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Computational Efficiency in Continuous (and Discrete!) Time Models – Comment on 
Hecht and Zitzmann
Charles Driver

Max Planck Institute for Human Development

ABSTRACT
Continuous-time models generally imply a stochastic differential equation for latent processes, coupled to 
a measurement model. Various computational issues can arise, and there are different estimation 
approaches, with different trade-offs. It has been claimed that a SEM style continuous-time model can 
reduce run times for Bayesian estimations of continuous-time models from hours to minutes. However 
this claim is not true in the general case, but requires that individuals are characterized by the same 
covariance and means structure, and that the number of time points is not large. While such simplifica
tions can be valuable, and indeed are in use in existing software when appropriate, they are in general 
quite restrictive. The hierarchical Bayesian form of ctsem was, for instance, developed precisely to 
estimate models where these restrictions do not hold. To try to shed some more light on these aspects, 
I discuss the related issues herein.
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Hecht and Zitzmann (Hecht & Zitzmann, 2020) present 
a Bayesian SEM style approach to the estimation of continuous 
time dynamic systems models, and claim dramatic computational 
improvements over the hierarchical Bayesian instantiation 
(Driver & Voelkle, 2018) of the ctsem (Continuous Time 
Structural Equation Modeling) software (Driver et al., 2017). In 
the form addressed, ctsem offers a hierarchical Bayesian approach 
to continuous time state space modeling, wherein dynamic system 
and measurement equation parameters can be estimated for each 
individual. These parameters are modeled as arising from a higher 
level multivariate population distribution, as well as possible cov
ariates. Kalman filtering procedures (likelihood calculations con
ditional on the previous time point) are used to integrate across 
the unknown states of the latent processes – in a CT (continuous 
time) conception, latent states are unknown at the specific instant 
of observation, but also unknown across the time interval between 
observations. In contrast to discrete time counterparts such as 
cross lagged panel models, the CT approach accounts for timing 
differences between measurement occasions, and also allows for 
an accurate representation of typically hypothesized data generat
ing processes in longitudinal contexts (Aalen et al., 2012). 
Correcting these problems inherent to the discrete time approach 
thereby allows interpretable hypothesis testing and regularization 
opportunities with respect to a (typically) more realistic data 
generating process. In further contrast to typical SEM style mod
els, ctsem allows individual differences across all parameters of the 
model, and individual differences in the timing of observations. 
The downside of such flexibility is that there is limited scope to re- 
use calculations from one individual for further individuals, and 
computational time (per likelihood evaluation) scales roughly 
linearly with increasing subjects.

Hecht and Zitzmann`s claimed computational improvements 
largely arise from restricting individual differences to those which 
can be easily integrated out (i.e. intercept parameters), and ensur
ing that all individuals share the same pattern of observation 
timing. In such a case, the model implied means and covariance 
matrix only needs to be computed for a single individual, and 
scaling up to many individuals is relatively inexpensive. Hecht and 
Zitzmann briefly point out that they did not examine these issues, 
but appear content to propagate general conclusions regarding the 
superiority of their favored approach regardless. This approach 
they favor is actually what is used in the original mixed effects 
implementation of ctsem (Driver et al., 2017), which used 
OpenMx to implement CT models using a RAM (McArdle, 
2005) formulation of SEM. In the case that individuals all share 
the same observation timing pattern, then OpenMx detects that 
there is no need to re-compute the model expectations, and 
performance can be very fast, as seen in the results from Hecht 
and Zitzmann. The only change required for Bayesian estimation 
then is amending a prior on top of the likelihood calculation; then, 
one may use a variety of estimation approaches (i.e. various forms 
of optimization and/or sampling) to attain results of interest 
regarding the model fit. Beyond the individual differences aspect, 
a further complicating issue for SEM style approaches, in which 
the multivariate likelihood equation for each subject includes 
every time point, is that as the number of time points grows, so 
too does the necessary matrix inversion. As such, as time points 
increase, computational costs increase faster (roughly Oðn3Þ, 
dependent on algorithms), and at some point, filtering approaches 
become more efficient. The complexity of filtering approaches 
typically scales linearly with number of time points, because the 
conditional likelihood calculation only involves (at most) the 
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number of distinct measurement variables used at a specific time 
point. The exact number of measurement occasions when filtering 
approaches become computationally more efficient will depend 
on the specific context (e.g., number of variables, time points, 
possibility to re-use calculations, computational libraries), but is 
often not very high. Hecht and Zitzmann do offer some specula
tive suggestions that their favored SEM style approach is most 
beneficial with larger numbers of subjects, but miss the point that 
this also depends on restrictive assumptions regarding individual 
differences, and limited time points. For more on filtering versus 
SEM approaches, see (Chow et al., 2010) and (Hunter, 2018).

So, the examples that Hecht and Zitzmann examined are 
perfect candidates for a SEM style approach, as there are lots of 
subjects, no individual differences in the expected means and 
covariances, and few time points. However, improved perfor
mance of a SEM approach under such conditions is not specific 
to CT models – the same would hold true across all forms of 
computational modeling when you contrast an approach with 
individual differences in expectations versus an approach without. 
Such computational differences are, as mentioned, already lever
aged in software such as OpenMx (Neale et al., 2016) to maximize 
performance.

Regarding ctsem specifically, in its present state (v3.3.8) it 
offers a range of estimation approaches, and the ability to 
easily enable priors when Bayesian (or some form of pena
lized) estimation is desired. The default is for maximum like
lihood estimation using a form of hybrid (discrete 
observations, continuous time) extended Kalman filter 
(Mazzoni, 2008), in which individuals system and measure
ment parameters may all vary as correlated random effects, 
fixed effects via covariates, or some combination. In such 
a case, the random components of the individual differences 
are integrated out by extending the latent states. The max
imum likelihood is sought using optimization approaches, 
with standard errors and confidence intervals based on the 
estimated Hessian at the maximum. For improved uncer
tainty quantification, adaptive importance sampling (Oh & 
Berger, 1992) can be requested, which uses the maximum 
likelihood (or posterior mode when priors are used) and 
estimated asymptotic covariance matrix as an initial proposal 
distribution. Limitations to this approach include the fact that 
the likelihood is only approximate when nonlinear random 
effects (e.g., individual differences in a correlation parameter) 
are requested, and the adaptive importance sampler (when 
switched on) has trouble converging when large numbers of 
parameters are involved. The best approach (given unlimited 
time/computational resources) is typically the one Hecht and 
Zitzmann focus on, which uses the Bayesian sampler offered 
by Stan. In this case the nonlinear random effects are approxi
mated more accurately because the individual parameters are 
sampled directly and not based on linearizations, and the 
sampler in Stan offers sophisticated diagnostics. However, as 
noted, with large numbers of subjects or large systems this 
quickly becomes intractable, and the alternatives discussed 
are preferable, at least during model development.

It is true that the current range of options is not perfect for such 
limited (no covariates, no timing differences, random effects on 
intercepts only, few time points) cases as in the examples shown 
by Hecht and Zitzmann – tailoring an approach for a specific 

problem will often yield performance gains over general purpose 
approaches. Focusing on the filtering approach for the modern 
form of ctsem was a design decision to allow for greater flexibility 
in directions where typical SEM is very limited. However, my 
hope for the future would be to see works that either extend 
current software to the specific use cases desired, develop algo
rithms for detecting when specific algorithms should be used, or 
offer genuine improvements to either a) the underlying computa
tional procedures and libraries, or b) computationally simpler 
modeling approaches that offer similar or improved options for 
scientific inference. To give an example of one specific aspect, the 
major computational bottleneck in ctsem (and, as far as 
I understand, other stochastic differential-equation-based model
ing approaches) is the need to repeatedly solve the stochastic 
differential equation for different time intervals and system para
meters. The primary approach ctsem uses for this is based on 
matrix exponentiation, as this is near perfect (up to accuracy of the 
exponential algorithm) for linear systems and can have higher 
accuracy for moderately non-linear systems (Hochbruck et al., 
1998). However, this is likely inefficient for large and sparse (i.e. 
few connections) systems, and `could’ be considered unnecessa
rily accurate for many cases. At present one alternative is available 
within ctsem, using a Taylor–Heun-approximation of the vector 
field and a modified Gauss–Legendre-scheme for the covariance 
(Mazzoni, 2008), but testing of this is very limited and it is unclear 
under which circumstances `good enough’ answers are obtained. 
For those interested in such projects, I would encourage making 
contact with those developing the approaches and software 
directly, as there are always many possibilities and many nuances!
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