light in the hallway (good quality of visual information results 

in larger perceptual sensitivity) as opposed to situations when it is hard to notice 

her (poor quality of visual information results in lower perceptual sensitivity index). 

The process of making a decision is therefore a process of estimating the 

intensity of the stimulus and placing the criterion at a certain place in the 

distribution. To sum up, Signal Detection Theory (see Table 1) describes decision 

making in terms of behavioral strategies that are useful for performance. STD 

however is not a model of cognition, which means that its parameters do not 

reflect aspects of cognition.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1   Brief illustration of Signal Detection Theory vs. Probabilistic 

Population Codes approach to representing decisions..

Signal Detection
Theory

2-choice 
decisions

-bias (c)

-  perceptual 
sensitivity 
(d’)

Probabilistic 
Population Code

Continuous 
Quantity 
decisions

Full 
distribution

The picture illustrating probabilistic population code is taken from (Ma, Beck, Latham, & Pouget, 2006)
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Probabilistic population codes (see Table 1) assume that a population of neurons 

produces a neural response that represents the probability of occurrence of a 

certain event (e.g., orientation of a grating, speed of a moving dot or the odds of 

seeing your PI). From this point of view, our choices are probabilistic decisions 

that are dependent on our previous experiences and current context. The process  

of making a decision is therefore an act of probabilistic inference. I keep this 

information here brief in order to highlight the differences between probabilistic 

and sequential inference. 

The work on this thesis used sequential stochastic evidence accumulation as a 

computational framework.

In contrast, the drift diffusion model (DDM) [BOX 2] formalizes sensory processing 

and motor response (described as non-decision component) and factors them out 

from the process of the decision formation phase. While it is true that in the DDM it 

is not possible to disentangle motor vs. sensory contributions, the advantage of this 

model is the ability to disentangle decision vs. non-decision components, which 

makes the process of decision formation less contaminated by the processes of 

motor execution and stimulus encoding. DDM is a well-known tool in the field of 

decision making when it comes to quantifying force-choice binary tasks. In the 

field of language, this is quite an avant-garde approach, the pros and cons of which 

I discuss in behavioral (Chapter 2), neuroimaging (Chapter 3, 4) and neuropsycho-

logical (Chapter 5) studies.

 
[Box 2] Drift diffusion model

The mystery and challenge of the human mind is that its cognitive processes 

cannot be directly observed. We have to take indirect measures of latent 

processes such as attentional focus or memory formation. Traditionally, human 

behavior is measured via reaction time (RT) and percentage of correct responses, 

which were measures originally developed for studying the speed of mental 

processes (Franciscus Donders) and the effects of physical magnitudes of stimuli 

along with the sensations they produce (Gustav Fechner). Using only simple 

behavioral measures (RTs and correct responses) we cannot make inferences 

about specific cognitive processes that underlie human behavior. To address 

that, one needs to consider that certain behaviors can be the result of several 

cognitive processes and nuisance processes. In other words, the task has to be 
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represented by characterizing every relevant cognitive process, which in turn 

requires the use of cognitive process models (Forstmann & Wagenmakers, 2015). 

Models of cognitive processes quantify psychological processes in terms of 

parametric descriptors. Behavioral data (RTs and responses) is used to estimate 

the parameters of the model, which allow inferences on the hidden (i.e., latent) 

psychological processes that underlie the task. The work presented in this thesis 

relies heavily on cognitive modeling, specifically on one particular family of 

models – the Drift Diffusion Model (DDM, for review see Ratcliff & McKoon, 

2008; Smith & Ratcliff, 2004; Usher & McClelland, 2001). In DDM, the process of 

making a decision is described as a stochastic accumulation of evidence towards 

a response. The parameters of the DDM model that characterize this process 

are: decision threshold, drift rate, starting point and non-decision time (see 

Figure 5). Each of them bears cognitive interpretability, which has been shown in 

both human and animal research (for review see Mulder, van Maanen, & 

Forstmann, 2014; Ratcliff & McKoon, 2008). A simple process of deciding 

whether the dots are moving to the left or right can be described in terms of the 

factors that underlie the performance: (1) the features of the stimuli have to be 

encoded (the perceptual machinery can take varying time to do so); (2) the 

perceptual evidence has to be accumulated efficiently enough; (3) the decision 

threshold level has to be set appropriately for a task; (4) the motor response is 

executed after a decision has been made. Here, I clarify certain assumptions of 

the model. First, the model assumes a certain sequence of decision making 

phases: encoding (I), evidence accumulation (II), motor execution (III). Second, 

the model does not differentiate the nature of the non-decisional component: 

encoding (I) and motor execution stages (III) are agnostic to the model, which is 

reasonably reflected in the name of the parameter “non-decisional” component.  

 

Hierarchical drift diffusion model
In this thesis I use a hierarchical variant of Drift diffusion model, HDDM (Wiecki, 

Sofer, & Frank, 2013). The hierarchical model allows estimating parameters at 

both individual and group level by assuming that participants within each group 

are similar but not identical to each other. This approach is conceptually different 

from the traditional approach, where psychological models are fit separately to 

each individual (assuming that subjects are completely independent of each 

other) or to the group (assuming participants are all the same). Traditional 

approaches are suboptimal because they fail to either capture differences 

between the subjects or miss out on statistical strength. In HDDM subjects are 

considered to be drawn from the group distribution, which flexibly constrains 

the individual parameters within the group (see Figure 6). This results in HDDM 
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requiring less data per subject and condition to estimate the model in comparison to 

non-hierarchical methods. This is an essential feature for studies where collecting 

hundreds of trials is not feasible, both in clinical settings (such as Chapter 5, where 

patients are involved), and in the lab settings where experimental time is limited. 

Graphical nodes are distributed as follows: μa ~ G (1.5, 0.75), σa ~ HN (0.1), μv ~ 

N (2, 3), σv ~ HN (2), μz ~ N (0.5, 0.5), σz ~ HN (0.05), μt ~ G (0.4, 0.2), σt ~ HN (1), 

ap ~ G (μa , σ2a ), vp ~ N (μv , σ2v ), zp ~ invlogit (N (μz , σ2z )), tp ~ N (μt , σ2t ), and 

xp, j ~ F(ap , zp , vp , tp) where xp, j represents the observed data, which consists  

of response time and choice of subject p on trial j and F represents the DDM 

likelihood function as formulated by (Navarro & Fuss, 2009). N represents a 

normal distribution parameterized by mean and standard deviation, HN 

represents a positive-only, half-normal parameterized distribution by standard- 

Figure 5: (A) The Drift Diffusion model with the four parameters: drift rate (v), decision 

threshold (A), starting point (z), non-decision component (Ter). (B) Stages of processing 

characterized by the DDM model. Different stages of processing are highlighted by the 

shading in the panel A to highlight the mapping of the DDM components to the processing 

stages.

Response
alternative 1

Response
alternative 2

decision 
threshold, A

decision 
threshold, A

starting 
point, z

Ter Ter

Time

stimulus 
encoding

evidence
accumulation

response 
execution

drift rate, v

v

A

B
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deviation, G represents a Gamma distribution parameterized by mean and rate, 

B represents a Beta distribution parameterized by α and β. HDDM then uses 

Markov chain Monte Carlo (MCMC) (Gamerman and Lopes, 2006) to estimate 

the joint posterior distribution of all model parameters. Crucially, the joint 

posterior distribution is conditioned upon a specific model, therefore it is 

important to touch upon principles of model construction and model selection. 

For the model construction, we varied A, Ter, v (set to fixed or free) over the 

experimental factor, which defined the number of possible models. For example, 

in Chapter 4 we had one experimental factor, which with all possible combinations 

of free/fixed parameters (A, Ter, v) resulted in 7 models. In Chapter 3 there were 

two factors, which were set as free or fixed across three parameters (A, Ter, v) 

and resulted in 19 models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the model selection, we relied on the deviance information criterion (DIC), 

which is a common method for assessing model fit in hierarchical models 

(Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). The model with the smallest 

DIC is estimated to be the model that would best predict the currently observed 

experimental dataset. Therefore we would consider a lower DIC as an indication 

Figure 6: The graphical representation of the hierarchical model estimation. The node 

Data ( g,p,j ) indicates the observed data of each participant group ( g ), participant ( p ), and 

trial ( j ). Nodes a , T er , z, and v are parameters of the drift-diffusion model (at the single 

subject level), each with a group distribution for each participant group with mean µ and 

standard deviation σ. 

μa(g) σa(g)

A(g, p)

μTer(g) σTer(g)

Ter(g, p)

μz(g) σz(g)

z(g, p)

μv(g) σv(g)

v(g, p)

Data(g, p, j)

p ~Subjects
j ~ Trials

g ~ Groups
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towards better fit of the model, and the model with the lower DIC would be 

considered a model-winner in the given model set. Furthermore, alternative 

measures of model selection such as Bayesian Information Criterion (BIC) or 

Akaike Information Criterion (AIC) are metrics that rely on maximum likelihood 

estimation and therefore are not appropriate in the case of MCMC fitting routines 

that rely on Bayesian statistics. Thus, DIC is an appropriate metric for the present 

purpose to compare models in their ability to capture the observed data with the 

minimal amount of complexity required. Importantly, all models in this thesis 

were inspected for convergence both visually and quantitatively. For the visual 

part, I examined that the posterior samples (“the chain”) of a given model have 

properly converged. I examined whether a) there are no drifts or large jumps in 

the trace; b) the autocorrelation (i.e. the influence of past samples) drops to zero 

rather quickly (i.e. smaller than 50). For the numerical part, I assured that a MCMC 

error for all of the parameters is smaller than 0.01 and an R-hat statistic (which is 

a measure of convergence among multiple MCMC chains) is under 1.1. The model 

with the lowest DIC that passed all the convergence checks was considered the 

model-winner. Further, for the best fitting model, I examined the differences in 

posterior estimates by conducting statistical analyses. To highlight, posterior 

estimates of model parameters are of ultimate interest for interpretation of the 

results in this thesis.

According to one of the most prominent theories of decision making, in order to 

reach a perceptual decision, the brain has to accumulate noisy sensory information 

over time until the decision threshold is reached (Gold & Shadlen, 2007; Mazurek, 

Roitman, Ditterich, & Shadlen, 2003; Ratcliff, Smith, Brown, & McKoon, 2016). One 

of the most important findings illustrating evidence accumulation is the persistent 

neuronal firing in the lateral intraparietal area (LIP) during a motion discrimination 

task. This neuronal firing persists until a critical threshold is reached and the decision 

process is terminated, followed by the response execution (Kim & Shadlen, 1999). 

LIP is not the only brain area that can accumulate evidence for decision choice. 

In auditory (Binder, Liebenthal, Possing, Medler, & Ward, 2004), somatosensory 

(Pleger et al., 2006) and visual (Heekeren, Marrett, Bandettini, & Ungerleider, 2004) 

decision making tasks, candidate brain regions for evidence accumulation were 

found in anterior cingulate and dorsolateral prefrontal cortices using correlations 

between the blood oxygenation level-dependent (BOLD) signal and trial-to-trial 

reaction times (RTs). To illustrate, various brain regions (Figure 7) can be functionally 

involved when making a decision. Importantly, these regions reflect the mechanisms 

implemented in the stochastic models of perceptual decision making. 
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Words as top-down cues for visual decisions

As I mentioned in the beginning of the chapter, the brain actively constructs 

what we see based on information prior to perception (top-down information), 

such as expectation or attention (Gilbert & Sigman, 2007; Rauss & Pourtois, 2013). 

For example, verbs congruently describing the direction of upcoming random-dot 

motion kinematograms (e.g., word ‘rise’ followed by the dots moving up-wards) 

result in faster and more accurate judgments about the presence or absence of 

the motion itself (Meteyard, Bahrami, & Vigliocco, 2007). In spite of the fact that the 

effect of language on perceptual decision making is well documented (Boroditsky, 

2001; Winawer et al., 2007, see for review Raftopoulos & Lupyan, 2018), the locus of 

this effect is still a matter of investigation. While some studies showed that language 

can modulate perceptual representations (Amado et al., 2018; Puri, Wojciulik, & 

Ranganath, 2009), others suggest that language rather involves processes of 

lexico- semantic memory and/or decision making  (Francken, Kok, Hagoort, & de 

Lange, 2015; Tan et al., 2008) via which it influences visual decisions. In short, 

it remains unclear how and at which processing stage language cues (i.e., words 

briefly presented before the visual input) affect perceptual decision making. 

To advance our knowledge regarding the functional role of brain regions reflecting 

the effect of language on perceptual decision making, I tested whether brain activity 

in those brain areas can be explained in terms of evidence accumulation. 

Figure 7: Brain map renderings of the peak coordinates reported by the studies that include 

evidence accumulation (drift rate) parameter in the fMRI analysis (reprinted and modified 

from Mulder, van Maanen, & Forstmann, 2014).
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It is important to emphasize, that the goal of this model-based approach is not 

finding a brain region that would reflect a model parameter (Mulder et al., 2014). 

The goal is rather decomposing behavioral performance into processes and testing 

whether brain activity can reflect this process. In this sense, the model parameters 

that represent cognitive states do not have to necessarily map onto a neural 

substrate. Instead, they provide an intermediate level between behavior and neural 

levels that can be meaningful for interpreting the neural activation functionally. 

DDM can be useful in contributing to already existing theoretical frameworks (such 

as semantic control, see further below). Whereas much research has been done on 

decision making on the one hand and semantic cognition on the other, they have 

not often been put together. In this thesis, I fill this gap by bringing new insights to 

the field of semantic cognition and language from the computational perspective 

point of view. 

Semantic control from the decision making 
performance perspective

Broadly speaking, semantic cognition refers to the ability to “use, manipulate and 

generalize knowledge”.  Semantic cognition supports a broad range of verbal (e.g., 

naming pictures or selecting a word among synonyms to describe a picture more 

accurately) and non-verbal (e.g., using tools in creative ways) behaviors (Lambon 

Ralph, Jefferies, Patterson, & Rogers, 2017). It has been proposed that semantic 

cognition is subserved by two highly interactive neural systems: the systems of 

semantic representation and control. The system of semantic representation relies on 

the hub-and-spokes neural architecture with hubs localized in the anterior temporal 

lobes (ATL) and spokes placed in modality associated cortices (see Figure 8, A). 

The system of semantic control (Figure 8, B) consists of a system of brain regions 

that are separate from the semantic representation system. The system of semantic 

control interacts with the semantic system by boosting some aspects of semantic 

knowledge when it is weakly encoded (for example, in tasks that require focus on 

non-typical features). Most computational theories of language production and 

comprehension accept that in addition to representational (i.e. lexico-semantic) 

processes, executive mechanisms govern the extraction of relevant semantic 

information from stimuli (Badre, Poldrack, Paré-Blagoev, Insler, & Wagner, 2005; 

Jefferies & Lambon Ralph, 2006; Lambon Ralph, Jefferies, Patterson, & Rogers, 

2017; Nagel, Schumacher, Goebel, & D’Esposito, 2008). Broadly speaking, executive 

control comprises of both semantic working memory retrieval and selection 

between competing representations (Engle & Kane, 2003). The exact mechanisms 
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of executive control in the semantic domain are still a matter of investigation. 

Furthermore, it is still debated to what extent the system of semantic control 

overlaps with executive mechanisms. Therefore, a computational account of 

semantic cognition that would account for executive/control functions would be 

highly informative. 

Previous studies suggested that evidence accumulation may be considered as a 

descriptive model of participants behavior that could inspire theories of language 

retrieval, and indirectly language control (Anders, Ries, van Maanen, & Alario, 2015; 

van Maanen & van Rijn, 2007). For example, it has been shown that patients with 

lesions in left prefrontal cortex (lPFC) failed to adjust the decision threshold for 

lexical selection in language production (Anders, Riès, Van Maanen, & Alario, 2017). 

This finding not only contributed to the idea that semantic representation and 

control are dissociable systems, but also proposed a viable mechanism for semantic 

control. In the field of decision making it has been shown that the decision threshold 

modulation is essential for exhibiting the necessary amount of control to solve the 

conflict efficiently (Cavanagh et al., 2011; Forstmann et al., 2010). These results 

suggest that evidence accumulation is a fruitful framework to reveal various aspects 

of executive control mechanisms. In Chapter V I investigated the mechanisms of 

semantic representation and control via the lens of DDM. 

Figure 8: Systems of semantic representation (A) and control (B) (adopted from (Lambon 

Ralph et al., 2017). 

A B
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Thesis outline

This dissertation includes four empirical chapters that addressed different questions 

regarding the mechanisms of visuo-semantic interactions. I used a combination of 

behavioral, computational, neuroimaging and neuropsychological methods to 

address this topic. Particularly, I formalized visuo-semantic interactions from a 

decision making perspective, i.e., as a process of evidence accumulation to the 

decision threshold. In Chapter II I show, as a proof-of-concept, that the language 

advantage in visually driven decision making translates into the speed of evidence 

accumulation. In Chapters III and IV, I investigated whether neural markers under - 

lying linguistically boosted visual decisions can be accounted for by the speed of 

evidence accumulation or by any of the others DDM parameters (i.e., decision 

threshold, starting point).  Chapter V proposes an evidence accumulation framework 

as an exploratory platform for disentangling the processes of semantic control and 

interference in the word-picture matching task. 
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Associative and identity words promote 
the speed of visual categorization: 
a hierarchical drift diffusion account

A modified version of this chapter has appeared as: Todorova L. & Neville D.A., 

(2020). Associative and identity words promote the speed of visual categorization: 

a hierarchical drift diffusion account. Frontiers in Psychology, 11, 1-17.

2
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Abstract

Words can either boost or hinder the processing of visual information, which can 

lead to facilitation or interference of behavioural response. We investigated the 

stage (response execution or target processing) of verbal interference/facilitation in 

the response priming paradigm with gender categorization task. Participants in our 

study were asked to judge whether the presented stimulus was a female or male 

face that was briefly preceded by a gender word either congruent (prime: ‘man’, 

target: ‘man’), incongruent (prime: ‘woman’, target: ‘man’) or neutral (prime: ‘day’, 

target: ‘man’) with respect to the face stimulus. We investigated whether related 

word-picture pairs resulted in shorter reaction times in comparison to the pictures 

with neutral words (facilitation) and whether unrelated word-pictures pairs resulted in 

slower reaction times in comparison to pictures with neutral primes (interference). 

We further examined whether these effects (if any) map onto response conflict or 

aspects of target processing. In addition, we introduced identity (‘man’, ‘woman’) 

and associative (‘tie’, ‘dress’) primes in order to investigate the cognitive mechanisms 

of semantic (introduced by associations) vs. Stroop-like (introduced by identity 

words) effects in response priming. We analyzed responses and reaction times 

using drift diffusion model to examine the effect of facilitation and/or interference 

as a function of the prime type. We found that regardless of prime type words 

introduce facilitation effect, which maps to the processes of visual attention and 

response execution.
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Introduction

Words facilitate visual decisions in a variety of tasks. For example, the brief 

presentation of a word before a semantically related picture has been shown to 

facilitate the processing of the picture in a number of tasks such as detection of 

motion direction (Meteyard et al., 2007), word-picture matching (Boutonnet & 

Lupyan, 2015), recognition of ambiguous “Mooney” images (Samaha, Boutonnet, 

Postle, & Lupyan, 2018) and familiarity judgments (Amado et al., 2018). On the other 

hand, a word presented right before the picture can also lead to semantic 

interference, i.e. when a semantically unrelated word interferes with the judgement 

of an immediately following target compared to when the word is semantically 

related. In terms of behavioral performance this effect translates to longer reaction 

times and/or more errors (Wentura & Degner, 2010) as it has been shown to be the 

case  in a variety of language tasks such as Stroop task(s), word-picture matching, 

and spoken-to-written word matching (Campanella, Crescentini, Mussoni, & Skrap, 

2013; Faria, Alves, & Charchat-Fichman, 2015; Jefferies, Patterson, & Ralph, 2008). 

While facilitation effects have been interpreted as cognitive (with the locus of their 

influence being rooted either in the lexico-semantic system (Francken et al., 2015) 

or in the visual system (Boutonnet & Lupyan, 2015) some of the interference effects 

have been associated with response processing. For example, in the Stroop task  

the increased response latencies for naming the ink color of a conflicting color 

word (word: red, ink: green) in comparison to the non-conflicting (congruent) one 

(word: red, ink: red) are interpreted as a result of response conflict as opposed to 

informational conflict (Cohen, Dunbar, & McClelland, 1990; Duncan-Johnson & 

Kopell, 1981). Whether semantic facilitation and interference effects operate at the 

level of target and/or response processing is yet not entirely clear. 

A paradigm, which is structurally similar to the Stroop task but less studied in terms 

of cognitive processes, is the response priming paradigm (Wentura & Degner, 

2010). While Stroop-like effects appear at the response processing stage, response 

priming paradigms may tap into both target and response processing. In semantic 

priming paradigms two stimuli are subsequently presented and participants are 

instructed to perform a task on the second stimulus (target), while the first stimulus 

(prime) is deemed to be non-relevant to the task (for example, participants might 

have to classify letter strings as words or non-words with prime-target pairs being 

either semantically related or unrelated). In response priming paradigms instead, 

primes are either congruent or incongruent with the response that has to be given 

to the target (prime: skirt, target: woman, response: woman, task: categorization). 

In the Stroop task interference occurs when the ink color maps onto one response 

and the semantic meaning of the incongruent word to the other. In other words, 



28

CHAPTER 2

interference arises due to the conflict between the responses. In response priming, 

similarly, interference occurs when the semantic meaning of the prime maps to 

one response and the semantic meaning of the target maps to the other response 

leading to response conflict (De Houwer, Hermans, Rothermund, & Wentura, 2002; 

Klauer, & Musch, 2003). The fact that response priming and Stroop tasks are 

structurally similar does not exclude the possibility that interference effects could 

be explained by either one or both processes of response competition and target 

processing. It is therefore of theoretical importance to investigate semantic 

facilitation and interference effects in a response priming paradigm. 

In this study, we focused precisely on this aspect and investigated in a response 

priming paradigm effects of semantic facilitation and interference as reflected by 

changes in behavioral performance. We further explored whether facilitation and/

or interference can be accounted for by mechanisms of response execution and/

or target processing, which we formalized using the drift-diffusion model (see 

details further). Participants in our study were asked to judge whether the presented 

(target) stimulus was a female or male face when the target was briefly preceded by 

a gender word (prime) either congruent (prime: ‘man’, target: ‘man’), incongruent 

(prime: ‘woman’, target: ‘man’) or neutral (prime: ‘day’, target: ‘man’) with respect to 

the face stimulus. Participants were instructed to decide about the gender of the 

target while ignoring the prime. We then looked at whether related word-picture 

pairs resulted in shorter reaction times in comparison to neutral word-picture pairs 

(facilitation) and whether unrelated word-pictures pairs resulted in longer reaction 

times in comparison to neutral word-picture pairs (interference). We further 

examined whether these effects (if any) map onto response conflict or target 

processing. In order to shed light on the cognitive mechanisms underlying semantic 

facilitation and interference effects, we used a well-established approach from the 

cognitive modelling literature, the drift-diffusion model (DDM) (Ratcliff & McKoon, 

2008a; Smith & Ratcliff, 2004; Usher & McClelland, 2001).

Drift-diffusion model
In the DDM approach, the process of making a decision about the gender of a face 

is described as the stochastic accumulation of sensory evidence over time towards 

one of two decision boundaries (male or female response, for instance). Once 

enough evidence is accumulated and one of the two decision boundaries is 

reached, the associated response is produced (for example, female). In the DDM, a 

total of four parameters describe the processing components underlying the 

decision making process (see Figure 1): the rate at which evidence accumulates 

over time (drift rate, v), the amount of evidence that is necessary to produce a 

response (boundary separation, A), an optional a-priori bias for a specific response 
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(bias, z) and finally the time required to complete non-decision processes, such as 

motor preparation and/or stimulus encoding (non-decision time, Ter).

The DDM model has been successfully applied to choice reaction time data in 

various experimental tasks (see for reviews (Mulder, van Maanen, & Forstmann, 

2014; Ratcliff & McKoon, 2008a) and the parameters recovered by the model have 

been shown to be well characterized in terms of cognitive processes (Voss, 

Rothermund, & Voss, 2004). The drift rate or the speed of evidence accumulation 

is “determined by the quality of information extracted from the stimulus” (Ratcliff & 

Figure 1: (A) The drift-diffusion model (DDM) with the four parameters: drift rate (v), boundary 

separation (A), starting point (z), non-decision component (Ter). (B) Stages of processing 

characterized by the DDM model. Different stages of processing are highlighted by the 

shadings in panel A indicating the mapping of the DDM components to the processing 

stages. 
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McKoon, 2008b). For example in a color discrimination task, trials with less visible 

colors resulted in a lower drift rate as opposed to trials with the more visible colors 

(Voss et al., 2004). Crucially, the drift rate can be modulated by factors that are not 

only related to the stimulus being processed but also related to contextual 

information associated with the study episode. For example, in a memory 

recognition task, a word that was studied three times had a higher drift rate than a 

word that was studied only once (Ratcliff & McKoon, 2008b). Similarly, in an 

associative priming task, word primes that were associatively related to the target 

words resulted in a higher drift rate in comparison to word primes non-associative-

ly related. It has been suggested that the drift rate in these contexts could represent 

“the quality of the match between a test word and memory” (Ratcliff & McKoon, 

2008b). The accumulation of the drift rate stops when either one of the two 

decision boundaries has been reached. The amount of evidence that is needed to 

make a decision is characterized by the boundary separation, that is the distance of 

the boundaries from the starting point of the accumulation process, and it has 

been shown to be modulated by changes in task-strategy (e.g. response caution). 

For example, when participants were instructed to prioritize response accuracy 

over response speed, changes in behavioral performance due to the adoption of a 

new response criterion by the decision maker were explained in the DDM model in 

terms of a higher value for the boundary separation parameter. The higher boundary 

separation translates to a longer period of information accumulation and, as a 

result of it, fewer errors being made by the decision maker (Bogacz, Wagenmakers, 

Forstmann, & Nieuwenhuis, 2010). The starting point of the accumulation process 

instead reflects potential biases participants might have resulting in certain 

responses being “a priori more likely” (Mulder et al., 2014). For example, participants 

might a-priori favor a “word” response in a lexical decision task (Wagenmakers, Van 

Der Maas, & Grasman, 2007). In addition, it was also shown that in a color 

discrimination task, a higher reward for a certain response resulted in participants 

adopting a starting point (z) closer to the decision boundary for the response with 

the higher value reward (Voss, Rothermund, & Voss, 2004b). Finally, the model 

component that does not account for decision processes is referred to as 

non-decision time. It reflects either stimulus encoding (which may not be 

necessarily perceptual encoding, but access to memory in a memory task or lexical 

access in a lexical decision task, Ratcliff & McKoon, 2008b) or the time required to 

execute a motor response. These contributions are combined together in one 

parameter (Ter), which does not allow by itself the separation of encoding from 

response execution but rather allows for the separation of decision vs. non-decision 

processes. Studies that interpret Ter as encoding or execution parameter use 

auxiliary methods such as neuroimaging to facilitate interpretations. For example, 

in an fMRI study investigating age-related performance in a visual search task, 
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changes in non-decision time were associated with targets accompanied by re-

sponse-incompatible distractors in the elderly group. Ter was correlated with the 

FEF and dorsal fronto-parietal regions, which suggested a major contribution from 

the visual encoding process (Madden et al., 2019). An EEG study of figure-ground 

segregation instead found a correlation between N200 latency and the non-decision 

component suggesting that N200 tracks the completion of visual encoding (Nunez, 

Gosai, Vandekerckhove, & Srinivasan, 2019).

In the DDM model, the parameters are combined non-linearly to enable inferences 

on the complete distribution of reaction time data. Technically, this is done by 

computing for each accuracy interval or bin (e.g. 5 intervals of 20% accuracy 

performance increments) the relative RT distribution and then fitting a (Gaussian) 

random walk model to each of the quantiles of the RT distribution. An intuitive way 

to think about how the parameters of the DDM model combine to produce RT 

distributions is the following. As an example, assume a hypothetical classification 

task where subjects have to classify a face as female or male and we assign the 

female face response to the upper boundary (Response alternative 1 in Figure 1), 

and the male response to the lower boundary (Response alternative 2 in Figure 1). 

Assuming there is no bias for either of the two response and the same boundary 

separation for both male and female face targets (same amount of evidence to be 

accumulated) and no difference in non-decision time, a drift rate towards the 

 female-response boundary (i.e. positive drift) would indicate faster correct 

responses for face-related judgments of female faces. By contrast, differences in 

threshold or non-decision time would suggest that overall RTs are either longer or 

shorter in female-related judgments compared to male-related judgments 

(depending on the directionality of the difference), regardless of the correctness of 

the response. Similarly, a higher boundary separation would predict on average 

slower responses (since more information has to be accumulated) and thus a 

longer mean RT for a particular condition would be predicted. Whether a response 

would be correct or not, however, would be mainly driven by the drift rate. “Mainly” 

is used here because boundary separation (A), drift rate (v) and bias (z) altogether 

contribute to the generation of choice RT data, specifically to the differentiation of 

fast and slow responses in both correct and incorrect responses. For comprehension 

purposes we point the reader to a simple qualitative taxonomy of the type of 

responses predicted by the DDM given a particular combination of A (boundary 

separation) and v (drift rate) parameters. If A is high and v is towards the correct 

response boundary (i.e. positive for upper boundary and negative for lower 

boundary), then the responses are predicted to be on average slow and correct. If 

instead A is high but v is towards the incorrect response boundary, then the responses 

are predicted to be on average slow and incorrect. If there is a change in the boundary 
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separation parameter and, for example, if A is low and v is towards the correct 

response boundary, then the model predicts on average fast correct responses. 

If instead A is low and v is towards the incorrect response boundary, then the model 

predicts on average fast errors.  

To sum up, in this study we capitalize on the DDM model since it provides an ideal 

analytical tool for disentangling in the response priming task the cognitive processes 

involved in semantic facilitation and interference. Importantly, previous drift-diffu-

sion studies revealed intriguing cognitive mechanisms underlying behavioural 

performance in language-related tasks that use the response priming paradigm. In 

the primed Stroop task words-distractors were presented ahead of colored symbols 

that had to be categorized and the facilitation effect was explained in terms of a 

change in boundary separation among congruent and incongruent conditions 

(Kinoshita, de Wit, Aji, & Norris, 2017). This result however could be explained in 

terms of stimuli probability since a word prime was predictive of its matching 

response color (see p.833 (Kinoshita et al., 2017)). It has also been shown that 

predictive cue information results in boundary separation modulation (not drift 

rate) in a task where participants have to identify a house or face masked by noise, 

preceded by either a house or face cue with different degrees of reliability (Dunovan, 

Tremel, & Wheeler, 2014). The study of Kinoshita et al., is one of the recent studies 

on response priming that investigates language influences on target and response 

processing from the computational modelling perspective. Results are however 

not conclusive due to the predictability confounds described above. In this study 

language primes were not predictive of the upcoming target which allowed us to 

investigate the influence of language on facilitation and interference without 

introducing probabilistic confounds. Another interesting property that seem to 

affect participants’ performance in the response priming task, and which is crucial 

for this study, is the type of semantic relationship between prime and target, which 

will be discussed further in the following section.

Type of semantic relationship 
The type of semantic relationship between the target and the prime is another 

variable to be considered when investigating priming effects. For example, in the 

response priming paradigm, it was shown that associative and categorical primes 

involve different cognitive processes (Voss, Rothermund, Gast, & Wentura, 2013).  

While primes that belonged to the same category as the targets (i.e. categorical 

primes such as prime: lion, target: tiger ) mapped onto the response execution 

stage, primes that were semantically associated with the targets (i.e. associative 

primes such as prime: king, target: crown) mapped onto the target processing 

stage. Specifically, the drift-diffusion analysis revealed that associative priming 
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effects mapped onto the drift rate parameter, which indicated increased 

informational uptake for associative (prime: king, target: crown) word pairs in 

comparison to categorical ones (prime: lion, target: tiger). Furthermore, categorical 

primes mapped onto the non-decisional component, with congruent word-target 

pairs leading to a facilitation of the non-decisional processes, and incongruent 

ones resulting in interference. The authors explained categorical priming effects in 

terms of response competition, and associative priming effects in terms of spreading 

activation (Collins & Loftus, 1975). Crucially, categorical congruency effects were 

associated with response competition processes regardless of the relevance of the 

congruency dimensions (i.e., whether the task was lexical decision or semantic 

categorization did not affect the results). On the contrary, Gomez and colleagues 

(Gomez, Perea, & Ratcliff, 2013) showed that categorical prime-target pairs 

mediated both the non-decision and the drift rate components. In the study of 

Gomez, however, the authors used a variation of categorical primes involving 

identity primes (prime: house, target: house) instead of different words being 

related to each other categorically (such as prime: lion, target: tiger). Furthermore, 

they used a lexical decision task instead of the semantic categorization task used by 

Voss et al. which altogether might have led to differences in the experimental 

results. Other evidence from the word production literature shows a dissociation 

between associative and identity primes. For example, in picture-word interference, 

where participants name a picture and ignore a distractor word, picture naming is 

slower when the target image and distractor word are related in comparison to 

when they are unrelated (Glaser & Düngelhoff, 1984; Piai & Knight, 2018; Piai, 

Roelofs, Acheson, & Takashima, 2013b). Interestingly, other types of semantic 

relations such as for example associations, hypernym-hyponym, part-whole or 

nouns-verbs (Kuipers & La Heij, 2008; Lupker, 1979; Mahon, Costa, Peterson, 

Vargas, & Caramazza, 2007) result in facilitation or no modulation. Brain imaging 

studies have also shown a dissociation between associative and categorical 

relationships in terms of their neural bases (for a review see Mirman, Landrigan, & 

Britt, 2017). In sum, existing experimental evidence suggests that associations and 

categorical relations might have a differential effect on facilitation and interference, 

and therefore should be properly accounted for in tasks that involve response and 

attention control. In this study we specifically address the question of whether 

prime-target pairs that are related to each other either categorically (e.g., prime: 

‘man’, target: man) or associatively (e.g., prime: ‘tie’, target: man) result in facilitation 

or interference effects and, if so, whether such effects occur at the level of response 

processing, target processing or both. 
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The present study
Our primary interest was verbal interference/facilitation in the response priming 

paradigm,  either at the level of response execution or of target processing, when 

manipulating the type of semantic relationship linking prime and target. The facial 

features of the target pictures were morphed from male to female parametrically 

and the task included ambiguous faces sorely for participants’ engagement 

purposes. The primes were either associations (‘tie’, ‘dress’) or identity primes 

(‘man’, ‘woman’). In addition, primes were either congruent (prime: ‘man’, target: 

man), incongruent (prime: ‘woman’, target: man) or neutral (prime: ‘day’, target: 

man) with respect to the face. Participants were asked to decide about the gender 

of the target, while ignoring the prime. Participants’ behavioral performance 

(responses and reaction times) was analyzed with the DDM approach to examine 

the effect of facilitation and/or interference as a function of the prime type. 

The DDM approach focused specifically on testing two hypotheses. First we 

investigated whether congruency effects in response priming tap into the cognitive 

mechanisms associated with the processing of the response and/or target. Under 

the response competition account, congruency effects (e.g., the prime maps onto 

a “female” response and the face is a female face) would map onto the speed of the 

non-decisional processes (i.e., slower for incongruent and faster for congruent). 

Under the target processing account, congruency effects would map onto the 

speed of processing of the target picture (drift rate). In this case we expected the 

drift rate (v) to increase in congruent vs. incongruent word-picture pairs. Second, 

we investigated whether the type of semantic relationship - associative or identity 

– would have an influence on the direction of the effect, i.e., facilitation or 

interference. For this purpose, we tested whether identity words (“man”, “woman”) 

and associative words (“beard”, “dress”) tap into response conflict processes (Ter) 

and/or perceptual uptake (v). We furthermore tested whether identity words would 

enhance the rate of evidence accumulation as opposed to associative words and 

whether identity words would lead to faster motor preparation/execution in 

comparison to the associative ones.   

To sum up, with this work we aimed to investigate whether associative and identity 

words relating to gender categories affect cognitive processing, specifically the 

stages of response execution and/or information evaluation of the target during 

gender categorization.
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Methods

Subjects
The study was approved by the local ethics committee (CMO Arnhem-Nijmegen, 

Radboud University Medical Center) under the general ethics approval. All participants 

provided written informed consent approved by the Radboud University, Nijmegen. 

47 volunteers (23 females) recruited via the Radboud Research Participation System 

(native Dutch speakers, right-handed, age range: 19 - 35 years, mean age = 24.74, 

sd = 3.53) took part in the study. We performed two additional studies to develop 

and pre-test the materials. All participants reported no neurological disease, and had 

normal or corrected-to-normal vision. All of the participants received monetary 

compensation for their participation. 

 

Target pictures
A set of realistic 3D gender-morphed faces was created with the use of FaceGen 

Modeller 3.5 (Singular Inversions). The technical details of the computation method 

used by the software are discussed in (Blanz & Vetter, 1999a). We created 81 Western 

face identities, for which we gradually morphed gender features from extremely 

female to extremely male in 10 equal steps (Figure 2, A). Face stimuli were cropped 

to remove hair and ears and presented frontally. We controlled for luminance using 

the SHINE toolbox for MATLAB (Willenbockel et al., 2010). 

Figure 2: (A) Stimuli set with 81 artificially generated identities each of which was morphed in 

ten steps between male and female spectrum. The red square indicates the stimuli selected 

for the experiment. (B) Proportion of faces evaluated as males as a function of morphing step. 

Faces of morphing steps 4 (very male), 5 (less male), 6 (ambiguous), 7 (less female), and 8 (very 

female) were selected for the main experiment. Faces of step 6 were not included in the 

analysis (white marker in Figure 2 A and black in Figure 2 B).
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Target pictures evaluation and selection
In order to obtain subjective perceptual ratings of the face gender, we conducted a 

stimulus evaluation experiment where subjects performed a forced two-choice 

task on the gender of each of the faces of the experimental set. A separate pool of 

47 volunteers (24 males, native Dutch speakers, age range 20 - 32 years, mean age 

= 23.83, sd = 2.88) participated in a separate experiment to evaluate the face stimuli. 

Another pool of volunteers (24 females, native Dutch speakers, right-handed, age range 

20 - 53 years, mean age = 26.75, sd = 6.65) performed the semantic ratings of 

priming words. Each trial in the evaluation experiment started with a fixation cross 

that stayed on the screen for 1500 ms, after which the target was visually presented 

for 500 ms. Participants were able to deliver a response for an additional 2000 ms 

after the picture was removed from the screen. Based on the responses, we 

identified the morphing step of the faces that was perceived ambiguously. We 

included five morphing steps in the main experiment: the most ambiguous face in 

the middle of the continuum, plus two steps in either direction away from the 

middle point (Figure 2, B). We define faces of morphing step 6 as ambiguous faces, 

and all the others as less ambiguous, with morphing step 4 as the most male face 

and morphing step 8 as most female face. The percentage of faces evaluated as 

males for ambiguous faces (step 6 in the Figure 1, B) was 47.87 % (sd = 16.45), for 

the selected extremely male faces (step 4), 84.21 % (sd = 27.19), and for selected 

extreme-female faces (step 8), 16.80 % (sd = 25.57).

 

Prime words evaluation and selection
The experiment consisted of two conditions. In the first (identity) condition, the labels 

“man” (English: man) and “vrouw” (English: woman) were used as primes. In the 

second (associative) condition, a set of gender-associated words such as “mascara” 

and “tie” were used as primes (see Appendix and Table 2). The words for this condition 

were preselected using the database from the “small world of words project” 

(De Deyne, Navarro, & Storms, 2013a), and subsequently rated by naïve participants. 

In the rating experiment, the participants had to indicate for each word how related 

that word was to the words “male” or “female” on a 7-point scale (-3 = related to 

male; + 3 = related to female). For half of the participants, female and male axes 

were swapped. Based on the rating outcomes, a selection of 40 words was made, 

which included 20 male-related and 20 female-related words. In addition, 20 words 

from the semantic category “furniture” (the neutral condition) and 20 catch words 

from diverse semantic categories were selected. The furniture and filler words were 

associated with neither the male nor the female categories according to the ratings. 

Male and female-associated words were matched for word length, frequency 

per million and concreteness (all p > .30). The catch trials were excluded from 

subsequent analyses. Frequencies for all words were extracted using the Subtlex 
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corpus (Keuleers, Brysbaert, & New, 2010). Mean frequency, concreteness, and length 

of the materials used are indicated in Table 2.

Semantic Similarity
It could be argued that the proposed associative words in the stimuli list we used 

contain both associations (‘tie’) and identity-like words (‘brother’, ‘father’). Therefore, 

we sorted the initial associative set into associations and labels (see Suppl. Table 1.2). 

Further, to control for the semantic similarity between the prime words (identity: 

‘man’, labels: ‘father’ , associative: ‘tie’ , ‘dress’) and target concept (‘male’, introduced 

by a male face, or ‘female’, introduced by a female face), we used the snaut tool 

(Mandera, Keuleers, & Brysbaert, 2017) which is based on word2vec representa-

tions (Mikolov, Chen, Corrado, & Dean, 2013). The word2vec model represents 

words’ semantics as a vector of features and the semantics of a certain word can 

be characterized by comparing the vector representations. The measure of 

semantic similarity we report here is cosine similarity, which has particular 

advantages over other measures such as Euclidean and Manhattan in cases where 

the vector magnitude matters. First, we calculated the semantic distance between 

each of the primes to the target concepts (associations: ‘beard’ – ‘man’, labels: 

‘father’ – ‘man’, identity words: ‘man’ - ‘man’) in terms of cosine distance (see Suppl. 

Table 1.2). Next, we tested whether the proposed word sets (associations, labels, 

identity words) differed in semantic measures using Bayesian ANOVA which 

accounts for the non-equal number of words per word group. The null hypothesis 

states that there is no difference between the conditions of interest whereas the 

alternative posits that the conditions of interest are different. A Bayes factor (BF) is 

defined as the ratio between the evidence in favor of the alternative hypothesis (H1) 

over the evidence in favor of the null hypothesis (H0), denoted by the subscript 10 

in the Bayes factor abbreviation BF10. BFs estimate graded evidence in favor or 

against the alternative hypothesis (Wagenmakers et al., 2018) and can be interpreted 

as follows: BF10 = 1-3 indicates “anecdotal” evidence for H1 compared to H0; BF10 = 

3-10 indicates “moderate” evidence for H1 compared to H0; BF10 = 10-30 indicates 

“strong” evidence for H1 compared to H0; BF10 = 30-100 indicates “very strong” 

Table 2  Characteristics of the words used in the priming experiment.

Associated groups Length Frequency Concreteness

female (N = 20)

male (N = 20)

neutral (N = 20)

M = 6 (SD = 2.1)

M = 5.8 (SD = 1.9)

M = 5.8 (SD = 1.9)

M = 60.4 (SD = 101.5)

M = 108.2 (SD = 204.6)

M = 69.6 (SD = 187.5)

M = 4.1 (SD = 0.6)

M = 4.3 (SD = 0.6)

M = 4.1 (SD = 0.9)
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evidence for H1 compared to H0; BF10 > 100 indicates “extreme” evidence for H1 

compared to H0. Bayesian ANOVA was carried out using JASP (JASP Team, 2018). 

The results of the analysis are presented in the Figure 3. Words of different types, 

fully overlapping with the picture (‘man’, ’vrouw’, i.e., identity), less overlapping 

(‘father’, ‘sister’, i.e., labels) and associative items (‘tie’, ‘dress’), translated to different 

semantic distances from the target concept (main effect of semantic distance, 

BF10 = 1.29 x 1047). Specifically, identity words (‘man/vrouw’) had higher similarity 

(lower cosine distance) with the target concept (‘man’, ‘vrouw’) in comparison to 

the partially overlapping words (e.g. ‘father’, ‘sister’), BF10 = 3.70 x 106. Associative 

words were further from the target concept in comparison to the identity words, 

BF10 = 2.54 x 1022) whereas labels were closer to the target concept in comparison 

to the associative words, BF10 = 250.437.

The semantic distance between identity words and labels was larger (evidenced by 

a “very strong” Bayes factor) than between labels and associative words (labels - 

associations > labels - identity words: BF10 = 2.548 x 1022). 

Therefore, for the first set of analyses (see Congruency Analysis), we collapsed 

labels and associations (the non-identity condition), especially in light of the fact 

that in the current paper we did not focus on the various types of similarity between 

Figure 3: Semantic distance between prime words (labels, associations and identity words) 

and target concept introduced by the face (“female”/ “male”) color coded for type of prime 

word: red, labels (“father” / “daughter”); green,  associations (“beard” / ”skirt”); black, identity 

words (“man” / “woman”).
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the words but rather focused on the contrast between identity words and all other 

words that point to the same concept but have larger semantic distances. 

However, since the difference between the labels and associations is statistically 

significant, we provide additional analyses excluding the labelling primes and  

thus only comparing associative and identity primes. These additional analyses are 

explained further below (see section Behavioural analysis, Secondary Congruency 

Analysis: associative versus identity primes). 

Procedure
Participants were seated in a comfortable chair in front of a computer screen in a 

sound-protected room. On each trial, a prime word was presented for 250 ms, after 

which a fixation cross remained on the screen for 300 ms. The visual target was 

presented for 500 ms followed by a jittered inter-trial interval of 1500-3000 ms 

(Figure 4). The total number of trials was 800. The experiment was divided into 2 

blocks (400 trials per each block) with an optional break in-between the blocks. 

Overall, for the associative prime condition, there were 20 male-, 20 female-related 

and 20 neutral words. For identity words, we had the word ‘woman’/’man’ presented 

20 times each, and 20 neutral words (the same that we used in associative 

condition). The words were presented with each morphing step (face identity was 

shuffled with no repetition) and each prime word was repeated 5 times. The trial 

order was randomized. The total duration of the experiment was approximately 90 

minutes. 

Figure 4: Experimental design. A prime (label or word associated with the target concept) was 

presented for 250 ms, followed by a fixation cross (300 ms), after which the target picture was 

presented followed up by a jittered fixation cross of 1500-3000 ms. Participants had to decide 

about the gender of the presented face by button press.
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Task
Participants were instructed to decide upon the gender (male or female) of the face 

based on the image presented, and to respond with a keyboard button press 

(middle/index finger; the mapping of the response buttons was counterbalanced 

across participants). Participants had up to 2 seconds to respond after onset of the 

picture and were instructed to skip the trials on which the prime belonged to the 

category “furniture”. This “go/no-go” task ensured that participants read the prime 

word. 

Analyses
Behavioral analysis 

We investigated priming effects by separately analyzing measures of behavioral 

performance: reaction times (RT) and choice responses. We performed a 2 by 

3 repeated measures analysis of variance (rm ANOVA) with prime type (identity 

or associations) and congruency (congruent, incongruent, neutral) as factors. 

We preselected congruent (target: male face, prime “man”; target: female face, 

prime “female”), incongruent (target: male face, prime “female”; target: female face, 

prime “man”) and neutral (target: male face, prime “day”; target: female face, prime 

“day”) word-target pairs collapsing across very- and less-gendered morphing steps 

(step 4, 5; step 7, 8). We performed post-hoc comparisons for main effects using 

Holm correction. Morphing step 6 was excluded from all analyses since ambiguous 

faces can require a different configuration of the decision process in comparison to 

the male and female gendered faces. Whereas faces of step 6 are marked by 

high-uncertainty, faces of steps 4,5,7,8 are instead marked by low uncertainty. 

Given this potential difference and given our focus on the potential differences 

among types of word primes, we decided to exclude step 6 items to avoid potential 

confounds in terms of uncertainty. It could be argued that the associative condition 

introduced in this study may be viewed as a conjunction of “labels” and “associations”, 

which would make the comparison between the two groups confounded (see 

“Semantic similarity” above in the materials section). Thus, in a secondary set of 

analyses,  we repeated a 2 by 3 rm ANOVA analysis on the associative words, 

omitting potentially confounded words in the non-identity condition (i.e., the 15 

“label primes” (e.g. father) and resulting in 25 associative words, see Figure 3 and 

Supp. Table 1.2) using the Bayesian approach, which accounts for unequal number 

of trials. 

Moreover, it could be argued that facilitation/interference effects can be modulated 

by repetition of the materials (i.e., the identity primes are repeated more than 

associative primes), therefore we also performed an analysis of repetitions. First, we 

calculated the number of repetitions for the conditions of interest (congruent, 
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incongruent, neutral) separately for associative and identity words. Then we calculated 

the average effect of interference (unrelated - neutral) and facilitation (related - 

neutral) for associations and identity words. Since the number of repetitions was 

unequal per condition for identity words (~ 80 repetitions) and for associative words 

(~ 50 repetitions), we calculated the facilitation/interference effect across the whole 

session with a step augmentation of 10 trials in order to better illustrate the 

differences between the identity/associative conditions,. Further, we performed 

four ANOVAs (separately for interference and facilitation per associations and 

identity words) with number of trial repetitions as dependent variable. The analyses 

were performed using JASP (JASP Team, 2018). 

Hierarchical Drift-diffusion Model 

In order to gain insights into the processing components underlying categorization 

in the identity and associative conditions, we analyzed choice reaction time data 

with the hierarchical drift-diffusion model. The analysis was implemented in the 

Python toolbox HDDM 0.6.0 (Wiecki et al. 2013). One of the main advantages of 

the hierarchical Bayesian framework is that the simultaneous estimation of the 

model parameters at both the single subject and group levels enhances statistical 

power since fewer trials are required to recover the parameters and the estimates 

are less susceptible to outliers (Wiecki, Sofer, & Frank, 2013), making it an appropriate 

analytic approach for the present study. Models with different combinations of free 

parameters were fit to the data via Markov Chain Monte Carlo (MCMC) fitting 

routines. We used an accuracy coding scheme for the responses for congruent/

incongruent/neutral prime-target pairs with the upper boundary reflecting a correct 

face categorization and the lower boundary an incorrect one. We defined the 

model space by allowing the parameters to vary freely over the factors of interest 

(congruency, prime type) of the experimental design (see Suppl. Table 2).

For each model we evaluated the rate of convergence of the numerical fitting 

routines and then the ability of the model to capture the observed RT distributions. 

Models that failed to reach convergence or failed to capture the observed RT 

distributions were excluded from further analyses. Finally, the remaining models 

were compared against each other by computing the relative Deviance Information 

Criterion (DIC), which is a measure of the goodness of the model fit to the data that 

penalizes for the complexity of the model (Schwarz, 1978). A rm ANOVA was then 

used to test for significant differences in the parameter estimates of the best fitting 

model and to quantify the evidence in support of a given hypothesis.
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Results

Behavioral analyses
Congruency Analysis

Behavioral results are summarized in Figure 5. We highlight that the associative 

condition consists of both labels (“father” / “daughter”) and “pure” associations 

(“beard” / ”skirt”). For rationale see Methods, Semantic Similarity. Participants’ speed 

of response varied as a function of congruency (main effect of congruency: 

F (2, 92) = 7.63, p < .001). On average, congruent words resulted in faster RTs in 

comparison to incongruent ones (congruent > incongruent: t = -6.13, p < .001, 

SE = 0.004, Mean difference = -.027) and to neutral ones (congruent > neutral: 

t = -4.86, p < .001, SE = 0.004, Mean difference = -.021). We also found that 

the incongruent words resulted in slower RTs in comparison to neutral ones 

(incongruent > neutral: t = 2.56, p = .04, SE = 0.002, Mean difference = .006). 

We also found that participants’ performance varied depending on the type of the 

prime (main effect of prime type: F (1, 46) = 4.70, p = .035). On average, identity 

words resulted in longer RTs in comparison to associative words: (associative 

> identity: t = -2.16, p = .035, SE = 0.007, Mean difference = -.014).

Congruent pairs with associative and identity words resulted in shorter RTs in 

comparison to neutral pairs (congruent > neutral (identity): t (46) = -3.53, p < .001; 

congruent > neutral (associations): t (46) = -5.07, p < .001). Interestingly, only 

incongruent pairs with labels resulted in longer RTs in comparison to the pairs with 

neutral words (incongruent > neutral (identity):  t (46) = 2.32, p = .024; incongruent 

> neutral (associations): t (46) = 0.40, p = .689).

For the proportion of correct responses, we did not find a difference for prime type 

(identity/associations): F (1, 46) = .014, p = .90. The effect of congruency did reach 

significance: F (2, 92) = 23.48, p < .001. We did not find an interaction between 

prime type and congruency: F (2, 92) = 0.13, p = .87. 

Secondary Congruency Analysis

We further excluded labels (“father” / “daughter”) from the associations (“beard” / 

”skirt”) and repeated the analysis in the Congruency Analysis. For the RT, we found 

a main effect of congruency: F (2, 92) = 22.53, p < .001. On average, congruent 

prime-pairs resulted in faster RTs in comparison to incongruent word-pairs (t = -5.42, 

p < .001, SE = 0.004, Mean difference = -.023) and to neutral words (t = -4.63, p < .001, 

SE = 0.004, Mean difference = -.019). There was no difference between unrelated 

and neutral word-target pairs: t = 1.78, p = .081, SE = 0.002, Mean difference = .004. 
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We also found that there was a main effect of prime type: F (1, 46) = 5.10, p = .029. 

On average, associations resulted in shorter RTs in comparison to identity words: 

t = -2.25, p = 0.029, SE = 0.006, Mean difference = -.014.

We also found an interaction between congruency and prime type: F (2, 92) = 5.45, 

p = .006. To investigate the interaction we performed a series of pair-wise t-tests 

with the following results: both related associative and related identity primes 

resulted in shorter RTs in comparison to the neutral primes (congruent > neutral for 

associations: t (46) = -3.959, p < .001; congruent > neutral for identity: t (46) = 

-3.537, p < .001). As for the incongruent condition, only identity pairs resulted in 

interference (incongruent > neutral for identity: t (46) = 2.328, p = .024; incongruent 

> neutral for associative:  t (46) = -0.82, p = .413).

For the proportion of correct responses we found a main effect of congruency: 

F (2, 92) = 19.58, p < .001. We did not find a main effect of prime type:  F (1, 46) = .002, 

p = .96, nor an interaction effect between congruency and prime type:  F (2, 92) = 

.084, p = .92.

Analysis of repetitions

Since there was intrinsically a different number of trials for associative vs. identity 

words, we performed a repetition analysis with the purpose of investigating the 

Figure 5:  Mean reaction times (A) and correct responses (B) for identity (“man” / “woman”) 

and associations (mix or associations (“beard” / ”skirt”) and labels (“father” / ”daughter”) as a 

function of semantic relatedness. Error bars represent 95 % confidence interval (CI); RT = 

response time.

congruent neutral incongruent

RT
 (m

s)

congruent neutral incongruent
Co

rr
ec

t r
es

po
ns

es
 (%

)

associations

labels

identity

Word type
A B



44

CHAPTER 2

facilitation and interference effects as a function of the number of trials. To reiterate, 

we defined the facilitation effect as the difference between congruent and neutral 

prime-target pairs. The interference effect was defined as the difference between 

incongruent and neutral pairs. There were on average 80 repetitions for identity 

primes (for each of the related and unrelated conditions) and 50 repetitions for 

associative primes (for each of the congruent and incongruent conditions) per 

subject. 

Within each of the conditions - associative or identity - we tested the effect of 

repetition separately for interference and facilitation effects. For the identity 

condition, we did not find a repetition effect neither for facilitation (F (7,322) = 0.96, 

p = .46) nor for interference (F (7,322) = 0.91, p = .49). For the associative condition, 

the repetition effect did not modulate the facilitation effect (F (4, 184) = 0.71, p = 

.58). However, the interference effect was affected by the repetition effect (F (4,184) 

=4.39, p = .002). This was mainly driven by a larger interference effect for the first 

10 trials. Specifically, analysis of repeated contrasts showed significant difference 

only between 10 vs. 20 trials (t = 2.69, p = .008, SE = .006, Estimate = .016), but 

neither for 20 vs. 30 (t = 0.79, p = .42, SE = .006, Estimate = .005) nor for other 

repeated contrasts. 

Figure 6: Interference and facilitation effects across trials for (A) associative words (“beard” / 

“skirt”) and (B) identity (“man” / ”woman”) words. Error bars represent 95 % confidence interval 

(CI); RT = response time.
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To sum up, the analysis investigating the effects of congruency and prime type, 

even when accounting for the potential confounds in the prime type, showed 

consistent results. Particularly, both identity words and associations resulted in a 

facilitation effect, but only identity words produced an interference effect. However, 

as we show in the Figure 6A, the repetition of items did affect the associative words, 

which reduced after 20 trials.  

Hierarchical drift-diffusion modeling
Next we conducted a drift-diffusion analysis using RTs and choice responses from the 

associative and identity conditions (following the Secondary Congruency Analysis).

Model Convergence and Model Fit

For all of the analyses reported, the MCMC (Gelman & Rubin, 1992) fitting routines 

were run for 25.000 iterations with a burn-in period of 10.000 iterations and a 

thinning of 1. Model convergence was assessed by examination of the posterior 

samples and of the R-hat statistic, which is a measure of convergence among 

multiple MCMC chains (three for the present study). Posterior density estimates, 

which are stable over multiple samples, indicate that the fitting routines have 

converged to a fixed estimate. A R-hat statistic below 1.1 indicates that chains with 

different starting values have converged to the same posterior estimate. Successful 

convergence was confirmed by a MCMC error for all of the parameters smaller 

than 0.01. We further performed a comparison between observed and recovered 

RT distributions produced by the model (see Supplement, figure 1). After assessing 

convergence, we carried out a quantitative comparison of model-candidates by 

computing the associated DIC score for each model. There were 15 model-candi-

dates (see Suppl. Table 2), which were constructed by setting three model 

parameters (A, Ter, v) as free of fixed along two experimental factors (congruency 

and target). DIC is a measure of the goodness of fit of the model to the data that is 

penalized for the complexity of the model and therefore a model with a lower DIC 

score is to be preferred over an alternative model with a higher DIC as the most 

parsimonious explanation of the data. Models that did not reach convergence were 

discarded and not included in the DIC comparisons. 

Below we report modelling results using behavioural data from Secondary 

Congruency Analysis. The model that best described the data (i.e. the model with 

the lowest DIC score) was the model with the following parameters estimated per 

subject: drift rate (v) free over congruency and prime type, threshold (A) free over 

prime type, non-decision time (Ter) free to vary across congruency and prime type 

(see Supplement, table 2 for details). Conventionally, a DIC difference of more than 

10 indicates that the evidence in favor of the winning model is substantial (Burnham, 
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Anderson, & Burnham, 2002). Because the difference between the winning model 

(model 6, DIC -16601.7) and the second-best model (model 12, DIC -16588.0) 

exceeds 10 (13.7), we consider this evidence enough for selecting model 6 as the 

most parsimonious account of the data and therefore further analyses focus on this 

model.

Model parameter analysis
Congruency analysis for HDDM parameters

Results of the modelling analysis are summarized graphically in Figure 7. 

Drift rate

We found a congruency effect (F (2, 92) = 27.34, p < .001). Particularly, congruent 

pairs had an increased drift rate in comparison to incongruent ones (t = 5.59, 

p < .001, SE = 0.067, Mean difference = .376) and in comparison to neutral ones 

(t = 6.88, p < .001, SE = 0.046, Mean difference =.0319). We did not find a difference 

between incongruent and neutral pairs (t = -1.168, p = .249, SE = 0.048, Mean 

difference = -.056). 

Figure 7: Congruency analysis. Posterior estimates of the hierarchical drift-diffusion model 

for the drift rate (v) and non-decisional parameter (Ter). Error bars represent 95 % confidence 

interval (CI).

dr
ift

 ra
te

 (a
.u

.)

congruent neutral incongruent

associations
lidentity

Word type

congruent neutral incongruent

no
n-

de
ci

si
on

al
 ti

m
e 

(m
s)

A B



47

2

RUNNING HEAD PLEASE

Boundary Separation

We did not find a congruency effect (F (1, 46) = 2.63, p = .11). 

Non-decision component

We found an effect of congruency (F (2, 92) = 5.81, p = .004). Congruent 

word-picture pairs had faster non-decisional time in comparison to incongruent 

(t = -2.78, p = .023, SE = 0.002, Mean difference = -.007) and neutral pairs (t = -2.92, 

p = .016, SE = 0.002, Mean difference = -.007). There was no difference in the 

non-decision time between incongruent and neutral pairs (t = -0.049, p = .96,  

SE = 0.002, Mean difference = -1.050e-4). We did not find either a main effect of 

prime type (F (1, 46) = 2.06, p = .15) or an interaction between congruency and 

prime type (F (2, 92) = 2.74, p = .069). 

To sum up, we found a congruency effect for the drift rate (v) and the non-decisional 

parameter (Ter), but not for the decision boundary (A). 

Discussion

In this study, we investigated whether the different types of semantic relationship 

(Mirman et al., 2017; Wentura & Degner, 2010) (associations or identity words) result 

in facilitation and/or interference in response priming of a gender categorization 

task. Participants had to decide about the gender of presented faces after having 

seen a word prime. From the analysis of reaction times, we found that both identity 

(e.g., prime “man”) and associative (e.g., prime “beard”/“father”) words resulted in a 

facilitation effect (congruent vs. neutral) whereas only identity words resulted in 

interference (incongruent > neutral). We further combined RTs and choice 

responses within the analytical framework of the DDM with the purpose of 

investigating the cognitive processes underlying facilitation and/or interference. We 

found a facilitation effect in both associative and identity words that translated to 

modulations in drift rate and non-decisional time. 

Congruency with the target words facilitates information 
processing of the target picture
Words are one of the top-down factors (such as reward or task strategy) that 

influence perceptual decisions. Indeed, it has been shown that a larger reward for 

one of the response options or increased likelihood of occurrence of two events 

results in an enhanced starting point of evidence accumulation for that particular 

response (Mulder, Wagenmakers, Ratcliff, Boekel, & Forstmann, 2012). It has been 

recently proposed that language affects perception by setting predictive priors that 
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sharpen perceptual representations (Simanova, Francken, de Lange, & Bekkering, 

2016). Kinoshita et al. (2017) indeed showed that the brief presentation of a color 

word followed by the presentation of a color sign to be categorized resulted in a 

facilitation effect which translated to boundary separation and starting point 

modulations. This prompted the idea that words indeed affect perceptual decisions 

in a predictive fashion. However, this could be due attributed to the internal statistics 

of the experiment - words were predictive of the upcoming color of the target. In 

our experiment we unambiguously show that when words are not-predictive of 

upcoming features of the target stimuli, neither modulations in threshold nor 

starting point are manifested. Instead we found that words result in an increased 

drift rate which we interpret in terms of faster target processing speed. 

Our finding supports well-established facilitation effects of language on perceptual 

decisions. For example, it has been shown that language can speed up recognition 

of visually presented objects (perceptual sensitivity or d’ prime) as has been 

demonstrated for the identification of facial expression (Carroll & Young, 2005) and 

for the detection of motion direction (Meteyard et al., 2007). Effects of language on 

visual perception have been demonstrated across different tasks and perceptual 

domains, including color categorization (Gilbert, Regier, Kay, & Ivry, 2006, 2008; 

Winawer et al., 2007)  and face recognition (Anderson, Serences, Vogel, & Awh, 

2014; Landau, Aziz-Zadeh, & Ivry, 2010). Experimental studies in the language 

domain are prone to interpret perceptual sensitivity results in terms of perceptual 

advantage, i.e. language tapping in the low-level representations (Meteyard et al., 

2007). However, the theoretical premises of the drift rate describe it as a 

post-encoding measure which does not reflect the low-level encoding (of a target 

picture), but rather reflects an intermediate processing stage between stimulus 

encoding and response execution. 

Usually in priming studies both prime and target are words and the modulations in 

drift rate are therefore interpreted in terms of increased spreading activation of a 

lexico-semantic nature (Voss, Rothermund, et al., 2013). However, in cross-domain 

priming (prime: word, target: picture) properties of the visual stimulus might change 

the nature of the process reflected by the drift rate. For example, it has been shown 

that the physical strength of the stimuli (i.e., intensity) was captured by a late 

event-related EEG potential, the centro-parietal positivity (CPP), which also tracked 

subjective perceptual experience (above the physically presented evidence) 

(Tagliabue et al., 2019). Another study showed that the rate of evidence accumulation 

is correlated with P300 which scaled with target detection difficulty (Twomey, 

Murphy, Kelly, & O’Connell, 2015) and indexed the duration of stimulus evaluation 

processes (Duncan-Johnson, 1981; Kutas, McCarthy, & Donchin, 1977). 
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Altogether these studies suggest that the modulation of evidence accumulation 

can reflect a separate meta-process. This could be tested by looking at whether the 

advantage in processing speed is due to lexico-semantic, visual or meta-process-

ing facilitation, for example using EEG. One would expect a modulation of either 

the N400 (see for review (Kutas & Federmeier, 2011) in case of a semantic advantage, 

a P300 / CPP modulation in case of a attention or P1 in case of an early visual 

(Boutonnet & Lupyan, 2015) advantage. Regardless of the exact nature of the drift 

modulation, we show that the priming effects modulate informational processing 

of the picture. To clarify which type of information is needed and, as a consequence, 

is reflected in the drift rate requires a combination of mathematical modeling and 

neuroimaging tools, which may be of use for future studies. 

On the processing of associations and identity words
We found that associative and identity words differ in the magnitude of RTs: longer 

for identity words in comparison to associative ones (no difference was found in 

accuracy data). It is known that upon repeated presentations of an item the chance 

of an error can be both diminished (repetition priming) and increased, resulting in 

cumulative semantic interference (Oppenheim, Dell, & Schwartz, 2007). For 

example, in a continuous naming paradigm subjects name pictures that belong to 

different categories and the naming times increase linearly with the number of 

pictures belonging to that category. Interestingly, the repetition of an item produced 

the same cumulative interference effect as additional novel exemplars in the 

category (Navarrete, Mahon, & Caramazza, 2010). We show that in a semantic 

categorization task with cross-domain priming the repetition of an identity 

prime-target resulted in longer RTs in comparison to the repetition of an associative 

prime-target pair, which is suggestive of cumulative semantic interference. To 

highlight, it can be that associative memories do not lead to cumulative semantic 

interference because categories and associations are represented differently as 

systems. Therefore identity prime-target items, which semantically belong to the 

same category (word: “man”, picture: man), result in cumulative semantic 

interference, and associative prime-target pairs do not produce cumulative 

semantic interference because they point to different categories (word: “beard”, 

picture: man). This raises questions about the non-semantic nature of associations 

and in general about the differences between the organization of semantic and 

associative memory systems (De Deyne, Navarro, & Storms, 2013b), which future 

studies should address. 

In spite of showing the differential effect in RTs for association and identity words, 

we showed that this difference cannot be attributed to the speed of evidence 

accumulation. Traditionally, semantic priming effects have been explained in terms 
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of memory aliasing, a process that helps integrating contextual linguistic information 

from the prime with the visual target – see the spreading-activation theory of semantic 

processing (Collins & Loftus, 1975) and the compound-cue account (Ratcliff et al., 

1988). According to the spreading-activation theory, semantic memory can be 

seen as a network of interconnected nodes. If two nodes share semantic features, 

they are connected and the semantic distance determines the strength of this 

connection. This theory predicts that identity primes (i.e. the words “man” and 

“woman”) would lead to a greater accessibility of the target in memory in comparison  

to the associative primes. Here, however, we found that the drift rate does not 

change as a function of semantic distance, which indicates that the drift rate does 

not necessarily reflect lexico-semantic memory effects but rather metacognitive 

processes. Previous experimental evidence suggests that briefly presented primes 

influence behavior via meta-cognitive fluency heuristics (Whittlesea & Williams, 

1998, 2000). Fluency, or the meta-cognitive experience of the ease with which  

we process information, affects a wide variety of decisions (categorization: 

Oppenheimer & Frank, 2008; familiarity: Monin, 2003; lexical decisions: Potter, 

Donkin, & Huber, 2018). In a general sense, decisions can be made not only on the 

basis of the content but also on the basis of the feeling of how easy it is to make a 

decision – in this sense fluency operates as a heuristics that facilitates decision 

making (Schwarz, 2004).

In summary, we show that both identity and associative words increase the 

processing speed of the visual target. The fact that processing speed does not 

reflect differences in RT attributable to a semantic cumulative effect suggests that 

drift rate does not reflect in this case processes of a lexical-semantic nature.

Cognitive processes related to the response priming paradigm
Previous studies in the field of language investigated whether semantic effects in 

response priming paradigms (e.g., the words “A” or “B” are used as primes and the 

participants have to make an “A” or “B” decision on the target) can be explained by 

response facilitation at the motor stage and/or target processing facilitation 

(Wentura, Voss et al., 2013). In other words, it has been proposed that a prime can 

pre-activate a certain motor response option bypassing target processing (see the 

interference-facilitation account of linguistic priming effects in De Houwer, 

Hermans, Rothermund, & Wentura, 2002; Klauer, & Musch, 2003). In this view the 

prime can either facilitate motor execution if the upcoming target is coherent with 

the prime or interfere with the execution if there is a prime-target mismatch. In the 

current study we found that both the speed of evidence accumulation and 

non-decisional time were affected by the primes. This suggests that the primes do 

not by-pass the evaluation of the target, but rather exert their influence on the 
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target and thus ruling out the interference-facilitation account. In conclusion, 

in this study we found that both associations and identity words in response priming 

led to a facilitation of face gender categorization. This effect was mapped to both 

response and target processing: when related to the target both prime types 

resulted in increased processing speed and faster motor response preparation. 

This result highlights the multidimensionality of the cognitive processes affected 

by language.





When task matters: 
the drift diffusion perspective on language-
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Abstract 

Language influences visual perception, for example, by facilitating categorical 

decision making about visual stimuli (Carroll & Young, 2005; Francken et al., 2015; 

Meteyard et al., 2007). Multiple studies have shown that language can affect stimuli- 

specific representations (Brouwer & Heeger, 2013; Landau et al., 2010), suggesting 

that language augments visual perception at a rather early stage. However, 

the mechanism of this facilitation is still not clear. Here we investigated whether 

the engagement of stimulus-specific representations can reflect the speed of 

information accumulation (i.e. decision making process) about the target picture. 

We also investigated whether the amount of attention deployed to words can affect 

the speed of perceptual decisions. We used a drift diffusion model (DDM) to analyze 

reaction time and two-alternative forced choice responses in an experiment with 

linguistic classification and verification tasks, where male and female faces were 

primed with gender labels ‘man’ and ‘woman’ (all participants were women). We 

showed that in the classification task, congruent prime-target pairs resulted in 

increased evidence accumulation in comparison to incongruent ones, following 

the well-established results from the literature (Voss, Rothermund, et al., 2013). In 

the verification task, female-related words resulted in an increased drift rate 

regardless of the gender of the target face, which suggests that the classification 

and the verification tasks require different performance strategies to accumulate 

decision about a visually presented category. Neural data for the classification task 

did not show any evidence in support of our hypothesis that the engagement of 

congruent representations can reflect an advantage in decision-making speed 

about the target picture. In the verification task, we found that the drift rate of 

evidence accumulation during incongruent versus congruent prime-target pairs 

with male faces correlated with activity in the precuneal cortex at the whole-brain 

level, which could potentially reflect the performance strategy during the task. This 

study offers a new perspective to the subject of language-perception interactions 

using a combination of model-based and neuroimaging approaches. 
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Introduction 

We often think of the fundamental senses as being fixed. However, modern 

neuroscience tells us that the brain actively constructs experience based on prior 

beliefs and expectations. Language has been shown to exhibit top-down effects on 

visual perception (Carroll & Young, 2005; Gilbert et al., 2006; Landau et al., 2010; 

Winawer et al., 2007), and visually-driven decisions can be affected by various 

top-down factors such as expectations, attention, and previous beliefs (de Lange, 

Heilbron, & Kok, 2018; Gilbert & Sigman, 2007; Jehee, Brady, & Tong, 2011). For 

example, verbs congruently describing the direction of upcoming random-dot 

motion kinematograms (e.g., the word ‘descend’ followed by the dots moving 

downwards) resulted in faster and more accurate judgments about the presence or 

absence of the motion itself (Meteyard et al., 2007). In spite of the fact that the 

effect of language on perceptual decision making is well documented (see for 

review Raftopoulos & Lupyan, 2018), the locus of this effect is still a matter of a 

debate. While some studies have shown that language can modulate perceptual 

representations (such as fusiform face area known to reflect face processing, 

Amado et al., 2018; Puri, Wojciulik, & Ranganath, 2009), others have suggested that 

top-down language effects involve processes of lexico-semantic memory and/or 

decision making (Francken et al., 2015; Tan et al., 2008). In short, it remains unclear 

how and at which processing stage language cues (i.e., words briefly presented 

before the visual input) affect perceptual decision making. 

Computational models of decision making help to elucidate the mechanisms 

underlying the effect of language on perception. Generally, perceptual decision 

making can be formalized as a process of accumulation of noisy sensory information 

until a decision threshold is reached and the motor command is executed (Gold & 

Shadlen, 2007; Mazurek, Roitman, Ditterich, & Shadlen, 2003; Smith & Ratcliff, 2004). 

Within this framework, the information introduced by language cues could affect a) 

the state of the decision variable before the onset of the evidence accumulation (i.e., 

starting point, which can be higher for female faces if one has a preference of judging 

faces as more female- than male-like); b) the rate of evidence accumulation (faster 

with the cue that is congruent with the visual stimulus, for example); or c) the amount 

of information that is required to make a decision (i.e., a lower decision threshold in 

the case when the cue is congruent with the visual stimulus, for example). 

Neuroimaging studies on primates have shown that regions such as the lateral 

intraparietal area (LIP) (Shadlen & Newsome, 2001), superior colliculus (Ratcliff, 

Cherian, & Segraves, 2003) and frontal eye fields (Hanes & Schall, 1996) exhibit 

time-series activity similar to predictions of evidence accumulation models (Ratcliff 
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& McKoon, 2008a; Usher & McClelland, 2001). In human studies, it has been shown 

that frontal regions can reflect the process of evidence accumulation. For example, 

in order to form categorical decisions in multisensory environments, frontal regions 

such as the inferior frontal sulcus (IFS) have to accumulate audio-visual evidence 

from the auditory and visual sources (Noppeney, Ostwald, & Werner, 2010). 

However it has been also shown that other than frontal regions, temporal regions, 

for example, can reflect the rate of evidence accumulation. Recently, it has been 

shown that blood oxygen level dependent (BOLD) activity in face/house selective 

regions in inferior temporal cortex (IT, Haxby et al., 2001) was found to increase at 

a rate proportional to the decision time in favor of the preferred stimulus in the 

context of a face/house discrimination task (Tremel & Wheeler, 2015). Recent work 

on the identification of recurrent structures has shown that lesions to posterior 

middle temporal gyrus (pMTG) slow down information accumulation in the visual 

domain (Martins et al., 2019). The authors interpreted this finding in terms of 

available memory representations, which guide perception in a top-down manner. 

In sum, depending on the task, various brain regions may accumulate evidence that 

drives choice during decision making (Mulder et al., 2014). To our knowledge, it has 

not been shown which perceptual decision-making mechanisms can be affected 

by language, and whether any brain regions can exhibit correlations with discovered 

decision-making patterns evoked by language, if any. 

In this study, we investigated how decision-making processes might affect the 

underlying language-vision interactions using an evidence accumulation framework 

in combination with neuroimaging methods (Ratcliff & McKoon, 2008a; Ratcliff, 

Smith, Brown, & McKoon, 2016). In light of previous studies highlighting the critical 

role of the speed of evidence accumulation in semantic decision tasks (Gomez et 

al., 2013; Voss, Rothermund, et al., 2013), we focused on investigating the link 

between the speed of evidence accumulation and the neural substrate underlying 

semantic decision making. We implemented a priming paradigm, in which a prime 

word (see Wentura & Degner, 2010) was followed by a briefly flashed visual input (or 

target) with the instructions to make a decision based on the target image. Primes 

were the words ‘man’ and ‘woman’ and targets were faces morphed from male to 

female in equidistant steps. Primes could be either congruent (e.g., prime: ‘man’, 

target: male face) or incongruent (e.g., prime: ‘woman’, target: male face) with the 

target. Behaviorally, we expected that congruent in comparison to incongruent 

pairs would result in faster reaction times and more correct responses (priming 

effect). Additionally, we modulated the amount of attention placed on the linguistic 

prime by introducing two tasks – classification and verification – that required 

differential allocation of attention. Classification is essentially a priming task, in 

which a word (i.e., the prime, see Wentura & Degner, 2010) is followed by a briefly 
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flashed visual stimulus (i.e., the target), and in this case, the prime is uninformative 

for identifying the target item. In contrast, the verification task required an explicit 

match between the prime and target. Particularly, it was necessary to extract the 

meaning from both the prime and target and to assess whether they match while 

holding both items in working memory. The crucial difference between the tasks is 

that the prime word in the verification task cannot be disregarded, but it is rather 

essential to attend to the word for task performance. 

Using functional magnetic brain resonance (fMRI), we were able to investigate 

whether the area associated with face processing such as fusiform face area (FFA) 

can be modulated by language, specifically by the semantics of the prime word in 

the context of a face categorization task. We hypothesized that priming effects 

(congruent > incongruent) could be found in behavioral, computational and 

neuroimaging measures. We further explored whether activity in the FFA could be 

accounted for by evidence accumulation in the DDM framework. We therefore 

tested whether BOLD in any of the brain regions found for the congruent vs. 

incongruent contrasts could predict the speed of the drift rate of evidence 

accumulation during decision making. We also investigated the differences 

between the two tasks. In the verification task we expected larger priming effects 

(congruent > incongruent) than in the classification task due to the fact that more 

attention is allocated to the prime. We also expected a similar set of modelling 

parameters reflecting the congruency effects as in the classification task, perhaps 

with larger effects. We also expected similar activation in FFA reflecting the 

congruency effect in classification and verification tasks. 

To our knowledge, this is the first time that a neuroimaging study has addressed the 

language-based priming effects through the lenses of computational modelling. 

Methods

We tested whether the lexico-semantic content of primes (i.e. ‘man’ vs. ‘woman’) 

affects the process of evidence accumulation during face-gender decisions (i.e. 

male vs. female) as a function of task demands, i.e., the requirement of no attention 

to the prime (classification task) or constant attention to the prime (the verification 

task). Decision-making mechanisms were evaluated by entering choice reaction 

time data for these decisions into the DDM. Crucially, we tested whether the 

resulting DDM parameter(s) could be used to predict brain activation using fMRI 

(whole brain and region of interest approach) in face-selective regions during the 

face gender decision tasks. 
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Subjects

Perception of faces, and particularly of face gender, has proven to be influenced by 

the gender of subjects (for example, see own-gender bias, McKelvie, 1987; Wright 

& Sladden, 2003). To avoid the gender effect in the regions associated with face 

perception, we opted for conducting our study on female subjects only (for gender 

differences in face categorization see: Coutrot, Binetti, Harrison, Mareschal, & 

Johnston, 2016; Lewin & Herlitz, 2002). Twenty-seven female volunteers recruited 

via the Radboud Research Participation System participated in the fMRI experiment. 

The study was approved by the local ethics committee (CMO Arnhem-Nijmegen, 

Radboud University Medical Center) and conducted in accordance with their 

guidelines. All participants gave written informed consent before the experiment 

and received standard monetary compensation for their participation. The data 

from five subjects were excluded from the analysis: three subjects failed to finish 

the task and two subjects exhibited head motion that exceeded the maximum 

acceptance rate of 2 mm. The final sample consisted of 22 subjects (Dutch native 

speakers, right-handed, age-range: 21-32, mean age = 25.86, SD = 3.07). All participants 

reported no neurological disease and had normal or corrected-to-normal vision.

Stimuli

The study required a set of faces as stimuli that would be categorized as male, 

female and ambiguous in a graded fashion. A set of realistic 3D gender-morphed 

faces was created with FaceGen Modeller 3.5 (Singular Inversions). The technical 

details on the computation method used by the software are discussed in (Blanz & 

Vetter, 1999b). We created 81 western face identities, for which we gradually 

morphed the gender features from extreme female to extreme male in ten equal 

steps (Figure 1A). The face stimuli were presented frontally and cropped around the 

oval of the face. We controlled for luminance using the SHINE toolbox for MATLAB 

(Willenbockel et al., 2010). The perceptual boundary within the gender continuum 

of faces was established in a separate behavioral experiment (see below). 

To obtain subjective perceptual ratings of face gender on our generated images, 

we conducted a stimulus evaluation experiment in an independent sample. A group  

of 47 volunteers (24 males, native Dutch speakers, age range 20 - 32 years, mean 

age = 23.83, SD = 2.88) participated. Subjects performed a 2AFC discrimination 

task on the gender (male vs. female) of each of the faces from the set. Each trial in 

the evaluation experiment started with a fixation cross that stayed on the screen for 

1500 ms, after which the target was visually presented for 500 ms. Participants 

were able to respond for an additional 2000 ms after the picture was removed from 

the screen. There were 810 trials in total (each identity was presented 10 times), 

which summed up to ~54 min of experimental duration. Participants had 2 optional 
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breaks during the experiment to avoid fatigue. Based on the responses, we identified 

the morphing step of faces that was perceived ambiguously. We included five 

morphing steps in the main experiment: two steps from the male/female continuum 

adjacent to the ambiguous point and one for ambiguous faces (Figure 1B). The 

percentage of faces evaluated as males for ambiguous faces (step 6 in Figure 1) was 

47.87% (SD = 16.45), for the selected extreme-male faces (step 4) 84.21% (SD = 

27.19), for the selected extreme-female faces (step 8) 16.80% (SD = 25.57).

Face-gender classification and verification tasks

Two different tasks (2AFC) were administered to each participant: a classification 

and a verification task. We set out to test whether ignoring the prime (classification) 

vs. keeping track of the prime at all times (verification) led to differential results on 

visual perception.  

The classification and the verification tasks had an identical trial structure, and were 

both evaluated in terms of prime-target congruency (i.e., a prime word followed by 

a target image), but the instructions and response options differed between the 

tasks (see Figure 2 A, B in Results). For both the classification and the verification 

tasks (event-related design), each trial started with a prime (250 ms) that was either 

the gender-related word ‘man’ or ‘woman’ (Dutch: ‘man’ or ‘vrouw’); after the prime 

word, there was a delay (fixation cross, 300 ms) followed by the target image of a 

face (500 ms) and the inter-trial interval (5-7 s, jittered). 

Figure 1 (A) Stimuli set with 81 identities each of which was morphed in ten steps between 

the male and female spectrum. The red square indicates the stimuli selected for the 

experiment, corresponding to faces of morphing steps 4-8 (‘very male’(4), ‘less male’(5), 

‘ambiguous’(6), ‘less female’(7), and ‘very female’(8), respectively). (B) Proportion of faces 

evaluated as males as a function of morphing step. The red numbers are morphing steps 

included in the experiment. 
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In the classification task, participants were instructed to decide whether each face 

(target) was female or male (‘man’/’vrouw’ response); they were also encouraged 

to read but ignore the prime words as non-informative for their decision about  

the target image. In the verification task, participants were asked to perform a 

match between prime and target: respond ‘yes’ if a word and subsequent picture 

corresponded in gender, and ‘no’ otherwise. Participants were instructed to attend 

to the prime word in the verification task since it was essential for further matching 

with the target image.

In both the classification and the verification tasks, there were ten conditions 

determined by five levels of morphing from male to female faces (see Stimuli 

section for details) and two prime words (‘man’ or ‘woman’). A congruent trial was 

defined as when both the prime word and target image had the same gender (e.g., 

‘man’ followed by a male face). It is important to highlight that congruency was 

determined by the ratings in the first experiment, i.e., “very/less male/female” faces 

were evaluated as such in the first experiment. In contrast, an incongruent trial was 

defined as when the prime word and target image had different genders (e.g., ‘man’ 

followed by a very female face). Note that ambiguous faces were not considered as 

either congruent or incongruent. Within each block (and for each of the two tasks), 

the ten conditions were shown five times each, yielding 20 congruent and 20 

incongruent trials per block (ten trials with ambiguous faces). 

To ensure that participants read the prime word (this was particularly relevant for 

the classification task since gender categorization could be done without reading 

the word), we introduced ‘catch’ words in the classification task and instructed 

participants to skip trials containing any words other than ‘man’/’vrouw’. Thirty-eight 

catch trials were introduced within a span of 4-6 trials in the classification task only, 

which summed up to ~10 additional trials per each of the classification blocks (~60 

trials per each classification block). 

Procedure

Participants performed two different two-alternative forced-choice (2AFC) face- 

gender decision tasks (i.e. classification and verification) while the BOLD signal was 

measured using fMRI in a single session (~1.5 hours). Participants stayed in the 

scanner for the duration of the session. The experiment was divided into 12 runs 

(6 runs for the classification and 6 runs for the verification task). The duration of 

each run was ~ 7 min. The 10 conditions within each run were presented randomly. 

Each run started with a brief instruction describing either the classification or the 

verification task. The order of the runs was randomized across participants such that  

the tasks did not repeat more than twice in a row. In total for each of the two tasks, 
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120 trials of both the congruent and incongruent conditions were administered per 

participant (60 trials of ambiguous faces). 

We used the Presentation software (version 17.1, www.neurobs.com) in order to 

display the stimuli on a PC screen (Dell T5810, resolution: 1024×768, refresh rate: 

60 Hz), which were further projected on the back of a transparent diffuse screen 

(DAP diffuus KBBA High Contrast, projection size: 454×340 mm, visual view angle 

H: 33 degree, V: 25 degree) via an LCD projector (EIKI LC XL100, resolution 

1024×768, 60 Hz refresh rate) located outside the shielded MRI room. Participants 

replied with a response button (8 Button Bimanual Curved Lines HHSC-2×4-C) by 

pressing with the middle or index finger of the right hand. The buttons were coun-

terbalanced across subjects. 

At the end of the experimental runs (classification and verification tasks), participants 

performed one run of a face-selective localizer task in order to isolate voxels 

responsive to faces (~15 min.). In addition, we collected a T1-weighted anatomical 

image that lasted for approximately 5 min. We collected the T1-weighted image 

either before the main task or after the localizer task had been completed. 

Behavioral analyses 

We investigated effects of the task and the prime (‘man’/’woman’) on the 

categorization of the face gender target picture. We performed a repeated 

measures analysis of variance (rm-ANOVA) with within-participant factors: ‘task’ 

(levels: classification, verification), ‘congruency’ (levels: congruent, incongruent) 

and ‘target’ (levels: male, female). We collapsed across the morphing steps for each 

gender (i.e., male: very male and less male faces; female: very female and less 

female faces). We did not include the ambiguous faces in the analysis. Missed trials 

were excluded from the analysis. Planned comparisons included the following 

effects: congruent versus incongruent (separately per task). In addition, as an 

exploratory part of the analysis, we constructed gender-specific congruency 

contrasts (e.g., congruent vs. incongruent female only). We further performed the 

rm-ANOVAs on the dependent variables of reaction time (RT) and percentage of 

correct responses separately for the classification and the verification tasks. The 

analyses were performed using JASP (JASP Team, 2018). 

Modelling analyses: Hierarchical Drift Diffusion Model (HDDM) 

As mentioned in the introduction, our main goal was to investigate the link between 

the speed of evidence accumulation (i.e., drift rate) and the neural activity underlying 

the priming effects in the classification and verification tasks. In order to estimate 

the drift rate, we had to quantify computationally the processing components 
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underlying gender judgments in the verification and classification tasks. To do so, 

we analyzed choice reaction-time data with the hierarchical drift-diffusion model. 

The analysis was implemented in the Python toolbox HDDM 0.6.0 (Wiecki et al. 

2013). We used a hierarchical version of DDM (HDDM) where model parameters are 

estimated in a Bayesian framework. One of the main advantages of the hierarchical 

Bayesian framework is that the simultaneous estimation of the model parameters 

at both the subject and group levels enhances statistical power (fewer trials are 

required to recover the parameters and the estimates are less susceptible to outliers 

(Wiecki et al., 2013)), making it an appropriate analytic approach for the present 

study. Models with different combinations of free parameters were fit to the data via 

Markov Chain Monte Carlo (MCMC) fitting routines. 

In the classification task, correctly categorized faces (male or female) were coded 

as ‘correct’ responses and errors as ‘incorrect’. In the verification task, correct matches 

(e.g. prime: ‘woman’, target: ‘woman’, response: ‘yes’) and correct rejections (e.g. 

prime: ‘woman’, target: ‘man’, response: ‘no’) were coded as ‘correct’ responses; 

similarly incorrect matches (e.g. prime: ‘woman’, target: ‘woman’, response: ‘no’) 

and incorrect rejections (e.g. prime: ‘woman’, target: ‘man’, response: ‘yes’) were 

coded as ‘incorrect’ responses. We excluded from the analysis missed trials. For 

both decision tasks, we did not include the ambiguous faces in the analysis. 

For each model, we evaluated the rate of convergence of the numerical fitting 

routines and then the ability of the model to capture the observed RT distributions. 

Models that failed to reach convergence or failed to capture the observed RT 

distributions were excluded from further analyses. Finally the models were 

compared against each other by computing the relative Deviance Information 

Criterion (DIC), which is a measure of the goodness of the model fit to the data that 

penalizes for the complexity of the model (Schwarz, 1978). We used a rm-ANOVA 

with congruency and target (see Behavioral analyses section) as within-subject 

factors to analyze parameter estimates of the best fitting model. The analyses were 

carried out using JASP (JASP Team, 2018). 

fMRI acquisition, preprocessing & statistical analysis

Functional images were acquired using a 3T Skyra MRI system (Siemens Magnetom), 

T2* weighted echo-planar images (gradient-echo, repetition-time TR = 1760 ms, 

echo-time TE = 32 ms, echo spacing = 0.7 ms, 1626 hz / Px bandwidth, generalized 

auto-calibrating partially parallel acquisition (GRAPPA), acceleration factor 3, 

32-channel brain receiver coil). In total, 78 axial slices were acquired (slice timing: 

interleaved; 2.0 mm thickness, 2.0 × 2.0 mm in plane resolution, 212 mm field of 

view (FOV) whole brain, anterior-to-posterior phase-encoding direction). In 
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addition, we acquired T1-weighted high-resolution images (voxel size 1 × 1 × 1 mm) 

using a gradient echo sequence (TR = 2.3 sec, echo time = 3.03 ms, flip angle 8°, 

256 mm FOV).

The data preprocessing and statistical analysis (the same preprocessing for 

classification, verification and localizer tasks) were performed using the FMRIB 

Software Library version 6.0.0 (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; Jenkinson, 

Beckmann, Behrens, Woolrich, & Smith, 2012; Smith et al., 2004; Woolrich et al., 

2009). We carried out preprocessing steps using FEAT, version 6.00 (Woolrich, 

Behrens, Beckmann, Jenkinson, & Smith, 2004; Woolrich, Behrens, & Smith, 2004; 

Woolrich, Ripley, Brady, & Smith, 2001). For each run in the preprocessing step, we 

excluded the first 12 volumes needed for stabilization of the scanner’s magnetic 

field. We applied grand-mean intensity normalization of the entire 4D dataset by a 

single multiplicative factor and high-pass temporal filtering (Gaussian-weighted 

least-squares straight line fitting, with sigma = 60.0s). We carried out motion 

correction using MCFLIRT (Jenkinson, Bannister, Brady, & Smith, 2002), and spatial 

smoothing (Gaussian kernel of FWHM = 6 mm). Functional images were brain- 

extracted using BET (Brain Extraction Tool; Smith, 2002). 

For the first-level analysis of the classification and the verification tasks, we 

convolved the time-course of each trial-type regressor with the double-gamma 

hemodynamic response function. Voxel-wise time-series analysis was executed 

using FILM (FMRIB’s Improved Linear Model; Woolrich et al., 2001) with autocor-

relation correction. We registered each of the first-level contrasts to the high-reso-

lution T1-weighted image of the corresponding participant using boundary based 

registration (BBR) as implemented in FLIRT (FMRIB’s Linear Image Registration Tool; 

Jenkinson & Smith, 2001; Jenkinson et al., 2002). The EPI images were registered 

(via the high-resolution images) to the MNI-152 template with 12 degrees of 

freedom, applying a normal linear search. For each run at the first level, we 

constructed a general linear model (GLM) with ten regressors (five conditions of the 

face target and two conditions of the prime word). Contrasts of interest were the 

following (positive and negative directions): congruent vs. incongruent (male and 

female genders combined), male vs. female target, and the interaction between 

congruency and target (F-test). As an exploratory part of the analysis, we constructed 

four gender-specific congruency contrasts: congruent female vs. incongruent 

female and congruent male vs. incongruent male. Six rigid-body motion parameters 

were included as nuisance regressors. 
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At the second level, the resulting contrast images from the first-level analysis were 

averaged across runs for each participant for the classification and the verification 

tasks separately (fixed effects modeling, FEAT). The third level (group), was carried 

out using FLAME (FMRIB’s Local Analysis of Mixed Effects) with Z-statistic images 

thresholded at Z > 3.1 and a cluster-corrected threshold of p < .05 to control for the 

family-wise error rate.    

Finally, in a separate group-level analysis, we tested for a correlation (positive and 

negative directions) between congruency effects (congruent > incongruent) in the 

(demeaned) HDDM parameters and BOLD contrast of parameter estimates for the 

classification and the verification tasks separately. Here, we focused on the drift 

rate, and performed further exploratory analyses on the threshold and starting 

point. We also tested a correlation (positive and negative directions) between 

significant gender specific effects and respective BOLD contrasts. The correlations 

were evaluated at the level of the whole brain data using FLAME (FMRIB’s Local 

Analysis of Mixed Effects) Stage 1. Statistic images (Z-statistics) were thresholded at 

Z > 3.1 and a cluster-corrected threshold of p < .05 to control for the family-wise 

error (FWE) rate (Eklund, Nichols, & Knutsson, 2016).

Defining face-selective regions of interest 

For a region of interest (ROI) analysis, we sought to isolate voxels responding 

selectively to faces. To do so, we made use of a functional localizer (for details see 

below). Although the exact neural substrate that reflects face gender perception is 

still an area of active investigation (Kaul, Rees, & Ishai, 2011; Wiese, Kloth, Güllmar, 

Reichenbach, & Schweinberger, 2012), it has been unambiguously shown that one 

region in particular, the FFA, largely contributes to the coding of gender (Contreras, 

Banaji, & Mitchell, 2013; Freeman, Rule, Adams Jr, & Ambady, 2010). Here, rather 

than investigating the neural representation of face gender, we focus on FFA as a 

brain area, which has proven to be a major contributor to face-gender coding.

The face localizer was a one-run task, which had a blocked design with four 

conditions: faces, houses, scrambled faces and scrambled houses (see Supp. 

Figure 3). Conditions were presented in a randomized order. Within each block, 20 

images were shown for 1 s, preceded by a fixation cross for 1 s (40 s per block). Each 

block was repeated four times in a single run. There was a jittered 6000-12000 ms 

break after each block while scanning continued. In the localizer, a total of 80 

unique images were shown to each participant. While passively viewing the stimuli 

during the localizer participants had to decide whether two stimuli repeated twice 

in a row and deliver a response if so.
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We defined the FFA at the group level. All preprocessing stages were the same as 

for the main tasks. At the first level we defined four regressors (faces, houses, 

scrambled houses, scrambled faces) and modelled the contrast of interest as 

follows: faces > houses + scrambled houses. At the second (and group) level, the 

resulting subject-specific parameter estimates were evaluated (FLAME, Z > 3.1, p < 

0.05 FWE). Face-selective voxels were initially restricted based on a combined 

anatomical mask of the Temporal Fusiform Cortex (posterior division) and the 

Temporal Occipital Fusiform (see Figure 4) using the Harvard-Oxford Cortical 

Structural Atlas (as part of FSL). Mean activation for each contrast of interest within 

the FFA was computed using a weighted-means approach, based on each voxel’s 

group-level activation (thresholded posthoc at Z > 4.0 in order to increase the 

specificity of the cluster selection). We evaluated the mean Z-statistics in a rm-ANOVA 

with factors: congruency (levels: congruent, incongruent), target (levels: male, 

female) and task (levels: classification, verification). We also performed linear 

regression to investigate whether BOLD activation in FFA can predict the drift rate 

parameter modelled in the DDM framework. The analysis was carried out using 

JASP (JASP Team, 2018).

Results

Behavioral analyses 

First, we tested using RT and correct responses whether face categorization differs 

in the context of classification and verification tasks (see Table 1 and Figure 2). In RTs, 

we found an interaction between task and target and a three-way interaction between 

task, congruency and target (see Table 1). In correct responses, we found a main effect 

of task and an interaction between task and congruency (see Table 1). We further 

explored the effect of prime separately per classification and verification tasks.  

In the classification task (Fig. 2A), we found that congruent prime-target pairs 

resulted in faster RTs as compared with incongruent prime-target pairs: t(21) = 

-4.08, p < .001. We found that trials with congruent female targets resulted in  

more accurate categorization judgments: t(21) = 3.13, p = .003. We did not find a 

significant difference between congruent vs. incongruent trials with male targets: 

t(21) = 1.25, p = .112.

In the verification task (Figure 2 B), we found slower RTs for incongruent as compared 

with congruent prime target pairs for female targets: t(21) = 4.39, p < .001. We did not 

find any difference between incongruent as compared with congruent prime-target 

pairs with male targets:  t(21) = .27, p = .391. In the accuracy data, we found that 
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participants were more accurate for incongruent as compared with congruent 

trials for male targets: t(21) = 3.85, p < .001. We did not find a significant difference 

between congruent vs. incongruent trials for female targets: t(21) = 1.68, p = .053.

In sum, in the classification task, participants were faster for congruent as compared 

with incongruent faces and more accurate for congruent prime-target pairs with 

female faces, but not with male faces. In the verification task, participants were 

Figure 2:  Classification and verification tasks. Both tasks consisted of the same trial structure 

(prime followed by target, two-alternative forced-choice), while the instructions and response 

options differed between the tasks. These two tasks were designed to test whether engagement 

of the prime in the task had differential effect on gender categorization. (A) The classification 

task in which participants discriminated the face gender of the target (options: male or 

female). They were instructed to read the prime word but were told it was non-informative for 

discriminating the target image. (B) The verification task, in which participants were instructed 

to decide whether the gender described in the prime matched the face gender of the target 

image (options: yes or no). (C, D) Performance results reflecting face (target) classification as 

a function of prime-target congruency during the classification task and (E, F) the verification 

task. (C, E) Error bars, standard error of the mean. ** p < 0.01, *** p < 0.001

Table 1  Repeated measures ANOVA (2-way) results for RTs and percent correct.

RT F(1,21) p η2

Task 2.27 .146 .030

Congruency 20.55 < .001*** .131

Target 14.59 <.001*** .040

Task * Congruency 1.194 .287 .003

Task * Target 6.526 .018* .011

Congruency * Target 14.93 <.001*** .066

Task * Congruency * Target 4.86 .039* .016

Percentage Correct

Task 7.075 .015* .027

Congruency .537 .472 .004

Target 15.854 <.001*** .092

Task * Congruency 6.613 .018* .032

Task * Target 3.068 .094 .016

Congruency * Target 12.593 .002** .069.

Task * Congruency * Target 3.064 .095 .012

Factors tested were task (classification, verification), congruency (levels: congruent, incongruent) and target 

(levels: male, female). * p < .05 ; ** p < .01; *** p < .001. CL – classification task, VR – verification task. 
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slower when they saw incongruent prime-target faces with female targets in 

comparison to congruent pairs with female targets (no effect for male targets). 

We also found in the verification task that participants were more accurate for 

incongruent pairs with male targets as compared with congruent pairs with male 

targets (no effect for female targets). 

Modelling analyses

We performed drift diffusion analysis using RTs and choice responses separately for 

the classification and the verification tasks. Our research hypothesis was that better 

subject performance in congruent vs. incongruent conditions of semantic decision 

tasks could be explained by the modulations of the drift rate. Therefore we focused 

on the drift rate out of all modelling parameters (see Figure 3). Exploratory analyses 

concerning decision threshold and starting point are presented in the Supp. Fig. 1 

and Supp. Table 1. 

Model Convergence and Model Fit

For all of the analyses reported, the MCMC (Gelman & Rubin, 1992) fitting routines 

were run for 20.000 iterations with a burn-in period of 10.000 iterations and a 

thinning of 5. Model convergence was assessed by examination of the posterior 

samples and of the R-hat statistic, which is a measure of convergence among 

multiple MCMC chains (three for the present study). Posterior density estimates, 

which are stable over multiple samples, indicate that the fitting routines have 

converged to a fixed estimate. Similarly, an R-hat statistic below 1.1 indicates then 

that chains with different starting values have converged to the same posterior 

estimate. Successful convergence was further confirmed by a MCMC error for all of 

the parameters smaller than 0.01. We further performed a comparison between 

observed and recovered RT distributions produced by the model (see Supp. Figure 

2 for an example of model fit for one condition). After assessing convergence, we 

carried out a quantitative comparison of alternative models by computing the 

associated DIC score for each model. DIC is a measure of the goodness of fit of the 

model to the data that is penalized for the complexity of the model. Therefore, a 

model with a lower DIC score is to be preferred over an alternative model with a 

higher DIC as the most parsimonious explanation of the data. Models that did not 

reach convergence were discarded and not included in the DIC comparisons. 

The model that best described the data (i.e., the model with the lowest DIC score, 

see Supp. Table 2 for details) for the verification task was the model with the 

following parameters estimated per subject: drift rate (v), non-decision time (Ter), 

decision threshold (A) and starting point (z) free to vary over prime and target 

conditions. In other words, there was no constraint for these parameters to be 
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constant for some specific conditions (prime or target).Conventionally, a DIC 

difference of more than 10 indicates that the evidence in favor of the model-winner 

is substantial (Burnham, Anderson, & Burnham, 2002). Because the difference 

between the winning model (model 21, DIC 710.319) and the second-best model 

(model 19, DIC 740.89) exceeds 10, we consider this evidence sufficient for selecting 

model 21 as the most parsimonious account of the data and therefore further 

analyses focus on this model.

Figure 3: Schematic representation of the drift diffusion model. Once the stimulus is encoded, 

the process of evidence accumulation begins. The evidence is accumulated towards one of 

the decision boundaries. After the decision threshold is reached, the response is executed. 

(A) The Drift Diffusion model with the four parameters: drift rate (v), decision threshold (A), 

starting point (z), non-decision component (Ter). Drift rate estimates for classification (B) and 

verification (C) tasks. Error bars, standard error of the mean. ** p < 0.01, *** p < 0.001
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For the classification task, the best model was the model with the following 

parameters estimated per subject: drift rate (v), non-decision time (Ter), and decision 

threshold (A) free to vary over prime and target conditions. The difference between 

the first three top models was minimal (model 21: -210.14, model 0: -210.26, model 

20: -208.32). Since adding additional complexity (models 20 and 21 had the z 

parameter in addition to v, A, Ter) did not result in substantial advantages in model 

fit (DIC did not exceed 10 scores between the models), we selected model 0 (with 

v, A, Ter parameters) as the most parsimonious account of the data and further 

focused on analyses with this model.

Model parameter analysis

We performed a rm ANOVA analysis with congruency and target face as factors. 

Results are summarized in Figure 3 and Table 2.

Drift rate (V)

We found a main effect of task, an interaction between task and congruency and a 

three-way interaction between task, congruency and target (see Table 2). We further 

present the effect of primes for classification and verification results separately. For 

the classification task (Figure 3 C), for both female and male faces, congruent 

primes led to increased drift rate in comparison to incongruent pairs (female targets: 

t (21) = 3.82, p < .001; male targets: t (21) = 2.63, p = .016).

Table 2   Repeated measures ANOVA (2-way) results for drift rate parameter. 

Factors tested were congruency (levels: congruent, incongruent) 

and target (levels: male, female). * p < .05 ; ** p < .01; *** p < .001. 

CL – classification task, VR – verification task.

Drift rate F(1,21) p η2

Task 17.93 <.001*** .065

Congruency .664 .424 .004

Target 30.982 <.001*** .143

Task * Congruency 30.681 <.001*** .088

Task * Target .385 .542 .001

Congruency * Target 30.927 <.001*** .109

Task * Congruency * Target 13.194 .002** .038
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For the verification task (Figure 3 D), we found increased drift rate for incongruent 

vs. congruent pairs with male targets t (21) = 4.60, p < .001. For the female targets, 

the drift rate was increased for congruent vs. incongruent targets t (21) = 3.21, 

p = .002. 

Results of the exploratory analysis for decision threshold, non-decisional component 

and starting point are presented in the Supplementary Figure 1, Supp. Table 1. 

To sum up, drift rate in the classification task followed the priming pattern of results 

– increased drift rate for congruent in comparison to incongruent prime target 

pairs. In the verification task, we unexpectedly observed another pattern: increased 

drift rate for incongruent vs. congruent prime-target pairs for male faces and 

increased drift rate for congruent vs. incongruent prime-target pairs with female 

faces in comparison. This might suggest that participants strategically performed 

the verification task differently from the classification task, which can be explained 

by paying more attention to the prime “woman” vs. “man”, which resulted in higher 

drift rate. It is a prominent finding that attention increases the speed of sampling 

information, which can be captured via increased drift rate (Armel, Beaumel, & 

Rangel, 2008; Krajbich, Armel, & Rangel, 2010; Lim, O’Doherty, & Rangel, 2011). 

Particularly, it has been suggested that attention accelerates the entry of the stimuli 

into short term memory, which is reflected in the drift rate (Smith, Ratcliff, & 

Wolfgang, 2004). In this study, in the verification task, allocation of attention to a 

word “man” / “woman” might create its representation in short term memory, and 

information from the images can be matched against it. This process is potentially 

reflected in the observed pattern of the drift rate. 

Neuroimaging analyses

We tested whether gender-related word primes (‘man’ vs. ‘woman’) modulated 

brain activation while participants categorized faces as either male or female. 

BOLD-signal changes were evaluated at the whole-brain and ROI levels. A functional 

localizer for face-selective voxels was utilized in the current sample for defining the 

FFA (see Methods).

Localizing face-selective regions of interest

The contrast faces > houses + scrambled houses revealed a network of significantly 

activated brain regions (see Figure 4 and Table 3). We expected the face localizer to 

yield occipito-temporal brain regions that were previously shown to be related to 

face gender processing: LOC and TFC (Dricot, Sorger, Schiltz, Goebel, & Rossion, 

2008; Hermann, Bankó, Gál, & Vidnyánszky, 2015; Kanwisher & Yovel, 2006). 
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Prime-target interactions in the classification and verification tasks

To explore prime-specific modulations in the BOLD signal, we performed whole 

brain rm-ANOVAs (congruency by target) separately per task. We did not find any 

effects using a whole brain analysis (see Supp. Table 3). 

Figure 4: Face Localizer.  Faces > houses + scrambled houses contrast, Z-statistics after cluster- 

correction. The outlines are anatomical masks from the Harvard-Oxford Cortical Structural 

Atlas that were used to restrict the selection of voxels from the localizer. In black: Temporal 

Fusiform Cortex, posterior division; in blue: Temporal Occipital Fusiform. 

Z stat

Table 3   Significant clusters of BOLD activation for the faces > houses  

+ scrambled houses contrast in the localizer task. Results are cluster- 

corrected using FWE rate of 0.05. For each cluster, we present  

the Harvard-Oxford Cortical Structural Atlas coordinates (x, y, z) of  

the local maxima (MNI-152 2-mm space), including the cluster size (k), 

and the maximum Z-statistic at those coordinates.

Brain region x y z Z-stat k

Frontal Pole 34 42 20 4.48 2287

Lateral Occipital Cortex 44 -84 -4 6.75 1568

Middle frontal Gyrus -36 24 24 5.35 539

Cerebellum (Left Crus II) -10 -78 -38 4.66 430

Temporal Fusiform Cortex -42 -44 -20 5.17 406

Precentral Gyrus -42 2 40 4.38 223

Precuneus Cortex 2 -58 34 4.1 169

Paracingulate Gyrus -4 20 46 3.62 141

Right Amygdala 20 -4 -14 5.56 136

Angular Gyrus -44 -58 16 4.22 133
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Since the verification task exhibited quite different patterns of results for female and 

male targets in the behavioral and modeling data, we performed an exploratory 

analysis for the verification task only, in which we investigated the following contrasts: 

congruent female > incongruent female; incongruent female > congruent female; 

congruent male > incongruent male; incongruent male > congruent male). 

However, we did not obtain significant results in any of the exploratory whole-brain 

analyses (Supp. Table 4).

The ROI-based analysis, within the FFA, based on a rm-ANOVA with factors 

congruency, target and task did not reveal any main effects or interaction effects 

(see Supp. Table 5, 6).

The relationship between drift rate and prime-target congruency

We performed a linear regression to investigate whether drift rate can be predicted 

by the BOLD activation related to prime-target congruency within the FFA. For the 

classification task, we performed one regression, i.e. drift rate ~ FFA (congruent > 

incongruent) regardless of the target. In the verification task, we performed two 

linear regressions separately for male and female targets, i.e. drift rate ~ FFA 

(congruent female target > incongruent female target) and drift rate ~ FFA 

(incongruent male target > congruent male target). We did not find that congruency 

effects within the FFA can predict drift rate in either the classification task (B = -.01, 

t = -.32, p = .74, R2 = .00), or in the verification task (male targets, incongruent male 

target > congruent male target: B = -.10, t = -1.19, p = .24, R2 = .06; female targets, 

congruent female target > incongruent female target: B = .06, t = 1.33, p = 0.19, R2 

= .08). 

To explore if there are other regions that could correlate with drift rate, we 

performed a whole-brain correlation between BOLD signal and drift rate for the 

congruent > incongruent contrast in the classification task. In the verification task, 

we performed a whole-brain correlation analysis between BOLD signal and drift 

rate for incongruent male target > congruent male target and for congruent female 

target > incongruent female target. We obtained a positive correlation between the 

drift rate and BOLD activation for incongruent male > congruent male faces, which 

was localized to the left precuneus (see Figure 5; max. Z-statistic = 3.84 [-12x, -56y, 

8z], 135 voxels). No other correlations were obtained (see Supp. Table 6).
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Discussion

In this study, we used a combination of neuroimaging (fMRI) and computational 

modeling (DDM) to investigate mechanisms of language-vision interactions from a 

decision-making perspective. Particularly, we studied whether semantic-related 

BOLD effects (e.g., the effect of the word ‘male’ on perception of a male face) in 

sensory cortex can be accounted for by evidence accumulation mechanisms. 

Further, we studied whether the amount of attention allocated to language 

semantics modulates the sensory BOLD signal and whether it is associated with the 

speed of evidence accumulation. For that, we constructed the tasks in which 

subjects had to perform a semantic decision by either ignoring the context (i.e., the 

prime in the classification task) or keeping track of the context at all times (i.e., the 

prime in the verification task). 

Behavioral data showed that in the classification task, subjects were faster and 

more accurate in congruent as opposed to incongruent word-face pairs. In the 

verification task, the RTs and accuracies varied depending on the target face. We 

found shorter RTs for congruent in comparison to incongruent female faces (no 

difference between congruent/incongruent pairs for male faces). In percentage of 

correct responses, participants were more accurate for incongruent male faces in 

comparison to congruent male faces (no difference in accuracy performance for 

female faces). DDM modelling showed that the classification and the verification 

tasks resulted in differential modulation of the drift rate. In the classification task, 

congruent prime-target pairs resulted in increased drift rate in comparison to 

Figure 5: Significant BOLD activation for incongruent male faces > congruent male faces that 

correlates with the drift rate of evidence accumulation in the verification task. Color bar 

denotes Z statistics.

Z stat
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incongruent ones (for both female and male targets). In the verification task, drift 

rate varied depending on the target face similarly as it was shown in behavioral 

results. In male targets, congruent prime-target pairs resulted in increased drift rate 

in comparison to incongruent ones. In female targets, congruent prime-target 

pairs resulted in increased drift rate in comparison to congruent ones. While we did 

not find any correlation between drift rate and BOLD activation in the classification 

task, we found that in the verification task the BOLD activation in left precuneal 

cortex was positively correlated with the drift rate for incongruent male faces > 

congruent male faces at the whole-brain level. We interpret these findings in light 

of relevant literature below.

Language-perception interactions via an evidence-accumulation lens 

According to the theories of grounded cognition (Barsalou, 2008; Gallese & Lakoff, 

2005; Kiefer & Pulvermüller, 2012), conceptual knowledge is mapped onto sensory- 

motor representations. A number of neuroimaging studies reported activation in 

sensory-motor cortices while people were performing semantic tasks related to 

sensory or/and motor concepts. For example, color naming (as well as reading color 

words or words with strong color associations) resulted in activation of perceptual 

representations related to color (Bannert & Bartels, 2013; Brouwer & Heeger, 2013). 

Similarly, processing action-related words resulted in activations in motor cortex 

(Hauk, Johnsrude, & Pulvermüller, 2004; Klepp, van Dijk, Niccolai, Schnitzler, & 

Biermann-Ruben, 2019 but see de Zubicaray, Arciuli, & McMahon, 2013). An 

alternative to the grounded cognition approach, evidence accumulation, suggests 

that sensory-motor cortices rather than representing perceptual/motor information 

per se, can reflect the speed within which the brain has to accumulate information 

until the decision threshold is reached (Gold & Shadlen, 2007; Smith & Ratcliff, 

2004). Indeed it has been shown that content-specific evidence accumulation for 

the preferred response in simple object discrimination is related to BOLD activity in 

temporal and occipital brain regions (see review Mulder et al., 2014). 

In our study, we had two tasks: classification and verification. Regarding the former, 

as we mentioned earlier, classification is essentially a priming task, where participants 

decide about the gender of the face preceded by the gender-related or non-related 

word. Usually primed vs. unprimed stimuli result in decreased neural activity in 

brain areas engaged in the stimuli processing (Copland et al., 2003; Henson, 2003; 

Rissman, Eliassen, & Blumstein, 2003; Rossell, Price, & Nobre, 2003). Mechanisms 

of priming, in spite of years of research, are yet a matter of discussion (see review 

Henson, 2003). Here, we expected to find decreased brain activity for congruent as 

compared with incongruent items, which would correlate with the speed of 

evidence accumulation (see motivation above). In the classification task we did not 
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find brain regions in which BOLD activity correlated with evidence accumulation. 

This suggests that the priming effect (i.e., BOLD activity in FFA for congruent > 

incongruent) cannot be easily explained in terms of the evidence accumulation 

framework. However, it can be that our study did not have sufficient power to 

reveal effects of interest since we did not find any results using BOLD only. With a 

block design and increased number of trials per condition, there might be higher 

chances to detect a significant correlation between model parameters and BOLD. 

In the verification task, where participants have to match prime and target, we 

found that the speed of evidence accumulation positively correlated with BOLD 

activity in the left precuneal cortex. All of the participants were women in the 

current study. It can be that women decide about the gender of male and female 

faces in different ways. Particularly, male faces preceded by female words in 

comparison to male faces preceded by male words may trigger self-referential 

thinking (Moody et al., 2015). In other words, when deciding if prime “man/woman” 

is a match/mismatch to the target male face, participants use the word as a 

reference to match the target to. This results in an increased rate of evidence 

accumulation for male targets with female primes since there might be more 

interference matching out-group face to in-group word in comparison to matching 

out-group face to out-group word (for perception of female gender by females, see 

McKelvie, 1987; Wright & Sladden, 2003; Ino, Nakai, Azuma, Kimura, & Fukuyama, 

2010). Yet another plausible explanation can be that the drift rate-BOLD correlation 

in precuneal cortex can reflect buffered memory regarding the upcoming response 

(Oishi et al., 2005), which can be more demanding for matching the words to the 

out-group face. Regardless of the exact role of precuneus, the results of the 

verification task highlight the social component in language-perception decision 

making.

This study has a few limitations. The first limitation concerns statistical power of 

the study. A follow-up study would benefit from increasing the number of trials per 

condition by having only one task, and without the ambiguous condition. The 

second limitation concerns the suboptimal localizer design. In the current version 

of the experiment, the localizer targets representations of faces rather than repre-

sentations of face gender. Including male and female faces in separate localizer 

blocks will help to address this issue. Third, including male subjects in the experiment 

would allow disentangling better effects related to subject’s gender from effects 

related to general aspects of cognition. Further methodological improvements can 

be achieved as follows. For example, ROIs can be defined more precisely at the 

single-subject level in order to account for inter-subject variability in the BOLD 

signal. Furthermore, a promising analytical direction is to estimate both drift rate 
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and BOLD at the single trial level, which would further allow performing trial-by-trial 

correlations. This might lead to more precise conclusions about the relationship 

between the speed of evidence accumulation and gender specific BOLD represen-

tations. 

To sum up, words tap into different mechanisms of information accumulation 

depending on the task. In the classification task congruent words in comparison to 

incongruent ones resulted in increased evidence accumulation, following the 

pattern reported in previous priming experiments. In the verification task, female 

word irrespective of the target face resulted in increased rate of evidence 

accumulation, which suggests social aspects at play while executing the task. This 

study contributes to the body of the literature dedicated to language-perception 

interactions and semantic-based decision making in general.





Post-perceptual effects of words on 
ambiguous visual perception: an MEG study

4



80

CHAPTER 4

Abstract

While the top-down effects of language on visual perception are well demonstrated 

(Carroll & Young, 2005; Meteyard et al., 2007; Mitterer, Horschig, Müsseler, & Majid, 

2009), the level at which language influences visual decisions is still a matter of 

controversy. Linguistic effects on visual perception have been observed both at 

early stages of visual processing (Boutonnet & Lupyan, 2015) and at later stages  

of lexico-semantic memory processing (Francken et al., 2015). In the case of 

ambiguous visual stimuli evidence is still scarce. To the best of our knowledge, 

there is only one study that shows that effects of lexical semantic memory 

(introduced by words) influence early visual processing (Samaha et al., 2018). 

However a study of perceptual decision making that involves classification of 

degraded pictures showed that both early visual and late decision components can 

underlie performance (Philiastides & Sajda, 2006). The goal of this study was 

two-fold. First, we investigated whether words influence ambiguous visual 

perception by modulating early or later stages of processing, which might be 

related to visual perception or semantic memory. Second, we set out to test 

whether these early or late effects (if any) would map onto these different 

computational profiles of the decision making process. Specifically, we investigated 

the effect of language on ambiguous visual perception within the mathematical 

framework of sequential sampling models (Forstmann, Ratcliff, & Wagenmakers, 

2016). In this theoretical framework, the process of making a decision among two 

choices is described as the accumulation of evidence towards a threshold or 

boundary. Once a boundary is reached, the associated response is produced 

(Ratcliff et al., 2016; Smith & Ratcliff, 2004). Previous work has shown that regions in 

occipital and temporal brain areas can exhibit a pattern of activity which is 

reminiscent of a  process of evidence accumulation (see for review Mulder, van 

Maanen, & Forstmann, 2014). Therefore, in the present study we investigated 

whether any of the language related effects would reflect the speed of evidence 

accumulation about visual decisions. To do so we used an hybrid approach 

combining the excellent temporal resolution of magnetoencephalography (MEG), 

which allows for the separation of early (visual) and late (lexico-semantic) processing 

stages, with the computational framework of the drift diffusion model (DDM, 

(Ratcliff & McKoon, 2008a)). Participants in this study were presented with 

ambiguous pictures of faces and houses preceded by either face-related, 

house-related or neutral words. Immediately after, they were asked to judge 

whether the picture just presented was a face or a house. Results showed a 

post-perceptual effect in event-related fields (ERFs) about 300 ms after the picture 

onset (P300). Contrary to our expectations, in the current paradigm words 

influenced ambiguous visual perception by modulating post-perceptual 
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mechanisms related to attention or decision rather than early visual or lexico- 

semantic mechanisms. We did not find correlations between P300 amplitudes and 

model parameters, which suggests that the process of evidence accumulation 

cannot be easily associated with the P300. The implications of this finding and 

avenues for future research are discussed.  

Introduction

Words improve our ability to perceive things in the visual world. For example, the 

brief presentation of the word “dog” speeds up the visual recognition of familiar 

animals in comparison to the nonverbal sound of a barking dog (Boutonnet & 

Lupyan, 2015). When the picture is ambiguous, such as a two-toned Mooney face 

(Mooney, 1957), verbal hints about the possible interpretation of the picture improve 

visual discrimination performance (Samaha et al., 2018). Indeed, a growing body of 

evidence suggests that words exert top-down effects not only on non-ambiguous 

visual input (see for review Anderson, Chiu, Huette, & Spivey, 2011; Lupyan, 2012) 

but also on ambiguous ones: words boost otherwise invisible images into awareness 

(Lupyan & Ward, 2013) and aid recognition of ambiguous images (Samaha et al., 

2018). While there is some evidence that language taps directly in the processes 

associated with early visual perception (see evidence in favor of that (Boutonnet & 

Lupyan, 2015; Samaha et al., 2018)), others propose that language has an effect on 

memory or decision processes (Francken et al., 2015; Mitterer et al., 2009; Tan et 

al., 2008). It is still not entirely clear how and at which processing stage language 

modulates perception of ambiguous visual input. 

In this study we investigated whether words influence the perception of ambiguous 

pictures by influencing early visual or late processes associated with lexico-semantic 

memory. To be able to disentangle these processing stages, we analyzed the time- 

course of language effects on visual categorization with magnetoencephalography 

(MEG) capitalizing on its high temporal resolution. We utilized two well-known 

neural signatures to address this: the M170 and N400m in the event-related fields. 

The M170 is characterized by a negative amplitude that peaks at around 170 ms 

after the onset of the stimulus over occipital channels (Liu, Harris, & Kanwisher, 

2002) and it is known to be a marker of face categorization and recognition. By 

contrast, the N400m (the MEG counterpart of the N400 event-related component) 

is known to manifest from the onset of the stimulus up until 500 ms after the 

stimulus onset in the temporo-occipital areas (Kutas & Federmeier, 2011; Lau, 

Phillips, & Poeppel, 2008) and is thought to reflect the processing of semantic 

meaning more broadly. 
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In this study we used a priming paradigm in which a briefly flashed word (face-related, 

house-related or neutral) was followed by an ambiguous picture created by 

superimposing a face and a house picture. Our interest lied on testing whether the 

amplitude of the M170 and/or N400m would be modulated by the semantics of the 

prime words. In particular, we tested whether ambiguous pictures (perceived as 

face) preceded by face-related words were processed differently than when 

preceded by house-related (or neutral) words. As an exploratory part of the analysis, 

we also investigated whether pre-target oscillatory activity set by the lexico-seman-

tic primes could bias the upcoming perception of the target picture. In light of 

recent discoveries showing that language prepares the brain for the processing of 

upcoming perceptual stimuli  by increasing pre-stimulus oscillations in the alpha 

range (Mayer, Schwiedrzik, Wibral, Singer, & Melloni, 2016; Samaha et al., 2018), we 

expected increased pre-stimulus alpha activity for stimuli that were congruent with 

the response (ambiguous pictures perceived as faces with face-related primes and 

ambiguous pictures perceived as houses with house related primes) in comparison 

to incongruent stimuli (ambiguous pictures perceived as faces with house-related 

primes and ambiguous pictures perceived as houses with face related primes). 

Finally, we set out to test which of the effects (if any) among N170 or N400m would 

be accounted for by the computations of the decision-making process. In the 

neuroscience literature, well known effects are often attributed to certain cognitive 

processes, such as N400 effects to semantic processing (Kutas & Federmeier, 

2011). However, in recent years a growing body of literature has suggested that 

activity in both temporal and occipital brain regions during binary decision making 

tasks could be associated with decision making dynamics (see for review Mulder et 

al., 2014) rather than pure semantic processing. Computational models of decision 

making characterize the process of making a decision about visual input (face or 

house) as the stochastic accumulation of evidence towards a decision threshold 

(Gold & Shadlen, 2007; Mazurek et al., 2003; Smith & Ratcliff, 2004). Here we used 

the framework of sequential sampling models (Ratcliff et al., 2016; Smith & Ratcliff, 

2004) to formally characterize and separate the different stages of processing 

underlying the forced-choice binary decisions (face or house). From this point of 

view, the advantage provided by language in visual categorization can translate into 

a) the state of the decision variable before the start of evidence accumulation; b) 

the rate of evidence accumulation (faster for congruent prime-target pairs in 

comparison to incongruent ones); c) the amount of evidence needed for evidence 

accumulation (lower threshold for congruent vs. incongruent prime-target pairs). 

We further tested whether the effects of linguistic primes on visual categorization 

(M170, N400m) can be accounted for by the process of evidence accumulation.
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In conclusion, we used a hybrid approach comprising of a neuroimaging technique 

(MEG) and a theoretico-computational framework (DDM) in order to investigate the 

associations between cognitive processing components and spatio-temporal 

characteristics of top-down modulations introduced by language during ambiguous 

visual perception. 

Methods
 

Subjects
Twenty-seven volunteers (13 males) recruited via the Radboud Research Participation 

System participated in the MEG experiment. The study was approved by the local 

ethics committee (CMO Arnhem-Nijmegen, Radboud University Medical Center) 

and conducted in accordance with their guidelines. We made a final selection of 

subjects based on averaged performance across 2 sessions. We included subjects 

who managed to withdraw their response to the catch trials in at least 60% of the 

cases (see details about the procedure below). We excluded 4 subjects due to this 

issue. The final sample consisted of 23 subjects (Dutch native speakers, 10 males, 

right-handed, age-range: 22-30, mean age = 25.73, sd = 2.45). Another pool of 

volunteers performed the semantic ratings of priming words (more information 

below). All participants reported no neurological disease, and had normal or cor-

rected-to-normal vision. All participants signed informed consent forms before the 

experiment and received monetary compensation for their participation.

Stimuli
For the target stimuli, we used 20 pictures of faces and 20 pictures of houses. We 

created realistic 3D gender-morphed faces with FaceGen Modeller 3.5 (Singular 

Inversions). The technical details on the computation method used by the software 

are discussed in Blanz and Vetter (1999). The face stimuli were presented frontally 

and cropped using a rectangular shape around the oval of the face. For the house 

stimuli, we took pictures of the local houses in Nijmegen. All images were cropped 

to 145 × 155 pixels, placed in a transparent plane of 400 × 400 pixels and further 

displayed on the screen with the resolution of 1920×1080. We controlled for 

luminance using SHINE toolbox for MATLAB (Willenbockel et al., 2010). 

We preselected prime words using a combination of scores obtained from the 

word2vec computational model (Mikolov, Chen, Corrado, & Dean, 2013) and naïve 

subject ratings. First, we extracted the cosine similarity measure between a 

word-candidate and the target concept ‘face’ or ‘house’. The higher the cosine 

similarity, the closer the word-candidate is related to the target concept. We 
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preselected 40 words with the highest cosine similarity for the target face concept 

(face-related words) and 40 with the highest cosine similarity for the target house 

concept (house-related words). We also preselected 40 words which were further 

away from the target concept of a face or a house. The words were additionally 

rated by naïve participants (26 subjects, 11 males, right-handed, age-range: 21-67, 

mean age = 28.11, sd = 9.72). In the rating experiment, the participants had to 

indicate for each word how related it was to the word “face” or “house” on a 3-point 

scale (1 = related to house; 2= not related to either face or house; 3 = related to 

face). For half of the participants, house and face axes were swapped. Based on the 

rating outcomes, a selection of 60 words was made, which included 20 

house-related and 20 face-related words and 20 neutral words (see Supp.Table 1). 

House-related words were closest to the concept of ‘house’ in comparison to 

face-related words and neutral words: house-related > face-related words, (t (19) = 

12.24, p < .001); house-related > neutral words, (t (19) = 19.57, p < .001). Face-related 

words were closest to the concept of ‘face’ in comparison to house -related words 

and neutral words: face-related > house-related words, (t (19) = 10.54, p < .001); 

face-related > neutral words, (t (19) = 20.69, p < .001). Neutral words were furthest 

away from the target concept of house (target: ‘house’, face-related > neutral 

words, t (19) = 6.86, p < .001) and face (target: ‘face’, house-related > neutral words, 

t (19) = 7.04, p < .001). Face- and house associated words were matched for word 

length, frequency per million and concreteness (all p > .16). Frequencies for all 

words were extracted using Subtlex corpus (Keuleers, Brysbaert, & New, 2010). 

Mean frequency, concreteness, and length are indicated in Table 1. 

Procedure
The experiment consisted of 2 phases: the preparatory and the main session spread 

over 2 separate days. The preparatory session was set to determine the maximally 

ambiguous target stimuli to be used in the ambiguous trials. Participants underwent 

a one-up one-down staircase procedure (Cornsweet, 1962). During the staircase 

procedure we presented simultaneously two pictures (face, house) superimposed 

on top of each other. We used 20 picture pairs of faces and houses that we 

produced in a manner similar to the ones used in the main experiment (see Stimuli). 

Table 1  Characteristics of the words used in the priming experiment. 

Related word groups Length Frequency Concreteness

house (N = 20)
face (N = 20)
neutral (N = 20)

M = 6.7 (SD = 2.40)
M = 7.25 (SD = 2.02)
M = 7.80 (SD = 2.19)

M = 3.87 (SD = 4.62)
M = 5.02 (SD = 6.61)
M = 2.37 (SD = 2.70)

M = 4.78 (SD = 0.11)
M = 4.70 (SD = 0.14)
M = 4.74 (SD = 0.12)
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For each pair of pictures, we fixed the transparency value of one picture and 

adjusted the transparency value of another picture upon the reversal (more about 

reversals in Cornsweet, 1962). There were maximum 8 reversals with decreasing 

step size on each reversal. The step sizes were: 55, 50, 44, 39, 24, 15 (transparency 

level, i.e., alpha set in Presentation Neurobs). We discarded the first four trials and 

averaged the transparency level over the reversals. These pictures-pairs with 

defined transparency levels for each pair were further used in the main experiment.

In the main experiment, each trial started with a 1.2-1.5 s jittered fixation cross 

followed by a word (house-related, face-related or neutral) presented for .3 s, which 

was followed by a fixation cross (1 s) and a target picture (face, house or an 

ambiguous representation of both) presented for .3 s (Figure 1). Participants were 

asked to make a binary decision assigning the target into face or house categories. 

To ensure that participants read the prime word, we introduced “catch” words and 

instructed participants to skip trials containing pseudowords. These catch trials 

were excluded from subsequent analyses. We instructed participants to blink after 

the presentation of a target picture. Participants replied with a bitsi-box button 

placed in the MEG room by pressing the middle or index finger of the right hand. 

The buttons were counterbalanced across subjects. The main experiment consisted 

of 2 sessions recorded on separate days. Each session consisted of 465 trials (300 

Figure 1: Trial structure timeline with its respective presentation times (next to the picture). 

For all the analyses we consider the prime onset as 0, pre-target period was the onset of the 

prime till the onset of the target (0 – 1.3 s), post-target period defined as the onset of the 

target + .6 s (1.3 – 1.9 s).

prime

0.3 s

1 s

.3 s
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SNOR
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ambiguous trials, 120 fillers and 45 catches). Ambiguous trials had an ambiguous 

picture as a target (100 per each word type), filler trials had a non-ambiguous 

picture as a target (20 trials per each word type). The order of stimuli was randomized 

across sessions and participants. We used Presentation software (version 17.1, 

www.neurobs.com) in order to display the stimuli during the experiment.

Behavioural analyses
We excluded 4 subjects who did not manage to correctly withdraw their response 

in the catch trials. We analyzed reaction times (RT) and percentage of responses for 

trials with ambiguous targets excluding from the analysis catch trials and filler trials. 

For trials with ambiguous targets, we performed a repeated measures ANOVA with 

response (face, house) and prime type (face-related, house-related or neutral) as 

within-subject factors. We further followed-up this analysis with t-tests to assess 

the directionality of the effect separately for pictures judged as faces and houses. 

In addition, we performed a congruency-with-response analysis where we 

contrasted congruent (ambiguous pictures perceived as faces with face-related 

primes and ambiguous pictures perceived as houses with house related primes) vs. 

incongruent (ambiguous pictures perceived as faces with house-related primes 

and ambiguous pictures perceived as houses with face related primes) vs. neutral 

(ambiguous pictures perceived as faces or houses with neutral primes) prime-target 

responses. The analyses were performed using JASP (JASP Team, 2018).

Modelling analyses: Hierarchical Drift Diffusion Model (HDDM) 
We analyzed choice reaction-time data with the hierarchical drift-diffusion model, 

implemented in the Python toolbox HDDM 0.6.0 (Wiecki et al. 2013). In the 

hierarchical Bayesian version of DDM (HDDM), the model parameters are estimated 

simultaneously both at the subject and group levels. This in turn allows for enhanced 

statistical power during the fitting routines since fewer trials are required to recover 

the parameters. Furthermore, the estimated parameters are less susceptible to 

outliers (Wiecki, Sofer, & Frank, 2013) making the HDDM an ideal analytic approach 

for the present study. 

We started the HDDM analysis with a theory-free model (all parameters free to vary 

over all the levels of the experimental condition) since we did not have any a-priori 

hypotheses on which (if any) HDDM parameters would capture the congruency 

effect. Next, we contrasted the theory-free model with a number of alternative 

HDDM models. Each alternative model had different number of parameters that 

were free to vary across the congruency factor. Models with all possible 

combinations of free parameters across the congruency factor constituted the 

model space (see overall list of models in the Supp.Table 2). Models with different 
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combinations of free parameters were fit to the data via Markov Chain Monte Carlo 

(MCMC) fitting routines. The comparison of different models was carried out by 

computing the DIC score for each model and then selecting the model with the 

lowest DIC value as the best Deviance Information Criterion (DIC) fitting model. 

DIC is a measure of the goodness of fit of the model to the data that penalizes for 

the number of free parameters to be estimated from the data. Therefore, a model 

with a lower DIC score is to be preferred over an alternative model with a higher 

DIC as the most parsimonious explanation of the data. A difference of 10 between 

two models indicates substantial evidence in favor of the winning model (Liang & 

Luo, 2020; Zhang & Rowe, 2014). Coding of the ambiguous faces was done 

associating the response “house” to the upper boundary and response “face” to the 

lower boundary. For each model, we evaluated the rate of convergence of the 

numerical fitting routines and then the ability of the model to capture the observed 

RT distributions. Models that failed to reach convergence or failed to capture the 

observed RT distributions were excluded from further analyses. Last, we analyzed 

the parameter estimates of the best fitting model in a rm-ANOVA with congruency 

as a within-subject factor. The analyses were carried out using JASP (JASP Team, 

2018). 

MEG data acquisition
MEG data were recorded using a 275-sensor system (CTF Systems Inc., Port 

Coquitlam, Canada) at  a sampling frequency of 1200 Hz. Participants were seated 

in a dark magnetically shielded room. Three coils, one in each ear and one on the 

nasion, were used to determine head position relative to the sensors. Head motion 

was monitored during the experiment using a real-time head localizer (Stolk, 

Todorovic, Schoffelen, & Oostenveld, 2013). When head motion exceeded 5 mm, 

subjects were asked to reposition their head to the original location, making use of 

the visual representation of initial coil position implemented by the real-time 

localizer. We recorded the position of the subject’s head in the beginning of session 

1, which was used as a reference to align to in session 2. This allowed further 

combination of the two sessions. No post-hoc correction of head motion was 

performed. A continuous bipolar electrooculogram (EOG) was recorded for offline 

rejection of artifacts related to eye movements. We used four electrodes around 

the eyes – one below and above the left eye for vertical EOG, as well as on the 

temples for horizontal EOG. The ground electrode was placed on the mastoid. 

MEG data preprocessing
Data were analyzed using MATLAB version 7.9.0, R2018b (The Mathworks Inc., 

Natic, MA) and FieldTrip (version 20200301), an open source Matlab toolbox for the 

analysis of neuroimaging data (Oostenveld, Fries, Maris, & Schoffelen, 2011). Data 
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were defined ranging from -0.5 s before the prime onset and 0.6 s after the target 

onset. MEG time courses of these trials were visually inspected, and trials that 

contained artifacts resulting from SQUID jumps and muscle contractions were 

rejected. Further we inspected visually for malfunctioning MEG sensors, which 

were excluded for the analyses in case of observed noise. We demeaned the signal 

and combined the two sessions per each subject. Further we applied a low-pass 

filter at 100 Hz. We down-sampled the data to 300 Hz to reduce memory and CPU 

load. Further we performed independent component analysis (ICA) on the MEG 

data. We browsed through the first 60 components and identified and excluded 

from the data the eye-movement related components. Finally, we performed an 

additional visual check to control for the outliers channel- and trial-wise. All these 

steps were performed blind for the condition the trials belonged to.

MEG data analysis 
For interpretability purposes, we calculated the planar gradients and performed the 

sensor-level analysis on them (Bastiaansen & Knösche, 2000). We calculated 

event-related fields (ERFs) at the level of sensors. Given our hypotheses regarding 

the ERFs, we constrained the analysis to a time window of 1.3 to 1.9 s relative to 

prime onset, corresponding to .6 s of target onset, and left sensors to investigate 

the N400 effect (Kutas & Federmeier, 2011; Lau et al., 2008). For the M170, we used 

the same time window but constrained the analyses to occipital sensors (Liu et al., 

2002). For time-frequency representations of power (TFRs), we constrained the 

analysis to a pre-target period of 0 to 1.3 s and post-target period of 1.3 – 1.9 s for 

ERFs and of 1.3 – 1.8 for TFRs (see motivation below). The frequency range was 

constrained to 2-15 Hz given the exploratory part of this analysis. We used a 

pre-prime period of -0.5 to -.05 for the baseline for both ERFs and TFRs analyses. 

For ERFs, we performed ANOVA (F-stats, permutation test) to investigate main 

effect of primes separately for face responses (FF, HF, NF) and for house responses 

(HH, FH, NH) on the post-target time-interval (1.3 to 1.9 s) for occipital, left and all 

MEG channels. We followed up each analysis of main effects with a t-test in case of 

significance. Further, we performed a congruency-with-response analysis (congruent: 

ambiguous pictures perceived as faces with face-related primes and ambiguous 

pictures perceived as houses with house-related primes; incongruent: ambiguous 

pictures perceived as faces with house-related primes and ambiguous pictures 

perceived as houses with face related primes, neutral: ambiguous pictures perceived 

as houses or faces with neutral primes), which was followed-up with t-tests in case 

of significance. We performed the congruency analysis separately for occipital, left 

and all MEG channels. 
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For TFRs, we performed the analyses similar to ERFs (main effect of primes and 

congruency-with-response), adding to post-target (1.3 – 1.8 s) testing an exploratory 

testing of pre-target period (0 – 1.3 s). We note that we tested post-target 1.3 – 1.8 

s instead of 1.3 – 1.9 s due to the available frequency resolution. We performed 

statistical testing based on a non-parametrical cluster-based permutation technique 

(Maris & Oostenveld, 2007). We used 1000 permutations for the analysis, which is a 

recommended number of permutations (Pernet, Latinus, Nichols, & Rousselet, 

2015). 

Correlation analysis
We planned to perform a Spearman correlation test between the HDDM parameters 

and neural markers of priming (if any) with the purpose  of testing whether neural 

markers of language bias can be associated with one of the parameters derived 

from the formal model of decision making (i.e. decision threshold or drift rate). 

The analyses were carried out using JASP (JASP Team, 2018). 

Results

Behavioural
Results for the RT and percentage of F/H responses are summarized in Figure 2.

For the responses (Figure 2, A), we did not find that any of the words biased the 

house-face response more than the others (main effect of prime: F (2, 44) = 2.91, 

p = 0.065; main effect of response: F (1, 22) = 4.06, p = 0.05; interaction between 

prime and response: F (2, 44) = 2.26, p = 0.11). 

For RTs (Figure 2, B), we found that participants were generally faster for judging 

images as faces vs. houses (main effect of response: F (1, 22) = 5.73, p = 0.02). 

However we did not find that any of the words biased the response towards face or 

house (main effect of prime: F (2, 44) = 1.23, p = 0.30: interaction between prime 

and response: F (2, 44) = 2.78, p = 0.073). 

While we found a main effect of congruency in RTs (Figure 2, D): F (2, 44) = 3.27,  

p = 0.047, we did not find any difference in percentage of responses (Figure 2, C): 

F (2, 44) = 1.26, p = 0.291. We found that participants were faster for congruent in 

comparison to incongruent (t (22) = -2.0, p = .028), and for congruent in comparison 

to neutral (t (22) = -2.52, p = .01) stimuli. We did not find a difference between 

incongruent and neutral word-target pairs (t (22) = -.026, p = .980).
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Modelling analyses
Further we conducted the drift diffusion analysis using RTs and choice responses 

for congruent vs. incongruent conditions. 

Model Convergence and Model Fit
Estimation of the model parameters was done via Monte-Carlo Markov Chain 

(MCMC) simulations. For all of the analyses reported, the MCMC (Gelman & Rubin, 

1992) fitting routines were run for 20.000 iterations with a burn-in period of 10.000 

interaction and a thinning of 5. Model convergence was assessed by examination 

of the density estimates and of the R-hat statistic, which are measures of 

convergence among multiple MCMC chains (three for the present study). Posterior 

density estimates, which are stable over multiple samples, indicate that the fitting 

Figure 2: Percentage of responses and response times for ambiguous trials. Bars are standard 

errors (SE). (A-B) On the x axis, face/house are responses.  F- face related words, H – house 

related words, N – neutral words. (C, D) ‘cong’ = prime F, response F and prime H, response 

H; ‘incong’ = prime F, response H and prime H, response F; ‘neutral’: prime N, response F and 

prime N, response H. Error bars are standard error of the mean. * p < .05.
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routines have converged to a fixed estimate. For the R-hat statistic instead, a value 

below 1.1 indicates that chains with different starting values have converged to the 

same posterior estimate. Successful convergence was furthermore confirmed by a 

MCMC error smaller than 0.01 for all of the parameters. As an extra check of the 

quality of the model predictions, we compared observed and predicted RT 

distributions produced by the model (see Supp. Figure 1 for an example of model 

fit for congruent and incongruent conditions in the drift rate). After assessing 

convergence, we carried out quantitative comparisons of alternative models by 

comparing the associated DIC scores for each model. The model that best 

described the data (i.e., the model with the lowest DIC score, see Supp. Table 2 

for details) was the model with the following parameters estimated per subject: 

drift rate (v), non-decision time (Ter), and decision threshold (A) free to vary over 

congruency (congruent and incongruent conditions). Conventionally, a DIC difference 

of more than 10 indicates that the evidence in favor of the model-winner is 

substantial (Burnham, Anderson, & Burnham, 2002). The second best model 

(model 1, DIC -16462.9) was the model with decision threshold (A) parameter free 

over the congruency condition. However since the difference between model 6 

and model 1 did not exceed 10 scores, we consider model 6 as the most 

parsimonious account of the data and therefore further analyses focus on this 

model.

Model parameter analysis
We performed a rm ANOVA analysis with congruency as within subject factor. 

Results are summarized in Figure 3.

We found a main effect of congruency in decision threshold (A), F(1, 22) = 14.35, 

p = .001; in drift rate (V), F(1, 22) = 15.60, p < .001; and in non-decision component 

(Ter), F(1, 22) = 7.84, p = .010. While decision threshold and drift rate were increased 

for the congruent condition in comparison to incongruent, the non-decision 

component was increased for incongruent in comparison to the congruent 

condition: A (con > inc): t (22) = 3.78, p < .001, V (con > inc): t (22) = 3.95, p < .001, 

Ter (inc > con): t (22) = 2.80, p = .005. 



92

CHAPTER 4

Neural results

ERF
We found that primes (face-, house-related or neutral) did not bias neither face 

responses (F-test for FF, HF, NF) in occipital channels: p = .35, left channels: p = .76; 

all channels: p = .25, nor house responses (F-test for HH, FH, NH) in occipital 

channels:  p = .08, left channels: p = .11; all channels: p = .20.

Figure 3: (A) Schematic representation of the drift diffusion model. Once the stimulus is 

encoded, the process of evidence accumulation begins. The evidence is accumulated 

towards one of the two decision boundaries. After the boundary is reached, the associated 

response is executed. The Drift Diffusion model with the four parameters: drift rate (v), 

decision threshold (A), starting point (z), non-decision component (Ter). HDDM parameters: 

decision threshold, drift rate (B) and non-decisional component (C) for congruent vs. 

incongruent conditions. Error bars, standard error of the mean. ** p < 0.01, *** p < 0.001
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We further investigated the response introduced by words (i.e. congruency analysis, 

see Figure 4). We found significant differences in neural signal for congruent vs. 

incongruent in all channels (p = .03), but not in occipital channels (p > .22) nor in 

left channels (p = 1). To sum up, we found statistical differences between congruent 

and incongruent conditions, the differences were most prominent in the time 

range of 1.59-1.67s across right occipito-parietal channels. 

TFR 
We did not find a main effect of prime either for face responses (0 to 1.3 s: p = .68; 

1.3 to 1.8 s: p = .10), or for house responses (0 to 1.3 s: p = .12; 1.3 to 1.8 s: p = .38). 

For the congruency analysis, within the oscillatory range of 2-15 Hz no differences 

were found either in the post-target window (p > .22) or in the pre-target window 

(p = .48). 

Correlational analysis
Results of the Spearman correlation indicated that there was no significant 

association (positive or negative) between congruent vs. incongruent ERF amplitude 

and DDM measures. The results of the correlational analysis are summarized in the 

Supp. Table 3. 

Figure 4: (A) Time-course for congruent and incongruent conditions starting at target picture 

onset (1.3 s) until the end of the trial (1.9 s). The grey shaded area represents most prominent 

differences associated with the cluster. (B) Topographical representation of the differences 

between the congruent vs. incongruent conditions, within the time-window of 1.59 to 1.67 s. 
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Discussion

In this study we investigated the neural effects of top-down modulations introduced 

by the lexical semantics of words on ambiguous visual perception. Particularly, we 

tested whether these modulations occur at the level of early visual processing or 

later stages of processing related to semantic memory or decision making. 

Participants in our experiment had to decide whether they saw a face or a house 

while words related to face, house or unrelated to either of them were briefly 

flashed before the ambiguous target image. We found that primes congruent with 

the response given (house-related words resulted in house responses and 

face-related words resulted in face responses) led to faster RTs in comparison to 

primes incongruent with the response given (house-related words resulted in face 

responses and face-related words resulted in house responses). In the neural data 

we found larger ERF amplitude for congruent in comparison to incongruent trials 

around 300 ms post-target onset. 

The primary goal of this study was to clarify which process mediates the effect of 

words on ambiguous perception – early visual or late semantic. We did not find 

either neural markers related to lexico-semantic processing (N400m), or to early 

visual processing (M170), which suggests that based on this experimental evidence, 

and given the statistical power limits of our study, these processes are not at  

play while participants are deciding about the category of an ambiguous picture. 

Further, we tested whether words can elicit pre-stimulus activity in TFRs. This was 

motivated by previous research that has found that posterior alpha power reflects 

the pre-activated knowledge about an object’s identity when participants have a 

meaningful cue that they use for the interpretation of upcoming ambiguous faces 

(Samaha et al., 2018). In our experiment we did not find pre-stimulus alpha oscillations, 

which suggests that in the word-picture priming paradigm with a semantic 

categorization task, words are unlikely to induce pre-stimulus top-down influence. 

This might be due to aspects of our experimental design such as a relatively long 

word-target interval (1s) or the task itself (classification, rather than matching, 

for example). Future research might make use of multivariate techniques that have 

been suggested to be useful in detecting sharpening of stimulus representations 

undetectable with univariate methods (Kok, Jehee, & de Lange, 2012). Contrary to 

our predictions, task-related words (face-related and house-related words) that 

were congruent with the response resulted in a larger ERF amplitude that peaked 

around 300 ms  in comparison to task-related words that were incongruent with 

the response. There might be two potential interpretations of this finding. First, this 

effect can be interpreted as the N300 component, which has been shown to index 

the speed of matching the visual input to stored semantic knowledge (Schendan & 
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Kutas, 2007; Sitnikova, Holcomb, Kiyonaga, & Kuperberg, 2008). It has been shown 

that when the word and the picture are congruent then the N300 amplitude is 

attenuated in comparison to the word and the picture that are incongruent (Yum, 

Holcomb, & Grainger, 2011). In line with these previous findings, the results of the 

current experiment suggest that congruent words promote the ability to match a 

semantic representation to the visual input, which is reflected by a large N300 

Congruency response (higher for congruent vs. incongruent items). While the 

results of the current study suggest that the topographical representation of the 

differences between the congruent vs. incongruent conditions in rather in occipi-

to-parietal areas, previous studies report a frontal topography of the N300 effect. 

The frontal topography was derived on the basis of scalp electroencephalography 

(EEG) data, which might partially explain the difference in topographies. However 

this discrepancy triggers us to further consider alternative interpretations to the 

N300 interpretation. 

Another interpretation of the ERF amplitude differences that peaked around 300 

ms points to the P300 component. The P300 is an event-related component that 

appears at 300-600 ms following any task-related stimulus, regardless of its 

modality (Nolan et al., 2012; Peng, Hu, Zhang, & Hu, 2012; Zaslansky, Sprecher, 

Tenke, Hemli, & Yarnitsky, 1996). Due to its relevance in many cognitive operations, 

the function of this component is still unclear (Linden, 2005). Mostly it has been 

associated with the processes of attention and memory updating (Comerchero & 

Polich, 1999; Polich, 2007), but also with decision confidence (Hillyard, Squires, 

Bauer, & Lindsay, 1971) and surprise (Mars et al., 2008). Research in the field of 

semantic integration has shown that the P300 can be correlated with aspects of 

semantic access (Dorjee, Devenney, & Thierry, 2010; Hill, Ott, & Weisbrod, 2005; 

Hill, Strube, Roesch-Ely, & Weisbrod, 2002; Rossell, Price, & Nobre, 2003). 

Particularly, P300 with a temporo-parietal topography has been associated with 

memory retrieval (Polich, 2007) and the decrease of its amplitude has been 

associated with increased memory load (Mecklinger, Kramer, & Strayer, 1992). Thus, 

it could be that decreased P300 reflects enhanced memory load for incongruent 

in comparison to congruent word-picture pairs. To conclude, it is a matter of future 

investigations, with potential use of source localization techniques, to clarify 

whether the effect found in this study constitutes a P300 or N300 effect. While 

being an interesting question, answering it immediately is not crucial for the 

purpose of this study since we focused more broadly on whether cognitive markers 

of language-vision integration can be associated with the HDDM parameters.  
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We further aimed at elaborating on the cognitive mechanisms of the P300/N300 

component. Particularly, we considered language-vision integration within the 

 theoretico-computational framework of the sequential sampling models (e.g. 

DDM). The goal of this theoretical consideration was to draw a parallel between 

evidence accumulation and the P300/N300 component observed. Integration is 

an important property of decision formation and in sequential sampling models it 

is characterized as the noisy accumulation of evidence (information) over time.  

As discussed by Summerfield (Summerfield & Tickle, 2015, p.1635) “sensory inputs 

are integrated by summation until a threshold is met, at which point a response is 

initiated”. Previous animal studies convincingly showed that this process is mediated 

by increasing neuronal firing rates in cortical neurons, which scales with information 

quality. Information quality is an abstraction that can reflect, for example, properties 

of the stimulus (more degraded stimuli have poorer information quality), or speed 

of the decision (words with unrelated primes in comparison to word with related 

primes are of poorer information quality). In human experimental work, a recent 

study has shown that P300 amplitude scaled with the degree of information quality 

(Twomey, Murphy, Kelly, & O’Connell, 2015) using a combination of mathematic 

modeling and EEG. Another EEG study investigating decision processes during 

degraded visual categorization showed that the late effect (~300 ms post target) 

correlated with the rate of evidence accumulation, highlighting the role of decision 

rather than perception process during degraded categorization. In this study we 

correlated P300/N300 amplitude with the computational parameters of the DDM 

that characterized the process of information integration in this task (i.e. congruency 

effect). We did not find associations between the HDDM parameters and P300/

N300. There are several explanations for that. First, it can be that inter-trial variability 

in evidence accumulation (drift rate) plays a critical role in the process of integration 

of language and vision information. For example, neural activity before the language 

prime can also affect the decision and response about the ambiguous target. 

To account for this, trial-by-trial variability needs to be added to the model. However 

in the present study this was not possible due to the larger number of trials required 

for such an analysis. Second, it can be that the ERF effect in this task, rather than 

reflecting aspects related to decision making, reflects other mechanisms such as 

confidence or surprise. Further investigations are needed in order to clarify whether 

the language advantage in ambiguous visual perception can be connected to the 

notion of decision making such as enhanced information quality. Finally, it is 

important to note the analytical limitations. Here we performed only ERF and TFR 

analyses, disregarding other analytical options. In other words, there might be 

other neural markers that could reflect the relationship between language and 

decision making in visual decisions. To discover these markers, new analytical 

pipelines and approaches are needed. For example, it can be that the interaction 
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between oscillations in different frequency bands (or cross-frequency coupling) can be 

more informative in understanding language-perception interactions. For example, 

it has been shown that phase-amplitude coupling (a type of cross-frequency coupling) 

is potentially involved in attentional selection, memory retention and sensory 

integration (Lisman, 2005; Lisman & Idiart, 1995; Schroeder & Lakatos, 2009). It would 

be an intriguing next step to apply the methods of cross-frequency coupling to 

investigate language-perception interactions. 

To sum up, we found that effect of words on ambiguous visual perception in a 

forced choice binary task involves post-perceptual processes associated with 

attention or decision making, rather than the engagement of processes related to 

early visual perception or lexical-semantic memory. 





Lexical-semantic and executive deficits 
revealed by computational modelling: 
a drift diffusion model perspective
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A modified version of this chapter has appeared as: Todorova L., Neville D.A., Piai V. 

(2020). Lexical-semantic and executive deficits revealed by computational modelling: 

a drift diffusion model perspective. Neuropsychologia, 146.
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Abstract

Flexible language use requires coordinated functioning of two systems: conceptual 

representations and control. The interaction between the two systems can be 

observed when people are asked to match a word to a picture. Participants are 

slower and less accurate for related word-picture pairs (word: banana, picture: 

apple) relative to unrelated pairs (word: banjo, picture: apple). The mechanism 

underlying interference however is still unclear. We analyzed word-picture matching 

(WPM) performance of patients with stroke-induced lesions to the left-temporal 

(N = 5) or left-frontal cortex (N = 5) and matched controls (N = 12) using the drift 

diffusion model (DDM). In DDM, the process of making a decision is described as 

the stochastic accumulation of evidence towards a response. The parameters of 

the DDM model that characterize this process are decision threshold, drift rate, 

starting point and non-decision time, each of which bears cognitive interpretability. 

We compared the estimated model parameters from controls and patients to 

investigate the mechanisms of WPM interference. WPM performance in controls 

was explained by the amount of information needed to make a decision (decision 

threshold): a higher threshold was associated with related word-picture pairs 

relative to unrelated ones. No difference was found in the quality of the evidence 

(drift rate). This suggests an executive rather than semantic mechanism underlying 

WPM interference. Both patients with temporal and frontal lesions exhibited both 

increased drift rate and decision threshold for unrelated pairs relative to related 

ones. Left-frontal and temporal damage affected the computations required by 

WPM similarly, resulting in systematic deficits across lexical-semantic memory and 

executive functions. These results support a diverse but interactive role of lexical- 

semantic memory and semantic control mechanisms.
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Introduction

Flexible language use requires coordinated functioning of two systems: conceptual 

representations and control (Lambon Ralph, Jefferies, Patterson, & Rogers, 2017). 

The system of conceptual representations entails a distributed network of cortical 

regions that code information multi-modally (Barsalou, 2008; Warrington & Shallice, 

1984) and allow to generalize to new knowledge thanks to already existing repre-

sentations (Patterson, Nestor, & Rogers, 2007; Rogers et al., 2004). The control 

system manipulates the semantic knowledge depending on the task at hand 

(Hoffman, Lambon Ralph, & Rogers, 2013; Thompson-Schill, D’Esposito, Aguirre, & 

Farah, 1997). Understanding the contributions of control mechanisms to lexical-se-

mantic processes is an important theoretical question, with potential applications 

for clinical research. 

Control mechanisms (henceforth referred to as semantic selection) operate over 

several automatically activated semantic representations to ensure the functioning 

of semantic cognition (Lambon Ralph et al., 2017). Multiple co-activated semantic 

representations can result in competition depending on the semantic selection 

demands in the context of a task (Chiou, Humphreys, Jung, & Lambon Ralph, 2018; 

Jefferies, Rogers, Hopper, & Lambon Ralph, 2010). Competition between (lexical-) 

semantic representations can manifest itself via semantic interference in tasks such 

as word-picture matching (Campanella & Shallice, 2011; Crutch & Warrington, 

2005) or picture-word interference (Lupker, 1979; Piai & Knight, 2018). Semantic 

interference is reflected in poorer performance when comparing semantically 

related word-picture pairs to unrelated ones. For example, participants are slower 

when they have to match a picture preceded by a related word (word: “banana”, 

picture: apple) as opposed to an unrelated word (word: “banjo”, picture: apple). 

While various psycholinguistic studies propose theoretico-computational accounts 

of interference effects in language production using picture naming paradigms 

(Howard, Nickels, Coltheart, & Cole-Virtue, 2006; Oppenheim, Dell, & Schwartz, 

2010; Roelofs, 2018, 1992), mechanistic explanations of this effect in language 

comprehension using word-picture matching types of tasks are scarce. Most of the 

computational models in the language production literature that could be extended 

to explain semantic interference in word-picture matching are neural network 

models that operate at the level of the excitatory-inhibitory connections between 

conceptual and lexical nodes (Howard et al., 2006; Oppenheim et al., 2010; but see 

Roelofs, 2003). It is generally accepted that in addition to lexico-semantic processes, 

executive mechanisms govern the extraction of relevant semantic information 

from stimuli (Badre, Poldrack, Paré-Blagoev, Insler, & Wagner, 2005; Jefferies & 

Lambon Ralph, 2006; Lambon Ralph et al., 2017; Nagel, Schumacher, Goebel, & 
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D’Esposito, 2008). The exact mechanisms – lexico-semantic and/or control – governing 

retrieval and selection in competitive semantic contexts are still not clear. 

In this study, we investigated the task demands elicited by competing semantic 

representations using a word-picture matching paradigm, in which participants 

verify whether a word and a subsequently presented picture match. Behavioral 

performance was then modelled using the drift diffusion model (DDM, (Ratcliff, 

1978), an analytical approach that combines reaction time distributions for correct 

and incorrect task responses in order to estimate latent variables associated with 

task performance. According to the DDM framework, any binary decision-making 

task is described as a stochastic accumulation of evidence over time towards one 

of the two decision boundaries (Figure 1). Once the decision is reached, then the 

response associated with that boundary is produced (Voss, Nagler, & Lerche, 2013). 

In the DDM, a total of four parameters describe the components underlying 

decision making: the rate with which evidence accumulates over time (drift rate), 

the amount of evidence that is necessary to reach a response (decision threshold), 

the amount of information accumulated before the decision process has started 

(starting point) and the time required by non-decision processes, such as motor 

preparation or stimulus encoding. Moreover, we applied the DDM approach not 

only to decision-making data from neurotypical participants, but also to data from 

individuals with frontal or temporal lobe lesions. The lesion approach can help 

further clarify the relationship between the latent variables and the presupposed 

cognitive levels. In addition, we used a hierarchical version of DDM (HDDM) where 

model parameters were estimated in a Bayesian framework, allowing for accurate 

model fits even with relatively few trials. This approach provides a great advantage 

for the analysis of data from clinical populations, where collecting thousands of 

experimental trials for an accurate model fit (Brunton, Botvinick, & Brody, 2013) is 

unfeasible. 

Previous psycholinguistic experiments that applied drift diffusion formalism showed 

that the drift rate reflects processes operating at the level of lexical semantics. For 

example, a larger drift rate was found for words in comparison to random letter 

strings but not in comparison to word-like non-words (Ratcliff, Gomez, & McKoon, 

2004). Moreover, words of higher frequency had a higher drift rate compared to 

words of lower frequency (Ratcliff, Gomez, et al., 2004). Semantic priming experiments 

with lexical decision brought additional evidence that the drift rate serves as a proxy 

for processes related to lexico-semantic representations (Meyer & Schvaneveldt, 

1971; Neely, 1991; Wentura, 2000). Particularly, during lexical decision, related 

word-target pairs (word: “lion”, target: tiger) resulted in a higher drift rate as opposed 

to unrelated targets (word: “king”, target: bee). Interestingly, the results remained 
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similar even when changing the task from lexical to semantic decision, i.e., when 

participants had to decide if the target was a living entity (Voss, Rothermund, et al., 

2013). This finding was interpreted in terms of semantic facilitation of lexical access. 

The fact that lexicality, word-frequency, and semantic priming effects are reflected 

in the drift rate is an indication that the drift rate reflects lexical-semantic processes.

In the field of decision making, it has been consistently shown that modulation of 

the decision threshold is directly related to how cautiously people behave (Bogacz, 

Hu, Holmes, & Cohen, 2010; Forstmann, Brown, Dutilh, Neumann, & Wagenmakers, 

2010). For example, if participants prioritize accuracy over speed in their responses 

then the decision threshold is raised, i.e., it takes more time to accumulate 

information towards one decision threshold (responses are slow but accurate). The 

Figure 1: Schematic representation of the drift diffusion model. Once the stimulus is encoded, 

the process of evidence accumulation begins. The evidence is accumulated towards one of  

the decision boundaries. After the boundary is reached, the response is executed. We adopted  

the following notation for the model parameters description: non-decisional component 

(Ter), drift rate (v), decision threshold (A), starting point (z). 

Response
alternative 1

Response
alternative 2

decision 
threshold, A
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Ter Ter
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decision threshold is modulated by conflict tasks, being higher for the most 

conflicting conditions in comparison to the less conflicting ones (Cavanagh et al., 

2011). Moreover, in traditional executive tasks, such as the Stroop task, the decision 

threshold is associated with mechanisms of executive control (Kinoshita et al., 

2017). 

While the number of studies that applied DDM modelling to experiments 

investigating aspects of lexico-semantic retrieval is modest, they bring indicative 

results about the relevance of the decision threshold. For example, Anders and 

colleagues showed that increasing semantic interference in a blocked-cyclic 

picture naming task resulted in decrease of lexical accumulation activity (drift rate) 

and increase in the amount of activation necessary for lexical target selection 

(threshold) for healthy subjects (Anders, Ries, Van Maanen, & Alario, 2017). Crucially, 

patients with prefrontal lesions failed to adjust the decision threshold appropriately 

in comparison to controls (i.e., no up-adjustment for the most interfering condition). 

Anders et al. highlight that patients with prefrontal lesions have impaired selection 

processes in word production (Schnur et al., 2009), that can potentially be more 

domain-general (Ries, Greenhouse, Dronkers, Haaland, & Knight, 2014; Ries, 

Karzmark, Navarrete, Knight, & Dronkers, 2015). We note that the discussion about 

the nature of the control mechanisms in the context of language tasks is still 

ongoing, and it is outside the scope of the present study to contribute to that  

debate (Hoffman, 2018; Noonan, Jefferies, Visser, & Lambon Ralph, 2013; Thompson- 

Schill et al., 1997).

Neuropsychological evidence for semantic cognition posits that processes of 

semantic knowledge and control have different neural substrates. While anterior 

and ventro-lateral parts of left temporal lobe are crucial for semantic knowledge 

(Hickok & Poeppel, 2004; Patterson et al., 2007), left prefrontal regions are 

associated with semantic retrieval (Lambon Ralph et al., 2017; Noppeney, Phillips, & 

Price, 2004). Indeed, previous studies investigating the role of left prefrontal cortex 

(PFC) in word selection showed that left PFC helps overcome semantic interference 

by boosting mechanisms of control (Ries et al., 2014), especially when selection 

demands are difficult (Ries et al., 2015). However, PFC involvement may be 

dependent on the task and individual variability (Piai & Knight, 2018; Piai, Ries, & 

Swick, 2016; Python et al., 2018). Recently, it has been proposed that prefrontal 

regions, in particular the inferior frontal gyrus (IFG), operate in conjunction with the 

posterior middle temporal gyrus (MTG) contributing to the mechanisms of semantic 

control (Davey et al., 2016; Carin Whitney, Kirk, O’Sullivan, Lambon Ralph, & 

Jefferies, 2012). Understanding the mechanisms of impairment in semantic retrieval 

and selection is still an ongoing task for the language community.
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We investigated the processing stages of semantic interference in healthy 

participants and patients with left temporal or frontal lesions. We used a word-picture 

matching task (i.e., participants indicated whether the word and the picture 

matched), where the picture was preceded by related words (word: “banana”, 

picture: apple), unrelated words (word: “banjo”, picture: apple) or words that directly 

denoted the picture (word: “apple”, picture: apple). We had the following hypotheses 

regarding the experimental results. First, the interference effect can be reflected in 

the drift rate, which would support the idea that the interference resides at the lex-

ico-semantic level. We would expect the drift rate to decrease for the related pairs 

as opposed to the unrelated pairs, following the finding that semantic interference 

in blocked-cyclic naming is reflected in decreased drift rate (Anders et al., 2017). 

We note that this prediction is contrary to the semantic priming findings (Voss, 

Rothermund, et al., 2013). Alternatively, or in addition to the effects at the level of 

evidence accumulation (drift rate), the interference effect can modulate the decision 

threshold, reflecting the amount of information needed to reach the decision. 

In this case, we would expect higher threshold for the condition that evokes more 

interference i.e., related relative to unrelated word-target pairs. We note that this 

prediction is both in line with Anders et al. (2017), and follows the logic of conflict 

tasks (Cavanagh et al., 2011; Kinoshita et al., 2017). This would support the idea that 

executive control is involved in the presence of semantic competition, which is 

strengthened by the semantic relationship between the picture and the word. After 

having established the mechanisms of semantic interference in healthy participants, 

we compared the interference effect between healthy subjects and the individuals 

with left frontal or temporal stroke-lesions. Due to the fact that patients with 

temporal lesions had a combination of lesions in both anterior and posterior sites 

of MTG, we expected a joint effect of semantic competition on the drift rate and 

decision threshold reflecting deficits at potentially both lexico-semantic and 

executive levels. For the patients with frontal lesions, we would expect deficits in 

the decision threshold as it reflects strategic cognitive control allocation (Cavanagh 

et al., 2011; Domenech & Dreher, 2010). Damage to the frontal cortex might also 

lead to the deterioration of the activation levels in the lexico-semantic domain 

(which would be reflected in decreased drift rate) due to the connected frontal  

and temporo-parietal networks that underlie semantic control (Lambon Ralph  

et al., 2017). 

To sum up, we investigated the contribution of control mechanisms during 

semantic retrieval and selection in healthy adults and adults with stroke-induced 

lesions using a word-picture matching task and computational modelling (HDDM). 

With that, we add to an existing body of literature that combines computational 

modelling with a lesion mapping approach, which provides a promising avenue 
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towards formalizing brain-behavior relations (Chen, Middleton, & Mirman, 2018; 

Dell, Martin, & Schwartz, 2007; Hoffman, McClelland, & Lambon Ralph, 2018).

Methods

Participants
Twelve patients with stroke-induced lesions to the left lateral-temporal or lateral- 

frontal cortex participated (five females; median age = 66, mean = 65, sd = 9, range 

= 50-74; mean years of education = 17). All patients were English native speakers. 

One additional patient with Wernicke’s aphasia was included, but failed to 

understand the instructions and testing was therefore discontinued. We differentiate 

patients with lesions in temporal and frontal lesions based on the topology of the 

predominant lesions. While patients with temporal lesions had lesions predominantly  

in temporal areas (MTG, STG) but not in fronto-striatal regions, patients with frontal 

lesions had lesions predominantly in frontal or striatal areas. We excluded two patients 

that had lesions in both temporal and fronto-striatal areas. Patients were tested at 

least 12 months post stroke and were pre-morbidly right-handed. Additionally, 

12 right-handed controls participated, matched to the patients for gender (five 

females), age (within ±4 years of age, median age = 66, mean age = 64, sd = 8, 

range = 50-74, t < 1, p = .873), and years of education (±4 years of education, mean 

years of education = 17, t < 1, p > 0.949). All participants were native speakers of 

American English and none had a history of psychiatric disturbances, substance abuse, 

medical complications, multiple neurological events, or dementia. Information on 

the patients’ lesions and language ability are shown in Tables 1 and 2. The study 

protocol was approved by the University of California, Berkeley Committee for 

Protection of Human Subjects, following the declaration of Helsinki. All participants 

gave written informed consent after the nature of the study was explained and 

received monetary compensation for their participation.

Lesion analysis
Lesions were drawn on patients’ structural magnetic resonance images (MRIs) by a 

trained technician and confirmed by a neurologist. Lesions masks were then 

normalized to the MNI template. Percent damage to different areas was determined 

based on the Automated Anatomical Labeling template in MRIcroN (Rorden & 

Brett, 2000). The maps of lesion overlap are presented in Figure 2. In the patients 

with temporal lesions, the lesions were mostly present in the left middle temporal 

gyrus (100% overlap). In the patients with frontal lesions, the lesion overlap was 

centered on the left inferior frontal gyrus and left middle frontal gyrus (100% 

overlap). 
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Table 1   Individual percent damage to the striatum (joint measures for caudate, 

putamen and globus pallidus), left inferior frontal gyrus (IFG: opercularis, 

triangularis, orbitalis), middle frontal gyrus (MFG, including middle  

and middle opercularis), middle temporal gyrus (MTG, including middle 

and inferior MTG), superior temporal gyrus (STG) and parietal lobe 

(POST: Postcentral gyrus, SMG: Supramarginal gyrus, AG: angular gyrus, 

P2: inferior parietal gyrus, P1: Superior parietal gyrus).

Patient Striatum IFG MFG MTG STG POST SMG AG P2 P1

Left temporal lobe lesions

P 1 0 0 0 23.6 34.0 .2 12.5 2 0 0

P 2 0.1 0.2 0 31.5 67.4 12.6 85.1 .4 35.9 0

P 3 0 0.1 0 33.4 88.1 4.7 88.3 57.9 25.8 0

P 4 0 0 0 7.9 0.8 0 0 0 0 0

P 5 1.8 0 0 48.1 7.8 0 0 0 0 0

Left frontal lobe lesions

P 6 81 93.4 53.3 0.1 1.3 4.4 0 0 0 0

P 7 30.53 78.03 37.21 0 10.1 6.1 0 0 0 0

P 8 23.8 57.9 27.9 0 49.8 58.2 71.6 .5 25.7 .2

P 9  0 6.1 7 0 0 2.4 0 0 0 0

P 10 33.3 57.2 4.75 0 12.9 0 0 0 0 0

Table 2  Language testing data from the Western Aphasia Battery (WAB). 

AQ Naming Comprehension

P 1 NA NA NA

P 2 63.9 7.9 8.55

P 3 92.9 9.5 9.55

P 4 99.6 10 10

P 5 94 8.6 10

P 6 91.6 9.2 10

P 7 92.05 9.3 8.825

P 8 87.2 8.9 8.9

P 9 NA NA NA

P 10 99.6 9.8 10

Naming = WAB Naming and Word Finding score (maximum = 10). Comprehension = WAB Auditory Verbal 

Comprehension score (maximum = 10). Aphasia Quotient (AQ, maximum = 100). 
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Lesion distributions for each patient group are shown in Figure 2. Five patients had 

lesions predominantly in the left frontal lobe and five in the left temporal lobe. 

Language scores (Western Aphasia Battery, WAB, Kertesz, 1982) were available for 

ten patients.

Materials
Seventy pictures were selected from the BOSS database (Brodeur, Dionne-Dostie, 

Montreuil, & Lepage, 2010) together with their basic-level names. For each picture, 

three conditions were created. In the congruent condition, the prime word was  

the picture’s basic-level name. For the semantically related condition, prime  

words were selected using existing norms (Nelson, McEvoy, & Schreiber, 2004). 

The forward strength between the prime word and the picture name ranged 

between 0.108 and 0.879 (mean = 0.451, median = 0.394, sd = 0.2). For the 

unrelated condition, prime word and target picture names were recombined to 

form semantically and phonologically unrelated pairs. The association norm in the 

unrelated condition was 0 for all items. Latent semantic analysis (Deerwester, 

Dumais, Furnas, Landauer, & Harshman, 1990) was also used to confirm the 

strength in semantic relationship between the prime word and the picture name 

(related condition: mean = 0.463, median = 0.42, sd = 0.212; unrelated condition: 

mean = 0.071, median = 0.05, sd = 0.071, t(69) = 14.05, p < .001). The prime words 

Figure 2: Upper. Lesion overlap of individuals with temporal lobe lesions (100% overlap in left 

middle temporal gyrus). Lower. Lesion overlap of individuals with frontal lobe lesions (100% 

overlap in left inferior and middle frontal gyrus).

0 100Overlap (%)
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were spoken by a female native speaker of American English, recorded in a sound - 

proof booth and subsequently normalized to 77 dB sound-pressure level.

Procedure
Stimulus presentation and response recording were controlled by Presentation® 

software (Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). Participants 

were tested individually in a sound-attenuated, dimly-lit booth. The words were 

presented via loudspeakers. Participants responded with a left-hand button press, 

using the index finger for ‘yes’ responses and the middle finger for ‘no’ responses.

A trial began with a fixation cross displayed for 1 s. The fixation cross stayed on the 

screen during word playback and then during a silent period of 1 s between auditory 

word offset and picture onset. Then the picture was presented for 2 s and 

participants responded whether the word and the picture were a match (word: 

apple, picture: apple) or a mismatch (word: banana, picture: apple) during this 

period. Three asterisks, indicating termination of the trial (***) then appeared for a 

variable interval between 1.2 and 1.9 s. An example of an experimental trial is given 

in Figure 3. There were 280 experimental trials (70 for each of the related and 

unrelated conditions, and 140 for congruent condition). 

Analysis
The behavioural data and the analysis scripts are available on the OSF (see “Data 

Availability Statement” below).

Figure 3: Trial structure. Examples are given for a related (left), unrelated (middle), and congruent 

(right) trials.
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Behavioral analysis
We analyzed the reaction times (RT) and the accuracies for the following three 

comparisons: related vs. unrelated, related vs. congruent, unrelated vs. congruent. 

The related vs. unrelated conditions are the main focus of our investigation as they 

provide a cleaner contrast of lexico-semantic competition, had the same number 

of trials per condition, and required the same ‘no’ response. The other two contrasts 

involving the congruent condition are reported for completeness. However, we 

note that these comparisons are more problematic. They involve different responses 

(and response buttons) and they had different number of trials (the congruent 

condition twice as many). Moreover, certain pictures with lower name agreement 

were responded to with ‘no’ in the congruent condition more often than expected. 

Finally, and most importantly, these contrasts do not isolate lexico-semantic 

competition as clearly and the congruent condition has converging information at 

various levels of representation (conceptual, lexical, phonological), making it very 

different from the other two conditions. Reaction times were analyzed via analysis 

of variance (ANOVA) with word-picture relatedness (related, unrelated and 

congruent) and subject type (patients and controls) as factors. Accuracy was 

analyzed via log-linear regression analysis with word-picture relatedness (related, 

unrelated and congruent) and subject type (patients and controls) as factors. The 

analyses were performed using JASP (JASP Team, 2018). 

 

Hierarchical Drift Diffusion Model
It has been recently proposed that evidence accumulation is a plausible theoretical 

and empirical model of processes of lexico-semantic retrieval (Anders et al., 2017). 

We analyzed choice reaction time data with the hierarchical drift-diffusion model. 

The hierarchical Bayesian framework provides simultaneous estimation of individual 

and group subject parameters, which leads to robust model parameter estimates 

that better account for variability, especially in the performance of patients (Wiecki, 

Sofer, & Frank, 2013). Another advantage is the ability to obtain accurate model fits 

to the data using fewer trials, an extremely important aspect when investigating 

clinical populations. This makes HDDM an appropriate analytic tool for patient-based 

studies such as the current one (Ratcliff & Childers, 2015). We carried out the 

analysis using the Python toolbox HDDM 0.6.0 (Wiecki et al. 2013). We fitted models 

with different combinations of free parameters to the data via Markov Chain Monte 

Carlo (MCMC) fitting routines. We coded as “correct” a ‘no’ response in the related 

and unrelated conditions, and a ‘yes’ in the congruent condition. As commonly 

done using HDDM (Cavanagh et al., 2011; Zhang et al., 2016.), for each model we 

assessed a) the convergence rate of the numerical fitting routines and b) the ability 

of the model to capture the observed RT distributions. We excluded from further 

analysis the models that failed to reach convergence or failed to capture the 
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observed RT distributions. Finally, we compared the models of interest by computing 

the relative Deviance Information Criterion (DIC), which provides a measure of the 

goodness of the model fit to the data while penalizing model complexity (Schwarz, 

1978). Further, for the best fitting model, we examined the differences in posterior 

estimates by conducting a Bayesian ANOVA (since the model parameters are 

inherently not statistically independent) with type of participant and degree of 

semantic relatedness as factors. In the Bayesian framework, a Bayes factor (BF) 

provides graded evidence in favor or against the tested hypothesis (Wagenmakers 

et al., 2018). The evidence in favor of the alternative hypothesis (H1) as opposed to 

the null hypothesis (H0) has a subscript of 10 in the Bayes factor abbreviation BF10, 

that is the evidence in favor of the alternative hypothesis. The following range from 

Kaas and Raftery (Kass & Raftery, 1995) facilitates interpretation of the Bayes factor: 

BF10 = 1-3 indicates “anecdotal” (“not worse more than a bare mention”) evidence 

for H1 compared to H0 ; BF10 = 3-20 indicates “positive” evidence for H1 compared 

to H0; BF10 = 20-150 indicates “strong” evidence for H1 compared to H0; BF10 >150 

indicates “very strong” evidence for H1 compared to H0. We will only consider 

“strong” and “very strong” evidence for interpretation of our findings. 

Results

Behavioral analysis 
The results of RT and accuracy analyses are summarized in Figures 4 and 5. In all 

subjects, word-picture relatedness (related, unrelated, congruent) modulated the 

RTs (main effect: F(2, 6583) = 238.26, p < .001). Details of the statistical results for 

the post-hoc comparisons are presented in Table 3. Post-hoc comparisons revealed 

significant differences between the related and unrelated conditions (mean 

difference = 92.61). We also found that performance depended on the subject type 

(main effect: F(2, 6583) = 26.62, p < .001). We did not find an interaction between 

word-picture relatedness and subject type, F(4, 6583) = 0.59, p = .66. For the 

remaining post-hoc comparisons, we found a difference for related vs. congruent 

(mean difference = 196.33) and unrelated vs. congruent (mean difference = 103.73). 

We performed a log-linear regression to test the effects of word-picture relatedness 

and subject type on accuracy. Accuracy was marginally not modulated by subject 

type (main effect of subject: Deviance (2, 6589) = 5.74, p = .057). Word-picture 

relatedness was not significant: Deviance (2, 6587) = 4.03, p = 0.13). We did not find 

any significant interaction between type of subject and semantic relatedness: 

Deviance (4, 6583) = 1.18, p = .88).
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Table 3   Post-hoc comparisons related to the main effects of picture 

relatedness and subject type.

Contrast: Reaction times  SE t p

related vs. unrelated 10.6 8.72 < .001

related vs. congruent 9.2 21.32 < .001

unrelated vs. congruent 9.09 11.41 < .001

frontal vs control 9.23 5.34 < .001

temporal vs control 9.04 6.43 < .001

frontal vs temporal 10.62 0.82 0.68

Figure 4: Single-trial response times for all subjects and experimental conditions. 
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Hierarchical Diffusion Modeling

Model Convergence and Model Fit
We performed an outlier-removal on the data (fixed probability of 5 %) before 

feeding it to HDDM. For all analyses, we set the MCMC (Gelman & Rubin, 1992) 

fitting routines to 20,000 iterations with a burn-in period of 10,000 iterations and a 

thinning of 5. We assessed model convergence by examining the posterior sample 

(no autocorrelation found, no “spikes” in the posterior trace per each of the 

conditions, see Figure 6) and the R-hat statistic, which is a measure of convergence 

among multiple MCMC chains (three for the present study). Inspection of posterior 

density estimates revealed that the traces were stable over multiple samples, which 

indicated that the fitting routines have converged to a fixed estimate. The R-hat 

statistic under 1.1 indicated that chains with different starting values have converged 

to the same estimate. Successful convergence was confirmed also by a MCMC 

error for all of the parameters smaller than 0.01. 

Finally, we evaluated the adequacy of each model’s predictions by examining the 

predicted posterior quantiles for the RT distributions for each participant (Figure 7).

Figure 5: Individual percentage of errors for control subjects (A), subjects with temporal 

lesions (B) and with frontal lesions (C). R – related, U – unrelated, C – congruent conditions.
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Further, we quantitatively compared the models of interest by computing the 

associated DIC score for each model. According to DIC logic, a model with a lower 

DIC score is to be preferred to an alternative model with a higher DIC as the most 

parsimonious explanation of the data. Separately for patients and controls, we fitted 

seven variants of the model (see all model designs in Figure 8). 

Figure 6: Example of a converged chain for control subjects (A) and patients with temporal 

lesions (B) and frontal lesions (C). For each of the panels, top left: posterior trace, bottom left: 

autocorrelation, right: posterior histogram (solid black lines denote posterior mean and 

dotted black lines denote 2.5 and 97.5 percentiles). 
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First, we left drift rate, decision threshold, and non-decision time free to vary (Model 

1, Figure 8) over the type of word-picture relatedness (related, unrelated, congruent). 

Then we fixed each of the parameters for the experimental factor of interest 

(semantic relatedness) across different models, leaving other conditions free to 

vary (Model 2-4, Figure 8). Further, we fixed two parameters leaving one to vary 

(Model 5-7, Figure 8). Next, we compared models with different combinations of 

parameters to find the most parsimonious account of the data. For both patients 

and controls, the model that best describes the data (i.e., the model with the lowest 

DIC score, see Table 4) was the model that allowed drift rate, threshold and 

non-decision time free to vary across the type of word-picture relatedness 

condition (Model 1 in Figure 8). Conventionally, a DIC difference of more than 10 

indicates that the evidence in favor of the model-winner is substantial (Burnham, 

Anderson, & Burnham, 2002). 

Figure 7: Observed RT distribution (red lines) and predicted posterior (blue line) from the 

model at hand (here, model-winner, i.e. model 1) for (A) control subjects, (B) subjects with 

temporal lesions and (C) frontal lesions. The related condition is shown in all panels. Negative 

RTs represent trials in which the response was incorrect.
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For the controls, the difference between the winning model (Model 1, DIC -272.78) 

and the second-best model (Model 2, DIC -230.23) exceeded the difference of 10. 

For the patient group, the difference between the first (Model 1, DIC = 1228.60) and 

second-best model (Model 3 = 1280.11) exceeded the difference of 10. We consider  

this sufficient evidence for postulating that Model 1 best describes the data. Therefore, 

we carried out further analyses focusing on this winning model’s parameters. 

Figure 8: The deviance information criterion (DIC) value for each of the competing models. 

The models differ according to the number of parameters free to vary over the experimental 

factor semantic relatedness (related, unrelated, congruent). Black squares indicate that a 

parameter is free, red squares mark fixed parameters.
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Table 4   Deviance information criterion for each model for patients and 

controls. For both controls and patients, the best winning model had 

variables drift rate, decision threshold and non-decision time free 

(Model 1, Figure 8).

subject 
type/model

1 2 3 4 5 6 7

controls -272.78 -230.23 -211.23 -219.83 173.21 -56.36 -131.01

patients 1228.60 1353.65 1280.11 1324.27 1762.66 1564.54 1336.42
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Model Parameter Analysis

Figure 9 shows the drift rate estimates for each participant as a function of subject 

type and relatedness. A Jeffreys-Zellner-Siow (JZS, Liang, Paulo, Molina, Clyde, & 

Berger, 2008; Rouder, Morey, Speckman, & Province, 2012) Bayes factor ANOVA 

with default prior scales revealed that the best-fitting model consisted of main 

effects of word-picture relatedness, type of subject and an interaction between 

word-picture relatedness and type of subject. This model was preferred over the 

null model, BF10 = 6.80 x 1014 and over the second-best model that included main 

effects of word-picture relatedness and subject type, BF10 = 2.09 x 109.  

Further, we performed Bayesian paired samples t-tests for each subject type 

(controls, temporal, frontal) separately, which revealed the following differences in 

regards to the comparison of interest. In controls, the related and unrelated pairs 

were likely to be processed at the same drift rate (related vs. unrelated: BF10 = 0.30). 

For patients with temporal lesions, there was “positive” evidence in support of 

increased drift rate in unrelated relative to related conditions (unrelated > related: 

BF10 = 11.32). For the patients with frontal lesions, we found “very strong” evidence 

in favor of increased drift rate in unrelated relative to related conditions (unrelated > 

related: BF10 = 48977).

Figure 9. Posterior estimates of the hierarchical drift-diffusion model for the drift rate 

parameter. A difference in the related vs. unrelated condition was not detected in control 

participants, but was present in patients with both temporal and frontal lesions.  
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For completeness, we report the result for the additional contrasts. In control 

participants, we found that related pairs were likely to have higher drift rate as 

opposed to congruent pairs (related > congruent: BF10 = 300221). Similarly, 

unrelated pairs were more likely to have increased drift rate in comparison to 

congruent pairs (unrelated > congruent: BF10 = 115.481). For patients with temporal 

lesions, we found “anecdotal” evidence in favor of a difference between related vs. 

congruent pairs (related vs. congruent: BF10 = 0.23) and “positive” evidence in favor 

of increased rate in unrelated in comparison to congruent conditions, (unrelated vs. 

congruent: BF10 = 7.83). For the patients with frontal lesions, we found “strong” 

evidence in favor of increased drift rate in unrelated in comparison to congruent 

conditions (unrelated > congruent: BF10 = 62.60), whereas related and congruent 

conditions showed “anecdotal” evidence supporting the condition differences 

(related vs. congruent: BF10 = 0.85). Additional analyses on selected groups of 

patients, reported in the Supplement, give further support to these findings.

In sum, we did not find reliable evidence supporting a difference in drift rate 

between related vs. unrelated contrast in control participants. By contrast, both 

temporal and frontal patients had increased drift rate for unrelated in comparison 

to related word-picture pairs. 

Decision threshold

Figure 10: Posterior estimates of the hierarchical drift-diffusion model for the decision 

threshold parameter. Related vs. unrelated differences in decision threshold had the opposite 

directionality for control participants versus participants with temporal or frontal lesions.
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Figure 10 shows the decision threshold estimates for each participant as a function 

of subject type and relatedness. A JZS Bayes factor ANOVA with default prior scales 

revealed that the model-winner was comprised of main effects of word-picture 

relatedness and type of subject, and their interaction. This model was preferred 

over the null model, BF10 = 6.68 x 1024and over the second-best model that 

included main effects only BF10 = 2.45 x 106. 

In control subjects, we found “very strong” evidence that related pairs were more 

likely to have higher decision threshold as opposed to unrelated pairs (related > 

unrelated: BF10 = 1.08 x 108). For the patients with frontal lesions, there was “very 

strong” evidence in favor of higher decision threshold in unrelated vs. related pairs 

(unrelated > related pairs: BF10 = 48977). Thus, the direction of the effect was 

reversed in comparison to the controls. For patients with temporal lesions, we 

found “strong” evidence in favor of increased decision threshold in unrelated 

compared to related conditions (unrelated > related: BF10 = 43.06). Once again, the 

direction of the effect was reversed in comparison to controls. 

For additional contrasts, we found “very strong” evidence that control subjects 

were more likely to have higher decision threshold for related in comparison to 

congruent condition (related > congruent: BF10 = 1.31 x 107). We also found “strong” 

evidence in favor of increased decision threshold for unrelated compared to 

congruent pairs (unrelated > congruent: BF10 = 96.37). For patients with frontal 

lesions, there was “very strong” evidence in favor of increased decision threshold 

for unrelated in comparison to congruent conditions (unrelated > congruent: BF10 

= 68985.08). By contrast, the evidence supporting the difference between related 

and congruent conditions was “anecdotal”, (related vs. congruent: BF10 = 1.67). We 

observed a similar pattern for patients with temporal lesions. We found “anecdotal” 

evidence in favor of the difference between related vs. congruent pairs (related vs. 

congruent: BF10 = 0.80), but “very strong” evidence in favor of increased decision 

threshold in unrelated vs. congruent conditions (unrelated > congruent: BF10 = 

307.52). Additional analyses on selected groups of patients, reported in the 

Supplement, give further support to these findings.

In sum, we found control subjects had a higher decision threshold for related as 

opposed to unrelated conditions. By contrast, the decision threshold was lower for 

related relative to unrelated word-picture pairs in both patient groups when 

compared to controls. 
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Non-decision component

A JZS Bayes factor ANOVA with default prior scales revealed that the model-winner 

included main effects of word-picture relatedness, type of subject and their 

interaction. This model was preferred over the null model BF10 = 2.17 x 1010 and 

over the second-best model that included main effects of word-picture relatedness 

and subject type BF10 = 828.436. 

We investigated the contrasts of semantic relatedness per subject group. In control 

subjects, there was “very strong” evidence in favor of decreased non-decision time 

in related as opposed to unrelated conditions (related < unrelated: BF10 = 4.39 x 

106). By contrast, in subjects with frontal lesions, there was “moderate” evidence for 

increased non-decision time for related in comparison to unrelated pairs (related > 

unrelated: BF10 = 9.39). We found “moderate” evidence in favor of the difference 

between related vs. unrelated pairs (related vs. unrelated: BF10 = 6.57) in participants 

with temporal lesions. 

For additional contrasts, in control participants, we found “very strong” evidence in 

favor of decreased non-decision time in related as opposed to congruent conditions 

(related > congruent: BF10 = 1912). By contrast, more non-decision time was 

Figure 11: Posterior estimates of the hierarchical drift-diffusion model for the non-decision 

time  parameter (Ter). Differences in non-decision time had the opposite direction in controls 

and patients with frontal lesions. Patients with temporal lesions did not show a reliable 

difference between related and unrelated conditions. 
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needed for unrelated than congruent conditions (unrelated > congruent: BF10 = 

31.38). In subjects with frontal lesions, we found an “anecdotal” difference between 

unrelated vs. congruent conditions (BF10 = 0.44). We also found that less 

non-decision time was needed for congruent in comparison to related items 

(congruent > related: BF10 = 28.01). Patients with temporal lesions needed less 

non-decision time for congruent in comparison to related (congruent > related: 

BF10 = 26.22) and for congruent compared to unrelated items (congruent  >  

unrelated: BF10 = 22.27).

In sum, control participants needed less non-decision time for related than unrelated 

conditions. By contrast, frontal patients had the opposite pattern: increased non- 

decision time for related than unrelated conditions. Temporal patients did not 

exhibit meaningful differences between related and unrelated conditions. 

Discussion

This study investigated the mechanisms that contribute to semantic control in 

healthy participants and participants with lesions in left temporal or frontal regions. 

Participants performed a word-picture matching task, in which they had to correctly 

verify whether congruent, semantically related and unrelated words matched 

pictures.

From the analysis of behavioral data, we found a semantic interference effect in RTs 

and errors for both patients and controls: related word-picture pairs resulted in 

longer RTs and more errors compared to the unrelated pairs. Patients on average 

had a higher error rate than control subjects, especially for the related condition. 

We note that the congruent condition is necessarily included in this task in order to 

give participants a task. However, we focused on the semantic interference effect, 

given that it better enables the study of semantic control. As we mentioned earlier, 

behavioral data alone does not allow exploring the nature - executive or/and 

semantic - of semantic interference. Therefore, we used a combination of RTs and 

accuracy to better understand latent cognitive processes underlying the process of 

semantic competition in the word-picture paradigm. We found that, for control 

participants, no reliable differences existed in drift rate between related versus 

unrelated word-picture pairs, whereas for both patient groups, an increased drift 

rate was found for unrelated in comparison to related word-picture pairs. Regarding 

the decision threshold, whereas controls had a higher decision threshold for related 

as opposed to unrelated conditions, the patients showed a lower decision threshold 

for related relative to unrelated word-picture pairs. 
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We formalized the process of lexico-semantic selection via a computational model 

of binary decision making, DDM, which provides an account of the process of lex-

ico-semantic competition and resolution in terms of evidence accumulation 

(Anders, Ries, van Maanen, & Alario, 2015; Ratcliff, Thapar, Gomez, & McKoon, 

2004). Previous studies related to the investigation of competitive lexico-semantic 

selection in both comprehension and production (Anders et al., 2017; Voss, Nagler, 

et al., 2013) have shown that the process of lexico-semantic selection can be 

sufficiently described with two parameter types – the rate of evidence accumulation 

(drift rate) and the amount of evidence accumulation (decision threshold). While 

the drift rate can reflect the process of spreading activation (Gomez et al., 2013; 

Kinoshita et al., 2017; Voss, Rothermund, et al., 2013), the decision threshold reflects 

broad control mechanisms (Anders et al., 2017). We found that, for healthy controls, 

task demands in word-picture matching tap more into control mechanisms, rather 

than into the process of spreading activation through the lexical-semantic system. 

We also found that patients with temporal and frontal lesions have similar cognitive 

profiles with respect to mechanisms of control and spreading activation described 

by the drift rate and decision threshold, as established by the model.

Control participants. The mechanisms of lexico-semantic competition are usually 

discussed in terms of lexical activation and lexical selection when there is the need 

to map semantic features to lexical items or vice versa (Dell, Schwartz, Martin, 

Saffran, & Gagnon, 1997; Levelt, Roelofs, & Meyer, 1999; Roelofs, 1992). While the 

process of activation has been quite extensively studied (Dell et al., 1997), the 

mechanisms of selection are still debated. According to many models of word 

production (Howard et al., 2006; Oppenheim et al., 2010; Roelofs, 2018), semantic 

features from several competing representations trigger the spreading activation in 

the semantic network, with the item with the highest activation level as a winner. It 

is plausible that the selection step requires executive control, especially in light of 

recent evidence dissociating activation and selection processes neurally (Piai, 

Roelofs, Jensen, Schoffelen, & Bonnefond, 2014). In the present study, we showed 

that in the context of lexico-semantic competition following the comprehension of 

spoken words, both high- and low competition conditions (related and unrelated 

word-target pairs) preserved the same level of activation in the semantic memory 

network (i.e., drift rate). Importantly, we showed that the selection of competing 

representations was supported by other mechanism potentially associated with 

executive control (i.e., decision threshold). This suggests that the mechanisms of 

semantic activation and selection may be dissociable (Nozari, 2017; Piai et al., 2014). 

Indeed, neuroimaging and lesion-based studies suggest that semantic selection (or 

control) and mechanisms of representation involve different brain areas (Jefferies, 

2013; Lambon Ralph et al., 2017). 
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As for the “representation system”, it is generally assumed that the anterior temporal 

lobes are crucial for representing semantic knowledge (Patterson et al., 2007), and 

damage to these areas due to, for example, degeneration leads to the degradation 

of semantic representations (Guo et al., 2013; Lambon Ralph & Patterson, 2008). 

Among the brain areas associated with the control of semantic retrieval and 

selection are the left IFG and posterior MTG. Patients with damage in these areas 

show poor results in face of semantic distractors, retrieve irrelevant information for 

the task, and are helped by cues when retrieving information (Jefferies & Lambon 

Ralph, 2006; Jefferies et al., 2008; Thompson-Schill et al., 2002). In addition, a 

recent neuroimaging meta-analysis study showed that left IFG and posterior MTG 

are consistently activated in many tasks designed to tap semantic control (Noonan 

et al., 2013). In the present study, we do not consider the drift rate measures to 

necessarily reflect the “representation system”. In fact, none of our patients had 

semantic dementia, and some of the patients had both anterior and posterior parts 

of the left MTG damaged. Instead of indexing semantic knowledge per se, the drift 

rate may reflect the processes related to spreading activation in the lexico-semantic 

network. It is a common finding that the processes of lexico-semantic activation 

are tightly related to the left MTG (Baldo, Arévalo, Patterson, & Dronkers, 2013; Piai 

& Knight, 2018; Schwartz et al., 2009). By contrast, activity in frontal cortex is 

commonly interpreted as a control mechanism operating over lexico-semantic 

representations (Badre et al., 2005; Piai et al., 2014; Wagner, Paré-Blagoev, Clark, & 

Poldrack, 2001). However the contribution of left IFG in the resolution of lexico-se-

mantic competition still remains elusive (de Zubicaray, Hansen, & McMahon, 2013; 

Piai & Knight, 2018; Piai et al., 2016; Piai, Roelofs, Acheson, & Takashima, 2013a; 

Python, Glize, & Laganaro, 2018). It is of importance to note that most of these 

studies address competitive word production. Studies investigating access to 

competing semantic representations using a word-picture matching task do not 

necessarily focus on the mechanisms of control per se but rather on the nature 

(lexical or semantic) of semantic interference (Campanella & Shallice, 2011; Harvey 

& Schnur, 2016). More broadly though, verbal comprehension mechanisms in both 

explicit (Demb et al., 1995; Spitzer et al., 1996) and implicit (Ruff, Blumstein, Myers, 

& Hutchison, 2008) semantic tasks involve left IFG, which is associated with control 

mechanisms of semantic retrieval. Whether the function of control is deployed by 

IFG, posterior MTG, or a combination of both and in which contexts remains an 

open question. Below we discuss the mechanisms of semantic interference in an 

instance of competition for a comprehension task (word-picture matching) in 

patients with lesions overlapping in left MTG vs. left inferior and middle frontal 

gyrus. 
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Frontal patients 
Previously it has been shown that patients with damage to the left PFC, and 

particularly left IFG, fail to appropriately adjust their decision threshold, in order to 

handle the increased task difficulty with a higher degree of semantic interference 

(Anders et al., 2017). The authors argued that their finding supports the idea that left 

PFC, and specifically left IFG, subserve an interference control mechanism, 

potentially similar across different cognitive domains (Kan & Thompson-Schill, 

2004; Ries et al., 2014). In the current study, we showed that frontal patients (with 

most lesion overlap in left IFG and left MFG) perform differently in an interfering 

condition from healthy participants. While healthy participants adjusted only the 

decision threshold but not the drift rate, these patients showed abnormal 

modulations in both decision threshold and drift rate. When presented with a “high 

demands” condition (semantically related), patients with frontal lesions were slower 

and made more mistakes (lower decision threshold and lower drift rate) in 

comparison to the “low demands” condition (semantically unrelated), where they 

were faster and more accurate (higher decision threshold, higher drift rate). In other 

words, these patients were not able to easily solve semantic competition (low drift 

and threshold). This is in line with previous studies showing that patients with 

damaged frontal areas after a stroke had problems with controlled semantic 

retrieval in picture naming, as patients’ responses were driven mostly by irrelevant 

associations (Humphreys & Forde, 2005; Jefferies & Lambon Ralph, 2006). It seems 

that patients with frontal damage are better at the less competitive condition 

(unrelated) because of still functioning (albeit abnormally) excitation levels in 

semantic and control systems, which is not the case for the more difficult (i.e. 

related) condition. 

The fact that both activation and selection processes are jointly impaired in the 

patients with lesions in frontal areas suggests that there is a certain degree of 

interaction between these processes (Nozari, 2017). For example, depending on 

the task, selection processes resolve competing representations either by adjusting 

the selection criteria dynamically from the activation levels of the lexico-semantic 

system or by adjusting the criterion post-hoc, after a certain level of activation in 

the lexico-semantic system has been reached (Nozari & Hepner, 2018). It may be 

that the overlap between activation and selection processes depends on the 

language modality (production vs comprehension), which is an important variable 

to account for when comparing lexico-semantic competition in word-picture 

interference paradigms. 
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Temporal patients 
For temporal patients, we expected the manifestation of the deficit at the level of 

activation in the semantic network, leaving the selection processes critically 

impaired as a result of deficiency of spreading activation. We indeed found that 

patients with damage to the left MTG were critically impaired in both decision 

threshold and drift rate mechanisms, which we interpret as deteriorated levels of 

semantic network activation and executive components operating on those repre-

sentations. Interestingly, the pattern for both drift rate and decision threshold 

followed the same direction (increased for unrelated in comparison to related 

conditions), in line with the findings of the frontal patients, which suggests an 

interaction between processes of semantic section and control. 

Of note, the interpretation of the abovementioned results is highly dependent on 

the assumption that left posterior MTG contributes to lexico-semantic representa-

tions. However, the function of left posterior MTG remains somewhat elusive. 

Some studies propose that posterior MTG is a “knowledge hub” that links the 

associations between several concepts (Chao, Haxby, & Martin, 1999; Martin, 

2007); other studies support the idea that posterior MTG participates in the control 

of semantic representations during retrieval (Davey et al., 2016; Noonan et al., 

2013). A recent TMS study showed that left IFG and posterior MTG are crucial for 

semantic control rather than for semantic representation. Particularly, the study 

showed that these brain areas work in concert with each other, therefore the 

damage to either of these areas leads to disrupted manipulation of semantic 

knowledge (Whitney, Kirk, O’Sullivan, Lambon Ralph, & Jefferies, 2011). Similar 

executive malfunctioning in semantic retrieval tasks in patients with temporal and 

frontal lesions is in line with previous evidence revealing functional connections 

between IFG and temporal areas (Bourguignon, 2014; Grappe et al., 2018). Taking 

into consideration these recent results with regards to the contribution of the 

posterior MTG to the processes of retrieval of semantic information, we could 

conclude that posterior MTG contributes not only to the drift rate but also to the 

decision threshold. 

Limitations
It is of course essential to pinpoint that lesions vary across the patients in our 

sample (even with the same focal damage), and the patients in our study have more 

than posterior MTG of PFC lesions, for example including the superior temporal 

gyrus (STG) and parietal regions. 
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Previously, it has been shown that temporo-parietal lesions can lead to deficits in 

semantic control (Jefferies & Lambon Ralph, 2006). Some patients in this study had 

lesions in three parietal brain regions: postcentral gyrus, supramarginal gyrus and 

inferior parietal gyrus. While to our knowledge there is no evidence that postcentral 

gyrus is involved in controlled semantic cognition, supramarginal gyrus and inferior 

parietal gyrus are thought to be part of the semantic cognition system. In the 

semantic control literature, parietal contributions (supramarginal gyrus and inferior 

parietal gyrus among others) are discussed in the context of temporo-parietal vs. 

prefrontal deficits. For example, persons with semantic aphasia, whose lesions are 

located not only in prefrontal cortex but also in temporo-parietal cortex manifested 

difficulties with controlling semantic representations (Jefferies & Lambon Ralph, 

2006; Noonan et al., 2010, 2013). On the other hand, patients with inferior parietal 

or posterior temporal lesions did not exhibit impaired control over semantic 

activation in word production in comparison to patients with lesions in frontal 

cortex (Schnur et al., 2009). When it comes to the supramarginal gyrus, the evidence 

is not conclusive either. While there are studies showing the involvement of 

supramarginal gyrus in semantic control (Gennari, MacDonald, Postle, & Seidenberg, 

2007; Nagel et al., 2008), a meta-analysis by Noonan et al. (2013) did not show 

significant activations in supramarginal gyrus, but rather within dorsal and anterior 

portions of angular gyrus, bordering the supramarginal gyrus.We inspected this 

issue in additional analyses after excluding patients with parietal lesions in frontal 

group to capitalize on the distinction between temporo-parietal vs. frontal lesions 

(reported in Supp. Table 2 and Supp. Figure 2). Experimental effects remained 

unchanged (i.e., higher decision threshold and drift rate for the unrelated in 

comparison to related condition), which makes an explanation in terms of parietal 

lesions alone driving the effects less likely. Altogether, given the somewhat unclear 

evidence with respect to the contribution of supramarginal gyrus and/or inferior 

parietal gyrus to semantic control, we interpret our results with caution regarding 

this issue. 

It is important to note that two frontal patients have additional lesions in the STG. 

It has been suggested that the STG among other regions is associated with semantic 

representations rather than with control processes (Noonan et al., 2013). Thus, the 

PFC group might have shown additional disturbances in the lexico-semantic system 

(drift rate) in addition to the disturbed control exerted by the PFC (decision threshold). 

However, an additional analysis, which accounted for parietal contributions to the 

frontal group (see Supp. Table 2 and Supp. Figure 2), also excluded from the frontal 

group one patient with a large lesion in the STG. This additional analysis removed 

potential contributions of damage to the representation system from the frontal 

patients group.  As reported above, experimental effects remained unchanged, 
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which makes an explanation in terms of STG lesions contributing to our findings 

less likely.

Despite these control analyses, future studies, for example involving techniques 

such as TMS, are needed to explore the functional role of posterior MTG and left 

IFG in the context of degraded semantic retrieval with the modelling approach 

proposed here. Another limitation of the current study is that we cannot disentangle 

the contribution of the posterior and anterior portions of the MTG to the function 

of semantic control. Therefore, we cannot fully differentiate the contributions of 

control and representations to the process of semantic conflict resolution. Further 

studies should account for more precise differentiation of the lesions in order to 

clarify the function of semantic control in competitive selection in comprehension.

Conclusion
To conclude, we investigated the cognitive mechanisms of semantic interference 

in healthy subjects and patients with lesions overlapping in left MTG vs. left IFG/left 

MFG. We found that the driving force behind semantic interference in healthy 

subjects lies in the domain of executive control, rather than at the level of spreading 

activation in the lexico-semantic system. Patients with temporal and frontal lesions 

showed a similar pattern in the underlying mechanisms of semantic control in the 

context of word-picture matching, which suggests similar functional contributions 

of the posterior MTG and IFG to semantic competition during retrieval. These 

results support the notion that activation and selection are distinct but interactive 

processes that have to be preserved in order to resolve semantic interference 

efficiently. 
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Words influence visual perception, something that has been suggested for at least 

half a century as the Sapir-Whorf hypothesis (Whorf & Carroll, 1956), which 

postulates that language affects the way we think. The mechanisms of this 

phenomenon remain a matter of debate to this day. Recent neuroscientific methods 

and theoretico-computational tools introduce new opportunities for investigating 

this long-standing debate. In this thesis, I aimed to shed light on the neural 

mechanisms and computations involved in the modulation of visual perception by 

lexico-semantic information introduced by words. I used a combination of neuronal 

data (fMRI, MEG, neuropsychology) and computational tools (DDM) in order to 

address the issue. 

In this work, I capitalize on the decision making framework of DDM, through the 

lens of which I consider the experimental results. DDM is a biologically plausible 

computational model of decision making (Smith & Ratcliff, 2004), which suggests 

that the process of decision making can be formalized via stochastic accumulation 

of evidence towards a decision threshold. This allows us to make a parallel between 

visual perception and visual decision making in order to test to which extent lexi-

co-semantic influences on visual perception can be explained by decision making 

mechanisms.

In Chapter 2, I showed that both associations (“tie”) and identity words (“man”) in 

the response priming paradigm led to a facilitation of face gender categorization 

(i.e., responding “man” or “woman” to faces). This effect was mapped to both speed 

of target processing and speed of motor response: when related to the target, both 

prime types resulted in increased drift rate and faster non-decision component. In 

Chapter 3, employing fMRI, I showed task-dependent modulations on the speed of 

visual categorization. Particularly, in the classification task (i.e., responding “man” or 

“woman” to faces), words congruent to the target (word: “man”, target: male face) 

resulted in increased drift rate in comparison to incongruent ones (word: “man”, 

target: female face). These results were similar to the results in the experiment in 

Chapter 2 and followed well-established results from the literature (Voss, 

Rothermund, et al., 2013). In the verification task, where an explicit match was 

required between the prime and the target (i.e., respond “yes” if both prime and 

target match), female-related words resulted in an increased drift rate regardless of 

the gender of the target face, which suggests that the classification and the 

verification tasks require different performance strategies to accumulate decision 

about a visually presented category. In Chapter 4, employing MEG, I showed that 

words help to decide about ambiguous pictures by increasing the speed of visual 

categorization (i.e., responding “face” or “house” to an ambiguous picture that 

contained overlapping images of both a face and a house). Particularly, words 
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congruent with the response resulted in increased drift rate in comparison to 

incongruent ones, which was similar to the findings in Chapter 2 and Chapter 3 

(Classification task). In Chapter 5, using a lesion-symptom approach, I showed that 

individuals with brain damage in temporal or frontal regions have their visual-based 

decisions affected in similar ways, but fundamentally different from neurotypical 

controls. In this chapter, I used the word picture matching task, in which participants 

had to respond “yes” or “no” to a match between a word and a picture. While task 

performance in controls was explained by the amount of information needed to 

make a decision (decision threshold), individuals with frontal or temporal lesions 

exhibited similar dysfunctional modulation of both drift rate and decision threshold. 

These results support a diverse but interactive role of lexical-semantic memory and 

semantic control mechanisms. 

Below, I discuss how the assumption from DDM that information accumulates as a 

random walk process can be instrumental in advancing the topic of language-vi-

sion interactions. Particularly, I will further discuss the importance of a theoreti-

co-computational approach in conjunction with the neural data, its limitations and 

cautionary notes with regards to the topic of language and visual perception. 

DDM in experimental neuroscience: modus operandi

In my thesis I illustrate three ways in which DDM might be useful for experimental 

cognitive neuroscience. First, I show that by using main constraints enforced by the 

model theory (i.e., it disentangles decisional vs. non-decisional processes, as 

discussed in Chapter 1) it is possible to disentangle cognitive vs. non-cognitive 

processes (Chapter 2). Second, DDM can be used to provide a mechanistic 

description of the process underlying neural effects (Chapter 3 and 4). Third, I use 

DDM to test whether it can formalize existing verbal theoretical models (here the 

model that describes the flexible use of language, Chapter 5). I will first outline how 

model constrains enforced by its theory are useful to study language influences on 

visual decision making. Then I will introduce the levels of informational description 

for a cognitive system (Marr’s levels), followed by a discussion on how DDM can 

clarify the nature of neural representations. Finally, I will illustrate how the DDM 

machinery can be instrumental in formalizing the existing verbal theory of semantic 

cognition.
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Using the constraints of DDM model to study 
how language influences visual decision making

In the field of language-perception interactions, signal detection theory (SDT, see 

Chapter 1) is used as a common measure of task performance, which describes 

how language has an effect on decisions. For example, it has been shown that  

language can boost the speed and sensitivity of visually driven decisions (Lupyan, 

Spivey, Frank, Wu, & Wade, 2010; Meteyard et al., 2007). The results however have 

not been consistent even in the studies with virtually the same experimental design. 

Here, I briefly consider two studies where words describing the direction of dot 

motion were followed by actually randomly moving dots (Francken et al., 2015; 

Meteyard et al., 2007). Behavioral findings in both studies indicated that participants 

are faster and more accurate about motion direction detection when word and 

visual motion are described coherently. However, these behavioral results translated 

quite differently to the measures of performance (sensitivity and bias, see BOX1 in 

Chapter 1). Particularly, words incongruent with subsequently presented visually 

random-dot-motion (RDM) resulted in impaired perceptual sensitivity in comparison 

to congruent word–RDM pairs (Meteyard et al., 2007). These results were interpreted 

as suggestive that words exhibit a top-down effect on visual perception at the level 

of stimulus-related sensory information. Another study, however, did not manage 

to find differences in sensitivity effects for congruent vs. incongruent word-RDM 

pairs (Francken et al., 2015). Instead they found that participants set a more liberal 

threshold for congruent as opposed to incongruent word-RDM stimuli. According 

to this view, language primes modulate decision criterion, which implies that 

stimulus distributions remain the same but the decision rule changes (see SDT, 

Macmillan & Creelman, 2005). Hence it is still debatable how behavioral 

performance is affected by language, and whether language modulates perceptual 

representations of visual stimuli. 

Besides the differences in experimental procedure (e.g., Meteyard et al.’s study was 

held on two different days, which might have led to habituation effects), it is 

important to consider an intrinsic feature of SDT that is crucial for the interpretation 

of language supported visual decisions. In SDT, the decision making strategy 

(sensitivity or threshold) is reflective of various processes such as motor execution 

/ preparation and perceptual encoding, in addition to actual the process of decision 

formation (see red frame on Figure 4, Chapter 1). For example, the fact that one has 

to press the button or reply “up”/”down” in the context of the abovementioned RDM 

experiment could lead to motor effects rather than to decisional effects but STD 

itself will not be able to differentiate them. The drift diffusion model instead provides 

a measure of “pure” decision variable formation, without additions of non-decisional 
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components such as encoding or motor execution. In the case of response priming 

(Chapter 2), where the prime can affect both motor preparation time and the speed 

of decision formation (motor vs. cognitive effects), it was important to disentangle 

these process. I indeed showed that the prime does not bypass the cognitive 

evaluation of the target picture, leading to exclusively motor facilitation effects. 

Conversely, I showed that words promoted the speed of visual decisions in addition 

to having effects on non-decisional processes.  

I will further elaborate on the meaning of the notion “the speed of visual decisions” 

promoted by language from the cognitive neuroscience perspective. Particularly,  

I will layout how a theoretical model (DDM) that describes how neurons collect 

information can be useful for better understanding higher cognitive functions, 

such as semantic cognition. I will further consider the use of the model in a 

hierarchy of knowledge description (i.e., Marr’s levels of analysis) within which we 

can describe a cognitive phenomenon. Finally, I will discuss the results of this thesis 

within the levels of the model. 

Algorithmic level of information description as a bridge 
between brain computations and cognitive theories

According to Marr (Marr, 1982), systems that process information can be analyzed 

at three different levels depending on what information is computed at each of 

them. While the implementational level is concerned with the physiological 

structure that supports the behavior, the algorithmic level concerns representa-

tions and processes that drive behavior. Finally, the computational level, the most 

abstract of Marr’s levels, is concerned with the “abstract model description” (see 

Figure 1 A). Previously (Love, 2015), a computer metaphor was used to represent 

these levels, which consists in the following. For a computer, the computational 

level is a program description, the algorithmic level is the program itself and the 

implementation level is the hardware. Taken together, Marr’s levels provide a holistic 

perspective on what, how and why a certain cognitive phenomenon functions. 

While being generally accepted, in the past decades, due to reductionalistic 

tendencies in the field of neuroscience, the use of this model was put in doubt 

(Peebles & Cooper, 2015). Particularly, the algorithmic level of the model was 

downplayed by neuroimaging approaches that do not quite distinguish between 

algorithmic and implementational levels. The common criticism of the algorithmic 

level referred to the fact that multiple algorithms (i.e., functions) can create the 

same output, similarly to how computer programs can accomplish the same task. 

The algorithmic level can be referred to as the famous “black box” (see Figure 1 B), 
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i.e., the metaphor for non-directly observed computations of our brain that subserve 

certain cognitive function. Deciphering the “black box” is arguably the goal or 

neuroscience. 

DDM is a biologically plausible cognitive model that attempts to explain cognitive 

mechanisms. DDM can be used as a tool to validate and / or develop a cognitive 

theory by offering an intermediate explanatory level between brain computations 

and cognitive abstractions. This feature makes DDM an algorithmic level model. 

Moreover, algorithmic models can work bi-directionally. One the one hand, they 

help understanding brain computations that support cognition. On the other hand, 

neuroimaging (brain data) evaluates mechanistic accounts of how cognitive 

processes unfold in the brain and ultimately helps to select among competing 

algorithmic models.

Eventually the more we learn about certain cognitive function, cognitive models 

may be updated with new features, or even new models that reflect better the 

neuro- cognitive architecture can emerge. The use of DDM as an algorithmic tool 

provides a dynamic interaction between implementational and computational 

levels resulting in a scientific framework that is promising for understanding how 

certain cognitive phenomena function.

Figure 1: (A) Marr’s levels of representation: IMP = implementational level; ALG = algorithmic 

level; COMP = computational level. (B) The “black box” of psychics.
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To sum up, DDM as a theory at the algorithmic level of computation provides a 

bridge between cognitive theory and actual brain computations. I will further 

discuss the results in this thesis using Marr’s levels of analysis, which provides us 

with different levels of scientific abstraction. 

Language-perception interaction through the lens
of DDM 

It has been proposed that language influences visual perception via modulation of 

the activity in the brain regions at the low level of hierarchy that is associated with 

stimulus processing (Amado et al., 2018; Landau et al., 2010). While tempting, 

the claim that language affects early stages of perception can have an alternative 

explanation. It can be that activity in visual cortex represents feedback loops from 

the other areas rather than coding low-level visual features. Many of the studies 

investigating language-vision relationships are indeed fMRI studies, which is a 

method known for its sluggish temporal resolution. Therefore fMRI is limited in 

resolving brain activity at the level of milliseconds, which is a natural pace for 

language. This opens up the possibility for the alternative explanation i.e., the 

effects detected in visual areas might reflect the feed-back loops occurring at a 

later timescale. One way to disentangle this is to use another neuroimaging 

modality, such as MEG or EEG (the approach adopted in Chapter 4), which are 

known for their more refined temporal resolution. Another approach would be to 

turn to a combination of computational methods and neuroimaging tools that 

could shed light on the nature of language-vision interactions.

As I mentioned earlier, DDM is a computational model that describes the process 

of decision making via a set of parameters that guide human performance. It is an 

algorithmic-level model, which provides a bridge between different levels of 

computations in the brain. I used this feature of DDM in order to clarify the 

computational mechanisms behind the low-level activity introduced by the primes 

(Chapter 3). Specifically, I hypothesized that due to the feedback loops, the activity 

in sensory cortex can reflect the relatively late feed-back mechanisms formalized 

within the decision making approach. Particularly, I tested whether the BOLD signal 

in sensory regions could be explained by the speed of decision variable formation, 

i.e., the speed of visual categorization. 
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The results of our experiment (Chapter 3) did not show conclusive results. First, I 

did not find significant results when analyzing BOLD data related to language 

effects without model parameters. I argue that this was mostly due to experimental 

set-up limitations. The fact that the experiment consisted of two tasks, with few 

trials per condition, might have contributed to the low power of the study. When 

performing correlational analysis with the drift rate, I did not find results that would 

support my initial hypothesis either. It may be that these are reminiscences of the 

low power issues. To reiterate, the current results are not sufficient to either support 

or reject the idea that the BOLD signal in visual brain areas can be accounted for by 

the drift rate. . Future studies should investigate this issue further. 

In Chapter 4, I further investigated whether markers of visual processing (M170 

event-related component) can be influenced by words and further accounted for 

by DDM parameters. Instead of using fMRI (I adopted this approach in Chapter 3) 

with its intrinsically slow temporal resolution, I used another neuroimaging modality, 

MEG, notorious for its high temporal resolution. In addition to testing whether 

primes tap into visual processing (M170), I investigated whether words can affect 

Figure 2: (A) Marr’s levels of representation: IMP = implementational level; ALG = algorithmic 

level; COMP = computational level. (B) The hypothesis: the BOLD signal in sensory related 

brain regions reflects the computations behind the accumulation of decision variable 

(Chapter 3).
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visual perception via semantic memory (N400m event-related component). I further 

investigated whether these markers were to reflect the speed of visual categorization, 

as reflected in the drift rate. 

Unexpectedly, in this experiment, I did not find either N400m or M170 effects, but 

rather a P300 effect. This suggested that words help to recognize ambiguous input 

at the post-perceptual stage rather than at the stage of early visual perception. 

Since the P300 has been associated with many cognitive mechanisms such as 

attention and memory updating (Comerchero & Polich, 1999; Polich, 2007), 

decision confidence (Hillyard, Squires, Bauer, & Lindsay, 1971), and surprise (Mars et 

al., 2008), to name a few, its function is still unclear. Research in the field of semantic 

integration has shown that the P300 can be correlated with aspects of semantic 

access (Dorjee, Devenney, & Thierry, 2010; Hill, Ott, & Weisbrod, 2005; Hill, Strube, 

Roesch-Ely, & Weisbrod, 2002; Rossell, Price, & Nobre, 2003). Particularly, in the 

context of semantic memory tasks, the decrease in P300 amplitude has been 

associated with increased memory load (Mecklinger et al., 1992) . Thus, it could be 

that a decreased P300 reflects enhanced memory load for incongruent in 

Figure 3: (A) Marr’s levels of representation: IMP = implementational level; ALG = algorithmic 

level; COMP = computational level. (B) The hypothesis: markers of visual (M170) or semantic 

(N400m) processing reflect the computations behind the accumulation of decision variable 

(Chapter 4).
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comparison to congruent word-picture pairs. It has also been shown that the P300 

may reflect the decision making process in the context of classification of degraded 

images (i.e., participants had to discriminate between a face and a house embedded 

in visual noise, Philiastides & Sajda, 2006). Therefore, we aimed at investigating the 

computational mechanisms of decision making by correlating P300 with drift rate. 

Interestingly however, we did not find any correlations between P300 and drift rate 

as it was suggestive from the study previously investigating ambiguous object 

perception (Philiastides & Sajda, 2006). There might have been several reasons that 

could explain the absence of correlation results. First, I used the mean amplitude 

measure instead of the peak amplitude measure that was reported in the study that 

did find a correlation between P300 and behavioral measures (Philiastides & Sajda, 

2006). Second, I performed correlations at the group level, not on a trial-by-trial 

basis. Third, it can be that inter-trial variability in evidence accumulation (drift rate) 

plays a critical role in the process of integration of language and vision information. 

For example, neural activity before the language prime can also affect the decision 

and response about the ambiguous target. To account for this, trial-by-trial variability 

needs to be added to the model. However in the present study this was not possible 

due to the larger number of trials required for such an analysis. Finally, it can be that 

the P300 effect in this task, rather than reflecting aspects related to decision 

making, reflects other mechanisms such as, for example, decision confidence 

(Hillyard, Squires, Bauer, & Lindsay, 1971; Squires, Hillyard, & Lindsay, 1973).Taken 

together, these analysis choices could have contributed to null correlational results. 

Further studies should be performed in order to clarify the issue. 

Semantic cognition through the lens of DDM 

In Chapter 5, I illustrated how DDM can formalize existing cognitive theory 

describing flexible language use, i.e., controlled semantic cognition. The theory of 

semantic control is a descriptive theory that postulates that language use, including 

tasks such as semantic categorization and matching, is subserved by the systems of 

semantic representation and control. In this thesis, I proposed that two cognitive 

processes described by the parameters of DDM – the speed of evidence 

accumulation and the decision threshold – can serve as proxy for the systems of 

semantic representation and control (i.e., broadly executive mechanisms). From 

this point of view, mechanisms of executive control (decision threshold) can be 

applied alongside with the system of semantic representation (drift rate), which 

would assure the flexibility of semantic cognition. 
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This approach resulted in a few insights. First, experimental results on healthy controls 

suggested that the task effects were reflected in the decision threshold setting 

rather in the speed of evidence accumulation. I interpreted it as suggestive of 

executive rather semantic mechanisms needed to solve the word-picture matching 

task. In the absence of neuroimaging tools, this dissociation was only possible in 

the context of the DDM model. Second, lesion data showed that patients with 

frontal lesions showed dysfunctional drift rate and decision threshold for unrelated 

pairs relative to related ones, which was similar for the patients with temporal 

lesions. The computations required by word-picture matching were affected by 

left-frontal and left-temporal damage similarly, resulting in systematic deficits 

across lexical-semantic memory and executive functions. Ultimately, I illustrated 

that lexical-semantic memory and semantic control are diverse but interactive 

mechanisms essential for flexible language use. Besides having theoretical value, 

these results can contribute to language assessments strategies, highlighting that 

disruptive behavior in tasks typically used for diagnosis of language disturbances, 

such as word-picture matching, might be due to executive disturbances rather than 

semantic ones in patients with lesions in areas relevant for language.

Figure 4: (A) Marr’s levels of representation: IMP = implementational level; ALG = algorithmic 

level; COMP = computational level. (B) DDM as a tool that provides a link between cognitive 

theories and computations at the algorithmic level. Figure 4B is modified from (Lambon 

Ralph, Jefferies, Patterson, & Rogers, 2017). 
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Cautionary notes about DDM as a tool for  
modeling cognition

While drift rate represents the property of the neurons, its cognitive meaning might 

vary in the context of a certain experiment. For example, one can hypothesize that 

increased drift rate for congruent vs. incongruent prime-target pairs would reflect 

the modulation of attention over certain representations (semantic or visual) (see 

Chapter 2). It has been shown that attention directed to a particular stimulus 

enhances task-specific features of this stimulus, resulting in increased BOLD for 

relevant vs. irrelevant features (Brouwer & Heeger, 2013; Jehee et al., 2011). If the 

drift rate were to correlate (positively) with the BOLD in congruent vs. incongruent 

pairs, then the drift rate would be associated with the processes of attention 

deployment. However, in the case of a negative correlation between BOLD and the 

drift rate (increased drift rate for congruent vs. incongruent would correlate with 

decreased BOLD for congruent vs. incongruent) it can be that instead of attentional 

modulations, the drift rate reflects sensory habituation/adaptation that leads to 

efficiency of sensory processing. To sum up, caution is needed in order to interpret 

the cognitive meaning of the drift rate in the context of specific tasks. 

Another point of discussion with regards to cognitive interpretations of DDM is 

whether drift rate reflects the processes of facilitation or interference. It is well 

known that increased drift rate indicates faster speed of processing.  For example, 

congruent prime-target pairs result in increased drift rate in comparison to 

incongruent ones (Chapters 2, 3). However, in Chapter 5, patients with frontal or 

temporal lesions exhibit increased drift rate for unrelated vs. related items. Rather 

than reflecting the ease of processing, this finding reflects the compensatory 

performance of patients in order to solve the task. These results highlight that 

increased drift rate does not always reflect an advantage in processing (i.e., 

facilitation), but it has to be understood within the context of an experimental 

paradigm and participants characteristics. In conclusion, investigating requires 

making connections at different levels of informational processing. In this thesis, I 

showed how a model-based computational neuroscience approach can be useful 

in investigating how language affects visual decision making. 

Limitations of the DDM approach

The major limitation of HDDM is an underlying assumption of how the brain works. 

It is assumed that the “brain extracts, per time unit, a constant piece of evidence 

from the stimulus (drift) which is disturbed by noise (diffusion) and subsequently 
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accumulates over time” (Bitzer, Park, Blankenburg, & Kiebel, 2014, p.1). This frame - 

work differs from the Bayesian approaches, which view perceptual decision making 

as a probabilistic inference, in which evidence is used to update the probability of a 

current choice. Particularly, Bayesian models incorporate the perceptual uncertainty 

of the observer as a key parameter that would explain behavior. It has been recently 

proposed that neural activity in visual cortex measured with fMRI during simple 

perceptual decision making task carries a representation of the uncertainty in the 

visual input (van Bergen, Ma, Pratte, & Jehee, 2015). In spite of the seemingly major 

differences between the models, it has been recently shown that one can cast the 

drift and diffusion parameters of the Drift diffusion model as internal uncertainties 

of a decision making observer about sensory input (Bitzer et al., 2014). This is an 

active area of research, which would be interesting to validate with empirical 

studies, particularly in the field of language-vision integration.

 

Another limitation is related to the specifics of the model, which posits that effects 

on perceptual encoding cannot be clearly isolated from the effects on motor 

execution. Therefore, from a theoretical perspective one cannot draw any inferences 

about the absence or presence of language-vision integration effects at the early 

stage of visual perception since the model is not designed to capture those. 

However it is still an empirical question whether integration at the later time-scales 

(i.e. decisional) can be reflected in the regions associated with conceptual or semantic 

processing. I have addressed this question in Chapter 3 and Chapter 4 of this thesis. 

Yet another potential limitation is routed in the fact that any binary decision making, 

regardless of the nature of the stimuli, can be represented via the process of 

accumulation of the evidence towards a decision threshold. This raises questions 

whether DDM can be informative about language specific processes in the context 

of language-vision integration. While I expand more on this issue in the following 

paragraph, where I discuss design constraints, language specific vs. domain specific 

evidence accumulation, here I point out that the decisional effects of language on 

visual perception in the context of two-alternative forced choice tasks are not 

conclusive either. For example, it has been found that words incongruent with 

upcoming random-dot-motion panels (rdm) resulted in impaired perceptual sensitivity 

in comparison to congruent word–random dot motion pairs (Meteyard et al., 2007). 

Yet another experiment with a similar design (Francken et al., 2015) did not manage 

to find differences in sensitivity effects for congruent vs. incongruent word-rdm 

picture pairs. Instead, they found that participants set more a liberal threshold for 

congruent as opposed to incongruent word-picture words. This discrepancy makes 

language-based decision making mechanisms worthy of further investigation. 
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DDM for language processes in the context of  
two-alternative forced choice tasks and beyond

In this thesis, I considered the process of language-vision integration via the lens of 

evidence accumulation. In order to describe evidence accumulation, two boundaries 

are necessary, which signify a binary choice (e.g., “yes” for the upper boundary and 

“no” for the lower one; “woman” for the upper boundary and “man” for the lower 

one, etc.). The model assumes that decisions are based on evidence accumulation, 

and the response is made once the evidence for a particular response reaches a 

threshold. The use of DDM in current language research can be two-fold: on the 

one hand one could take the path of disentangling purely linguistic processes vs. 

decision-related processes; on the other hand, one could investigate whether 

language processes can be explained by language-specific vs. domain-general 

evidence accumulation. 

To illustrate the first point, many neuroimaging experiments, which  investigate 

how we extract and use word meaning, have binary tasks (such as lexical decision, 

related/unrelated judgment between words, matching a word to a picture), which 

abstract away from our use of language in real situations. However, given decades 

of history of experiments with binary tasks in language research, revisiting those 

results with a DDM approach might be useful to shed light on some long-standing 

questions. For example, neural areas that showed modulation of indirect i.e. 

measured with blood-oxygen-level dependent signal (BOLD) neural activity in the 

context of semantic relatedness in binary tasks were ATL (Rossell et al., 2003), 

posterior temporal structures (STG) (Rissman et al., 2003; Ruff et al., 2008), frontal 

structures such as middle frontal gyrus (MFG) (Rissman et al., 2003) and inferior 

frontal gyrus (IFG) (Ruff et al., 2008) and precentral/postcentral gyri (Rissman et al., 

2003; Ruff et al., 2008). These activations however can be modulated by the depth 

of semantic processing (e.g., a lexical decision task or a task about semantic 

relatedness), selection demands (focus oon global or specific aspects of the 

stimuli). The decision process related to the binary task is likely to be reflected in the 

neural results as well. Therefore one could use a DDM to identify brain regions that 

reflect the process of evidence accumulation, related to the binary decision making. 

This would help to critically access the neural underpinnings of semantic cognition. 

Furthermore, it is useful to demonstrate whether neural substrates behind evidence 

accumulation in two-alternative forced choice tasks (2AFC) vary for linguistic vs. 

non-linguistic stimuli. If no differences are found, then the argument towards the 

non-specificity of evidence accumulation would be well supported. Therefore all 

potential brain areas that would exhibit a correlation with the drift rate would reflect 

a non-language specific decision making process. However, if there is evidence 
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towards language-specific evidence accumulation, it introduces new interpretation 

of neural computations of semantic cognition. 

Drift diffusion models describe the process of decision making in two alternative 

force choice tasks (2AFC tasks), which are not necessarily present when we process 

language daily. To what extent is DDM informative about the integration of language 

and visual information? I believe that decision making can inform us about 

categorization, and ultimately provide a framework for understanding language 

influences on categorization. When I pick a ripe cherry or buy emerald color to 

paint the walls in the living room, esthetical/taste preferences aside, I rely on 

categorization. In order to categorize, I need to identify a set of candidate categories. 

Each of the candidate categories has to be evaluated and one category has to be 

selected. Formally speaking, there are other formal frameworks conceptually similar to 

DDM that can consider a task with more response choices (such as a linear ballistic 

accumulator model, LBA, (Donkin, Brown, Heathcote, & Wagenmakers, 2011)). 

The principle of choice selection is governed by the evidence accumulation for 

each choice up until the response threshold. Having the computational machinery 

which is able to capture the decision dynamics for multiple choices might help  

to capture category selection for more naturalistic tasks such as recognition. One 

could then further consider designing an experiment with a multiple choice object 

recognition embedded in a language context in order to test the effects of language  

on visual recognition. A combination of clever experimental design and a linear 

ballistic accumulation model would be a step towards a more ecologically valid 

approach of exploring language effects on categorization. 

It is important to acknowledge that DDM/LBA approach is limited to the tasks that 

have a finite number of alternatives included explicitly in the task, therefore experiments 

with open answers or no answers at all (such as passive viewing settings) would not 

benefit from this framework. However the DDM perspective advances the field by 

raising the following questions: What are the computational differences between 

retrieval of semantic knowledge vs. manipulation of semantic knowledge? Are there 

multiple forms of control when manipulating/retrieving semantic knowledge? 

Are perceptual features of the objects accessed during manipulation of semantic 

knowledge as opposed to retrieval of semantic knowledge? Future studies are 

needed to address these questions. 

In conclusion, in this thesis I formalized visuo-semantic interactions from a decision 

making perspective, i.e., as a process of evidence accumulation to the decision 

threshold. Particularly, I showed that the language advantage in visually driven 

decision making translates into the speed of evidence accumulation. Furthermore, 
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I investigated whether neural markers underlying linguistically boosted visual decisions 

can be accounted for by the speed of evidence accumulation or by any of the 

others DDM parameters (i.e., decision threshold, starting point). In spite of the fact 

that I did not find correlations between neural and modelling data, I outlined 

directions for further analyses, which make this formal approach worth of pursuing 

further. Finally, I proposed the evidence accumulation framework as an exploratory 

platform for disentangling the processes of semantic control and interference. 

In sum, I investigated visuo-semantic interactions at different levels of scientific 

abstraction using a combination of behavioural, neuroimaging and formal methods, 

which makes the results and narrative of this thesis informative for future studies.





Supplementary material





149

SUPPLEMENTARY MATERIAL

SUPPLEMENT FOR CHAPTER 2

Table 1.1.   List of associative words related to male and female concepts and 

neutral words.

Words related to  
male concept

Words related to 
female concept

Neutral words

vader (father) 
baard (beard)
jongen (young man)
snor (moustache) 
kostuum (costume)
hoed (hat)
broer (father)
zwaard (sword)
kerel (guy)
farao (pharaoh)
stropdas (tie)
bruidegom (groom)
geweer (weapon)
vlinderdas (bow tie)
sik (beard)
zoon (son)
pijp (pipe)
smoking (tuxedo)
kilt (kilt)
scheermes (razor)

zus (sister) 
dochter (daughter)
tante (aunt)
mama (mother) 
echtgenote (wife) 
rok (skirt)
taille (blouse) 
nicht (niece) 
parfum (perfume) 
dame (lady)
handtas (handbag)
hoofddoek (headscarf) 
mascara (mascara) 
pruik (wig)
rouge (rouge) 
jurk (dress) 
meisje (girl)
haarstukje (hairpiece) 
panty (tricot) 
mantelpak (suit)

dag (dag)
adrenaline (adrenaline)
appelsap (apple juice) 
telefoon (phone)
friten (fries)
loterij (lottery) 
ticket (ticket) 
tunnel (tunnel) 
verlof (vacation) 
gazon (lawn) 
koord(string) 
rivier (river) 
vuur (fire)
roem (fame) 
maag (stomach) 
bos (forest)
pen (pen) 
kiosk (kiosk)
bioscoop (cinema) 
rekening (bill)

Table 1.2.   Similarity measures for associative words vs. labels in terms of cosine 

similarity (1 – cosine distance), where cosine distance is derived from 

word2vec model. Words with lower similarity score are considered to 

be more similar (man-man, 0) in comparison to words with higher 

similarity score (beard-man, 0.67).

Prime count 
(associations 
before division)

prime target Cosine similarity Prime type 
(division of 
associative)

1 vader man 0.471586 Label

2 baard man 0.67291 Association

3 jongen man 0.347639 Label

4 snor man 0.669841 Association

5 kostuum man 0.763772 Association

6 hoed man 0.696146 Association

7 broer man 0.465685 Label
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Table 1.2.  Continued.

Prime count 
(associations 
before division)

prime target Cosine similarity Prime type 
(division of 
associative)

8 zwaard man 0.661439 Association

9 kerel man 0.274264 Label

10 farao man 0.802513 Label

11 stropdas man 0.709387 association

12 bruidegom man 0.7429 Label

13 geweer man 0.610479 Association

14 vlinderdas man 0.762285 Association

15 sik man 0.754113 Association

16 zoon man 0.45961 Label

17 pijp man 0.734082 Association

18 smoking man 0.720216 Association

19 kilt man 0.677306 association

20 scheermes man 0.659975 association

1 zus vrouw 0.472862 Label

2 dochter vrouw 0.311131 Label

3 tante vrouw 0.537335 Label

4 mama vrouw 0.640638 Label

5 echtgenote vrouw 0.363388 Label

6 rok vrouw 0.750863 Association

7 taille vrouw 0.800168 Association

8 nicht vrouw 0.647979 Label

9 parfum vrouw 0.690007 Association

10 dame vrouw 0.452672 Label

11 handtas vrouw 0.638115 Association

12 hoofddoek vrouw 0.821153 Association

13 mascara vrouw 0.766208 Association

14 pruik vrouw 0.682367 Association

15 rouge vrouw 0.823189 Association

16 jurk vrouw 0.53669 Association

17 meisje vrouw 0.43151 Label

18 haarstukje vrouw 0.565204 Association

19 panty vrouw 0.702756 Association

20 mantelpak vrouw 0.656435 Association

1 vrouw vrouw 0 Identity

2 vrouw vrouw 0 Identity

3 vrouw vrouw 0 Identity

4 vrouw vrouw 0 Identity
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Table 1.2.  Continued.

Prime count 
(associations 
before division)

prime target Cosine similarity Prime type 
(division of 
associative)

5 vrouw vrouw 0 Identity

6 vrouw vrouw 0 Identity

7 vrouw vrouw 0 Identity

8 vrouw vrouw 0 Identity

9 vrouw vrouw 0 Identity

10 vrouw vrouw 0 Identity

11 vrouw vrouw 0 Identity

12 vrouw vrouw 0 Identity

13 vrouw vrouw 0 Identity

14 vrouw vrouw 0 Identity

15 vrouw vrouw 0 Identity

16 vrouw vrouw 0 Identity

17 vrouw vrouw 0 Identity

18 vrouw vrouw 0 Identity      

19 vrouw vrouw 0 Identity 

20 vrouw vrouw 0 Identity

1 man man 0 Identity

2 man man 0 Identity

3 man man 0 Identity

4 man man 0 Identity

5 man man 0 Identity

6 man man 0 Identity

7 man man 0 Identity

8 man man 0 Identity

9 man man 0 Identity

10 man man 0 Identity

11 man man 0 Identity

12 man man 0 Identity

13 man man 0 Identity

14 man man 0 Identity

15 man man 0 Identity

16 man man 0 Identity

17 man man 0 Identity

18 man man 0 Identity

19 man man 0 Identity

20 man man 0 Identity
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Table 2  List of models for the congruency analysis.

Model subset v A Ter DIC

0 C/T C/T C/T -16537.9

1 C C/T C/T -16549.3

2 C/T C C/T -16485.2

3 C/T C/T C -16080.9

4 C C C -16547.9

5 T C/T C/T -16515.5

6 C/T T C/T -16601.7

7 C/T C/T T -16110.6

8 T T T -16147.8

9 C C C/T -16496.3

10 C C/T C -16114.7

11 C/T C C -15890.1

12 T T C/T -16588.0

13 T C/T T -16074.3

14 C/T T T -16213.7

Each of the models consists of three parameters (V, A, Ter) with the experimental factors (C = congruency, 

T = prime type) either fixed or left free per parameter. Letters present in the table (C, T, C/T) indicate the 

conditions over which the parameter was left free. Deviance information criterion scores (DIC) indicates 

the goodness of model fit. The model with the lower DIC is considered to be the model winner. 
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Figure 1: Congruency analysis:  Observed RT distributions (red lines) and predicted posteriors 

(blue line) for the drift rate for a representative subject (subject 10(A left – congruent 

associative, A right – congruent identity; B left – incongruent associative, B right – incongruent 

identity; C left – neutral associative, C right – neutral identity). 
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SUPPLEMENT FOR CHAPTER 3

Supplementary Figure 1: HDDM parameter estimates: decision threshold for classification 

(A) and verification (B) tasks; non-decision time for classification (C) and verification (D) tasks 

and starting point for verification task (E). Error bars are standard error of the mean. * p < 0.05, 

*** p < 0.001
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Supplementary Information: Drift Diffusion Model Parameters
Decision threshold (A)

We found an interaction between task and congruency as well as an interaction 

between task and target (see Supp. Table 1). For the classification task (Supp. Figure1, 

A), we did not find any differences between congruent and incongruent pairs with 

male targets: t (21) = 1.64, p = .058). We found increased threshold for congruent 

in comparison to incongruent pairs with female targets t (21) = 2.46, p = .011).

For the verification task (Supp. Figure 1, B) we did not perform any follow-up tests 

since we did not find any significant effect (neither main effects of congruency or 

target nor interaction between congruency and target). 

Non-decisional component (Ter)

We found an interaction between task and target (see Supp. Table 1). For the 

classification task (Supp. Figure1, C), incongruent trials in comparison to congruent 

ones with female faces resulted in slower RT: t (21) = 4.00, p < .001. We did not find 

significant difference between congruent vs. incongruent pairs with male faces: 

t (21) = 1.02, p = .15).

For the verification task (Supp. Figure 1, D), we did not perform any follow-up tests 

since we did not find any significant effect (neither main effects of congruency or 

target nor interaction between congruency and target). 

Starting point (z)

We did not get any effects of interest on the starting point (see Model Convergence 

and Model Fit) for the classification task, but only for the verification task. 

For the verification task (Supp. Figure 1, E), there was an increased starting point for 

congruent in comparison to incongruent pairs with male targets: t (21) = 10.68,  

p < .001. We did not find significant differences between congruent and incongruent 

pairs with female targets: t (21) = .71, p = .24. 

In sum, HDDM analysis showed that two different sets of HDDM parameters 

underlie the RTs and accuracies in the classification and verification tasks. While in 

the classification task drift rate, decision threshold and non-decisional component 

are at play, in the verification task, only the drift rate and starting point seem to play 

a role. 
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Supplementary Table 1  Repeated-measures ANOVA (2-way) results for decision 

threshold, non-decisional component and starting. 

Decision Threshold F(1,21) p η2

Task 2.462 .132 .043

Congruency .123 .729 4.072×10-4

Target 5.356 .031* .025

Task * Congruency 8.128 .010* .036

Task * Target 6.791 .017* .032

Congruency * Target 3.131 .091 .011

Task *  Congruency * Target .765 .392 .002

Non-decisional component

Task 4.341 .050 .054

Congruency 3.875 .062 .028

Target .409 .529 .003

Task * Congruency 1.792 .195 .007

Task * Target 4.392 .048* .006

Congruency * Target 8.844 .007** .034

Task *  Congruency * Target .191 .666 8.048×10-4

Starting point

Congruency 59.818 <.001*** .367

Target 7.638 .012* .028

Congruency * Target 47.185 < .001*** .276

Factors tested were congruency (levels: congruent, incongruent) and target (levels: male, female).

* p < .05; ** p < .01; *** p < .001. CL – classification task, VR – verification task.
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HDDM Model fit

Supplementary Table 2  Total model list for analysis of priming effects on 

face gender.

Model set Task V A Ter z DIC

0 1 PT PT PT - -210.26

0 2 PT PT PT - 753.77

1 1 P PT PT - -38.97

1 2 P PT PT - 891.01

2 1 T PT PT - -120.21

2 2 T PT PT - 905.70

3 1 PT P PT - -168.84

3 2 PT P PT - 771.10

4 1 PT T PT - -177.75

4 2 PT T PT - 756.38

5 1 PT PT P - -52.67

5 2 PT PT P - 940.76

6 1 PT PT T - -67.89

6 2 PT PT T - 961.69

7 1 P P PT - -80.29

Supplementary Figure 2: Observed RT distributions (red lines) and predicted posteriors (blue 

line) for the drift rate in classification (A) and verification (B) tasks (i – prime: man, target: man; 

ii – prime: man, target: woman; iii – prime: woman, target: man; iv – prime: woman, target: 

woman).

RT
 d

is
tri

bu
tio

ns

Response times (s)

i ii iii iv
3 3 3 3

0
-5 0 5

-5 0 5

-5 0 5

-5 0 5

-5 0 5

-5 0 5

-5 0 5

-5 0 5

0 0 0

2 2 4 3

0 0 0 0

A

B



158

SUPPLEMENTARY MATERIAL

Supplementary Table 2  Continued.

Model set Task V A Ter z DIC

7 2 P P PT - 883.88

8 1 P T PT - -59.82

8 2 P T PT - 915.73

9 1 T P PT - -128.29

9 2 T P PT - 915.73

10 1 T T PT - -156.39

10 2 T T PT - 890.72

11 1 P P P - 153.56

11 2 P P P - 1293.99

12 1 P T P - 148.89

12 2 P T P - 1309.94

13 1 T P P - 84.21

13 2 T P P - 1308.24

14 1 T T P - 66.96

14 2 T T P - 1295.77

15 1 P P T - 133.25

15 2 P P T - 1345.79

16 1 P T T - 165.96

16 2 P T T - 1321.99

17 1 T P T - 119.74

17 2 T P T - 1336.49

18 1 T T T - 96.90

18 2 T T T - 1420.02

19 1 PT PT PT P -199.92

19 2 PT PT PT P 740.89

20 1 PT PT PT T -208.32

20 2 PT PT PT T 757.09

21 1 PT PT PT PT -210.14

21 2 PT PT PT PT 710.31

Each model is comprised of three parameters (V, A, Ter) with the experimental factors (P – prime, T – target 

stimulus) either fixed or left free per parameter. Letters present in the table (P, T, P/T) indicate the conditions 

over which the parameter was left free. Deviance information criterion scores (DIC) indicates the goodness 

of model fit. The model with the lowest DIC is considered to be the model winner. 
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Supplementary Table 3. BOLD contrasts for main effects (congruency, 

target, interaction between target and congruency) for the whole brain analysis, 

CL – classification, VR – verification. ns, not-significant.

Task Contrast Whole brain

CL Congruency ns

VR Congruency ns

CL Target ns

VR Target ns

CL Target*Congruency ns

VR Target*Congruency ns

Supplementary Figure 3: A. Task structure for the Localizer. Each of four blocks -  faces, houses, 

scrambled faces and scrambled houses -  started with the fixation cross presented for 1 s 

followed by 1 s of stimulus presentation. B. The overall timing of the localizer. Each of these 

blocks had a total duration of 40 s with jittered 6-12 s of break in between. 
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Supplementary Table 4. BOLD contrasts for exploratory effects for the whole 

brain analysis in the verification task. ns, not-significant.

Contrast Whole brain

Congruent female > incongruent female ns

Incongruent female > congruent female ns

Congruent male > incongruent male ns

Incongruent male > congruent male ns

Supplementary Table 5. Repeated-measures ANOVA using BOLD activation 

within the FFA for main effects (congruency, target, interaction between target 

and congruency)

Within Subjects Effects 

Cases Sum of 
Squares 

df Mean 
Square 

F p η² 

task 3.138 1 3.138 0.049 0.827 0.002 

Residuals 1341.411 21 63.877   

cong 1.199 1 1.199 0.551 0.466 6.890×10-4 

Residuals 45.691 21 2.176   

target 3.419 1 3.419 1.915 0.181 0.002 

Residuals 37.484 21 1.785   

task ✻ cong 13.766 1 13.766 3.425 0.078 0.008 

Residuals 84.404 21 4.019   

task ✻ target 2.116 1 2.116 1.009 0.327 0.001 

Residuals 44.036 21 2.097   

cong ✻ target 0.920 1 0.920 0.203 0.657 5.288×10-4 

Residuals 94.967 21 4.522   

task ✻ cong ✻ target 4.917 1 4.917 1.643 0.214 0.003 

Residuals 62.862 21 2.993   

Note. Type III Sum of Squares 
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Supp. Table 6. Correlation results between drift rate and BOLD for congruent 

effect and gender-specific congruency effects.

Task: parameter: contrast Contrast (BOLD) Whole brain

CL: drift rate: Congruent > incongruent Congruent > incongruent ns

VR: drift rate: Congruent female > 
incongruent female

Congruent female > 
incongruent female

ns

VR: drift rate: Incongruent male > 
congruent male

Incongruent male > 
congruent male

.04

CL – classification, VR – verification. ns, not significant.
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SUPPLEMENT FOR CHAPTER 4

Supp. Table 1. List of associatively related to face and house concept and 

neutral words.

Words related  
to face concept

Words related  
to house concept

Neutral words

Stoppelbaard (stubble)
Schedel (skull)
Pukkel (pimple)
Tandvlees (gums)
Puist (pimple)
Baard (beard)
Gebit (teeth)
Snor (mustache)
Flaporen (floppy ears)
Bovenlip (upper lip)
Onderkin (double chin)
Spoeten (freckles)
Kin (chin)
Oogbal (eyeball)
Hals (neck)
Voorhoofd (forehead)
Ooglid (eyelid)
Wang (cheek)
Neusvleugel (nostril)
Oorlei (earlobe)

Plafond (ceiling)
Iglo (iglo)
Toren (tower)
Zaal (room)
Flatgebouw (appartment 
building)
Boomhut (treehouse)
Blokhut (cabin)
Hemelbed (canopy bed)
Koelkast (refrigerator)
Paleis (palace)
Oprit (ramp)
Eettafel (dining table)
Schouw (fireplace)
Duivenhok (loft)
Afdak (shed)
Openhaard (fireplace)
Schoorsteen (chimney)
Wastobbe (washtub)
Keukendeur (kitchen door)
Voordeur (front door)

Zalm (salm)
Knopen (knot)
Knoflook (garlic)
Rundvlees (beef)
Kaneel (cinnamon)
Pindakaas (peanut butter)
Gember (ginger)
Geitenkaass (goat cheese)
Kabeljauw (codfish)
Rekenmachine (calculator)
Paprika (paprika)
Algen (algae)
Vruchtensap (fruit juice)
Drum (drum)
Rozijnen (raisins)
Vanilla (vanille)
Haardroger (hairdryer)
Margriet (flower)
Steenkool (coal)
Ansjovis (anchovy)

Supp. Table 2. Total model list for the HDDM analysis.

Model set V A Ter DIC

0 fixed fixed free -16421.4   

1 fixed free fixed -16462.9   

2 free fixed fixed -16450.7   

3 fixed free free -16453.7   

4 free fixed free -16442.2   

5 free free fixed -16440   

6 free free free -16461.7   

Each of the models consists of three parameters (V, A, Ter) with the experimental factor (congruency) 

either fixed or left free per parameter. Deviance information criterion scores (DIC) indicates the goodness 

of model fit. The model with the lower DIC is considered to be the model winner.
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HDDM Model fit

Supp. Table 3. Spearman correlations for ERF and HDDM parameters 

(A: decision threshold; V: drift rate; Ter: non-decision component) for congruent 

(C) > incongruent (IC) conditions.

    C>IC ERF C>IC A C>IC V C>IC Ter 

C>IC ERF Spearman’s rho —       

p-value —       

C>IC A Spearman’s rho 0.266 —     

p-value 0.219 —     

C>IC V Spearman’s rho 0.093 0.776 *** —   

p-value 0.672 < .001 —   

C>IC Ter Spearman’s rho -0.172 -0.742 *** -0.366 — 

p-value 0.431 < .001 0.087 — 

* p < .05, ** p < .01, *** p < .001 

Supp. Figure 1: Observed RT distributions (red lines) and predicted posteriors (blue line) for 

the drift rate in congruent and incongruent condition for one representative subject.
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SUPPLEMENT FOR CHAPTER 5

We performed an additional analysis for the patients in temporal and frontal groups 

excluding one patient from each group due to the small lesion volume as it was 

suggested by an anonymous reviewer. The results are presented in the Supp. Table 1 

and Supp. Figure 1. For this analysis we use the same methods as described in the 

main body of the paper. The results of the analysis with excluded subjects do not 

differ from those reported in the main analysis, particularly, the effects of interest, 

unrelated > related (in both drift rate and decision threshold). Patients in both 

groups had increased drift rate and threshold for unrelated in comparison to related 

conditions. The strength of the evidence for each Bayesian test did not drop down 

below “positive”. We however did not find the effects of participant type on the 

non-decision component, which nevertheless did not affect our inferences about 

contributions of lexico-semantic vs. control systems. 

Drift rate
Supp. Figure 1, A, D. shows the drift rate estimates for each participant as a function 

of subject type (frontal, temporal) and relatedness (related, unrelated, congruent). 

A JZS Bayes factor ANOVA with default prior scales revealed that the best-fitting 

model consisted of main effects of word-picture relatedness, type of subject and 

an interaction between word-picture relatedness and type of subject. This model 

was preferred over the null model, BF10 = 17070.985 and over the second-best 

model that included main effects of word-picture relatedness and subject type, 

BF10 = 612.125. 

Supp. Table 1. Deviance information criterion (DIC) for each model for  

patients in frontal and temporal groups (4 patients per group with patient 4  

and patient 9 excluded).

subject 
type/model

1 2 3 4 5 6 7

Frontal patients 351.69 364.83 371.48 389.80 530.20 443.97 396.48

Temporal 
patients

747.72 772.72 758.17 753.44 884.23 792.26 763.33

For both patients in temporal and frontal groups, the best winning model had drift rate, decision threshold 

and non-decision time free (Model 1, Supp. Figure 1).
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Further, we performed Bayesian paired samples t-tests for subjects with frontal and 

temporal lesions separately. For patients with temporal lesions, there was “positive” 

evidence in support of increased drift rate in unrelated relative to related conditions 

(unrelated > related: BF10 = 6.62). For the patients with frontal lesions, we found 

“strong” evidence in favor of increased drift rate in unrelated relative to related 

conditions (unrelated > related: BF10 = 33.03).

For completeness, we report the result for the additional contrasts. For patients 

with temporal lesions, we found “anecdotal” evidence in favor of a difference 

between related vs. congruent pairs (related vs. congruent: BF10 = 2.13) and 

“positive” evidence in favor of increased rate in unrelated in comparison to 

congruent conditions, (unrelated > congruent: BF10 = 8.35). For the patients with 

frontal lesions, we found “strong” evidence in favor of increased drift rate in 

unrelated in comparison to congruent conditions (unrelated > congruent: BF10 = 

13.49), whereas related and congruent conditions showed “anecdotal” evidence 

supporting the condition differences (related vs. congruent: BF10 = 1.43).

In sum, we found that both temporal and frontal patients had increased drift rate 

for unrelated in comparison to related word-picture pairs. 

Decision threshold: 
A JZS Bayes factor ANOVA with default prior scales revealed that the best-fitting 

model consisted of main effects of word-picture relatedness, type of subject and 

an interaction between word-picture relatedness and type of subject. This model 

was preferred over the null model, BF10 = 6.346e+9 and over the second-best 

model that included main effects of word-picture relatedness and subject type, 

BF10 = 231.578.

For the patients with frontal lesions, there was “very strong” evidence in favor of 

higher decision threshold in unrelated vs. related pairs (unrelated > related pairs: 

BF10 = 4134). Thus, the direction of the effect was reversed in comparison to the 

controls. For patients with temporal lesions, we found “positive” evidence in favor 

of increased decision threshold in unrelated compared to related conditions 

(unrelated > related: BF10 = 3.17). 

For patients with frontal lesions, there was “very strong” evidence in favor of 

increased decision threshold for unrelated in comparison to congruent conditions 

(unrelated > congruent: BF10 = 121691). By contrast, the evidence supporting the 

difference between related and congruent conditions was “anecdotal”, (related vs. 

congruent: BF10 = 2.45). We observed a similar pattern for patients with temporal 
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lesions. We found “anecdotal” evidence in favor of the difference between related 

vs. congruent pairs (related vs. congruent: BF10 = 0.43), and “positive” evidence in 

favor of increased decision threshold in unrelated vs. congruent conditions 

(unrelated > congruent: BF10 = 3.96).

The decision threshold was lower for related relative to unrelated word-picture 

pairs in both patient groups when compared to controls. 

Non decision component
A JZS Bayes factor ANOVA with default prior scales revealed that the model-winner 

included main effect of relatedness. This model was preferred over the null model 

BF10 = 86.67 and over the second-best model that included main effects of 

word-picture relatedness and subject type BF10 = 33.01. 

Since the best model did not indicate the effect of patient type on task performance, 

we did not test the effects of semantic relatedness further. 

We performed an additional analysis for the patients in temporal and frontal groups 

excluding patients from each group due to mixed parietal contributions. This 

resulted in three patients in each group: temporal group (patients 1, 2, 3) and frontal 

group (patients 6, 7, 10). The results are presented in Supp. Table 2 and Supp. Figure 

2. For this analysis we use the same methods as described in the main body of the 

paper. For patients in the frontal group, both drift rate and decision threshold were 

increased for unrelated in comparison to related condition. Strength of evidence 

for Bayesian test was no lower than “positive”. For patients in the temporal group, 

we found only “anecdotal” evidence in favor of increased drift rate and decision 

threshold for unrelated in comparison to related conditions. 

Supp. Table 2. Deviance information criterion (DIC) for each model for patients 

in frontal and temporal groups.

subject 
type/model

1 2 3 4 5 6 7

Frontal patients -129.70 -97.00 -102.99 -78.06 41.56 -34.45 -77.12

Temporal 
patients

417.45 464.55 423.60 431.49 551.33 502.66 435.52

For both patients in temporal and frontal groups, the best winning model had drift rate, decision threshold 

and non-decision time free (Model 1, Supp. Figure 2).   
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Drift rate
Supp. Figure 2, A, D. shows the drift rate estimates for each participant as a function 

of subject type (frontal, temporal) and relatedness (related, unrelated, congruent). 

A JZS Bayes factor ANOVA with default prior scales revealed that the best-fitting 

model consisted of main effects of word-picture relatedness, type of subject and 

an interaction between word-picture relatedness and type of subject. This model 

was preferred over the null model, BF10 = 349.164 and over the second-best model 

that included main effects of word-picture relatedness and subject type, BF10 = 

126.22.

Further, we performed Bayesian paired samples t-tests for subjects with frontal and 

temporal lesions separately. For patients with temporal lesions, there was 

“anecdotal” evidence in support of increased drift rate in unrelated relative to related 

conditions (unrelated > related: BF10 = 2.98). For the patients with frontal lesions, we 

found “positive” evidence in favor of increased drift rate in unrelated relative to 

related conditions (unrelated > related: BF10 = 9.99).

For completeness, we report the result for the additional contrasts. For patients 

with temporal lesions, we found “anecdotal” evidence in favor of a difference 

between related vs. congruent pairs (related vs. congruent: BF10 = 1.88) and 

“anecdotal” evidence in favor of increased rate in unrelated in comparison to 

congruent conditions, (unrelated > congruent: BF10 = 2.59). For the patients with 

frontal lesions, we found “positive” evidence in favor of increased drift rate in 

unrelated in comparison to congruent conditions (unrelated > congruent: BF10 = 

4.66), whereas related and congruent conditions showed “anecdotal” evidence 

supporting the condition differences (related vs. congruent: BF10 = 1.40).

In sum, we found that both temporal and frontal patients had increased drift rate for 

unrelated in comparison to related word-picture pairs. 

Decision threshold: 
A JZS Bayes factor ANOVA with default prior scales revealed that the best-fitting 

model consisted of main effects of word-picture relatedness, type of subject and 

an interaction between word-picture relatedness and type of subject. This model 

was preferred over the null model, BF10 = 2.55 x 106 and over the second-best 

model that included main effects of word-picture relatedness and subject type, 

BF10 = 56.49

For the patients with frontal lesions, there was “strong” evidence in favor of higher 

decision threshold in unrelated vs. related pairs (unrelated > related pairs: BF10 = 
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86.90). Thus, the direction of the effect was reversed in comparison to the controls. 

For patients with temporal lesions, we found “anecdotal” evidence in favor of 

increased decision threshold in unrelated compared to related conditions (unrelated  

> related: BF10 = 2.82). 

For patients with frontal lesions, there was “very strong” evidence in favor of 

increased decision threshold for unrelated in comparison to congruent conditions 

(unrelated > congruent: BF10 = 255.39). By contrast, the evidence supporting the 

difference between related and congruent conditions was “anecdotal”, (related vs. 

congruent: BF10 = 0.50). We observed a similar pattern for patients with temporal 

lesions. We found “anecdotal” evidence in favor of the difference between related 

vs. congruent pairs (related vs. congruent: BF10 = 0.50), and “positive” evidence in 

favor of increased decision threshold in unrelated vs. congruent conditions 

(unrelated > congruent: BF10 = 5.75).

The decision threshold was lower for related relative to unrelated word-picture 

pairs in both patient groups when compared to controls. 

Non decision component
A JZS Bayes factor ANOVA with default prior scales revealed that the model-winner 

included main effect of relatedness. This model was preferred over the null model 

BF10 = 46.77 and over the second-best model that included main effects of 

word-picture relatedness and subject type BF10 = 19.22. 

Since the best model did not indicate the effect of patient type on task performance, 

we did not test the effects of semantic relatedness further. 

To investigate whether lesions in STG contributed to the parameter estimates, 

we performed a Bayesian correlation between percentage of damage in STG and 

parameter estimates in the unrelated condition (drift rate and decision threshold). 

We performed Bayesian correlations for both supplementary analysis 1 (four 

patients in both temporal and frontal groups) and supplementary analysis 2 (three 

patients in both temporal and frontal groups). We report the results of Bayesian 

correlations in Supplementary Table 3 (for supplementary analysis 1) and 

Supplementary Table 4 (for supplementary analysis 2). In short, we did not find any 

positive evidence (BF10 > 3) in favor of a correlation between HDDM parameters 

(drift rate, decision threshold) in the unrelated condition and percentage of damage 

in STG. 
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In het dagelijks leven nemen we honderden snelle beslissingen, waar we niet veel 

over nadenken. Wanneer we bijvoorbeeld een nieuwe collega ontmoeten, merken 

we automatisch zijn/haar leeftijd en geslacht op zonder er veel aandacht aan te 

besteden. Deze snelle beslissingen zijn bottom-up: ze zijn gebaseerd op de ken - 

merken van het gezicht en het lichaam van de persoon met wie we praten. Niet alle 

beslissingen worden bottom-up genomen. Ze kunnen ook top-down zijn, dus 

gebaseerd op de context. Als we bijvoorbeeld een specifieke stem horen die van om de 

hoek komt, weten we vaak al of het om een mannenstem of een vrouwenstem gaat. 

Woorden kunnen ook bottom-up worden gebruikt, met andere woorden, ze kunnen 

een context introduceren die onze perceptie kan beïnvloeden. In experimentele 

omgevingen zullen deelnemers eerder antwoorden dat ze een huis zien in een 

dubbelzinnig beeld, als het voorafgegaan wordt door woorden die betrekking 

hebben op een concept van een huis («schoorsteen», «raam»). In die zin kunnen 

woorden onze besluitvorming beïnvloeden.

Het effect van woorden op perceptie en besluitvorming is eerder goed 

gedocumenteerd (zie voor een review Anderson, Chiu, Huette, & Spivey, 2011; 

Lupyan, 2012). De mechanismen van deze top-down-invloed zijn echter nog steeds 

niet duidelijk. Er is bijvoorbeeld aangetoond dat deelnemers verschillende strategieën 

kunnen toepassen bij het integreren van taalkundige en visuele informatie. Hoewel 

er enig bewijs is dat de perceptuele gevoeligheid van de deelnemers een rol speelt 

(Meteyard et al., 2007), is gesuggereerd dat er ook een alternatief mechanisme 

betrokken kan zijn, dat bestaat uit het aanpassen van de beslissingsdrempel (Francken  

et al., 2015). In dit proefschrift heb ik onderzocht hoe onze besluitvorming wordt 

beïnvloed door woorden: wat zijn de mechanismen van taalbias bij besluitvorming? 

Wat zijn neurale onderbouwingen van taalbias?

Om de mechanismen van taalbias bij besluitvorming te onderzoeken, heb ik een 

wiskundig framework gebruikt, genaamd Drift Diffusion Model (DDM). Dit biologisch 

plausibele model houdt in dat elke binaire beslissing («Is het een man?» - «Ja» / 

«Nee») kan worden beschreven als een proces van bewijsophoping tot een van de 

beslissingsgrenzen (bovengrens - vrouwelijk antwoord, en ondergrens - mannelijk 

antwoord, bijvoorbeeld). DDM gebruikt een combinatie van reactietijden en prestatie-

nauwkeurigheden die zijn afgeleid van het experiment om de modelparameters 

af te leiden die verschillende stadia van het besluitvormingsproces beschrijven. 

Menselijke prestaties op elke binaire taak kunnen worden beschreven aan de hand 

van de volgende parameters (een ervan of een combinatie ervan, zie Figuur 1, A): 

driftsnelheid (V) verwijst naar de snelheid waarmee bewijsmateriaal wordt verzameld. 
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Startpunt (z) verwijst naar de informatie over de beslissing die begon voordat de 

bewijsverzameling werd geïnitieerd. De beslissingsdrempel (A) staat voor de hoeveel - 

heid informatie die nodig is om tot een beslissing te komen, en de niet-beslissings-

component (Ter) beschrijft de processen die niet direct verband houden met de 

vorming van de beslissing (motorische uitvoering / snelheid van stimuluscodering).

Dit model is nuttig om vast te stellen of taal menselijk gedrag beïnvloedt op het 

niveau van besluitvorming (selectie van beslissingsstrategie) of op het niveau van de 

responsuitvoering / snelheid van stimuluscodering, wat geen deel uitmaakt van het 

besluitvormingsproces zelf (zie Figuur 1, B). Bovendien maakt dit model het mogelijk 

om onderscheid te maken tussen twee verschillende beslissingsstrategieën die 

mogelijk door taal worden beïnvloed: aanpassing van de beslissingsdrempel versus 

aanpassing van de snelheid van het verzamelen van bewijsmateriaal.

Figuur 1: (A) het driftverspreidingsmodel met de vier parameters: driftsnelheid (v), beslissings-

drempel (A), startpunt (z), niet-beslissingscomponent (Ter). (B) Verwerkingsstadia die worden 

gekenmerkt door het DDM-model. Verschillende stadia van verwerking worden gemarkeerd 

door de schaduw in paneel A. Deze geeft aan welke van de DDM-componenten bij welke  

verwerkingsfasen horen.
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Verder heb ik onderzocht of door taal beïnvloede beslissingsprocessen (zoals 

vastgesteld door DDM) kunnen worden weerspiegeld in de neurale data. Hiervoor 

heb ik neuroimaging-technieken gebruikt zoals functionele magnetische resonantie 

beeldvorming (fMRI) en magneto-encefalografie (MEG). Hoewel fMRI nuttig is voor 

het verhelderen van de hersenstructuren die kunnen worden geassocieerd met de 

besluitvormingsprocessen die door taal worden beïnvloed, is MEG met zijn verfijnde 

temporele resolutie buitengewoon nuttig om te bepalen wanneer de taal onze 

besluitvorming beïnvloedt.

Het proefschrift bestaat uit vier empirische hoofdstukken waarin ik de mechanismen 

van taalbias heb onderzocht met een combinatie van wiskundige en neuroimaging- 

methoden.

In Hoofdstuk 2 heb ik een respons-priming-paradigma gebruikt, waarbij een kort 

gepresenteerd woord (gerelateerd aan het concept van een vrouw of een man) 

werd gevolgd door een afbeelding van een gezicht dat als vrouwelijk of mannelijk 

moest worden beoordeeld. Woorden kunnen van twee soorten zijn: ofwel 

associaties (‘stropdas’) of identiteitswoorden (‘man’). Ik toonde aan dat zowel 

associaties als identiteitswoorden leidden tot een vergemakkelijking van de 

geslachtscategorisatie van gezichten (d.w.z. het beantwoorden van ‘man’ of ‘vrouw’ 

op gezichten). Dit effect werd in kaart gebracht op zowel de verwerkingssnelheid 

als de snelheid van de motorische respons: wanneer ze verband hielden met het 

doel (‘man’ of ‘vrouw’), resulteerden beide primaire typen in een verhoogde 

driftsnelheid en een snellere niet-beslissingscomponent. Deze resultaten dienen 

als een bewijs van het principe dat woorden de perceptuele gevoeligheid 

beïnvloeden in plaats van de aanpassing van de beslissingsdrempel.

In Hoofdstuk 3, waarin ik fMRI gebruik, heb ik laten zien dat de snelheid van visuele 

categorisatie taakafhankelijk is. Bij elke taak werd het woord (vrouwelijk of mannelijk 

gerelateerd) gevolgd door een gezicht dat moest worden gecategoriseerd als 

mannelijk of vrouwelijk. Deze twee taken vereisten een verschillende toewijzing 

van aandacht aan het woord: in de ene taak moesten de deelnemers het woord 

negeren en het gezicht classificeren (classificatietaak), terwijl ze in de andere taak 

(verificatietaak) een expliciete overeenkomst moesten maken tussen het woord en 

het doelwit (dat wil zeggen: antwoord ‘ ja’ als er een match was tussen woord en 

gezicht). In de classificatietaak resulteerden woorden die overeenkwamen met het 

doelwit (woord: “man”, doelwit: mannelijk gezicht) in een verhoogde driftsnelheid 

in vergelijking met incongruente woorden (woord: “man”, doelwit: vrouwelijk 

gezicht). In de verificatietaak resulteerden vrouwgerelateerde woorden in een 

verhoogde driftsnelheid, ongeacht het geslacht van het doelwit, wat suggereert 
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dat de classificatie- en de verificatietaken verschillende prestatiestrategieën vereisen 

wat betreft het verzamelen van bewijslast om een beslissing te kunnen nemen over 

een visueel gepresenteerde categorie. Neurale gegevens in de classificatietaak 

lieten geen verhelderend bewijs zien over de relatie tussen bewijsaccumulatie en 

het neurale substraat ervan. In de verificatietaak ontdekten we dat de driftsnelheid 

tijdens incongruente versus congruente primaire woord-gezicht-paren met mannelijke 

gezichten correleerde met activiteit in de precuneale cortex op het niveau van de 

gehele hersenen, wat mogelijk de prestatiestrategie tijdens de taak zou kunnen 

weerspiegelen. Deze studie biedt een nieuw perspectief op het onderwerp van 

taalperceptie-interacties met behulp van een combinatie van modelgebaseerde en 

neuroimaging-benaderingen.

In Hoofdstuk 4, waarin ik MEG gebruikte, heb ik laten zien dat woorden helpen bij het 

beslissen over dubbelzinnige afbeeldingen door de snelheid van visuele categorisatie  

te verhogen. Dat wil zeggen dat proefpersonen sneller reageerden met ‘gezicht’ of 

‘huis’ op een dubbelzinnige afbeelding waarop afbeeldingen van zowel een gezicht 

als een huis elkaar overlapten (elke dubbelzinnige foto werd voorafgegaan door 

een woord dat verband hield met het concept van gezicht - “wenkbrauw”, of huis 

-“venster”). Op hersenniveau beïnvloedden woorden de categorisatie ongeveer 

300ms na de presentatie van de afbeelding, wat suggereerde dat woorden ambigue 

visuele waarneming beïnvloeden door aandacht of beslissing te moduleren in 

plaats van vroege visuele of lexico-semantische processen.

In Hoofdstuk 5 heb ik met behulp van een laesiesymptoombenadering laten zien 

dat visuele beslissingen bij mensen met hersenbeschadiging in temporale versus 

frontale gebieden op een vergelijkbare manier beïnvloed worden, maar fundamenteel 

anders dan bij neurotypische controles. In dit hoofdstuk heb ik een woord-afbeelding- 

matchingtaak gebruikt, waarbij deelnemers “ ja” of “nee” moesten antwoorden op 

een overeenkomst tussen een woord en een afbeelding. Terwijl de taakuitvoering 

bij controles werd verklaard door de hoeveelheid informatie die nodig was om  

een beslissing te nemen (beslissingsdrempel), vertoonden personen met frontale 

of temporale laesies een vergelijkbare disfunctionele modulatie van zowel de 

driftsnelheid als de beslissingsdrempel. Deze resultaten ondersteunen een diverse 

maar interactieve rol van lexicaal-semantisch geheugen en semantische controle-

mechanismen.

Concluderend, in dit proefschrift heb ik visuo-semantische interacties geformaliseerd 

vanuit een besluitvormingsperspectief, d.w.z. als een proces van bewijsaccumulatie 

tot aan de beslissingsdrempel. In het bijzonder heb ik laten zien dat woorden een 

specifieke strategie van besluitvorming beïnvloeden: perceptuele gevoeligheid in 
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plaats van aanpassing van de beslissingsdrempel. Ondanks het feit dat ik geen 

correlaties heb gevonden tussen neurale data en modelleringsdata, heb ik richtingen 

geschetst voor verdere analyses, wat de resultaten en het verhaal van dit proefschrift 

informatief maakt voor toekomstige studies.
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