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Abstract
We prove Ihara’s lemma for the mod l cohomology of Shimura curves, localized at a
maximal ideal of the Hecke algebra, under a large image hypothesis on the associated
Galois representation. This was proved by Diamond and Taylor, for Shimura curves
over Q, under various assumptions on l. Our method is totally different and can avoid
these assumptions, at the cost of imposing the large image hypothesis. It uses the
Taylor–Wilesmethod, as improvedbyDiamondandKisin, and the geometry of integral
models of Shimura curves at an auxiliary prime.

1 Introduction

Let � = �0(N ) be the usual congruence subgroup of SL2(Z), for some N ≥ 1,
and let p be a prime not dividing N . Write �′ = � ∩ �0(p). If X� and X�′ are the
compactified modular curves of levels � and �′, then there are two degeneracy maps

π1, π2 : X�′ → X�

induced by the inclusions �′ ↪→ � and

(
p 0
0 1

)
�′

(
p 0
0 1

)−1

↪→ �. If l is another

prime, then we have a map

π∗ = π∗
1 + π∗

2 : H1(X�, Fl)
2 → H1(X�′ , Fl).
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188 J. Manning, J. Shotton

As a consequence of a result of Ihara—[22] Lemma 3.2, and see also the proof of
[30] Theorem 4.1—the kernel of π∗ may be determined. In particular:

Theorem (Ihara’s Lemma) Ifm is a non-Eisensteinmaximal ideal of theHecke algebra
acting on these cohomology groups (that is, m corresponds to an irreducible Galois
representation), then the map π∗ is injective after localizing at m.1

This was used by Ribet in [30] to prove a level-raising result for modular forms:
if f ∈ S2(�) is a cuspidal eigenform such that ρ f is irreducible and the Fourier
coefficient ap satisfies

ap ≡ ±(1 + p) (mod l),

then there is a cuspidal eigenform g ∈ S2(�′)p−new such that ρ f
∼= ρg .

Now suppose that F is a totally real number field and that D is a quaternion division
algebra over F ramified at all but one infinite place. For K ⊂ (D⊗AF, f )

× a compact
open subgroup, p a finite place of F at which K and D are unramified, and l a prime,
there is an obvious (conjectural) generalisation of Theorem 1 with X� replaced by the
Shimura curve XK . We refer to this as “Ihara’s Lemma at p for XK , localized atm”; it
depends on K and on a maximal idealm of the Hecke algebra acting on H1(XK , Fl),
to which is associated a Galois representation ρm : GF → GL2(Fl). The purpose of
this paper is to prove:

Theorem 1.1 Suppose that l > 2 and that the image of ρm contains a subgroup of
GL2(Fl) conjugate to SL2(Fl) (and satisfies an additional Taylor–Wiles hypothesis
if l = 5 and

√
5 ∈ F).

Then Ihara’s Lemma at p for XK , localized at m, is true.

Ihara’s method of proof does not generalise, since it relies on the “congruence sub-
group property of SL2(Z[ 1p ])”, the analogue of which is a longstanding conjecture of
Serre in the quaternionic case. In [13], Diamond and Taylor overcame this difficulty
for Shimura curves over Q using the good reduction of Shimura curves at l and com-
parison of mod l de Rham and étale cohomology. This necessitates various conditions
on l:

• p does not divide l;
• D and K must be unramified at l;
• if the result is formulated with coefficients Symk−2 Fl , then the weight k satisfies2

k ≤ l − 1.

It seems likely that the approach of [13] can be adapted to the totally real casewith sim-
ilar conditions on l, as in Cheng’s draft [8] (which the author tells us is not complete),
but this has not yet been carried out in full detail.

1 In fact, if we instead take � = �1(N ) then π∗ is already injective. For us, however, localizing at a
maximal ideal of the Hecke algebra will be crucial.
2 See the end of [12] for k = l − 1.
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Ihara’s Lemma for Shimura curves... 189

Our method of proof is entirely different, and requires no such conditions on l.
On the other hand, we have to impose a more stringent condition on ρm—rather than
merely being irreducible, its image must contain the subgroup SL2(Fl).

Our starting point is that Ihara’s Lemma is known (and easy) for the “Shimura sets”
associated to definite quaternion algebras. Following a strategy introduced by Ribet
in [31] we introduce an auxiliary prime q, at which both K and D are unramified.
Then there is a totally definite quaternion algebra D ramified at the same finite places
as D, together with q, and a compact open subgroup K q ⊂ (D ⊗ AF, f )

× agreeing
with K at all places besides q and maximal at q. Our goal will then be to reduce the
statement of Ihara’s Lemma for XK at m to the corresponding (known) statement for
the Shimura set YKq corresponding to K q.

The link between XK and YKq is given by the geometry of integral models of the
Shimura curve XK0(q), with �0(q)-level structure. Specifically, the special fibre of
XK0(q) at q consists of two components, both of which are isomorphic to the special
fibre of XK , and has singularities at a finite set of points which are in bijection with
YKq . This results in a filtration of H1(XK0(q), Fl) whose graded pieces are two copies
of H0(YKq , Fl) and one copy of H1(XK , Fl)

⊕2. This idea has been extensively studied
by Mazur, Ribet [31], Jarvis [23] and others.

Unfortunately, the existence of this filtration does not directly imply any relation
between the Hecke module structures of H1(XK , Fl) and H0(YKq , Fl). For example,
the filtration could be split (in the sense that

H1(XK0(q), Fl) ∼= H1(XK , Fl)
⊕2 ⊕ H0(YKq , Fl)

⊕2

as Hecke modules) which would not impose any relations between H1(XK , Fl) and
H0(YKq , Fl). So in order to deduce anything about H1(XK , Fl) and H0(YKq , Fl),
we need to have additional information about the Hecke module structure of
H1(XK0(q), Fl) and its interaction with the filtration.

The novelty of this paper, then, is to obtain this extra information. It takes the form
of a certain “flatness” statement, which we formulate and prove by using the Taylor–
Wiles–Kisin patching method. To our knowledge, this is the first time that patching
has been combined with the geometry of integral models in this way.

Briefly, the Taylor–Wiles–Kisin method considers a ring R∞, which is a power
series ring over the completed tensor product of various local Galois deformation
rings, and relates the Hecke modules H1(XK , Fl), H0(YKq , Fl) and H1(XK0(q), Fl)

to certainmaximal Cohen–Macaulay “patched”modules over R∞. Ourmethod proves
that the “patched” module corresponding to H1(XK0(q), Fl) is flat3 over some specific
local deformation ring at the prime q. Using this and some commutative algebra we
are able to deduce Ihara’s Lemma for XK from the corresponding result for YKq .

Our strategy for proving this flatness is inspired by Taylor’s “Ihara avoidance”
argument, used in the proof of the Sato–Tate conjecture [40]. We impose the condition
that our auxiliary prime q satisfies Nm(q) ≡ 1 (mod l), and consider a certain tamely
ramified principal series deformation ring, Rps

q = Rps
ρm|GFq

,O, which is a quotient of the

3 This is a slight simplification.
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190 J. Manning, J. Shotton

universal local deformation ring Rq = R�
ρm|GFq

,O. The standard map4 from Rq to the

mod l Hecke algebra acting on H1(XK0(q), Fl) then factors through the quotient R
ps
q ,

even though the map from Rq to the integral Hecke algebra acting on H1(XK0(q), Zl)

does not.
In our situation, the assumption on the image ofρm allows us to choose the auxiliary

prime q so that

ρm(Frobq) =
(
1 1
0 1

)
.

In this case, the ring Rps
q is a regular local ring5 (a calculation carried out in [34]).

This is what enables us to gain a foothold—it is a standard principle going back to
Diamond [11] that regular local deformation rings give rise to important structural
results about Hecke modules. We apply a version of the miracle flatness criterion to
prove that a particular patched module is flat over Rps

q , which is the key fact needed
to make our argument work.

The advantage of this argument, as opposed to that of [13], is that we do not need
to make any assumptions about the structure of the local deformation rings at primes
dividing l, or indeed at any primes besides q, beyond knowing that they have the
correct dimension (a fact which certainly holds in the generality we need). This is the
reason we do not need to impose any of the restrictions on the prime l appearing in
earlier results.

1.1 Applications

We briefly survey some of the applications of Ihara’s Lemma (for modular or Shimura
curves, or Shimura sets) that are in the literature.

1.1.1 Representation theoretic reformulation

Suppose that K p ⊂ (D ⊗ A
p
F, f )

× is a compact open subgroup, and let

V = lim−→
Kp

H1(XKpKp , Fl)

where the limit runs over compact open subgroups Kp ⊂ GL2(Fp). Then V is a
smooth admissible representation of GL2(Fp). Suppose that m is a maximal ideal of
the Hecke algebra acting on V . Then we have:

Proposition 1.2 Suppose that, for K = KpK p with SL2(OF,p) ⊂ Kp ⊂ GL2(OF,p)

a compact open subgroup, Ihara’s Lemma is true for XK atm. Then the representation
Vm of GL2(Fp) has no one-dimensional subrepresentations.

4 Suppressing minor issues due to framing and fixed determinants.
5 Provided that one carefully controls the ramification in the coefficient ring O.
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Ihara’s Lemma for Shimura curves... 191

Remark 1.3 If l �= p then there is a notion of genericity for smooth representations of
GLn(Fp) (see, for instance, [16]); when n = 2, the non-generic smooth irreducible
representations are precisely the one-dimensional ones. It is this “no non-generic
subrepresentations” property that conjecturally generalises to higher rank (see [9]).

1.1.2 Freeness results

If T is the algebra of Hecke operators acting on H = H1(XK ,O)m, including those
at primes at which K ramifies, then we can ask whetherH is free as a T-module. For
modular curves results along these lines were proved by Mazur, Ribet and others (see,
for instance, [14] Theorem 9.2 and [6] Theorem 4.8). In the case of Shimura curves,
there are results starting with [32]. Note that it is not always the case that H is free;
in many cases this can be explained by the geometry of local deformation rings, as in
work of the first author [27].

In [11] section 3.2, it is explained how the Taylor–Wiles method and a ‘numerical
criterion’ may be used to prove freeness results at minimal and non-minimal level for
modular curves (some limited freeness results for Shimura curves are also given in
[11] section 3.3). At non-minimal level, this relies crucially on Ihara’s Lemma, and
so using our result we can extend these freeness results. For instance, we have the
following, in which � denotes the set of places where we are allowing non-minimal
level.

Theorem 1.4 Let F be a totally real number field, D be a quaternion algebra over F
ramified at exactly one infinite place, � a finite set of finite places of F, and l > 2 be
a prime.

Let K = ∏
v Kv ⊂ (D ⊗ AF, f )

× be a compact open subgroup and let k ≥ 2 be
an integer. Let H = H1(XK ,Symk−2(O2

F ⊗ Zl)), and let TK be the Hecke algebra
acting onH generated by the Tv and Sv for v � l at which Kv is maximal compact and
D is split, and the Uv for each v ∈ �.

Letm be amaximal ideal ofTK containing l. Suppose that theGalois representation
ρ attached to m has non-exceptional image, and that the following conditions hold.

(1) For all finite places v | l of F, Fv/Ql is unramified and D is split at v.
(2) For all finite places v ∈ � not dividing l, D is split and ρ is unramified at v.
(3) For all finite places v � l of F, ρ|GFv

has minimal Artin conductor nv among all
its twists by characters of GFv .

(4) For all finite places v � l of F at which D splits, either:

• v /∈ � and Kv = U1(v
nv ); or

• v ∈ � and Kv = U1(v
2).

(See (2.4) below for the definition of U1(v
n)).

(5) For all finite places v of F at which D ramifies, Kv is the group of units in a
maximal order of D ⊗ Fv , and if ρ is unramified at v then either:

• Nm(v) �≡ ±1 (mod l);
• Nm(v) ≡ 1 (mod l) and ρ(Frobv) is not scalar; or
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192 J. Manning, J. Shotton

• Nm(v) ≡ −1 (mod l), and tr(ρ(Frobv)) �= 0.

(6) If v � l is a place of F at which D splits and Nm(v) ≡ −1 (mod l), then either
ρ|GFv

is reducible or ρ(IFv ) has order divisible by l.
(7) One of the following holds.

• (the Fontaine–Laffaille case) 2 ≤ k ≤ l − 1 and Kv is a maximal compact
subgroup for each v | l; or

• (the ordinary case) k = 2 and, for each v | l, either: v /∈ � and Kv is maximal

compact; or v ∈ �, Fv
∼= Ql , Kv = U0(v), and ρ|IFv

∼=
(

ε �

0 1

)
.

Then Hm is free of rank 2 over TK ,m.

Proof (sketch) For v ∈ �, let Kmin
v ⊂ (D ⊗ Fv)

× be a maximal compact subgroup;
otherwise, let Kmin

v = Kv . Let Kmin = ∏
v K

min
v . The numbered conditions were

chosen to ensure that all the relevant local deformation rings corresponding to forms
of level Kmin are formally smooth. Thus the Taylor–Wiles method gives a result
analogous to [11] Theorem 3.1 at level Kmin. The result at level K now follows
exactly as in the proof of [11] Theorem 3.4, using Ihara’s Lemma at each prime in �.
See also [39] Theorem 3.2 for a similar result in the definite case.

Remark 1.5 (1) In the ‘Fontaine–Laffaille case’, at least if (k − 1)[F : Q] ≤ l − 2,
the version of Ihara’s lemma required would presumably follow from the method
of [13], as in [8], and so the condition on the image of ρ could be relaxed to a
Taylor–Wiles hypothesis. In the ‘ordinary case’ we require Ihara’s lemma at places
of � dividing l, which is apparently not accessible by the method of [13].

(2) Without a condition such as (5) where D ramifies, the module may genuinely not
be free, see [27].

(3) Conditions (3) and (6) could probably be omitted, and the set � of non-minimal
places could probably be allowed to contain places where ρ ramifies.

(4) The requirement that the weights are parallel is for convenience. The restriction to
the Fontaine–Laffaille range is not required for our version of Ihara’s lemma, but is
required to proveminimal freeness results using the method of [11]. Nevertheless,
in other situations where the multiplicity at minimal level can be determined (even
if this multiplicity is not one), it seems plausible that Ihara’s Lemma could be used
to deduce information about the multiplicity at non-minimal levels.

1.1.3 Local-global compatibility

In the work of Emerton [17] on local-global compatibility in the p-adic Langlands
progam, Ihara’s lemma is essential to obtain results with integral coefficients. Gen-
eralisations of Emerton’s result to compact forms of U (2) over totally real fields in
which l splits have been proved in [10]—the compactness assumption ensuring that
Ihara’s Lemma is known. We expect that our results (and those of [13]) could be used
to prove analogues of Emerton’s Theorem 1.2.6 for the completed cohomology of
Shimura curves, at least in settings where multiplicity one still holds.
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Ihara’s Lemma for Shimura curves... 193

1.1.4 Iwasawa theory

In [1], Bertolini and Darmon proved one divisibility in the anticyclotomic Iwasawa
MainConjecture for (certain) elliptic curves over imaginary quadratic fields. The result
of [13] on Ihara’s Lemma for Shimura curves was an important technical tool in the
proof. Contingent on Ihara’s Lemma for Shimura curves over totally real fields, Longo
[26] generalises Bertolini and Darmon’s work to the setting of Hilbert modular forms
of parallel weight two; our results therefore make his results unconditional in many
cases. Further generalisations are made by Chida and Hsieh [7] and Wang [41], and
our work may be able to weaken some of their hypotheses.

1.1.5 Level raising

Theworks [30] and [13] apply Ihara’s Lemma to the problemof level-raising formodu-
lar forms—that is, of determining at which non-minimal levels there is a newformwith
a given residual Galois representation. Nowadays, there is an argument of Gee [18]
using the Taylor–Wiles–Kisin method and a lifting technique of Khare–Wintenberger.
Combined with the results of [19] and of [4], this gives (under a Taylor–Wiles hypoth-
esis) level raising theorems for Hilbert modular forms in arbitrary weight. We thank
Toby Gee for explaining this point to us. Since we also require the Taylor–Wiles
hypothesis, it is unlikely that our theorem gives substantial new level raising results.

1.2 Outline of the paper

In Sect. 2 we recall the definitions of Shimura curves and Hecke operators. We also
define the Shimura sets we will need, and recall the necessary results on integral
models.

Most of Sect. 3 is taken upwith the calculation of local deformation rings at the aux-
iliary prime q.We also precisely define lattices in certain inertial types (representations
of GL2(OF,q)).

Section 4 carries out the Taylor–Wiles–Kisin patching method. We use the formal-
ism of patching functors, introduced in [15]. This is mostly standard, and we include it
because we don’t know a reference for the fact that the filtrations of homology coming
from integral models may be patched.

Section 5 contains calculations in commutative algebra over the local deformation
rings at q that are at the technical heart of the proof.

Section 6 contains the precise statement and proof of our theorem.
A sensible order to read this article in would be to skim Sect. 2, to fix notation, and

then turn to Sect. 6, referring back to the other sections as needed.

1.3 Notation

If k is a local or global field, then Gk will denote its absolute Galois group. If l is a
prime distinct from the characteristic of k, then we write ε : Gk → Zl for the l-adic
cyclotomic character and ε for its reduction modulo l.
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194 J. Manning, J. Shotton

If l is a prime and M is a Zl -module, then we write M∨ for its Pontrjagin dual. If
M is a finite free Zl -module (resp. an Fl -vector space, resp. a Ql -vector space), then
we write M∗ = HomZl (M, Zl) (resp. HomFl (M, Fl), resp. HomQl (M, Ql)).

2 Shimura curves

2.1 Let F be a totally real number field of degree d and letOF be the ring of integers
of F . We write AF, f for the finite adeles of F . If v is a place of F then we write kv

for its residue field, 	v for a fixed choice of uniformizer in Fv , and Av
F, f for the finite

adeles of F with the factor Fv dropped. If l is a rational prime then we write �l for
the set of places of F above l; we write �∞ for the set of infinite places of F .

2.2 Let D be a quaternion division algebra over F split at either no infinite places
(the definite case) or exactly one infinite place, τ (the indefinite case), and letOD be a
maximal order in D. We write � for the set of finite places of F at which D ramifies.
We assume that if F = Q and we are in the indefinite case then � is nonempty.

We write G for the algebraic group overOF associated toO×
D , and Z for its centre.

For every place v at which D splits we fix an isomorphism κv : OD ⊗OF OF,v
∼−→

M2(OF,v). We also denote by κv the various isomorphisms, such as (D ⊗F Fv)
× ∼−→

GL2(Fv), obtained from it.

2.3 We fix a rational prime l and a finite place p of F such that p /∈ �; we do allow
the possibility that p | l.
2.4 Let K be a compact open subgroup of G(AF, f ). If v is a finite place of F
then when it is possible to do so we will write K = K vKv for K v ⊂ G(Av

F, f ) and
Kv ⊂ G(Fv). A compact open subgroup K of G(AF, f ) is unramified at v if v /∈ �

and K = K vG(OF,v) for some K v , and that it is ramified otherwise. We let

�(K ) = � ∪ {v : K is ramified at v}.
If v /∈ � is a finite place of F , and n ≥ 1, then we defineU0(v

n) to be the subgroup

U0(v
n) =

{
κ−1
v

(
a b
c d

)
∈ G(OF,v) : c ≡ 0 (mod 	 n

v )

}

of G(OF,v), and

U1(v
n) =

{
κ−1
v

(
a b
c d

)
∈ U0(v

n) : d ≡ 1 (mod 	 n
v )

}
.

If K is unramified at v then we write

K0(v) = K vU0(v) ⊂ K = K vG(OF,v).

2.5 Suppose that we are in the indefinite case. Letting H = C \ R be acted on by
GL2(R) in the usual way, via κτ we get an action of G(Fτ ) ∼= GL2(R) on H. We
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Ihara’s Lemma for Shimura curves... 195

say that K is sufficiently small if the action of G(F) ∩ gKg−1/Z(F) ∩ gKg−1 onH
is free for every g ∈ G(AF, f ). We will assume throughout that all our compact open
subgroups are sufficiently small. We let

XK (C) = G(Q)\ (
G(AF, f )/K × H)

,

a compact Riemann surface. By the theory of Shimura varieties, there is a smooth
projective curve XK over F such that, when F is considered as a subfield of C via τ ,
the C-points of XK are given by the above formula. For F a sheaf of abelian groups
on XK (C) we write Hi (XK ,F) = Hi (XK (C),F).

2.6 Write [γ, x] for the point in XK (C) corresponding to γ ∈ G(AF, f ) and x ∈ H.
If K ′ ⊂ K ⊂ G(AF, f ) are compact open subgroups then there is a map XK ′ → XK

given on complex points by [γ, x] �→ [γ, x]. For g ∈ G(AF, f ) there is a map
ρg : XK → Xg−1Kg given on C-points by

ρg([γ, x]) = [γ g, x],

The maps ρg define a right action of G(AF, f ) on the inverse system (XK )K ; if
g−1Kg ⊂ K ′ then we will also write ρg for the composite map

XK
ρg−→ Xg−1Kg → XK ′ .

2.7 Let M be an abelian group. Suppose that K1, K2 ⊂ G(AF, f ) are sufficiently
small and that g ∈ G(AF, f ). Then, as in [3] section 4, there are double coset operators

[K1gK2] : Hi (XK2 , M) → Hi (XK1 , M)

for i = 0, 1, 2. If v /∈ �(K ) ∪ �∞ then we define the Hecke operators Tv and Sv to
be the double coset operators

Tv =
[
K

(
	v 0
0 1

)
K

]

and

Sv =
[
K

(
	v 0
0 	v

)
K

]
.

If A is a ring and S is a finite set of places containing � ∪ �∞ then we write

TS
A = A[Tv, Sv : v /∈ S],

a polynomial ring in infinitely many variables which acts on Hi (XK , M) for any K
for which �(K ) ⊂ S and any A-module M .
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196 J. Manning, J. Shotton

If v /∈ �, then we define the Hecke operator Uv to be the double coset operator

[
K

(
	v 0
0 1

)
K

]

acting on any Hi (K , M) for M an abelian group (note thatUv = Tv if K is unramified
at v).

2.8 Now suppose that we are in the definite case. A compact open subgroup K ⊂
G(AF, f ) is sufficiently small if, for every g ∈ G(AF, f ), we have

G(F) ∩ g−1Kg ⊂ Z(F).

Again, we will always assume that our compact open subgroups are sufficiently small.
We define

YK = G(F)\G(AF, f )/K

which is a finite set. Exactly as in the indefinite case, we define an action of G(AF, f )

on the inverse system (YK )K , and actions of double coset operators [K1gK2] and
Hecke operators Tv , Sv and Uv on the groups H0(YK , M), for any abelian group M .
In particular, we obtain an action of TS

A on H0(YK , M) for any finite set of places S
containing �(K ), ring A, and A-module M .

2.9 Suppose that we are in the definite or indefinite case, and that A is a finite Zl -
algebra, so that the residue field of any maximal ideal of A is a finite extension of
Fl .

Definition 2.1 A maximal ideal m of TS
A is G-automorphic of level K if it is in the

support of Hi (XK , A) (in the indefinite case) or Hi (YK , A) (in the definite case) for
some i . It is G-automorphic if it is G-automorphic of level K for some K .

Ifm is aG-automorphicmaximal ideal ofTS
A then there is an associated semisimple

representation

ρm : GF → GL2

(
TS
A/m

)

characterised by charρm(Frobv)(X) = X2 − TvX + Nm(v)Sv for all v /∈ S ∪ �l .

Definition 2.2 An G-automorphic maximal ideal of TS
A is non-Eisenstein if ρm is

absolutely irreducible, and Eisenstein otherwise. A TS
A-module is Eisenstein if every

maximal ideal in its support is Eisenstein.
It is non-exceptional if ρm(GF ) contains a subgroup of GL2(Fl) conjugate to

SL2(Fl); equivalently if it is non-Eisenstein and the image of ρm contains an element
of order l. Otherwise, it is exceptional.

Proposition 2.3 Suppose thatweare in the indefinite case. TheTS
A-modules H

0(XK , A)

and H2(XK , A) are Eisenstein.
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Ihara’s Lemma for Shimura curves... 197

Proof Let ν : G → Gm,F be the reduced norm. There is (see [5] section 1.2) a
bijection

π0(XK (C)) → A×
F, f

/
F×,+ν(K )

where F×,+ is the set of totally positive elements of F×. Write CK for the group on
the right. If g ∈ G(AF, f ) then CK = Cg−1Kg and the diagram

π0(XK (C)) −−−−→ CK

ρg

⏐⏐� ·ν(g)

⏐⏐�
π0(Xg−1Kg(C)) −−−−→ CK

commutes. This implies that TS
A acts on H0(XK (C), A) ∼= A[CK ] via the homomor-

phism TS
A → A[CK ] given by

Tv �→ (Nm(v) + 1)[	v]
Sv �→ [	 2

v ],

wherewewrite [g] for the basis element of A[CK ] corresponding to g. Ifn is amaximal
ideal of A[CK ] with residue field F, corresponding to a character χ : CK → F×,
then Tv and Sv act on A[CK ]/n as (Nm(v) + 1)χ(	v) and χ(	 2

v ) respectively. If
ψ : GF → F× is the character of GF associated to χ by class field theory, and
ρ = ψ ⊕ εψ , then Tv and Nm(v)Sv act on A[CK ]/n by the scalars tr(ρ(Frobv))

and det(ρ(Frobv)), so that the action of TS
A on A[CK ]/n factors through an Eisenstein

maximal ideal as required. It follows that the action ofTS
A on H

0(XK , A) is Eisenstein.
The statement for H2 follows from Poincaré duality

H2(XK , A) ∼= H0(XK , A∨)∨

and the formulae S∗
v = S−1

v and T ∗
v = S−1

v Tv for the adjoints of Tv and Sv .

2.10 Let A be a finite Zl -algebra. There is an exact functor M �→ LM from the
category of A[K ]-modules on which K ∩ Z(F) acts trivially, to the category of local
systems of A-modules on XK (C) or YK . If S is a finite set of places of F containing
�(K )∪�l∪�∪�∞, and such that the action of K onM factors through

∏
v∈S Kv , then

we obtain an action of the Hecke algebraTS
A on each cohomology group Hi (XK ,LM )

or H0(YK ,LM ).

Proposition 2.4 Suppose that we are in the indefinite case. For any A, M and S as
above, the TS

A-module Hi (XK ,LM ) is Eisenstein for i = 0, 2.

Proof This is proved just as in Proposition 2.3.
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2.11 Suppose that K is unramified at p. Let ω =
(

	p 0
0 1

)
. Then since

ωK0(p)ω
−1 ⊂ K , we have two degeneracy maps π1, π2 defined (in the notation

of 2.6) by

π1 = ρe : XK0(p) → XK

π2 = ρω−1 : XK0(p) → XK

(with similar formulae in the definite case). If A is an abelian group then we obtain
maps

π∗
1 , π∗

2 : Hi (XK , A) → Hi (XK0(p), A)

with, again, similar formulae in the definite case. We write

π∗ = π∗
1 + π∗

2 : Hi (XK , A)2 → Hi (XK0(p), A).

If M , LM , and S are as in 2.10 and if p /∈ �(K ) ∪ �∞ is such that the action of K on
M factors through K p, then we can similarly define

π∗ = π∗
1 + π∗

2 : Hi (XK ,LM )2 → Hi (XK0(p),LM )

(and analogous maps in the definite case).

2.12 Define the finite abelian (class) group �K by

�K = Z(AF, f )/Z(F)(K ∩ Z(AF, f )).

It acts freely on XK and YK by our assumption that K is sufficiently small.
Suppose that A is a finite Zl -algebra and that ψ is a character A×

F, f /F
× → A×

that vanishes on K ∩ Z(AF, f ) (regarded as a subgroup of Z(AF, f ) = A×
F, f ), so that

we may consider ψ as a character of �K . For M any A[�K ]-module, we write M[ψ]
for the largest submodule of M on which �K acts asψ and Mψ for the largest quotient
module of M on which �K acts as ψ .

Lemma 2.5 Let A be as above, and let m be a non-Eisenstein maximal ideal of TS
A.

Then H0(YK , A∨)m and H1(XK , A∨)m are injective A[�K ]-modules.
Proof In the indefinite case, we use the Hochschild–Serre sequence and fact that m
is non-Eisenstein. Let V be an A[�K ]-module and let L∨

V be the local system on
XK /�K associated to V∨. The action of the Hecke operators away from ramified
primes descends to an action on Hi (XK /�K ,L∨

V ). Then

H0(XK /�K ,L∨
V ) = Hom�K (H0(XK , A), V∨)

is Eisenstein byProposition 2.4, and the same is true for H2(XK /�K ,L∨
V ) byPoincaré

duality. As H0(XK ,L∨
V )m vanishes by Proposition 2.4,
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Hom�K (V , H1(XK , A∨)m) = Hom�K (H1(XK , A)m, V∨)

= H1(XK /�K ,L∨
V )m

and the latter is an exact functor of V as m is non-Eisenstein. In the definite case the
proof is similar but easier (and the assumption on m is not actually necessary).

2.13 For the rest of this section we suppose that we are in the indefinite case, and fix a
finite place q /∈ �∪�l of F , letO(q) be the localization ofOF at q, let k be the residue
field of q, and let k be an algebraic closure of k. By a model of XK we will mean a
proper flat O(q)-scheme XK equipped with an isomorphism XK ⊗O(q)

F
∼−→ XK .

We will consider K that are (sufficiently small and) of the form K qGL2(OF,q) or
K qU0(q). For such K , there are models XK of XK constructed by Morita [29] (in the
first case) and by Jarvis [23], following Carayol [5] (in the second). They have the
following properties:

Theorem 2.6 Suppose that K is unramified at q.

(1) The curve XK is smooth over O(q).
(2) The curve XK0(q) is regular and XK0(q) ⊗O(q)

k is the union of two curves, each

isomorphic to XK ⊗O(q)
k, that intersect transversely at a finite set of points.

Remark 2.7 We will use implicitly the functoriality of these models. For instance, if
K ⊂ K ′ are as above then the morphism XK → XK ′ extends uniquely to a finite
flat morphism between the models. If Kq is fixed, then the action of G(A

q
F, f ) on the

inverse system (XKqKq)Kq extends uniquely to the inverse system of models. This
action is compatible with varying Kq, andwith themapsXK ⊗O(q)

k → XK0(q)⊗O(q)
k

implicit in part 2 of the theorem.

2.14 Suppose that K is unramified at q.

Definition 2.8 The set of points where the two components of XK0(q) ⊗ k intersect
maps injectively toXK ⊗k under the natural mapXK0(q) → XK . The image is a finite
set of points called the supersingular points and is denoted Xss

K .

There is an adelic description of this set that we now explain. Let D be a quaternion
algebra over F ramified at�∪{q, τ } and letG be the algebraic group over F associated
to D

×
. We fix a continuous isomorphism

ι : D ⊗F A
q
F, f

∼−→ D ⊗F A
q
F, f .

Let OD,q be the unique maximal order of D ⊗F Fq. Then we write

YKq = Yι−1(Kq)OD,q
.

Remark 2.9 It follows from the Jacquet–Langlands correspondence that, if K is unram-
ified at q and m is in the support of H0(YKq , A), then m is in the support of
H1(XK0(q), A).
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Theorem 2.10 ([5] (11.2)) There is a G(A
q
F, f )-equivariant isomorphism of inverse

systems

(Xss
K )Kq

∼−→ (YKq)Kq .

2.15 Suppose that K is unramified at q and thatF is a finite extension ofFl . The geom-
etry of XK0(q) and the theory of vanishing cycles allow us to relate H1(XK0(q), F),
H1(XK , F) and H0(YKq , F). In the case at hand, this is worked out in [23], sec-
tions 14-18. We recall the result in our notation:

Theorem 2.11 Suppose that K is unramified at q. Let S be a finite set of places con-
taining �(K ) ∪ {q} ∪ �∞ ∪ � and let m be a non-Eisenstein maximal ideal of TS

K .
Then there is a filtration

0 ⊂ V1 ⊂ V2 ⊂ V = H1(XK0(q), F)m

together with isomorphisms

V1
∼−→ H0(YKq , F)m,

V2/V1
∼−→ H1(XK , F)⊕2

m

and

V /V2
∼−→ H0(YKq , F)m.

The filtration, and isomorphisms, are compatible with the transition morphisms for
varying K q andwith the actionof theHeckeoperators Tv and Sv forv /∈ �(K )∪{q}∪�

and Uv for v /∈ {q} ∪ �.

Proof As mentioned, this is proved in [23]: we give references to that paper. The key
diagram is that at the end of section 14, which relates Hecke-modules X(H), Y (H),
X̃(H), Ỹ (H),M(H), and R(H). In particular, there is a filtration ofM(H)with graded
pieces X̃(H), R(H), and Ỹ (H). Choosing the group H in that paper appropriately,
taking the sheaf there calledF to be the constant sheaf F, and after localizing atm, we
have thatM(H)m is our H1(XK0(q), F)m, while R(H)m is our H1(XK , F)⊕2

m (see [23]
Corollary 16.3). A choice of ordering of the irreducible components of each connected
component of the special fibre of XK0(q) gives, by Theorem 2.10, an isomorphism
between Y (H)m and H0(YKq , F)m. By Proposition 2.3, or [23] Lemma 18.1, we
have Y (H)m ∼= Ỹ (H)m. By [23] Proposition 17.4 and Lemma 18.2, we have (Hecke-
equivariant) isomorphisms X̃(H)m ∼= X(H)m ∼= Y (H)m. The result follows.

It follows fromLemma 2.5 that we can takeψ-parts in the filtration of Theorem2.11
to obtain a filtration of H1(XK0(q), F)m[ψ] with graded pieces H0(YKq , F)m[ψ],
H1(XK , F)⊕2

m [ψ], H0(YKq , F)m[ψ] for any non-Eisenstein maximal ideal m of TS
F
.
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3 Types and local deformation rings

For this section, let L be a local field of characteristic 0, with residue field k of order q.
Let � be the absolute Galois group of L , I its inertia subgroup, and P its wild inertia
subgroup. Let σ ∈ I be a lift of a topological generator of I/P , and let φ ∈ � be a
lift of arithmetic Frobenius. Then we have the well-known relation φσφ−1 = σ q in
�/P .

For this section and Sect. 4 we assume that l > 2. By a coefficient system we
will mean a triple (E,O, F) where: E/Ql is a finite extension, with ring of integers
O, uniformizer 	 , and residue field F = O/	 . For now, we will take an arbitrary
coefficient system; later we will impose further conditions on E/Ql .

Let CO (resp. C∧
O) be the category of Artinian (resp. complete Noetherian) localO-

algebras with residue field F. We say that a functor F : CO → Set is pro-represented
by some R ∈ C∧

O if F is naturally isomorphic to HomO(R,−).
Now fix a continuous representation ρ : � → GL2(F). The primary goal of this

section is to introduce various deformation rings of ρ. Many treatments of this material
assume that the coefficient ringO is sufficiently ramified. For our purposes, it will be
necessary to precisely control the ramification of O, and so a little more care will be
needed in certain parts.

Consider the (framed) deformation functor CO → Set defined on objects A by

A �→ {continuous lifts ρ : � → GL2(A) of ρ}

It is well-known that this functor is pro-representable by some R�
ρ,O ∈ C∧

O. Fur-
thermore, ρ admits a universal lift ρ� : � → GL2(R�

ρ,O).

For any continuous homomorphism, x : R�
ρ,O → E , we obtain a Galois repre-

sentation ρx : � → GL2(E) lifting ρ, from the composition �
ρ�
−→ GL2(R�

ρ,O)
x−→

GL2(E).
For any character ψ : � → O× with det ρ ∼= ψε−1 (mod 	) define R�,ψ

ρ,O to

be the quotient of R�
ρ,O on which det ρ� = ψε−1. Equivalently, R�,ψ

ρ,O is the ring

pro-representing the functor of lifts of ρ with determinant ψε−1.
As l > 2, we have an isomorphism

R�,ψ

ρ,O ⊗̂Rdet(ρ),O = R�
ρ,O (1)

where Rdet(ρ),O is the universal deformation ring of the character det(ρ).

3.1 Deformation rings when l � q

For this subsection, we assume that l � q. In this case, theO-algebras R�,ψ

ρ,O and R�
ρ,O

are flat of relative dimensions 3 and 4, respectively. The second statement follows
from [36] Theorem 2.5. The first statement follows from the second, the isomor-
phism (1), and the flatness of the deformation ring of a character (see for example
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[35] Lemma 2.5). Shortly, we will analyse these rings in more detail in a particular
case.

3.2 Deformation rings when l|q

Now assume that l|q, so that l is the residue characteristic of L . If L ′/L is any finite
extension, then by [24] there is a quotient R�,L ′-st

ρ,O of R�
ρ,O such that a continuous O-

algebra homomorphism x : R�
ρ,O → E factors through R�,L ′-st

ρ,O if and only if ρx |GL′
is semistable with parallel Hodge–Tate weights {0, 1}. Forψ a finite order character of

� that factors through Gal(L ′/L), there is a quotient R�,ψ,L ′-st
ρ,O of R�,L ′-st

ρ,O on which

we additionally impose the condition det(ρ) = ψε−1. We have that Spec R�,ψ,L ′-st
ρ,O

is equidimensional of dimension 3 + [L : Ql ].

3.3 Deformation rings at the auxiliary prime q

In this subsection, we study the specific local deformation ring Rq = R�
ρm|Fq ,O that

will occur at the auxiliary prime q in our argument, and define and compute certain
quotients of it.

From now on assume that q ≡ 1 (mod l) (so that in particular l � q), and let

ρ : � → GL2(F) be the unramified representation with ρ(φ) =
(
1 1
0 1

)
. Note that

both ε and det(ρ) are the trivial character.
We will now impose a hypothesis on our coefficient system:

Hypothesis 3.1 The coefficient system (E,O, F) is such that O = W (F)[ζ + ζ−1]
for a primitive lth root of unity ζ ∈ O.

Under this hypothesis, we write W = W (F) be the ring of Witt vectors and let
E0 = W [1/l], so that E0 is an unramified extension of Ql with residue field F. We fix
ζ ∈ E0 a primitive lth root of unity. We also let

π = (ζ − ζ−1)2 = (ζ + ζ−1)2 − 4 ∈ O,

and note that this is a uniformizer of O.
We define the following quotients of R�

ρ,O in terms of the subfunctors that they
represent:

• Rnr
ρ,O parametrises lifts ρ of ρ that are unramified.

• RN
ρ,O parametrises lifts ρ of ρ such that

charρ(σ)(T ) = (T − 1)2

and

(tr ρ(φ))2q = (q + 1)2 det ρ(φ).
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• Runip
ρ,O parametrises lifts ρ of ρ such that

charρ(σ)(T ) = (T − 1)2

and

(
(tr ρ(φ))2q − (q + 1)2 det ρ(φ)

)
· (ρ(σ ) − 1) = 0.

• Rps
ρ,O parametrises lifts ρ of ρ such that

charρ(σ)(T ) = T 2 − (ζ + ζ−1)T + 1

= (T − ζ )(T − ζ−1).

Remark 3.2 The relation “q tr(φ)2 = (q + 1)2 det(φ)” should be thought of as saying
that the eigenvalues of ρ(φ) are in the ratio q : 1, which is the case for all characteristic
zero lifts of ρ for which the image of inertia is non-trivial and unipotent.

Remark 3.3 It is important for us that Rps
ρ,O be defined over O and not just O[ζ ].

Fix an unramified characterψ : � → O× lifting the trivial character det(ρ)ε. Note
that, on each of these quotients, we have that det(ρ�) is unramified, and so agrees
with ψε−1 on I . For ? ∈ {N , nr, unip, ps}, we make the following definitions:

• R?,ψ
ρ,O is the quotient of R?

ρ,O on which det(ρ�) = ψε−1;

• R
?
ρ = R?

ρ,O ⊗O F;

• R
?,ψ
ρ = R?,ψ

ρ,O ⊗O F.

We will need somewhat explicit descriptions of these rings, which were obtained
in Proposition 5.8 of [34] and its proof. Let

ρ�(σ ) = 1 +
(
A B
C D

)

and

ρ�(φ) =
(
1 + P 1 + R

S 1 + Q

)
.

We will choose more convenient coordinates. We may replace B by X = B
1+R , Q

by T = tr(ρ�(φ)) − 2, and S by δ = det(ρ�(φ)) − 1. By this we mean that the
natural map

O[[A, X ,C, D, P, T , R, δ]] → R�
ρ,O
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is surjective, which follows from the formulae B = (1 + R)X , Q = T − P , and
S = (1 + R)−1(T + P(T − P) − δ). Then we may replace T by either

Y1 = (tr ρ�(φ))2 − 4 det ρ�(φ)

or

Y2 = (tr ρ�(φ))2q − (q + 1)2 det ρ�(φ),

by which we mean that the natural maps

O[[A, X ,C, D, P, R, δ,Yi ]] → R�
ρ,O

are surjections. This follows from the equation T = √
4 + Y1 + 4δ − 2 in the first

case—where the square root is defined by a convergent Taylor series, as l > 2—and
a similar expression in the second. We have maps

αi : O[[X ,Yi , P, R, δ]] → R�
ρ,O.

Remark 3.4 Write γ = ε(φ)−1ψ(φ) − 1 ∈ O. Then the maps αi descend to maps,
also denoted αi ,

αi : O[[X ,Yi , P, R]] ∼= O[[X ,Yi , P, R, δ]]/(δ − γ ) → R�,ψ

ρ,O .

In the proofs of all of the following propositions we work without fixing determinants.
For each ? ∈ {N , nr, unip, ps} we already have that det(ρ�) is unramified on the
quotient R?

O,ρ . This means that to get the fixed determinant versions in the statements,
we simply quotient by δ − γ .

Proposition 3.5 The ring Rps,ψ
ρ,O is isomorphic (via α1) to

O[[X ,Y1, P, R]]/(X2Y1 − π).

In particular, it is regular.

Proof This follows from the proof of [34] Proposition 5.8 part 2. The quantity denoted
y in the proof of that proposition is here equal to 1. The variables X1, . . . X5 in that
proof are our variables X ,Y1, P, R, 2P −T , but by the above remarks we can replace
2P − T with δ and obtain that α1 defines an isomorphism

O[[X ,Y1, P, R, δ]]/(X2Y1 − π) ∼= Rps
ρ,O.

The result with fixed determinant follows.

123



Ihara’s Lemma for Shimura curves... 205

Proposition 3.6 The ring Runip,ψ
ρ,O is isomorphic (via α2) to

O[[X ,Y2, P, R]]/(XY2)

and its quotients Rnr,ψ
ρ,O and RN ,ψ

ρ,O are, respectively,

O[[X ,Y2, P, R]]/(X) and O[[X ,Y2, P, R]]/(Y2).

In particular, these last two deformation rings are formally smooth.

Proof This is not quite in [34] Proposition 5.8, as the quotient Runip
ρ,O is not considered

there, but the method of proof extends easily—we will be brief. The proof shows
that, if we write U = P − Q and α(T ) = (q−1)(2+T )

q+1 , then Runip
ρ,O is cut out of

O[[A, X ,C, D,U , T , R, S]] by the following equations:

A + D = 0

A2 + (1 + R)XC = 0

�(4(1 + R)S + (U 2 − α(T )2)) = 0

A = 1

2
X(U − α(T ))

2AS − C(U + α(T )) = 0

C = Aα(T ) + XS

(q − 1)(AU + (1 + R)XS + (1 + R)C) = 0.

Here � denotes each of A, X ,C, D, so that the third line is really four equations.
Note that the third line can be rewritten as �Y2 = 0. The first, fourth and sixth lines
show that A,C and D may be written in terms of X , T , S and U . Making these
substitutions we see that this set of equations is equivalent to the single equation
X(4(1 + R)S + (U 2 − α(T )2)) = 0. But if we now replace T , S and U by Y2, δ and
P as discussed above, we obtain that Runip

O,ρ is the quotient of O[[X ,Y2, P, R, δ]] by
XY2 = 0 as required.

The expressions for the quotients Rnr
ρ,O and RN

ρ,O follow immediately, and finally
we eliminate δ by imposing the fixed determinant condition.

Proposition 3.7 The images of Y1 and Y2 are equal in R
�,ψ

ρ . Denoting this common
image by Y , the diagram

F[[X ,Y , P, R]]/(X2Y )
∼−−−−→
α1

R
ps,ψ
ρ⏐⏐�
⏐⏐�

F[[X ,Y , P, R]]/(XY )
∼−−−−→
α2

R
unip,ψ
ρ

commutes.
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Proof That the images of Y1 and Y2 are equal is immediate from q ≡ 1 (mod l). The

diagram commutes since α1 and α2 are equal as maps F[[X ,Y , P, R]] → R
�
ρ .

Remark 3.8 In [34] it is assumed that ζ ∈ O, which is not the case for us—however,
this assumption is not used (only the assumption that ζ + ζ−1 ∈ O, which is required
to even define Rps

O,ρ).

Remark 3.9 The proofs above show that each of our deformation rings R?
ρ,O turns out

to be reduced and l-torsion free, and therefore is one of the fixed-type deformation
rings defined by a Zariski closure operation in [34].

3.4 Types

Next we define various representations of GL2(OL) over W (or extensions of W ).
Let G = GL2(k) and B be its subgroup of upper triangular matrices. We will always
regard representations of G as representations of GL2(OL) by inflation. If A is a ring,
then we will write 1A for A with the trivial action of any group under consideration.

Since q + 1 = [G : B] is invertible in W , the natural map

1W → IndGB 1W

splits, and so we define StW by the formula

IndGB 1W = 1W ⊕ StW .

If A is aW -algebra, then define StA = StW ⊗W A; then we have IndGB 1A = 1A⊕StA.
Now let E1 = E[ζ ] and χ : k× → E1 be a non-trivial character. Let χ ⊗ χ−1 :

B → E×
1 be the character

(χ ⊗ χ−1)

(
x z
0 y

)
= χ(x)χ−1(y).

Let

σ
ps
E1

= IndGB(χ ⊗ χ−1).

If E = E0[ζ + ζ−1] as before then σ
ps
E1

is isomorphic to its conjugate under the

nontrivial element of Gal(E1/E), which switches χ and χ−1. It therefore has a model
σ
ps
E over E , by the calculation of the Schur index of a character of a finite general linear

group in [21] Theorem 2a—see also Lemma 3.1.1 of [15]. By [15] Lemma 4.1.1, there
is a unique O-lattice σ

ps
O in σ

ps
E such that there is a nonsplit short exact sequence

0 → F → σ
ps
O ⊗ F → StF → 0. (2)

For A an O-algebra, we let σ ps
A = σ

ps
O ⊗O A.
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3.5 The local Langlands correspondence

Suppose first that we are in the setting of Sect. 3.3. For ρ : GL → GL2(E0) a con-
tinuous representation, let π(ρ) be the smooth admissible representation of GL2(L)

associated to ρ by the local Langlands correspondence, and let x : R�
ρ,O → E be the

associated homomorphism. Then we have:

Proposition 3.10 (1) If π(ρ)|GL2(OL ) contains 1E , then x factors through Rnr
ρ,O.

(2) If π(ρ)|GL2(OL ) contains StE , then x factors through Runip
ρ,O .

(3) If π(ρ) is discrete series and π(ρ)|GL2(OL ) contains StE , then x factors through
RN

ρ,O.
(4) If π(ρ)|GL2(OL ) contains σ

ps
E
, then x factors through Rps

ρ,O.

Now suppose that we are in the setting of Sect. 3.2. Suppose that DL is a quaternion
algebra over L and K is a compact open subgroup of DL . If π is an irreducible admis-
sible representation of DL over E , then by the local Langlands and Jacquet–Langlands
correspondences there is an associatedWeil–Deligne representation (rπ , Nπ ).Wemay
and do choose a finite extension LK /L such that, for all π having a K -fixed vector,
the restriction rπ |GLK

is unramified. It follows that, if π has a K -fixed vector and
ρ : GL → GL2(E) is a de Rham representation of parallel Hodge–Tate weights
{0, 1} such that WD(ρ)ss ∼= (rπ , Nπ ), then ρ|GLK

is semistable and so corresponds

to a point of R�,LK -st
ρ,O . We write

R�,ψ,K -st
ρ,O

for

R�,ψ,LK -st
ρ,O .

We will say that a lift ρ : � → GL2(A) of ρ is K -semistable if the associated map
R�

ρ,O → A factors through R�,K -st
ρ,O .

4 Patching

The goal of this section is to summarize the Taylor–Wiles–Kisin patching construction,
and to prove the results about it that will be needed for the proof of Theorem 6.5. We
choose a coefficient system (E,O, F), which we will eventually require to satisfy
Hypothesis 3.1.

4.1 Ultrapatching

In this section we summarize the commutative algebra behind the patching method.
For convenience we will use the “ultrapatching” construction introduced by Scholze
in [33]; we follow closely the exposition of [27] section 4.
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From now on, fix a nonprincipal ultrafilter F on the natural numbers N (it is well
known that such an F must exist, provided we assume the axiom of choice). For
convenience, we will say that a property P(n) holds for F-many i if there is some
I ∈ F such that P(i) holds for all i ∈ I .

For any sequence of sets A = {An}n≥1, we define their ultraproduct to be the
quotient

U(A ) =
( ∞∏
n=1

An

)
/ ∼

where we define the equivalence relation ∼ by (an)n ∼ (a′
n)n if ai = a′

i for F-many i .
If the An’s are sets with an algebraic structure (eg. groups, rings, R-modules, R-

algebras, etc.) then U(A ) naturally inherits the same structure.
If each An is a finite set, and the cardinalities of the An’s are bounded (this is

the only situation we will consider in this paper), then U(A ) is also a finite set and
there are bijections U(A )

∼−→ Ai for F-many i . Moreover if the An’s are sets with
an algebraic structure, such that there are only finitely many distinct isomorphism
classes appearing in {An}n≥1 (which happens automatically if the structure is defined
by finitelymany operations, eg. groups, rings or R-modules or R-algebras over a finite
ring R) then these bijections may be taken to be isomorphisms. This is merely because
our conditions imply that there is some A such that A ∼= Ai for F-many i and hence
U(A ) is isomorphic to the “constant” ultraproduct U({A}n≥1

)
which is easily seen to

be isomorphic to A if A is a finite set.
Lastly, in the case when each An is a module over a finite local ring R, there is

a simple algebraic description of U(A ). Specifically, the ring R =
∞∏
n=1

R contains a

unique maximal ideal ZF ∈ SpecR for which RZF
∼= R and

( ∞∏
n=1

An

)

ZF

∼= U(A )

as R-modules. This shows that U(−) is a particularly well-behaved functor in our
situation. In particular, it is exact.

For the rest of this section, fix a power series ring S∞ = O[[z1, . . . , zd ]] and
consider the ideal n = (z1, . . . , zd). Fix a sequence of ideals In ⊆ S∞ such that
for any open ideal a ⊆ S∞ we have In ⊆ a for all but finitely many n. Also define
S∞ = S∞/(	) = F[[z1, . . . , zd ]] and In = (In + (	))/(	) ⊆ S∞.

For any finitely generated S∞-module M , we will say that the S∞-rank of M ,
denoted by rankS∞ M , is the cardinality of a minimal generating set for M as an
S∞-module.

We can now make our main definitions:

Definition 4.1 Let M = {Mn}n≥1 be a sequence of finitely generated S∞-modules
with In ⊆ AnnS∞ Mn for all but finitely many n.

• We say thatM is aweak patching system if the S∞-ranks of theMn’s are uniformly
bounded. If we further have 	Mn = 0 for all but finitely many n, we say thatM
is a residual weak patching system
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• We say that M is a patching system if it is a weak patching system, and we have
AnnS∞(Mn) = In for all but finitely many n.

• We say that M is a residual patching system if it is a residual weak patching
system, and we have AnnS∞(Mn) = In for all but finitely many n.

• We say that M is MCM (resp. MCM residual) if M is a patching system (resp.
residual patching system) and Mn is free over S∞/In (resp. S∞/In) for all but
finitely many n.

Furthermore, assume that R = {Rn}n≥1 is a sequence of finite local S∞-algebras.

• We say that R = {Rn}n≥1 is a (weak, residual) patching algebra, if it is a (weak,
residual) patching system.

• If Mn is an Rn-module (viewed as an S∞-module via the S∞-algebra structure on
Rn) for all n we say thatM = {Mn}n≥1 is a (weak, residual) patchingR-module
if it is a (weak, residual) patching system.

Let wP be the category of weak patching systems, with the obvious notion of
morphism. Note that this is naturally an abelian category.

Now for any weak-patching system M , we define its patched module to be the
S∞-module

P(M ) = lim←−
a

U(M /a) ,

where the inverse limit is taken over all open ideals of S∞. We may treat P is as
functor from wP to the category of S∞-modules.

IfR is a weak patching algebra andM is a weak patchingR-module, thenP(R)

inherits a natural S∞-algebra structure, andP(M ) inherits a naturalP(R)-module
structure.

In the above definition, the ultraproduct essentially plays the role of the pigeonhole
principal in the classical Taylor–Wiles–Kisin construction, with the simplification that
it is not necessary to explicitly define a “patching datum” before making the construc-
tion. Indeed, if one were to define patching data for the Mn/a’s (essentially, imposing
extra structure on each of the modules Mn/a) then the machinery of ultraproducts
would ensure that the patching data for U(M /a) would agree with that of Mn/a for
infinitely many n. It is thus easy to see that our definition agrees with the classical
construction (cf. [33]).

Thus the standard patching Lemmas (cf. [25], Proposition 3.3.1) can be rephrased
as follows:

Proposition 4.2 Let R be a weak patching algebra, and let M be an MCM patching
R-module. Then:

(1) P(R) is a finite type S∞-algebra, and P(M ) is a finitely generated free S∞-
module.

(2) The structure map S∞ → P(R) (defining the S∞-algebra structure) is injective,
and thus dimP(R) = dim S∞.

(3) ThemoduleP(M ) ismaximalCohen–MacaulayoverP(R), and (	, z1, . . . , zd)
is a regular sequence forP(M ).
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Proposition 4.3 Let R be a weak patching algebra, and let M be an MCM residual
patching R-module. Then:

(1) P(R)/(	) is a finite type S∞-algebra, and P(M ) is a finitely generated free
S∞-module.

(2) The structure map S∞ → P(R)/(	) is injective, and thus dimP(R)/(	) =
dim S∞.

(3) The module P(M ) is maximal Cohen–Macaulay over P(R)/(	), and (z1,
. . . , zd) is a regular sequence forP(M ).

Proposition 4.4 Let n = (z1, . . . , zd) ⊆ S∞, as above. Let R0 be a finite type O-
algebra, and let M0 be a finitely generated R0-module. If, for each n ≥ 1, there are
isomorphisms Rn/n ∼= R0 of O-algebras and Mn/n ∼= M0 of Rn/n ∼= R0-modules,
then we haveP(R)/n ∼= R0 asO-algebras andP(M )/n ∼= M0 asP(R)/n ∼= R0-
modules.

From the set up of Proposition 4.2 there is very little we can directly conclude about
the ringP(R). However in practice one generally takes the rings Rn to be quotients
of a fixed ring R∞ of the same dimension as S∞ (and thus as P(R)). Thus we
define a cover of a weak patching algebra R = {Rn}n≥1 to be a pair (R∞, {ϕn}n≥1),
where R∞ is a complete, topologically finitely generatedO-algebra ofKrull dimension
dim S∞ and ϕn : R∞ → Rn is a surjective O-algebra homomorphism for each n. It
is straightforward to show the following (cf. [27])

Proposition 4.5 If (R∞, {ϕn}) is a cover of a weak patching algebraR, then the ϕn’s
induce a natural continuous surjection ϕ∞ : R∞ � P(R).

Combining this with Propositions 4.2 and 4.3 we get the following (using the fact
[37, Lemma 0AAD] that if f : A � B is a surjection of noetherian local rings, then a
B-module M is Cohen–Macaulay as an A-module if and only if it is Cohen–Macaulay
as a B-module):

Corollary 4.6 LetR be a weak patching algebra and let (R∞, {ϕn}) be a cover ofR.
If M is an MCM patching R-module, then P(M ) is a maximal Cohen–Macaulay
R∞-module. IfM is anMCM residual patchingR-module, thenP(M ) is a maximal
Cohen–Macaulay R∞/(	)-module.

In our arguments, it will be necessary to patch the filtration from Theorem 2.11.
This would certainly be possible ifP were an exact functor. However, this is not true
in general,6 but we can prove a weaker statement which suffices for our purposes:

Lemma 4.7 The functor P(−) is right-exact. Moreover, if

0 → A → B → C → 0

6 For an easy counterexample, assume that S∞/In is 	 -torsion free for all n (a condition which will be
satisfied for our choice of In below) and let M = {S∞/In}n≥1. Define ϕ = {ϕn}n≥1 : M → M by
ϕn(x) = 	 nx . Then ϕ : M → M is injective, P(M ) = S∞, andP(ϕ) : S∞ → S∞ is the zero map.
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Ihara’s Lemma for Shimura curves... 211

is an exact sequence of weak patching systems then

0 → P(A ) → P(B) → P(C ) → 0

is exact, provided that either:

• C is MCM, or
• A , B and C are all residual weak patching systems, and C is MCM residual.

Proof Let Ab be the category of abelian groups. For any countable directed set I , let
finAbI be the category of inverse systems of finite abelian groups indexed by I .

Now note that any (Ai , f j i : A j → Ai ) ∈ finAbI clearly satisfies the Mittag-
Leffler condition: For any i ∈ I there is a j ≥ i for which im( fki ) = im( f j i ) for all
k ≥ j (since Ai is finite, and {im( f j i )} j≥i is a decreasing sequence of subgroups).
Thus by [37, Lemma 0598] it follows that lim←− : finAbI → Ab is exact.

Now assume that A , B and C are weak patching systems, and that we have an
exact sequence

0 → A → B → C → 0

Then for any a ⊆ S∞, A /a → B/a → C /a → 0 is exact, so by the exactness of
U(−) we get the exact sequence

U(A /a) → U(B/a) → U(C /a) → 0.

Thus we have an exact sequence of inverse systems

(U(A /a)
)
a

→ (U(B/a)
)
a

→ (U(C /a)
)
a

→ 0

But now as U(A /a), U(B/a) and U(C /a) are all finite, and there are only countably
many open ideals of S∞, the above argument shows that taking inverse limits preserves
exactness, and so indeed

P(A ) → P(B) → P(C ) → 0

is exact.
Now assume that one of the further conditions of the lemma holds. Write A =

{An}n≥1, B = {Bn}n≥1 and C = {Cn}n≥1. Then letting In = AnnS∞ Cn (so that
either In = In or In for all n � 0), we get that for all n � 0,

0 → An → Bn → Cn → 0

is an exact sequence of S∞/In-modules, and Cn is a free S∞/In-module (this is true
regardless of which case we are in). It follows that

TorS∞/In
1 (Cn, S∞/a) = 0
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for all a ⊆ S∞, and so

0 → An/a → Bn/a → Cn/a → 0

is exact for all n � 0. The same argument as above now shows that

0 → P(A ) → P(B) → P(C ) → 0

is exact.

This now implies that P preserves filtrations in the cases that will be relevant to
us:

Corollary 4.8 Let V be a residual weak patching system with a filtration

0 = V 0 ⊆ V 1 ⊆ · · · ⊆ V r = V

by residualweak patching systemsV k . For k = 1, . . . , r letM k = V k/V k−1. Assume
that theM k’s are all MCM residual. Then P(V ) has a filtration

0 = P(V 0) ⊆ P(V 1) ⊆ · · · ⊆ P(V r ) = P(V )

withP(V k)/P(V k−1) ∼= P(M k) for all k = 1, . . . , r .

One can also make an analogous statement about filtrations of weak patching sys-
tems, instead of residual weak patching systems, but we will not need that result.

Proof For any k ≥ 1 we have an exact sequence

0 → V k−1 → V k → M k → 0.

As M k is MCM residual, Lemma 4.7 implies that the map P(V k−1) → P(V k) is
an inclusion, and that P(V k)/P(V k−1) ∼= P(M k). The result follows.

4.2 Global deformation rings

We fix the following data:

• a quaternion division algebra D over F split at exactly one infinite place, as in
Sect. 2;

• a coefficient system (E,O, F) satisfying Hypothesis 3.1;
• a non-Eisenstein maximal ideal m ⊆ TS

O (for some set S, which we will not fix
yet) which is G-automorphic;

• a finite order character ψ : GF → O× for which ψ ≡ det ρε (mod 	). We also
write ψ for the character ψ ◦ Art, where Art : A×

F, f /F
× → Gab

F is the global
Artin map.
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Enlarging F if necessary, we assume that the residue field of m is F. By definition, m
is G-automorphic of some level Km ⊂ G(AF, f ), which we fix temporarily. Now we
fix, for the rest of this section:

• a finite place q /∈ �l ∪ �(Km) of F at which ρ is unramified;
• a finite set � of finite places of F that contains �l ∪ {q} ∪ �(Km) (which means
that we can, and will, regard m as a maximal ideal of T�

O rather than TS
O);

• for each v ∈ �l , a compact open subgroup K 0
v ⊂ Km ∩ G(Fv).

We will use S to denote a finite set of places of F . In the following, S and K will
sometimes vary butwewill always impose the followinghypotheses on the pair (S, K ):

Hypotheses 4.9 • m is G-automorphic of level K ;
• S contains � ∪ �(K ) ∪ �∞;
• F×(K ∩ Z(AF, f )) ⊂ ker(ψ) (this implies that ψ is unramified outside of S);
• for all v ∈ �l , K ∩ G(Fv) ⊃ K 0

v ;
• K has the form K qKq for some K q ⊂ G(A

q
F, f ) and Kq ⊂ G(Fq).

Let ρ = ρm : GF → GL2(F), and note that ρ is absolutely irreducible and
unramified outside of S. For any place v of F , let ρv = ρ|GFv

. By taking a quadratic
extension ofF if necessary, wewill assume that for each g ∈ GF , all of the eigenvalues
of ρ(g) lie in F×.

As in [25, section 3.2], define R�
F,S(ρ) ∈ C∧

O to be the O-algebra pro-representing

the functor D�
F,S(ρ) : CO → Set which sends A to the set of equivalence classes of

tuples

(ρ, (βv)v∈�) (3)

where:

• ρ : GF,S → GL2(A) is a continuous lift of ρ;
• for each v ∈ �, βv ∈ 1 + M2(mA) (we think of this as basis for A2 lifting the
standard basis of F2);

• for each v | l the restriction ρ |GFv
is K 0

v -semistable, in the notation of Sect. 3.5;
• two such collections (ρ, (βv)v∈�) and (ρ′, (β ′

v)v∈�) are equivalent if there is
γ ∈ 1 + M2(mA) such that ρ′ = γργ −1 and β ′

v = γβv for all v ∈ �.

Now let D�,ψ
F,S (ρ) : CO → Set be the subfunctor of D�

F,S(ρ) consisting of the

tuples (ρ, (βv)v∈�) with det ρ = ψε−1, and let R�,ψ
F,S (ρ) ∈ C∧

O be the O-algebra

pro-representing D�,ψ
F,S (ρ).

Also define the unframed deformation ring RF,S(ρ) to be the O-algebra pro-
representing the functor CO → Set which sends A to the set of equivalence classes
of lifts ρ : GF,S → GL2(A) such that ρ|GFv

is K 0
v -semistable for all v | l, two such

lifts being equivalent if they are conjugate by an element of 1 + M2(mA). Finally,
define Rψ

F,S(ρ) to be the quotient of RF,S(ρ) on which det ρ(g) = ψ(g) for all

g ∈ GF,S . The unframed deformation rings RF,S(ρ) and Rψ
F,S(ρ) exist because ρ is
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absolutely irreducible. We will let ρuniv
S : GF,S → GL2(RF,S(ρ)) be a representa-

tive for the universal equivalence class of lifts of ρ, which induces a homomorphism
ρuniv
S,ψ : GF,S → GL2(R

ψ
F,S(ρ)).

There is a ‘forgetful’ map Rψ
F,S(ρ) → R�,ψ

F,S (ρ), which by [25, (3.4.11)] is

formally smooth of dimension j = 4|�| − 1, and so we may identify R�,ψ
F,S =

Rψ
F,S[[w1, . . . , w j ]].
Lastly, for any v ∈ �, let Rv = R

�,ψ |GFv

ρ|GFv
,O if v � l and Rv = R

�,ψ,K 0
v -st

ρ,O if v|l. If
(ρ, (βv)v∈�) is as in equation (3) then, for each v ∈ �, β−1

v ρβv is a lift of ρ that only
depends on the equivalence class of (ρ, (βv)v∈�). Restricting each β−1

v ρβv to GFv

induces a map

⊗̂v∈�Rv → R�,ψ
F,S (ρ).

We write Rloc for ⊗̂v∈�Rv .
The Taylor–Wiles–Kisin patching construction relies on carefully picking sets of

auxiliary primes to add to the level, using the following lemma (see [25] Proposi-
tion 3.2.5).

Lemma 4.10 Assume that ρ satisfies the following conditions:

(1) ρ|GF(ζl )
is absolutely irreducible.

(2) If l = 5 and the image of the projective representation proj ρm : GF →
GL2(F5) � PGL2(F5) is isomorphic to PGL2(F5), then ker proj ρm � GF(ζ5).
(This condition holds automatically whenever

√
5 /∈ F.)

Suppose that S = � ∪ �∞. Then there exist integers r , g ≥ 0 such that for each
n ≥ 1, there is a finite set Qn of primes of F for which:

• #Qn = r .
• Qn ∩ S = ∅.
• For any v ∈ Qn, Nm(v) ≡ 1 (mod ln).
• For any v ∈ Qn, ρ(Frobv) has two distinct eigenvalues in F×.
• There is a surjection Rloc[[x1, . . . , xg]] � R�,ψ

F,S∪Qn
(ρ) extending themap Rloc →

R�,ψ
F,S∪Qn

(ρ).

Moreover, we have dim Rloc = r + j − g + 1.

From now on, fix integers r , g and a sequenceQ = {Qn}n≥1 of sets of primes satis-

fying the conclusions of Lemma 4.10. Define Rn = Rψ
F,S∪Qn

(ρ), R�
n = R�,ψ

F,S∪Qn
(ρ)

for n ≥ 1 and

R∞ = Rloc[[x1, . . . , xg]] = ⊗̂v∈�Rv[[x1, . . . , xg]],

so that we have surjections R∞ � R�
n for all n. Also let R0 = Rψ

F,S(ρ) and R�
0 =

R�,ψ
F,S (ρ). Note that R�

n
∼= Rn[[w1, . . . , w j ]] for all n ≥ 0 and dim R∞ = r + j + 1.
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4.3 Patchedmodules over Shimura curves and sets

As before, we use S to denote a finite set of places of F containing � ∪ �∞, and K
to denote a compact open subgroup of G(AF, f ), such that S and K satisfy Hypothe-
ses 4.9. In particular, there is a maximal ideal m of TS

O that is G-automorphic of level
K . LetT(K , S) denote the image ofTS

O,m in EndO(H1(XK ,O)m[ψ]). ThenT(K , S)

is a finite rank freeO-algebra which is local with maximal idealm. Note that T(K , S)

depends on the choices of m and ψ but we suppress these from the notation.
As in section 6 of [15] we have the following:

Lemma 4.11 For any compact open K and set S as above, there exists a natural
surjection Rψ

F,S(ρ) � T(K , S) with the property that ρuniv
S,ψ (tr(Frobv)) �→ Tv and

ρuniv
S,ψ (det(Frobv)) �→ Nm(v)Sv for any v /∈ S. These maps are compatible with the

restriction maps T(K ′, S′) → T(K , S) for K ′ ⊆ K and S ⊂ S′.

If S ⊂ S′ are sets as above, then by Lemma 4.11 and the definitions we have a
commutative diagram

Rψ

F,S′ −−−−→ T(K , S′)⏐⏐� ⏐⏐�
Rψ
F,S −−−−→ T(K , S)

where the left hand vertical map and the horizontal maps are surjections. It follows that
the right hand vertical map, injective by definition, is an isomorphism. We therefore
drop S from the notation and write

TK = T(K , S)

for any K and S satisfying Hypotheses 4.9.
These Hecke algebras also act on the spaces H0(YKq ,O)m[ψ], by the following

lemma.

Lemma 4.12 For any compact open K and set S as above such that K is unramified
at q, the map TS

O,m → End(H0(YKq ,O)m[ψ]) factors through the quotient TK0(q).

Proof As H0(YKq ,O)m[ψ] is torsion-free, we may check this after inverting l. It is
then a consequence of the Jacquet–Langlands correspondence and the semisimplicity
of H0(YKq ,O)m[ψ] as a module over TS

O,m.

We now fix S to be the union of � ∪ �∞, and letQ = {Qn}n≥1 be the sequence of
sets of places provided by Lemma 4.10. For any n ≥ 1, let�n be the maximal l-power
quotient of

∏
v∈Qn

k×
v . Consider the ring �n = O[�n], and note that:

�n ∼= O[[y1, . . . , yr ]](
(1 + y1)l

e(n,1) − 1, . . . , (1 + yr )l
e(n,r) − 1

)
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where le(n,i) is the l-part of Nm(v)− 1 = #k×
v , so that e(n, i) ≥ n by assumption. Let

an = (y1, . . . , yr ) ⊆ �n be the augmentation ideal. Also define

�n = �n ⊗ F ∼= F[[y1, . . . , yr ]](
(1 + y1)l

e(n,1) − 1, . . . , (1 + yr )l
e(n,r) − 1

) = F[[y1, . . . , yr ]](
yl

e(n,1)

1 , . . . , yle(n,r)
r

)

Now let Hn = ker

⎛
⎝ ∏

v∈Qn

k×
v � �n

⎞
⎠. For any finite place v of F , there is a

group homomorphism U0(v) → k×
v given by

(
a b
c d

)
�→ ad−1 (mod v). Now let

UH (Qn) ⊆
∏

v∈Qn

U0(v) be the preimage of Hn ⊆
∏

v∈Qn

k×
v under the map

∏
v∈Qn

U0(v) �
∏

v∈Qn

k×
v

Finally, for any K (satisfying 4.9 for the set S), let Kn be the preimage of UH (Qn)

under

K ↪→ G(AF, f ) �
∏

v∈Qn

G(Fv).

We also let K0 = K , and remark that for n ≥ 1, Kn and S ∪ Qn satisfy 4.9; in
particular, Kn = K q

n Kq. For any n ≥ 0, let Tn,K = TKn .
Now for any n ≥ 1 consider the O-algebra

Tn,K [Uv]v∈Qn ⊆ EndO(H1(XKn ,O)m[ψ]).

Now for each v ∈ Qn fix a choice αv ∈ F× of eigenvalue for ρ(Frobv) (recall that
by assumption, for each v ∈ Qn ρ(Frobv) has two distinct eigenvalues in F×, and so
there are 2|Qn | ways to pick the system (αv)v∈Qn ). Now define the ideal

m̃n = (m,Uv − αv) ⊆ Tn,K [Uv]v∈Qn .

Now for each n ≥ 1, define T̃n,K = (
Tn,K [Uv]v∈Qn

)
m̃n

. Also define T̃0,K = T0,K
and m̃0 = m.

As in [39, section 2] we have:

Lemma 4.13 The ring T̃n,K is a finite Tn,K -algebra and m̃n is a maximal ideal of it
lying over m. The composite map

Rn → Tn,K → T̃n,K

is surjective. Moreover, there exist O-algebra maps �n → Rn and �n → T̃n,K

making the above map a surjection of �n-algebras.
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By definition,Tn,K [Uv]v∈Qn acts on H1(XKn ,O)m[ψ] and H1(XKn , F)m[ψ] (the
latter through its quotient Tn,K [Uv]v∈Qn ⊗O F). Also, by Theorem 2.11, if K is
unramified at q then Tn,K0(q) [Uv]v∈Qn ⊗O F acts on H0(YKq

n
, F)m[ψ].

So now for any n ≥ 0 we can define

Mn,K = H1(XKn ,O)m̃n ,ψ−1 = H1(XKn ,O)m̃n [ψ]∗,
Mn,K = Mn,K ⊗ F = H1(XKn , F)m̃n ,ψ−1 = H1(XKn , F)m̃n [ψ]∗,

and

Nn,Kq = H0(YKq
n
,O)m̃n ,ψ−1 = H0(YKq

n
,O)m̃n [ψ]∗,

Nn,Kq = H0(YKq
n
, F)m̃n ,ψ−1 = H0(YKq

n
, F)m̃n [ψ]∗.

The reason for dualizing is that the patching argument works more naturally with
homology rather than cohomology.

Note that Mn,K and Mn,K are naturally Tn,K -modules and, if K is unramified at q,
then Nn,Kq and Nn,Kq are naturally Tn,K0(q)-modules by Lemma 4.12. In particular
we may regard them all as Rn-modules.

We now have the following result, a standard ingredient in the patching argument
(see for instance [2,25], and [15]):

Proposition 4.14 For any n ≥ 1 and any K , the map �n → Rn from Lemma 4.13
makes Mn,K and Nn,Kq into finite rank free �n-modules. In particular, the maps
�n → Rn and �n → T̃n,K are injective. Moreover, the natural maps define an
isomorphism Rn/an ∼= R0 and isomorphisms Mn,K /an ∼= M0,K and Nn,Kq/an ∼=
N0,Kq of R0-modules.

Similarly Mn,K and Nn,Kq are finite rank free �n-modules and we have
Mn,K /an ∼= M0,K and Nn,Kq/an ∼= N 0,Kq .

In particular, rank�n Rn = rankO R0,

rank�n Mn,K = rank�n
Mn,K = rankO M0,K ,

and

rank�n Nn,Kq = rank�n
Nn,Kq = rankF N 0,Kq

for all n ≥ 1, and so these ranks are independent of n.

We can now define framed versions of all of these objects. First let

��
n = �n[[w1, . . . , w j ]] ∼= O[[y1, . . . , yr , w1, . . . , w j ]](

(1 + y1)l
e(n,1) − 1, . . . , (1 + yr )l

e(n,r) − 1
)

�
�
n = �n[[w1, . . . , w j ]] ∼= F[[y1, . . . , yr , w1, . . . , w j ]](

yl
e(n,1)

1 , . . . , yle(n,r)
r

)
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Now define

M�
n,K = Mn,K ⊗Rn R�

n = Mn,K ⊗�n ��
n = Mn,K [[w1, . . . , w j ]]

and define M
�
n,K , N

�
n,Kq , and N

�
n,Kq similarly. Also note that R�

n
∼= Rn ⊗�n ��

n
∼=

Rn[[w1, . . . , wr ]].
Now let S∞ = O[[y1, . . . , yr , w1, . . . , w j ]] and consider the ideals

In =
(
(1 + y1)

le(n,1) − 1, . . . , (1 + yr )
le(n,r) − 1

)
⊆ S∞.

Note that:

Lemma 4.15 For any open ideal a ⊆ S∞, we have In ⊆ a for all but finitely many n.

Proof As S∞/a is finite, and the group 1 + mS∞ is pro-l, the group (1 + mS∞)/a =
im(1 + mS∞ ↪→ S∞ � S∞/a) is a finite l-group. Since 1 + yi ∈ 1 + mS∞ for all i ,

there is an integer k ≥ 0 such that (1 + yi )�
k ≡ 1 (mod a) for all i = 1, . . . , r . Then

for any n ≥ k, e(n, i) ≥ n ≥ k for all i , and so indeed In ⊆ a by definition.

Thus we may apply the results of Sect. 4.1 with this ring S∞ and these ideals In .
Note that

dim S∞ = 1 + r + j = dim R∞.

Let n = (y1, . . . , yr , w1, . . . , w j ) ⊆ S∞, and identify ��
n with S∞/In via the

above isomorphism.
Tensoring everything in Proposition 4.14 with��

n , we get that M�
n,K is free of rank

rankO M0,K over ��
n for all n with M�

n,K /n ∼= Mn,K /an ∼= M0,K . Similar statements

hold for M
�
n,K , N

�
n,Kq , and N

�
n,Kq .

Summarizing the results of this section in the language of Sect. 4.1, we have:

Proposition 4.16 The sequence R� = {R�
n }n≥1 is a patching algebra and R∞ is a

cover of R�. The sequences

M�
K = {M�

n,K }n≥1 and N �
Kq = {N�

n,Kq}n≥1

are MCM patching R�-modules, and the sequences

M
�
K = {M�

n,K }n≥1 and N
�
Kq = {N�

n,Kq}n≥1

are MCM residual patching R�-modules.

For all n ≥ 1 we have R�
n /n ∼= R0 and M�

n,K /n ∼= M0,K , M
�
n,K /n ∼= M0,K ,

N�
n,Kq/n ∼= N0,Kq and N

�
n,Kq/n ∼= N 0,Kq as R0-modules.
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So now define the patched modules:

M∞,K = P(M�
K ),

M∞,K = P(M
�
K ),

N∞,Kq = P(N �
Kq), and

N∞,Kq = P(N
�
Kq).

All of thesemodules are technically framedobjects but, following standard convention,
we are suppressing the � in our notation.

By Corollary 4.6 it follows that M∞,K and N∞,Kq are maximal Cohen–Macaulay
R∞-modules, and M∞,K and N∞,Kq are maximal Cohen–Macaulay R∞ =
R∞/(	)-modules.

Moreover, Proposition 4.4 gives that M∞,K /n ∼= M0,K , M∞,K /n ∼= M0,K ,
N�
n,Kq/n ∼= N0,Kq , and N∞,Kq/n ∼= N 0,Kq , as R0-modules.
Now consider the filtration from Theorem 2.11. By dualizing this, completing at

m, and applying − ⊗�n ��
n we get a filtration

0 = V0 ⊆ V1 ⊆ V2 ⊆ V3 = M
�
n,K0(q)

of R�
n -modules, with isomorphisms

V1
∼−→ N

�
n,Kq ,

V2/V1
∼−→ (M

�
n,K )⊕2,

and

V3/V2
∼−→ N

�
n,Kq

for all n ≥ 1, where we are writing K = K qG(OF,q) and K0(q) = K qU0(q) as in
Sect. 2.

Thus Corollary 4.8 and the above work give the following:

Theorem 4.17 There is a filtration

0 = V0 ⊆ V1 ⊆ V2 ⊆ V3 = M∞,K0(q)

of R∞-modules, with isomorphisms

V1
∼−→ N∞,Kq ,

V2/V1
∼−→ (M∞,K )⊕2
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and

V3/V2
∼−→ N∞,Kq .

4.4 Patching functors

Theorem 4.17 provides a link between the modules M∞,K and N∞,Kq . However, in
order to use this to deduce properties of M∞,K from those of N∞,Kq we will need
additional information about the structure of M∞,K0(q), namely a flatness statement
for a particular submodule of M∞,Kq(StF) ⊂ M∞,K0(q).

To prove this, we will first need to introduce the notion of a patching functor,
σ �→ M∞,K (σ ). We will largely follow the presentation in [15].

We consider pairs (S, K ) satisfying 4.9, and we take K to be of the form K qKq

for a fixed K q ⊆ G(A
q
F, f ). For any n ≥ 0 let K q

n ⊆ G(A
q
F, f ) be as in Sect. 4.3.

We note that

M∨
n,K = H1(XKq

n Kq
,O)∨

m,ψ−1 = H1(XKq
n Kq

, E/O)m[ψ]

for any n ≥ 0.
Define

�n,Kq =
⎡
⎣lim−→

Kq

M∨
n,KqKq

⎤
⎦

∨
=

⎡
⎣lim−→

Kq

[
H1(XKq

n Kq
, E/O)m[ψ]

]⎤⎦
∨

where the direct limit is taken over all compact open subgroups Kq ⊆ G(OF,q). Note
that this carries a continuous action of G(OF,q) ∼= GL2(OF,q).

As the action of TS
m on H1(XKqKq ,O)m[ψ] factors through TKqKq , the action of

TS
m on �Kq factors through

TKq = lim←−
Kq

TKqKq

Note that by Lemma 4.11 we have natural surjections Rψ
F,S(ρ) � TKqKq for all Kq,

and so we have a surjection Rψ
F,S(ρ) � TKq

n
.

Now following [15], let C be the category of finitely generated O-modules with
a continuous action of G(OF,q). Let ψ = (det ρ|Iqε)◦Art : O×

F,q → F× be the
character corresponding to det ρ|Iq : Iq → F× via local class field theory. Write
Z = Z(G(OF,q)) ∼= O×

F,q and let CZ be the subcategory of C consisting of those

σ ∈ C possessing a central character which lifts ψ and agrees with ψ on Iq (in other
words, is unramified). Also let CfinZ be the subcategory of finite length objects of CZ .
Remark 4.18 In [15], the condition that the central character of σ agrees with ψ is
not imposed; this necessitates a ‘twisting’ argument. We only need to patch σ with
unramified central character, so we avoid this technicality.
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Now for any σ ∈ CZ and any n ≥ 0, define

Mn,Kq(σ ) = H1(XKq
n G(OF,q),Lσ∨)m[ψ]∨.

For any σ , this is a TKq
n
-module, and hence an Rn-module. Thus we may define the

R�
n -module:

M�
n,Kq(σ ) = Mn,Kq(σ ) ⊗Rn R�

n = Mn,Kq(σ )[[w1, . . . , w j ]].

Now as in section 6 of [15], if σ ∈ CfinZ ,M�
Kq(σ ) = {M�

n,Kq(σ )}n≥1 is a weak patching

R�-module and thus we may define M∞,Kq(σ ) = P(M�
Kq(σ )). We can extend this

definition to all of CZ by setting

M∞,Kq(σ ) = lim←−
k

M∞,Kq(σ/	 kσ).

This definition agrees with the “patching functor” constructed in section 6.4 of [15],
up to a technicality: the construction in [15] factors out the Galois representation in
the indefinite case, whereas we have not done so. In the notation of [15] the module
M∞,Kq(σ ) we have constructed is S(σ )∨m ∼= M∞(σ ) ⊗T(σ )m ρ(σ)m. However, this
is simply isomorphic to M∞(σ )⊕2 as a T(σ )m-module (again in the notation of [15])
and so this does not present an issue. We therefore have:

Theorem 4.19 ([15]) M∞,Kq(σ ) satisfies the following properties:

(1) The functor σ �→ M∞,Kq(σ ), from CZ to the category of finitely generated R∞-
modules, is exact.

(2) For any σ ∈ CZ , M∞,Kq(σ )/n ∼= M0,Kq(σ ).
(3) If σ ∈ CZ is a finite freeO-module, then M∞,Kq(σ ) is maximal Cohen–Macaulay

over R∞.
(4) If σ ∈ CZ is a finite dimensional F-vector space, then M∞,Kq(σ ) is maximal

Cohen–Macaulay over R∞.

From now on assume that q satisfies the assumptions of Sect. 3.3. That is, Nm(q) ≡
1 (mod l), ρ is unramified at q and ρ(Frobq) =

(
1 1
0 1

)
. Thus the computations of

Sect. 3.3 will apply to Rq. Under the map Rq ↪→ Rloc ↪→ R∞, we may view any
R∞-module as being a Rq-module.

In addition to the results listed in Theorem 4.19, [15] also describes the supports
of M∞,Kq(σ ) as Rq-modules, for certain σ ’s corresponding to inertial types of Fq. In
order to avoid having to give a formal treatment of inertial types, we will simply state
their results for the specific modules σ = 1A,StA and σ

ps
A , for A = O, F, defined in

section 3.5 (noting that we have assumed that O = W (F)[ζ + ζ−1]):
Proposition 4.20 ([15]) Viewing each M∞,Kq(σ ) as an Rq-module,

(1) M∞,Kq(1O) (resp. M∞,Kq(1F)) is supported on Rnr
q (resp. R

nr
q ),
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(2) M∞,Kq(StO) (resp. M∞,Kq(StF)) is supported on Runip
q (resp. R

unip
q ),

(3) M∞,Kq(σ
ps
O ) (resp. M∞,Kq(σ

ps
F

)) is supported on Rps
q (resp. R

ps
q ).

Proof Follows fromProposition 3.10 and the fact thatM∞,Kq(−) is a patching functor
in the sense of [15].

We also record the support of the modules N∞,Kq and N∞,Kq from Sect. 4.3 here.

Proposition 4.21 As Rq-modules, N∞,Kq is supported on RN
q and N∞,Kq is supported

on R
N
q .

Proof As N∞,Kq = N∞,Kq ⊗O F and R
N
q = RN

q ⊗O F, it suffices to prove the
statement for N∞,Kq .

By the definition of N∞,Kq it suffices to prove that, for any n ≥ 1, the map

γn : Rq → R�
n → EndF(N�

n,Kq)

factors through Rq � RN
q . We will prove this using Proposition 3.10.

Let TN
n,K be the image of T

S∪Qn
O in End(Nn,Kq). Note that the map Rn →

EndO(Nn,Kq) factors through TN
n,K . Define T

N ,�
n,K = TN

n,K ⊗Rn R
�
n

∼= TN
n,K [[w1, . . . ,

w j ]]; thus γn defines a map Rq → T
N ,�
n,K . Since TN

n,K is reduced and l-torsion free, it
suffices to show that, for every O-algebra homomorphism

x : T
N ,�
n,K → E,

the composition x ◦ γn factors through RN
q .

To x we have an associated homomorphism

ρx : GF,S∪Qn → GL2(E)

such that, for every v /∈ S∪Qn , tr(ρx (Frobv)) = x(Tv). In particular, the isomorphism
class of ρx is the Galois representation associated to x |Tn,K .

The composition x ◦ γn is the homomorphism Rq → E corresponding to ρx |GFq
.

By local-global compatibility and properties of the Jacquet–Langlands correspon-
dence, ρ|GFq

is an inertially unipotent representation corresponding to a discrete series
representation under the local Langlands correspondence. It follows thatρ|IFq is a non-
trivial unipotent representation, and therefore that x ◦ γn : Rq → E factors through
Rq � RN

q by Proposition 3.10. The result follows.

We finish this section by relating the patching functors of this section to the patched
modules M∞,K considered in Sect. 4.3.

Proposition 4.22 For any compact open subgroup Kq ⊆ G(OF,q) we have

M∞,Kq

(
Ind

G(OF,q)

Kq
1F

) ∼= M∞,KqKq .

123



Ihara’s Lemma for Shimura curves... 223

In particular, letting K = K qG(OF,q) and K0(q) = K qU0(q), M∞,K ∼=
M∞,Kq(1F) and

M∞,K0(q)
∼= M∞,Kq(1F ⊕ StF) ∼= M∞,Kq(1F) ⊕ M∞,Kq(StF).

Proof By the fact that m is non-Eisenstein, we have

Mn,Kq

(
Ind

G(OF,q)

Kq
1F

)
= HomG(OF,q)

(
H1(XKqG(OF,q), F)m[ψ], IndG(OF,q)

Kq
1F

)

= HomKq

(
H1(XKqG(OF,q), F)m[ψ],1F

)

= Mn,KqKq .

It follows that M�
n,Kq

(
Ind

G(OF,q)

Kq
1F

) ∼= M
�
n,KqKq

and so

M∞,Kq

(
Ind

G(OF,q)

Kq
1F

)
= P

(
M�∞,Kq

(
Ind

G(OF,q)

Kq
1F

)) ∼= P
(
M KqKq

) = M∞,KqKq .

The last two statements follow from Ind
G(OF,q)

G(OF,q) 1F = 1F and Ind
G(OF,q)

U0(q) 1F = 1F ⊕
StF. The statement that M∞,Kq(1F ⊕ StF) ∼= M∞,Kq(1F) ⊕ M∞,Kq(StF) is just a
consequence of the exactness of M∞,Kq(−).

Corollary 4.23 The R∞-module

P = M∞,Kq(1F) ⊕ M∞,Kq(StF)

has a filtration

0 = V0 ⊆ V1 ⊆ V2 ⊆ V3 = P

with V1 ∼= V3/V2 ∼= N∞,Kq and V2/V1 ∼= M∞,Kq(1F)⊕2.

Proof By Proposition 4.22 this is just a rephrasing of Theorem 4.17.

5 Commutative algebra lemmas

The following is a mild generalisation of the “miracle flatness criterion”, for which
see [28] Theorem 23.1 or [37, Lemma 00R4]. A similar generalisation, in the setting
of noncommutative completed group rings, also appears in [20].

Lemma 5.1 Let A → R be a local homomorphism of noetherian local rings, and let
M be a finite R-module. Let m be the maximal ideal of A. Suppose that:

(1) A is regular;
(2) M is maximal Cohen–Macaulay; and
(3) dim R = dim A + dim R/mR.

123



224 J. Manning, J. Shotton

Then M is a flat A-module.

Proof The proof is essentially the same as that of [37, Lemma 00A4]. If M is zero,
the result is clear; so suppose that M is nonzero. The proof is then by induction on
d = dim A. The base case d = 0 is trivial, as then A is a field.

In general, suppose the lemma is true when dim A < d. Choose x ∈ m \ m2.
Then x is the first element in a regular system of parameters (x, x2, . . . , xd) for A.
The third condition implies that (x, x2, . . . , xd) extends to a system of parameters
(x, x2, . . . , xd , xd+1, . . . , xe) for R which is therefore also a system of parameters
for M (by the hypothesis that M is maximal Cohen–Macaulay). Since M is Cohen–
Macaulay, this is a regular sequence on M . In particular, x is a non-zerodivisor on
M .

Now, A/x A is regular of dimension dim A − 1, dim(R/x R) = dim R − 1 (since
x is part of a system of parameters for R), and M/xM is a maximal Cohen–
Macaulay R/x R-module. So, by induction, M/xM is a flat A/x A-module. Moreover,
TorA1 (M, A/(x)) = 0 as x is a non-zerodivisor on M . Therefore, by the local criterion
for flatness in the form of [37, Lemma 00ML], M is a flat A-module.

Lemma 5.2 Let A = F[[X ,Y ]]/(X2Y ) and let R be an A-algebra. Let 0 → L →
M → N → 0 be a short exact sequence of R-modules such that

(1) M is a flat A-module;
(2) (X) ⊂ annA(L);
(3) (XY ) ⊂ annA(N ).

Then N = M ⊗A A/(XY ) and so N is a flat A/(XY )-module. Moreover we have an
isomorphism N/XN ∼= L of R-modules.

Proof By the snake lemma, as multiplication by X is zero on L , there is an exact
sequence of R modules

0 → L → M[X ] → N [X ] → L → M/XM → N/XN → 0.

But we have an exact sequence 0 → (XY ) → A → (X) → 0 (the second map being
multiplication by X ). As M is flat this is still exact when tensored over A with M , and
for any ideal I we can identify I ⊗A M with I M ⊂ M . ThusM[X ] = XYM . But as N
is killed by XY , this implies that the map M[X ] → N [X ] is zero. From the displayed
exact sequence, we see that L = M[X ] = XYM , and so N = M/L = M/XYM .
This is flat over A/(XY ).

Now as L = XYM and M/XM is killed by X , the map L → M/XM in the above
exact sequence is zero, which implies that the map N [X ] → L is an isomorphism of
R-modules.

But nowwehave an exact sequence 0 → A/(X)
·Y−→ A/(XY )

·X−→ X A/(XY ) → 0.

As N is flat over A/(XY ), the sequence of R-modules 0 → N/XN
Y−→ N

X−→ XN →
0 is exact, and sowe get the desired isomorphism N/XN ∼= N [X ] ∼= L of R-modules.

Lemma 5.3 Let B = F[[X ,Y ]]/(XY ) and let R be a complete local noetherian B-
algebra with residue field F. Suppose that L, M, N and P are R-modules such that:
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(1) M is flat over B;
(2) (Y ) ⊂ annB(N ) and N is flat over B/(Y );
(3) there is an isomorphism of R-modules L

∼−→ M/XM;
(4) there is an isomorphism of R-modules α : P ∼−→ L ⊕ M;
(5) there is a filtration 0 ⊂ P1 ⊂ P2 ⊂ P by R-modules and isomorphisms of

R-modules P1
∼−→ N, P2/P1

∼−→ L ⊕ L, and P/P2
∼−→ N.

Then there is a short exact sequence of R-modules

0 → N → M/Y → N → 0.

Proof. Since L is flat over B/X by points (1) and (3), it has no Y -torsion, and so α

induces an isomorphism P[Y ] ∼−→ M[Y ]. From the short exact sequence

0 → P1 ∼= N → P2 → L ⊕ L → 0

of point (5), we have P2[Y ] = P1[Y ] ∼= N .
From the other short exact sequence

0 → P2 → P → N → 0

of point (5), we get an exact sequence

0 → P2[Y ] ∼= N → P[Y ] ∼= M[Y ] → N [Y ] = N

By the flatness of M , we can identify M[Y ] with X · M , and so the image of M[Y ] in
N is XN . Since N is flat over B/(Y ), N ∼= XN . Thus we have a short exact sequence

0 → P2[Y ] ∼= N → M[Y ] ∼= XM → X · N ∼= N → 0.

Finally, since M is flat over B there is an isomorphism M/YM
∼−→ XM . We get

the desired short exact sequence:

0 → N → XM ∼= M/YM → N → 0.

6 Ihara’s lemma

Let D be a quaternion division algebra over F ramified at exactly one infinite place,
so that we are in the indefinite case of Sect. 2. Suppose that p is a finite place of F at
which D is unramified.
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6.1 Statements

Let K ⊆ G(AF, f ) be unramified at p and sufficiently small, and let S be any finite
set of finite places of F containing �(K ) ∪ �l ∪ {p} ∪ �∞. There are two natural
degeneracy maps π1, π2 : XK0(p) → XK , defined in section 2.11.

Conjecture 6.1 Suppose that � is the local system on XK attached to a finite-
dimensional continuous Fl -representation of Kp. Then for any non-Eisenstein
maximal ideal m of TS

Zl
the map

π∗
1 ⊕ π∗

2 : H1(XK ,�)m ⊕ H1(XK ,�)m → H1(XK0(p), �)m

is injective.

For � the constant sheaf Fl , this becomes:

Conjecture 6.2 For any non-Eisenstein maximal ideal m of TS
Zl
, the map

π∗
1 ⊕ π∗

2 : H1(XK , Fl)m ⊕ H1(XK , Fl)m → H1(XK0(p), Fl)m

is injective.

We also have an equivalent dualized version:

Conjecture 6.3 For any non-Eisenstein maximal ideal m of TS
Zl
, the map

(π1,∗, π2,∗) : H1(XK0(p), Fl)m → H1(XK , Fl)m ⊕ H1(XK , Fl)m

is surjective.

Lemma 6.4 Conjecture 6.2 (or, equivalently, Conjecture 6.3) for all K implies Con-
jecture 6.1 for all K .

Proof Suppose that Conjecture 6.2 holds for all K . Suppose that � and m are as in
the statement of Conjecture 6.1, and that � is associated to a representation V of K p.
Let Hp ⊂ K p be an open subgroup that acts trivially on V , and H = HpKp. Let
f : XH → XK be the projection. The Hochschild–Serre spectral sequence provides
a (Hecke-equivariant) exact sequence

0 → H1(K/H , H0(XH , f ∗�)) → H1(XK ,�) → H0(K/H , H1(XH , f ∗�)).

After localizing at m, the first term vanishes by Lemma 2.3. Noting that f ∗� is
constant, we get an inclusion

H1(XK ,�)m ↪→ H1(XH , Fdim V
l )m

that commutes with the maps π∗. Since Conjecture 6.2 holds for the subgroup H by
assumption, we deduce Conjecture 6.1 for the subgroup K .
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Our main result is the following:

Theorem 6.5 If l > 2, thenConjectures 6.1, 6.2 and 6.3 are true for any non-Eisenstein
maximal ideal m of TS

Zl
satisfying the conditions:

(1) l|#ρm(GF ). That is, m is not exceptional.
(2) If l = 5 and the image of the projective representation proj ρm : GF →

GL2(F5) � PGL2(F5) is isomorphic to PGL2(F5), then ker proj ρm � GF(ζ5).
(This condition is automatically satisfied whenever

√
5 /∈ F.)

Remark 6.6 Condition (1) implies the Taylor–Wiles condition that ρm|GF(ζl )
is abso-

lutely irreducible. Condition (2) is simply the other Taylor–Wiles condition (see [25,
3.2.3]).

The reason for including the stronger assumption thatm is not exceptional, instead
of just the usual Taylor–Wiles conditions, is that this assumption will be necessary for
picking the auxiliary prime q. See Lemma 6.9 below.

Remark 6.7 We have assumed that K is sufficiently small, for convenience. This
assumption could be removed by the standard device of introducing auxiliary level
structure at a place q0 at which there are no congruences, as in [27] section 4.2 or [15]
section 6.2.

6.2 Definite quaternion algebras

Let D be a totally definite quaternion algebra over F , unramified at p. Let G be the
associated algebraic group. If H ⊂ G(AF, f ) is a compact open subgroup unramified
at p then we have degeneracy maps π1, π2 : YH0(p) → YH . Let S be a finite set of
places of F containing �l ∪ �∞ ∪ {p} and all places at which H or D ramify. The
following version of Ihara’s Lemma is known:

Theorem 6.8 If H ⊆ G(AF, f ) is unramified at p, then for any non-Eisensteinmaximal
ideal m of TS

Zl
, the map

π∗ = π∗
1 + π∗

2 : H0(YH , Fl)m ⊕ H0(YH , Fl)m → H0(YH0(p), Fl)m

is injective.

Proof Versions of this have been proved by Ribet (over Q, [31] Theorem 3.15) and
Taylor (over F , [38] Lemma 4). There it is proved that with Zl coefficients, with-
out localizing at m, π∗ has saturated image, from which the theorem may be easily
deduced—but the method for doing this actually directly gives the result in the form
we need. For Q this is carried out in [13] Lemma 2 and the general case is no harder.
We include the proof for completeness.

Suppose that ( f , g) is in the kernel of π∗. Regard f and g as H -invariant functions
on G(F)\G(AF, f ). Then f (x) = −g(xω) for all x in this quotient, where ω =(

	p 0
0 1

)
(making use of the isomorphism G(Fp) ∼= GL2(Fp)). Then f is invariant
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under H and ω−1Hω. These subgroups generate a subgroup containing HpSL2(Fp),

underwhich f is invariant. LetG
′
be the subgroup ofG of elementswith reduced norm

1. Then by the strong approximation theorem in G
′
, the function f factors through

the reduced norm map:

ν : G(F)\G(AF, f )/G
′
(AF, f )H → F×\A×

F, f /ν(H).

But the functions factoring through this map form a module over TS
H that is supported

on Eisenstein maximal ideals (the argument is similar to that of Proposition 2.3). The
theorem follows.

6.3 The auxiliary prime

Recall our assumption that l|#ρm(GF ). After conjugating ρm if necessary, we may

thus assume that ρm(GF ) contains the matrix

(
1 1
0 1

)
. We now get the following:

Lemma 6.9 There are infinitely many primes q for which:

(1) q /∈ � ∪ �(K ) ∪ �l ∪ {p}
(2) ρm is unramified at q
(3) Nm(q) ≡ 1 (mod l)

(4) ρm(Frobq) =
(
1 1
0 1

)

Proof. All but finitely many primes satisfy (1) and (2), so it suffices to find infinitely
many primes satisfying (3) and (4).

Pick a number field L/F for which F(ζl) ⊆ L and ρm : GF → GL2(Fl) fac-
tors through Gal(L/F). Let ε : Gal(L/F) � Gal(F(ζ�)/F) ↪→ (Z/lZ)× be the
cyclotomic character. By the Chebotarev density theorem, it suffices to find some

σ ∈ Gal(L/F) for which ρm(σ ) =
(
1 1
0 1

)
and ε(σ ) = 1 ∈ (Z/lZ)×.

Now by our assumption on the image of ρm, there is some σ0 ∈ Gal(L/F) for

which ρm(σ0) =
(
1 1
0 1

)
. Let σ = σ 1−l

0 ∈ Gal(L/F). Then we indeed have

ρm(σ ) = ρm(σ0)
1−l =

(
1 1
0 1

)1−l

=
(
1 1
0 1

)

and

ε(σ ) = ε(σ0)
l−1 = 1 ∈ (Z/lZ)×.

For the rest of the proof we fix such a prime q. Note that it satisfies the requirements
of sections 2.13 and 3.3.We let D be a definite quaternion algebra ramified at�∪{q, τ }.
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6.4 The proof

Choose F large enough that ρm is defined over F, and let (E,O, F) be the coefficient
system satisfying Hypothesis 3.1. Letψ : GF → O× be a finite order character lifting
det(ρm)ε, and also writeψ for the characterψ ◦ArtF ofA×

F, f /F
×. Wemake sure that

F×(K ∩ Z(AF, f )) ⊂ ker(ψ) and that the prime q is chosen so that ψ is unramified
at q.

Let S be as in Sect. 6.1. Enlarging S if necessary (which is allowed, byLemma4.11),
we assume that q ∈ S. We write � for the set of finite places in S. The results of
Sect. 2 imply that there is a filtration of H1(XK0(q), F)m[ψ] (by TS-submodules)
whose graded pieces are

H0(YKq , F)m[ψ], H1(XK , F)m[ψ]⊕2, H0(YKq , F)m[ψ].

In Sect. 4 we explain how these cohomology groups and this filtration (more pre-
cisely, their duals) may be ‘patched’ using the Taylor–Wiles method. For each place
v ∈ � let Rv be

• if v � l, the universal fixed determinant framed deformation ring R�,ψ

ρm|GFv
,O of

ρm|GFv
;

• if v | l, the potentially semistable (over a fixed extension depending only
on K ∩ G(Fv), and of parallel Hodge–Tate weights {0, 1}) deformation ring

R�,ψ,K∩G(Fv)-st
ρm|GFv

,O defined in Sect. 3.5.

For some integers g, d ≥ 0 (determined in Sect. 4, with d = r + j in the notation
of that section) we let

R∞ = (⊗̂v∈�Rv

) [[X1, . . . , Xg]]

and

S∞ = O[[Y1, . . . ,Yd ]],

and recall that d and g were chosen so that R∞ and S∞ have the same dimension.
Then in Sect. 4.4 we constructed an injective homomorphism S∞ → R∞, maximal

Cohen–Macaulay R∞-modules M∞,K and N∞,Kq , and an exact functor M∞,Kq from
the category of finitely-generatedO-modules with a continuous action of GL2(OF,q)

(satisfying a condition on the central character) to the category of finitely-generated
R∞-modules. Moreover, M∞,Kq has the property that if σ is a finite free O-module
(resp. a finite dimensional F-vector space) then M∞,Kq(σ ) is maximal Cohen–
Macaulay over R∞ (resp. R∞ = R∞ ⊗O F). These are equipped with isomorphisms

M∞,K ⊗S∞ F ∼= H1(XK , F)m,ψ−1

and

N∞,Kq ⊗S∞ F ∼= H0(YKq , F)m,ψ−1 .
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Table 1 Supports of patched
modules

Patched module M∞ Quotient R?
q

M∞,Kq (1O) Rnr
q

M∞,Kq (StO) R
unip
q

N∞,Kq RN
q

M∞,Kq (σ
ps
O ) R

ps
q

In Table 1, for various patched modules, we write down a corresponding quotient
R?
q of Rq on which they are supported. Here ? is an element of {nr, N , unip, ps}, and

we write

R?
q = R?,ψ

ρ|GFq
,O

and

R
?
q = R?

q ⊗O F,

as shorthand for the rings defined in Sect. 3.3. The claims of Table 1 follow from
the properties of the Jacquet–Langlands correspondence and local-global compat-
ibility, and are the content of Propositions 4.20 and 4.21. Furthermore, for ? ∈
{nr, N , unip, ps} we define the quotient

R?∞ = R?
q⊗̂

(⊗̂v∈�\{q}Rv

) [[X1, . . . , Xg]]

of R∞.
The filtration provided by Theorem 2.11 may be patched as in Sect. 4. Thus (see

Corollary 4.23) there is a filtration of

P = M∞,K0(q) = M∞,Kq(1F) ⊕ M∞,Kq(StF)

by R∞-modules

0 ⊂ P1 ⊂ P2 ⊂ P (�)

together with isomorphisms

N∞,Kq
∼−→ P1,

N∞,Kq
∼−→ P/P2,

and

M∞,Kq(1F)⊕2 ∼−→ P2/P1.
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To go further, we need the structure of the local deformation rings at q. The defor-
mation rings Rnr

q , RN
q and Rps

q are regular by Propositions 3.5 and 3.6. Therefore, by
Lemma 5.1, we have:

Proposition 6.10 (1) M∞,Kq(1O) is flat over Rnr
q .

(2) N∞,Kq is flat over RN
q .

(3) M∞,Kq(σ
ps
O ) is flat over Rps

q .

By Proposition 3.7, there are isomorphisms

R
unip
q

∼−→ F[[X ,Y , P, Q, R]]/(XY )

and

R
ps
q

∼−→ F[[X ,Y , P, Q, R]]/(X2Y )

compatible with the natural surjection R
ps
q � R

unip
q and so that

R
nr
q = R

unip
q /(X)

and

R
N
q = R

unip
q /(Y ).

By section 3.5, equation (2), we have an exact sequence

0 → M∞,Kq(1F) → M∞,Kq(σ
ps
F

) → M∞,Kq(StF) → 0.

Proposition 6.11 The module M∞,K (StF) is flat over Runip
q and there is an isomor-

phism

M∞,Kq(StF) ⊗
R
unip
q

R
nr
q

∼−→ M∞,Kq(1F) ∼= M∞,Kq .

Proof ByProposition 6.10 and the above exact sequence, the hypotheses of Lemma5.2
apply with R = Runip

∞ ⊗O F (made into an F[[X ,Y ]]/(X2Y )-algebra in the evident
way), L = M∞,Kq(1F), M = M∞,Kq(σ

ps
F

), and N = M∞,Kq(StF). The proposition
follows.

Now we know that M∞,Kq(StF) is flat, the filtration (�) can be used to “transfer
information” between N∞ and M∞. More precisely, we have:

Proposition 6.12 There is a short exact sequence of R∞-modules

0 → N∞,Kq → M∞,Kq(StF) ⊗
R
unip
q

R
N
q → N∞,Kq → 0.
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Proof By Proposition 6.11 and the filtration (�), the hypotheses of Lemma 5.3 apply
with R = Rps∞ ⊗O F (made into an F[[X ,Y ]]/(XY )-algebra in the evident way),
L = M∞,Kq(1F), M = M∞,Kq(StF), P = M∞,K0(q), N = N∞,Kq , and P1 and P2
given by (�). The proposition follows.

Proof of Theorem 6.5 Now we are ready to prove our main result. We may carry out
the constructions and arguments above equally well with K q replaced by K0(p)

q in
a way compatible with the degeneracy maps π∗. We therefore obtain a commuting
diagram

0 −−−−→ N∞,K0(p)q −−−−→ M∞,K0(p)q(StF)/(Y ) −−−−→ N∞,K0(p)q −−−−→ 0

π∗
⏐⏐� π∗

⏐⏐� π∗
⏐⏐�

0 −−−−→ (
N∞,Kq

)⊕2 −−−−→ M∞,Kq(StF)⊕2/(Y ) −−−−→ (
N∞,Kq

)⊕2 −−−−→ 0.

By Theorem 6.8 the outer maps are surjective after applying ⊗S∞F, and so by
Nakayama’s Lemma they are surjective. It follows that the middle map is surjective,
and by Nakayama’s Lemma again that the map

π∗ : M∞,K0(p)q(StF) → M∞,Kq(StF)⊕2

is surjective. Tensoring with R
nr
q and applying Proposition 6.11 this gives that

M∞,K0(p) → (
M∞,K

)⊕2
is surjective. Applying ⊗S∞F, we see that

π∗ : H1(XK0(p), F)m,ψ−1 → H1(XK , F)⊕2
m,ψ−1

is surjective. By Nakayama’s Lemma, we obtain that

π∗ : H1(XK0(p), F)m → H1(XK , F)⊕2
m

is surjective. This proves Conjecture 6.3 and hence Theorem 6.5 for this m.
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