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1 Introduction

Dualities play an important role in our understanding of string theory. One of the best-
understood dualities is T-duality, which relates string theory on backgrounds with U(1)d

isometries, with the backgrounds related by O(d, d) transformations. These T-dualities are
already visible in perturbative string theory, and are enlarged into U-dualities in the non-
perturbative framework of M-theory [1, 2]. Generalisations of Abelian T-dualities exist for
backgrounds with non-Abelian isometries, leading to non-Abelian T-duality (NATD) [3],
and for backgrounds without any isometries, called Poisson-Lie T-duality (PLTD) [4, 5].
Instead of the isometry algebra, PLTD is controlled by an underlying Drinfel’d double.
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Unlike Abelian T-duality, which is an equivalence between string theories on different
backgrounds to all orders in the string coupling and string length, these generalised T-
duality are currently best understood at the supergravity level and their status as true
dualities of the string genus expansion remains doubtful [6]. Very recent work [7–10]
has provided indications that such dualities do persist under α′ corrections. Both NATD
and PLTD have led to fruitful results. For example, NATD has been successfully used
as solution-generating mechanisms of supergravity [11], leading to the discovery of new
minimally supersymmetric AdS backgrounds starting with [12, 13] (see [14] for a review
and further references). Moreover, there is a close connection between PLTD and the
(modified) classical Yang-Baxter equation which controls integrable deformations of σ-
models [15, 16].

The non-perturbative generalisation of Poisson-Lie T-duality to a U-duality version
in M-theory, or more conservatively as a solution-generating mechanism of 11-dimensional
supergravity, has long been an open problem, which was recently addressed in [17, 18]
and further elaborated on in [19–21]. Building on the interpretation of PLTD and Drin-
fel’d doubles within Double Field Theory (DFT), [17, 18, 22–24] used Exceptional Field
Theory (ExFT)/Exceptional Generalised Geometry to propose a natural generalisation
of the Drinfel’d double for dualities along four spacetime dimensions. This “Exceptional
Drinfel’d Algebra” (EDA) was shown to lead to a new solution-generating mechanism of
11-dimensional supergravity that suggests a notion of Poisson-Lie U-duality, as well as a
generalisation of the classical Yang-Baxter equation. Other recent works [25–27] have con-
sidered closely related ideas, although the detailed relation between these approaches and
the EDA is not completely apparent.

In this paper, we will further develop the ideas of [17, 18] by constructing EDAs and
Poisson-Lie U-duality amongst six directions. We choose six dimensions, because important
new features arise when dualities are considered in six directions. This is because now the
6-form can completely wrap the six directions we are considering. As a result, the e6(6)
algebra contains a generator, corresponding to a hexavector, which will generate new kinds
of dualities and deformations which have no counterpart in PLTD, as we will see.

The outline of the rest of this paper is as follows: in section 2 we describe the EDA from
a purely algebraic perspective. In section 3 we show how the EDA can be realised within
exceptional generalised geometry as a Leibniz parallelisation of a particular type of group
manifold G, that we will call a (3, 6)-Nambu-Lie group. We then consider more closely
the case of a coboundary EDA in section 4 whose structure is governed by a generalisation
of the Yang Baxter equation. We provide a range of examples in section 5 of EDAs both
coboundary and otherwise, some of which have Drinfel’d doubles as subalgebras, and other
which do not have such an interpretation. The aim of these examples is not to provide
here a full classification, which could form an interesting investigation in its own right, but
rather to highlight the various features that can arise.

2 The E6(6) EDA

Before specialising to the case of E6(6) we begin by presenting some generalities of the
Exceptional Drinfel’d Algebra. The EDA, dn, is a Leibniz algebra which is a subalgebra
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D En(n) Hn R1 R2 R3 R4

7 SL(5) USp(4)/Z2 10 5 5 10
6 Spin(5, 5) USp(4)×USp(4)/Z2 16 10 16 45
5 E6(6) USp(8)/Z2 27 27 78 351′

Table 1. The split real form of exceptional groups En(n) with D = 11−n, their maximal compact
subgroups Hn and representations R1 . . . R4 appearing in the tensor hierarchy of ExFT. In this
work we will be mostly concerned with representations R1 and R2 which will be associated to the
generalised tangent bundles E and N respectively.

of En(n),1 admitting a “maximally isotropic” subalgebra, as we will define shortly. In
table 1 we provide details of the representations of En(n) inherited from the exceptional
field theory (ExFT) approach2 to eleven-dimensional supergravity that are useful to the
present construction.

We denote the generators of dn by {TA}, with the index A inherited from the R̄1
representation of En(n) ExFT and their product by

TA ◦ TB = XAB
C TC , (2.1)

with XAB
C structure constants which are not necessarily antisymmetric in their lower

indices. The product obeys the Leibniz identity, namely

TA ◦ (TB ◦ TC) = (TA ◦ TB) ◦ TC + TB ◦ (TA ◦ TC) , (2.2)

which implies for the structure constants

XAC
DXBD

E −XBC
DXAD

E +XAB
DXDC

E = 0 . (2.3)

Note that if the Leibniz algebra is a Lie algebra, i.e. the XAB
C are antisymmetric in their

lower indices, then this reduces to the Jacobi identity.
We place two further (linear) requirements on the EDA. Firstly, we demand that there

is a maximal Lie subalgebra g spanned by {Ta} ⊂ {TA} obeying

g⊗ g|R̄2
= 0 , (2.4)

in which the representation R̄2 is found in table 1. We call such a subalgebra g maximally
isotropic. We will be interested here in the case that dim g = n as this is relevant to
the M-theory context.3 Since G = exp g acts adjointly on dn, it follows that G should be
endowed with a trivector and hexavector. We will further require that these objects give rise
to a 3- and 6-bracket on g∗, thereby imposing some further restrictions on the structure

1In general one can allow for EDAs as subalgebras of En(n) × R+, see [18]. However, we will not deal
with the extra R+ factor here.

2See [28] for a contemporary review of ExFT.
3There is another inequivalent way to maximally solve the condition eq. (2.4) with dim g = n−1 leading

to a IIB scenario [29, 30].
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constants XAB
C .4 These additional requirements imply that the EDA can be given a

geometrical realisation in terms of certain generalised frames whose action is mediated by
the generalised Lie derivative (3.4), as we will show in section 3.

Let us now discuss these restrictions in detail.

2.1 Linear constraints

We now study in detail the consequence of the requirements of the maximally isotropic
subalgebra g and its adjoint action. Since these constraints arise from placing requirements
directly to the form of XAB

C we describe them as linear constraints; this is to be contrasted
with quadratic constraints of the form X2 = 0 that arise from the Leibniz identity.

Firstly, since g is a Lie algebra, we immediately have

Ta ◦ Tb = fab
c Tc , (2.5)

with fab
c antisymmetric in a, b. Secondly, the adjoint action5 of g ∈ G = exp g on dn

implies that
g · TA · g−1 = (Ag)A

BTB , (2.6)

with (Ag)A
B ∈ E6(6) since g ⊂ dn ⊂ e6(6). Let us denote the adjoint action of g ∈ G on g

by ag. It is now useful to branch TA, which transform in the R̄1 = 27 representation, and
e6(6) according to the decomposition of E6(6) into GL(6):

27 −→ 6⊕ 15⊕ 6 ,
78 −→ 36⊕ 20⊕ 1⊕ 20⊕ 1 .

(2.7)

Now g · TA · g−1 takes the form:

g · Ta · g−1 = (ag)ab Tb ,
g · T a1a2 · g−1 = −λa1a2c

g (ag)cb Tb + (a−1
g )b1

a1 (a−1
g )b2

a2 T b1b2 ,

g · T a1...a5 · g−1 =
(
λa1...a5c
g + 5λ[a1a2a3

g λa4a5]c
g

)
(ag)cb Tb

− 10λ[a1a2a3
g (a−1

g )b1
a4 (a−1

g )b2
a5] T b1b2

+ (a−1
g )b1

[a1 . . . (a−1
g )b5

a5] T b1...b5 ,

(2.8)

where
TA = {Ta, T a1a2 , T a1...a5} , (2.9)

are the GL(6) representations of TA according to (2.7), whilst (ag)ab parameterize the GL(6)
transformation while λa1a2a3

g and λa1...a6
g parameterise the E6(6) transformations generated

4It is worth emphasising that these are impositions beyond simply demanding that g be a maximal
isotropic.

5To be more precise we inherit an action via the rack product:

g · TA · g−1 ≡ g−1 . TA ≡ TA + h ◦ TA + 1
2h ◦ (h ◦ TA) + · · · (g−1 ≡ eh) .
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by the generators in the 20 and 1, respectively.6 Thus, G admits a totally antisymmetric
trivector λabc and totally antisymmetric hexavector λa1...a6 which control its adjoint action
on the generators T ab and T a1...a5 .

Equations (2.8) imply that (λg)abc and (λg)a1...a6 vanish at the identity, i.e.

(λe)abc = (λe)a1...a6 = 0 , (2.10)

and they inherit a group composition rule

λa1a2a3
hg = λa1a2a3

g + (a−1
g )c1

a1 (a−1
g )c2

a2 (a−1
g )c3

a3 λc1c2c3
h ,

λa1...a6
hg = λa1...a6

g + (a−1
g )c1

a1 . . . (a−1
g )c6

a6 λc1...c6
h

+ 10λ[a1a2a3
g (a−1

g )c1
a4 (a−1

g )c2
a5 (a−1

g )c3
a6] λc1c2c3

h ,

(2.11)

for g, h ∈ G.
Finally, we come to the second condition on the EDA, i.e. the existence of a 3- and

6-bracket on g∗. This is equivalent to imposing the following differential conditions on λabc

and λa1...a6 :

dλa1a2a3 = rb
(
fb
a1a2a3 + 3 fbc[a1 λ|c|a2a3]

)
,

dλa1...a6 = rb
(
fb
a1...a6 + 6 fbc[a1 λ|c|a2...a6] + 10 fb[a1a2a3 λa4a5a6]

)
,

(2.12)

where r = ra Ta are the right-invariant 1-forms on G obeying dra = 1
2fbc

arb∧rc and we have
dropped the subscript g on λ(3) and λ(6). The fba1...a3 and fba1...a6 are structure constants
for a 3- and 6-bracket and are totally antisymmetric in their upper indices. In fact, as
we will see in section 2.2, the Leibniz identity implies further properties of the trivector
and hexavector, in particular that they define a certain Nambu 3- and 6-bracket which are
compatible with the Lie bracket on G. Therefore, it seems apt to call G a (3, 6)-Nambu-Lie
Group.

With the above conditions, the EDA takes the following form

Ta ◦ Tb = fab
c Tc ,

Ta ◦ T b1b2 = fa
b1b2c Tc + 2 fac[b1 T b2]c ,

Ta ◦ T b1...b5 = −fab1...b5c Tc + 10 fa[b1b2b3 T b4b5] − 5 fac[b1 T b2...b5]c ,

T a1a2 ◦ Tb = −fba1a2c Tc + 3 f[c1c2
[a1 δ

a2]
b] T c1c2 ,

T a1a2 ◦ T b1b2 = −2 fca1a2[b1 T b2]c + fc1c2
[a1 T a2]b1b2c1c2 ,

T a1a2 ◦ T b1...b5 = 5 fca1a2[b1 T b2...b5]c ,

T a1...a5 ◦ Tb = fb
a1...a5c Tc − 10 fb[a1a2a3 T a4a5] − 20 fc[a1a2a3 δa4

b T a5]c

+ 5 fbc[a1 T a2...a5]c + 10 fc1c2
[a1 δa2

b T a3a4a5]c1c2 ,

T a1...a5 ◦ T b1b2 = 2 fca1...a5[b1 T b2]c − 10 fc[a1a2a3 T a4a5]b1b2c ,

T a1...a5 ◦ T b1...b5 = −5 fca1...a5[b1 T b2...b5]c .

(2.13)

6The generators of e6(6) corresponding to the 20 and the other 1 in (2.7) are not allowed by the assump-
tion (2.5).
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2.2 Leibniz identity constraints

We will now study the compatibility conditions between the Lie algebra g, the 3-bracket and
6-bracket, as well as their appropriate “closure” conditions that are required for the EDA
to satisfy the Leibniz identity of eq. (2.2). This yields a number of immediate constraints.
In particular, we obtain the following fundamental identities, i.e. generalisations of Jacobi
for higher brackets,

0 = 3f[a1a2
c fa3]c

b , (2.14)

0 = fa
dc1c2 fd

b1b2b3 − 3 fdc1c2[b1 fa
b2b3]d + fd1d2

[c1 fa
c2]b1b2b3d1d2 , (2.15)

0 = fa
dc1...c5 fd

b1...b6 − 6 fdc1...c5[b1fa
b2...b6]d , (2.16)

as well as compatibility conditions between the dual structure constants fba1a2a3 , fba1...a6

and the Lie algebra structure constants. These compatibility conditions take the form of
cocycle conditions

0 = fa1a2
c fc

b1b2b3 + 6 fc[a1
[b1| fa2]

c|b2b3] , (2.17)

0 = fa1a2
c fc

b1...b6 + 12 fc[a1
[b1| fa2]

c|b2...b6] − 20 f[a1
[b1b2b3 fa2]

b4b5b6] , (2.18)

as well as the additional constraint

fd1d2
afc

d1d2b = 0 . (2.19)

If we only consider EDAs dn with n ≤ 6, as we are doing here, the conditions given
by the above eqs. (2.14)–(2.19) are equivalent to imposing the Leibniz identity. This is
because in n ≤ 6, the fundamental identity for the six-bracket implies that fba1...a6 = 0.
However, since the structure we are studying here will also exist for n > 6, we will keep the
remaining discussion as dimension-independent as possible, whilst keeping in mind that
for n > 6, the Leibniz identity will lead to further or modified compatibility conditions
between fab

c, fba1a2a3 and fb
a1...a6 . These additional constraints will need to be studied

using EDAs based on E7(7) and higher.
Before interpreting these constraints, we remark that the Leibniz identity ensures,

much as the structure constants of a Lie algebra g are invariant under G = exp g acting
adjointly, that the EDA structure constants enjoy an invariance

XAB
D(Ag)DC = (Ag)AD(Ag)BEXDE

C . (2.20)

Substitution of eq. (2.8) here results in a variety of identities that we shall revisit later on.

2.2.1 Fundamental identities

Let us now introduce the 3-bracket { }3 and 6-bracket { }6 on g∗ with structure constants
fb
a1a2a3 and fba1...a6 , respectively, i.e.

{x, y, z}3 = fa
b1b2b3 xb1 yb2 zb3 ,

{u, v, w, x, y, z}6 = fa
b1...b6 ub1 vb2 wb3 xb4 yb5 zb6 .

(2.21)
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The conditions (2.14) and (2.15) imply that the 3- and 6-brackets satisfy

{x1, x2, {x3, x4, x5}3}3 = {{x1, x2, x3}3 , x4, x5}3 + {x3, {x1, x2, x4}3 , x5}3
+ {x3, x4, {x1, x2, x5}3}3
− {∆(x1), x2, x3, x4, x5}6 + {∆(x2), x1, x3, x4, x5}6 ,

{x1, . . . , x5, {y1, . . . , y6}6}6 = {{x1, . . . , x5, y1}6 , y2, . . . , y6}6
+ {y1, {x1, . . . , x5, y2}6 , y3, . . . , y6}6
+ {y1, y2, {x1, . . . , x5, y3}6 , y4, . . . , y6}6
+ {y1, . . . , y3, {x1, . . . , x5, y4}6 , y5, y6}6
+ {y1, . . . , y4, {x1, . . . , x5, y5}6 , y6}6
+ {y1, . . . , y5, {x1, . . . , x5, y6}6}6 ,

(2.22)

for all x1, . . . , x5, y1, . . . , y6 ∈ g∗, and where we used the Lie bracket on g to define the
ad-invariant co-product ∆ on g∗

∆ : g∗ −→ g∗ ∧ g∗ ,

adx∆(y) = ∆(adxy) , ∀ x ∈ g, y ∈ g∗ ,
(2.23)

which is given, assuming a basis {T a} for g∗, by

∆(xa T a) = 1
2fbc

a xa T
b ∧ T c . (2.24)

We see that the 6-bracket must satisfy the fundamental identity for Nambu 6-brackets,
while the 3-bracket’s fundamental identity is modified by the 6-bracket and the co-product
defined by the structure constants of g.

2.2.2 Compatibility conditions

The first set of compatibility conditions, eqs. (2.17) and (2.18), between the 3- and 6-
brackets and the Lie algebra g imply that fba1a2a3 defines a g-cocycle and that fba1...a6

is an f3-twisted g-cocycle, as follows. fb
a1a2a3 and fb

a1...a6 define Λ3g- and Λ6g-valued
1-cochains

f3 : g −→ Λ3g ,

f6 : g −→ Λ6g ,
(2.25)

defined by

f3(x) = 1
3!x

b fb
a1a2a3 Ta1 ∧ Ta2 ∧ Ta3 , ∀x = xaTa ∈ g ,

f6(x) = 1
6!x

b fb
a1...a6 Ta1 ∧ . . . ∧ Ta6 , ∀x = xaTa ∈ g .

(2.26)

Using the coboundary operator d : g∗ ⊗ Λpg −→ Λ2g∗ ⊗ Λpg, for p = 3 and p = 6 here,

df3(x, y) ≡ adxf3(y)− adyf3(x)− f3([x, y]) , (2.27)
df6(x, y) ≡ adxf6(y)− adyf6(x)− f6([x, y]) , (2.28)

– 7 –
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the conditions (2.17) and (2.18) are more elegantly stated as

df3(x, y) = 0 , df6(x, y) + f3(x) ∧ f3(y) = 0 . (2.29)

The coboundary operator is nilpotent with d : Λpg −→ g∗ ⊗ Λpg defined as

dρp(x) = adxρp , (2.30)

for all x ∈ g and ρp ∈ Λpg. Therefore, the cocycle conditions (2.29) can be solved by the
(twisted) coboundaries

f3 = dρ3 , f6 = dρ6 + 1
2ρ3 ∧ dρ3 . (2.31)

In components, these are equivalent to

fa
b1b2b3 = 3 fac[b1 ρ|c|b2b3] ,

fa
b1...b6 = 6 fac[b1| ρc|b2...b6] + 30 fac[b1 ρ|c|b2b3 ρb4b5b6] .

(2.32)

The coboundary case is related to a generalisation of Yang-Baxter deformations. The
trivector ρa1a2a3 and the hexavector ρa1...a6 correspond to the M-theoretic analogue of the
classical r-matrix. The equations corresponding to the classical Yang-Baxter equations
for the r-matrices are implied by substituting the solutions (2.32) to the fundamental
identities (2.15) and (2.16). We will discuss this further in section 4.

Finally, the additional constraint (2.19) implies that the ad-invariant co-product ∆ on
g∗ (2.23) defines a commuting subspace of the 3-bracket:

{∆(x1), x2}3 = 0 , ∀x1, x2 ∈ g∗ . (2.33)

3 E6(6) EDA from generalised frame fields

We now provide a geometric realisation of the E6(6) EDA by constructing a Leibniz paral-
lelisation [31–36] of the exceptional generalised tangent bundle [37–43]

E ∼= TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M , (3.1)

in which we identify the manifold M = G = exp g. We will also be interested in a second
bundle

N ∼= T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) . (3.2)

The action of sections of these bundles,

V = v + ν2 + ν5 ∈ Γ(E) , W = w + ω2 + ω5 ∈ Γ(E) , X = χ1 + χ4 + χ1,6 ∈ Γ(N) ,
(3.3)

is mediated by the generalised Lie derivative [39–41] defined as

LVW = [v, w] +
(
Lvω2 − ıwdν2

)
+
(
Lvω5 − ıwdν5 − ω2 ∧ dν2

)
, (3.4)

LV X = Lvχ1 +
(
Lvχ4 − χ1 ∧ dν2

)
+
(
Lvχ1,6 + jχ4 ∧ dν2 + jχ1 ∧ dν5

)
. (3.5)
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We define [40] a symmetric bilinear map 〈·, ·〉 : E × E → N as

〈V, W 〉 = (ıvω2 + ıwν2) + (ıvω5 − ν2 ∧ ω2 + ıwν5) + (jν2 ∧ ω5 + jω2 ∧ ν5) , (3.6)

such that the generalized Lie derivative satisfies

〈LUV, W 〉+ 〈V, LUW 〉 = LU 〈V, W 〉 ∀U, V,W ∈ Γ(E). (3.7)

The parallelisation consists of a set of sections EA ∈ Γ(E) that:

• form a globally defined basis for Γ(E)

• give rise to an E6(6) element,7 EAM , whose matrix entries are the components of EA

• realise the algebra of the EDA through the generalised Lie derivative

LEA
EB = −XAB

CEC , (3.8)

where the constants XAB
C are the same as those defined through the relations in

eq. (2.13) and obey the Leibniz identity.

The parallelisation can be directly constructed in terms of the right-invariant Maurer-
Cartan one-forms on G, ra, their dual vector fields ea, and the trivector, λa1a2a3 , and
hexavector, λa1...a6 . This can thus be thought of as a special example of the more general
prescription of [44], where we only make use of the aforementioned geometric data on
the (3, 6)-Nambu-Lie Group G. Following the decomposition of EDA generators we write
EA = {Ea, Ea1a2 , Ea1...a5} with

Ea = ea , Ea1a2 = −λa1a2b eb + ra1 ∧ ra2 ,

Ea1...a5 =
(
λa1...a5b + 5λ[a1a2a3 λa4a5]b) eb − 10λ[a1a2a3 ra4 ∧ ra5] + ra1 ∧ . . . ∧ ra5 .

(3.9)

It is straightforward, but indeed quite lengthy, to verify that these furnish the EDA algebra.
A first check is to see that after using the identities (2.12) to evaluate derivatives we can
go to the identity of M where λa1a2a3 and λa1...a6 vanish. One then has to use the adjoint
invariance conditions that follow from eq. (2.20) to conclude that this holds away from the
identity.

If we specialise now to the case of fba1...a6 = 0, which we recall is enforced for n ≤ 6 by
the fundamental identities, we find quickly an immediate consequence of eq. (2.20) is that
dλa1...a6 = 0, and since λa1...a6 vanishes at the identity, it must be identically zero. The
remaining adjoint invariance conditions can be combined to imply that

fab
c λabd = 0 , faf

[b1| λf |b2b3 λb4b5b6] = 0 , fa
[b1b2b3 λb4b5b6] = 0 ,

fd
b1b2c λa1a2d − 3 fda1a2[c λb1b2]d − 3 fde[b1 λb2c]d λa1a2e − 3 fde[a1 λa2]d[b1 λb2c]e = 0 .

(3.10)

These conditions are sufficient to ensure that frame algebra is obeyed.
7An extension of this setup is to allow EA

M to be elements of E6(6) × R+, though for simplicity in the
presentation we shall demand no R+ weighting.
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We also define the generalized frame field EA, which is a section of N , through

〈EA, EB〉 = ηAB
C EC , (3.11)

where ηABC is an invariant tensor of the En(n). For E6(6) this tensor is related to the
symmetric invariant (see the appendix for details) such that the explicit form of EA has
components

Ea = ra , Ea1...a4 = 4λ[a1a2a3 ra4] + ra1...a4 ,

Ea′,a1...a6 = (λa1...a6 ra
′ − 30λa′[a1a2 λa3a4a5 ra6])− 15λa′[a1a2 ra3...a6] + jra

′
ra1...a6 .

(3.12)

Here we denote ra1...am = ra1 ∧ · · · ∧ ram and make use of the j-wedge contraction of [37]
to deal with mixed symmetry fields.8 One can consider now the action of the frame field
EA on these EA and by virtue of eq. (3.11), again find that they furnish the EDA algebra,
albeit in a different representation as described in the appendix.

3.1 Relation to supergravity realisations and dualisations

Whilst the main scope of the present work is to outline the algebraic considerations of the
EDA, here we provide the reader a brief orientation as to how the results have utility in su-
pergravity. The most conservative view is that the construction above provides a topdown
and explicit means to uplift solutions of particular lower-dimensional gauged supergravi-
ties. However, as we will discuss, when an EDA admits multiple isotropic subalgebras, we
obtain a notion of duality between solutions of 11-dimensional or maximal 10-dimensional
supergravity.

In this work we have mainly considered the E6(6) EDA, d6, though the following ar-
guments hold more generally for dn. We associate the group manifold G corresponding to
the isotropic sub-algbera g, which for a moment we assume to be of dimension n, with the
“internal” sector of a full eleven-dimensional space-time. We thus complement the local co-
ordinates xi (i = 1, . . . , n) on G with a set of “external” coordinates yµ (µ = 0, . . . , 10−n).
In Exceptional Field Theory the internal components of the bosonic content of eleven-
dimensional supergravity are packaged into a generalised metric MIJ(x, y) that param-
eterizes the coset En(n)/Hn (here Hn is the maximal compact subgroup of En and the
indices I, J run over the representation R1 as described in table 1). Using the generalised
frame fields above we can construct a consistent truncation of 11-dimensional supergravity
on G, via the generalised Scherk Schwarz Ansatz

MIJ(x, y) = EI
A(x)EJB(x)M̂AB(y) . (3.13)

A sequence of works [31–36] have demonstrated that when such an Ansatz is inserted in
the eleven-dimensional equations of motion of ExFT, the equations of motion reduce to

8For a p+ 1-form α and a (n− p)-form β, we define

(jα ∧ β)i,i1...in
= n!
p!(n− p)!αi[i1...ipβip+1...in] .
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those of an (11−n)-dimensional maximal gauged supergravity, in which the EDA structure
constants, XAB

C , specify the gauge group. The consistency of this procedure is ensured
by the frame algebra of eq. (3.8). The M̂AB(y) are a set of scalar fields, parameterising
the coset space En(n)/Hn in this lower-dimensional theory, see for example [45].9

It is fruitful to turn this logic around. Suppose a solution (including, in particular, the
profiles of M̂AB(y)) to the lower dimensional supergravity is known. Then the ansatz (3.13)
can be used to uplift this solution to one in eleven-dimensions [35, 36]. To complete the
process one has to use the well-established dictionary betweenMIJ(x, y) and conventional
supergravity fields. An intuition for the sorts of internal geometries that arise can be
obtained by examining the case when M̂AB is constant and we refer the reader to recent
works for examples of this [17, 20, 21].

An intriguing possibility is that inequivalent sets of frame fields, EA and ẼA say, both
give rise to the same frame algebra with structure constants XAB

C . In this case one would
be able to uplift a lower dimensional solution in two inequivalent ways:

MIJ(x, y) = EI
A(x)EJB(x)M̂AB(y) , M̃IJ(x̃, y) = ẼI

A(x̃) ẼJB(x̃)M̂AB(y) . (3.14)

It is natural to think of this as a duality relation at the level of supergravity. In particular,
one solution of the lower-dimensional gauged supergravity is then uplifted to two different
solutions in the full eleven-dimensional supergravity and these two solutions can be viewed
as being dual to each other. Indeed, when the EDA admits two different isotropic sub-
algebras g and g̃ we can systematically construct such a pair EA and ẼA for which the
pursuant notion of duality can be considered as Poisson-Lie U-duality.10 Here the genera-
tors of g and g̃ must be related by a constant transformation11 TAB. The duality relation
betweenMIJ and M̃IJ can then be viewed as arising from the local action of

TIJ(x, x̃) = ẼI
A(x̃)TAB(E−1)JB(x) . (3.15)

This view is the U-duality analogue of the considerations in [22–24, 46, 47].
A subtlety here is that the two isotropic sub-algebras g and g̃ could be of dimension n

and n−1 respectively. The latter (when not trivially obtained as g = g̃+u(1)) are naturally
associated to solutions of the ten-dimensional IIB supergravity12 and the associated duality
would be relating M-theory and IIB solutions.

3.1.1 The embedding tensor

In the context of the generalised Scherk-Schwarz reduction described above the EDA struc-
ture constants, which specify the gauge group of the lower dimensional theory, are known
as the embedding tensor. To facilitate contact with the literature [48] for the particular

9There are also further fields arising in this reduction procedure, for instance those coming from fields
with mixed internal/external components that we omit from the present discussion.

10It can also be the case that ẼA don’t apparently follow from an EDA construction, which leads to
a wider still notion of duality. This feature was seen explicitly in [21] in which an EDA uplift of certain
CSO(p, q, r) gaugings was given complementing the existing uplift of [36].

11Including potentially actions in GL(dim R1) outside En(n).
12In the jargon of Execptional Field Theory, they correspond to a IIB solution of the section condition.
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case of the n = 6 EDA we can express this in terms of the 27 and 351 representations of
E6(6) as

XAB
C = dABDZ

CD + 10dADSdBRTdCDRZST −
3
2ϑ[Aδ

C
B] −

15
2 dABDd

CDEϑE . (3.16)

The components of the antisymmetric ZAB are determined to be

Zab = 0 ,

Za1a2
b = − 5

2 · 4!
√

10
fd
dbc1...c4 εa1a2c1...c4 (= 0) ,

Za1...a5
b = − 5

2
√

10
fd
dbc εa1...a5c ,

Za1a2 , b1b2 = − 5
3!
√

10
(f[a1

c1c2c3 εa2]c1c2c3b1b2 − f[b1
c1c2c3 εb2]c1c2c3a1a2) ,

Za1a2 , b1...b5 = − 5
2
√

10
(fa1a2

c εcb1...b5 − 10f[b1b2
c εb3b4b5]ca1a2) ,

Za1...a5 , b1...b5 = 0 ,

(3.17)

and those of ϑA (sometimes called the trombone gauging) to be

ϑa = fac
c

3 , ϑa1a2 = −fc
ca1a2

3 , ϑa1...a5 = −fc
ca1...a5

3 (= 0) . (3.18)

4 Yang-Baxter-ology

4.1 EDA via ρ-twisting

In the context of DFT, Yang-Baxter deformations can be understood as the O(d, d) trans-
formation, generated by a bivector, acting on a Drinfel’d double with vanishing dual struc-
ture constants [49–54]. The bivector that generates the transformation is then related
to the classical r-matrix, the dual structure constants are coboundaries and the require-
ment that the O(d, d) transformed algebra is a Drinfel’d double is precisely the classical
Yang-Baxter equation.

This suggests a natural generalisation of Yang-Baxter deformations to EDAs [17, 18].
We begin with an EDA d̂6 with only the structure constants, fabc, corresponding to a
maximally isotropic Lie subalgebra g, non-vanishing and fabcd = fa

b1...b6 = 0, i.e.

T̂a ◦ T̂b = fab
c T̂c ,

T̂a ◦ T̂ b1b2 = 2 fac[b1 T̂ b2]c ,

T̂a ◦ T̂ b1...b5 = −5 fac[b1 T̂ b2...b5]c ,

T̂ a1a2 ◦ T̂b = 3 f[c1c2
[a1 δ

a2]
b] T̂ c1c2 ,

T̂ a1a2 ◦ T̂ b1b2 = fc1c2
[a1 T̂ a2]b1b2c1c2 ,

T̂ a1a2 ◦ T̂ b1...b5 = 0 ,
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T̂ a1...a5 ◦ T̂b = 5 fbc[a1 T̂ a2...a5]c + 10 fc1c2
[a1 δa2

b T̂ a3a4a5]c1c2 ,

T̂ a1...a5 ◦ T̂ b1b2 = 0 ,
T̂ a1...a5 ◦ T̂ b1...b5 = 0 .

(4.1)

We denote the structure constants collectively as X̂AB
C .

We now perform an E6(6) transformation of the above EDA by a trivector, ρabc, and
hexavector, ρa1...a6 , which will play the analogue of the classical r-matrix. The correspond-
ing E6(6) group element is given by

CA
B ≡

(
e

1
6! ρ

a1...a6 Ra1...a6e
1
3! ρ

a1a2a3 Ra1a2a3
)
A

B , (4.2)

in which the generators Ra1a2a3 and Ra1...a6 are specified in the appendix. Explicitly we
have that

(CAB) =


δba 0 0

ρba1a2√
2! δa1a2

b1b2
0

ρ̃b;a1···a5√
5!

20 δ[a1a2
b1b2

ρa3a4a5]
√

2! 5! δa1···a5
b1···b5

 , (4.3)

where

ρ̃b;a1...a5 ≡ ρba1...a5 + 5 ρb[a1a2 ρa3a4a5] . (4.4)

Equivalently, we twist the generators by the group element (4.2) resulting in

Ta = T̂a , T a1a2 = T̂ a1a2 + ρba1a2 T̂b ,

T a1...a5 = T̂ a1...a5 + 10 ρ[a1a2a3 T̂ a4a5] + ρ̃b;a1...a5 T̂b .
(4.5)

For the twisted generators, we obtain TA ◦ TB = XAB
C TC with

XAB
C ≡ CAD CBE (C−1)FC X̂DE

F . (4.6)

We now require that the new algebra defines an EDA d6. This imposes conditions
on ρabc and ρa1...a6 and we will interpret these as analogues of the classical Yang-Baxter
equation. From the products Ta ◦ T b1b2 and Ta ◦ T b1...b5 , the dual structure constants are
identified as

fa
b1b2b3 = 3 fac[b1 ρ|c|b2b3] , fa

b1...b6 = 6 fac[b1| ρ̃c;|b2...b6](= 0) , (4.7)

which take the form of (twisted) coboundaries (2.32) and the (= 0) holds for d6. The
remaining products impose a number of conditions, of which the following is particularly
intriguing

3 fd1d2
[b1 ρb2b3]d1 ρa1a2d2 = fd1d2

[a1 ρ̃a2];b1b2b3d1d2 . (4.8)

This is a natural generalisation of the classical Yang-Baxter (YB) equation which we
will elaborate more on later. In general, we get a further set of conditions which are
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required to ensure that the new algebra defines an EDA d6. Mostly these additional
conditions appear rather cumbersome but we note the requirement that

ρa1a2bfa1a2
c = 0 . (4.9)

With fab1...b6 = 0, the Bianchi identity for fabc together with the generalised Yang-Baxter
equation eq. (4.8) and compatibility condition eq. (4.9) imply the fundamental identity for
fa
b1...b3 . Indeed since the Leibniz identity (2.2) is E6(6)-invariant, it is guaranteed to hold

for XAB
C . Therefore, we see that the generalised Yang-Baxter equation (4.8) together with

the other conditions obtained by imposing that the new algebra is an EDA imply that the
new dual structure constants satisfy their fundamental identities (2.15) and (2.16) and the
condition (2.19).

In [25], a different approach was taken using a generalisation of the open/closed string
map to propose a generalisation of the classical YB equation for a trivector deformation
of 11-dimensional supergravity. The approach of [25] is not limited to group manifolds,
unlike the present case, but also only considers trivector deformations. However, when
specialising [25] to group manifolds and considering our deformations with ρa1...a6 = 0, the
resulting equation of [25] is different and, in particular, weaker than the YB equation we
find here (4.8) with ρa1...a6 = 0, or indeed the SL(5) case discussed in [17, 18]. Indeed,
as shown in [26] based on explicit examples, the proposed YB-like equation of [25] is not
sufficient to guarantee a solution of the equations of motion of 11-dimensional supergravity,
while our deformations subject to the above conditions preserve the equations of motion
of 11-dimensional supergravity by construction.

4.2 Nambu 3- and 6-brackets from ρ-twisting

The trivector ρa1a2a3 and hexavector ρa1...a6 define 3- and 6-brackets via (2.32). First define
the maps

ρ3 : g∗ ∧ g∗ −→ g , ρ̃6 : Λ5g∗ −→ g , (4.10)

as

ρ3(x1, x2) = ρabc (x1)b (x2)c Ta ,
ρ̃6(x1, . . . , x5) = ρ̃a1;a2...a6 (x1)a2 . . . (x5)a6 Ta1 , ∀ x1, . . . , x5 ∈ g∗ .

(4.11)

This allows the generalised Yang-Baxter equation eq. (4.8) to be cast in a basis indepen-
dent way

x1
((
adρ3(y1,y2)ρ3

)
(x2, x3)

)
+ y1 (ρ̃6(∆(y2), x1, x2, x3))− y2 (ρ̃6(∆(y1), x1, x2, x3)) = 0 ,

(4.12)

for all y1, y2, x1, x2, x3 ∈ g∗. Note that the first term in (4.12) is automatically antisym-
metric in (x1, x2, x3) due to antisymmetry of ρa1a2a3 .

Then, the associated 3- and 6-brackets are defined as

{x1, x2, x3}3 = adρ3(x1,x2)x3 + adρ3(x2,x3)x1 + adρ3(x3,x1)x2 ,

{x1, . . . , x6}6 = adρ̃6(x1,...,x5)x6 + cyclic permutations ,
(4.13)
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for all x1, . . . , x6 ∈ g∗. Alternatively, to match more with the usual discussion of classical
r-matrices in integrability, we can use the Cartan-Killing form on g to define 3- and 6-
brackets on g. For this, it is more convenient to define ρ′3 and ρ′6 as

ρ′3 : g ∧ g −→ g , ρ̃′6 : Λ5g −→ g , (4.14)

with

ρ′3(x1, x2) = ρ3(κ(x1), κ(x2)) , ρ̃′6(x1, . . . , x6) = ρ̃6(κ(x1), . . . , κ(x5)) , (4.15)

and where κ is the Cartan-Killing metric viewed as a map κ : g −→ g∗. Now, the 3- and
6-brackets on g are defined as

{x1, x2, x3}3 =
[
x1, ρ

′
3(x2, x3)

]
+
[
x2, ρ

′
3(x3, x1)

]
+
[
x3, ρ

′
3(x1, x2)

]
,

{x1, . . . , x6}6 =
[
x1, ρ̃

′
6(x2, . . . , x6)

]
+ cyclic permutations .

(4.16)

The generalised Yang-Baxter equation (4.8) together with the other constraints re-
quired such that the new algebra is an EDA, such as (4.9), imply that the 3- and 6-brackets
defined above in (4.13) and (4.16) satisfy their fundamental identities (2.15) and (2.16).

4.3 The generalised YB equation

To understand better the generalised YB equation obtained above, let us adopt a tensor
product notation ρ124 = ρabcTa ⊗ Tb ⊗ 1 ⊗ Tc ⊗ 1 etc. such that the indices denote the
contracted slots in a tensor product of g. Assuming that (4.9) holds and that ρa1...a6 = 0
we have that (4.8) becomes

[ρ123, ρ145] + [ρ123, ρ245] + [ρ123, ρ345]

+ 1
2
(
[ρ124 + ρ125, ρ345] + [ρ234 + ρ235, ρ145] + [ρ314 + ρ315, ρ245]

)
= 0 . (4.17)

Introducing a (anti-)symmetrizer in the tensor product σ[123],[45], allows this equation to
be concisely given as

σ[123],[45][ρ123 + ρ234, ρ145] = 0 . (4.18)

Suppose that we have a preferred q ∈ g such that

ρ123 = r12 ⊗ q3 + r23 ⊗ q1 − r13 ⊗ q2 , r12 =
∑
a,b 6=q

rabTa ⊗ Tb = −r21 , (4.19)

with r12 neutral (i.e. [r12, q1] = 0) then we find eq. (4.17) becomes

YB[12|4| ⊗ q3] ⊗ q5 − YB[12|5| ⊗ q3] ⊗ q4 = 0 , (4.20)

in which
YB123 = [r12, r13] + [r12, r23] + [r13, r23] , (4.21)

is the classical Yang-Baxter equation for r.
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Recall that the classical YB equation arises from the quantum one

R13R12R32 = R32R12R13 (4.22)

as the leading terms in the ‘classical’ expansion R12 = 1 + ~ r12 + O(~2). An obvious
question is if there is an equivalent ‘quantum’ version of eq. (4.18)? We give here one
proposal (with no claim of first principle derivation or uniqueness) for such a starting
point. Let us define13 in the semi-classical limit

Ri;jk = 1 + ~ ρijk +O(~2) , (4.23)

Rij;kl = 1 + ~
4 (ρijk + ρijl − ρikl − ρjkl) +O(~2) . (4.24)

Then eq. (4.17) follows from

σ[123],[45]R1;23R23;45R1;45 = σ[123],[45]R1;45R23;45R1;23 . (4.25)

This view point is very suggestive that this may just represent a standard Yang-Baxter
equation for the scattering of ∧2g,∧2g and g obtained by S-matrix fusion. Here we leave
an exploration of this as an open direction; further work is required to understand which
quantum R-matrices give rise under S-matrix fusion to an Ri;jk and Rij;kl with the ex-
pansion (4.23) and what are the resultant ρijk. Conversely one might ask if there exist
solutions of (4.25) compatible (4.23) but that are not obtained from fusion?

Restoring ρa1...a6 we can amend this equation to

σ[123],[45][ρ123 + ρ234, ρ145] = 1
2 (ρ12345;5 + ρ12345;4) , (4.26)

where, for example,

ρ12345;5 ≡ ρabcdef Ta ⊗ Tb ⊗ Tc ⊗ Td ⊗ [Te, Tf ] . (4.27)

This is somewhat suggestive of a contact term in the YB relation that may lead to a
quantum version of the form

σ[123],[45]R1;23R23;45R1;45 − σ[123],[45]R1;45R23;45R1;23 = σ[123],[45]R12345;5 . (4.28)

Pictographically this is indicated in figure 1.

5 Examples

In this section we wish to present a range of examples of the EDA, both of coboundary
type and otherwise. We will give some broad general classes that correspond to embedding
the algebraic structure underlying existing T-dualities of the type II theory. In addition,
in the absence of a complete classification, here we provide a selection of specific examples.

13We use lower case Roman indices to denote tensor product locations.
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Figure 1. A proposed schematic for the generalised Yang-Baxter equation. The red lines indicate
anti-symmetrisation and the black circle is a contact term that gives rise in the semi-classical limit
to a contribution involving ρ6.

5.1 Abelian

When the subalgebra {Ta} is Abelian, arbitrary ρa1a2a3 and ρa1...a6 are solutions of Yang-
Baxter-like equations. However fab1b2b3 = 0 and fab1...b6 = 0 and the EDA is Abelian.

5.2 Semi-Abelian EDAs and three algebras

The algebraic structure corresponding to non-Abelian T-duality is a semi-abelian Drinfel’d
double i.e. a double constructed from some n − 1 dimensional Lie-algebra (representing
the non-Abelian isometry group of the target space) together with a U(1)n−1 (or perhaps
Rn−1

+ ) factor. An analogue here would be to take fabc 6= 0 and fab1...b3 = 0, this however is
not especially interesting. More intriguing is to consider the analogue of the picture after
non-Abelian T-dualisation has been performed in which the U(1)n−1 would be viewed as
the physical space. This motivates the case of semi-Abelian EDAs with fab

c = 0 but
fa
b1...b3 6= 0.
In this case the Leibniz identities reduce to the fundamental identities

fa
dc1c2 fd

b1b2b3 − 3 fdc1c2[b1 fa
b2b3]d = 0 , fa

b1···b6 = 0 . (5.1)

Each solution for this identity gives an EDA. To identify these one can use existing classifi-
cation efforts and considerations of three algebras that followed in light of their usage [55]
to describe theories of interacting multiple M2 branes.

The first case to consider are the Euclidean three algebras, such that f b1...b4 =fa
b1...b3δab4

is totally antisymmetric. Here the fundamental identity is very restrictive and results in a
unique possibility: the four-dimensional Euclidean three algebra [56–58], whose structure
constants are just the antisymmetric symbol, complemented with two U(1) directions.
Relaxing the requirement of a positive definite invariant inner product allows a wider
variety [59–64]. Dispensing the requirement of an invariant inner product (which thus far
appears unimportant for the EDA) allows non-metric three algebras [65–67].14

5.3 r-matrix EDAs

We now consider coboundary EDAs given in terms of an r-matrix as in eq. (4.19) obeying
the YB equation (4.21). Splitting the generators of g into Tā with ā = 1, . . . , 5 and T6

14In addition there are three algebra structures [68, 69] in which fd
abc is not totally antisymmetric in

its upper indices. These can be used to describe interacting 3d theories with lower supersymmetry. It is a
unclear if they could play role in the context of EDAs.

– 17 –



J
H
E
P
0
1
(
2
0
2
1
)
0
2
0

(identified with the generator q appearing in (4.19)) we have the non-vanishing components
ρāb̄6 = rāb̄. Furthermore the condition (4.9) requires that

rāb̄fāb̄
6 = rāb̄fāb̄

c̄ = rāb̄fā6
c̄ = rāb̄fā6

6 = 0 , (5.2)

in which the last two equalities match the statement that r is neutral under T6. In such a
setup, the dual structure constants are specified as

fā
b̄1b̄26 = 2fāc̄[b̄1r|c̄|b̄2] + fā6

6rb̄1b̄2 , fā
b̄1b̄2b̄3 = 3fā6

[b̄1rb̄2b̄3] , f6
b̄1b̄26 = f6

b̄1b̄2b̄3 = 0 . (5.3)

Assuming further that ḡ = span(Tā) is a sub-algebra of g then rāb̄ defines an r-matrix
on ḡ obeying the YB equation. Consequently f̃ b̄1b̄2

ā = −2fāc̄[b̄1r|c̄|b̄2] are the structure
constants of a dual Lie algebra ḡR and d̄ = ḡ ⊕ ḡR is a Drinfel’d double. Thus we have
a family of embeddings of the Drinfel’d double into the EDA specified by fā6

6 and fā6
b̄.

When g = ḡ ⊕ u(1) is a direct sum (such that fā6
6 = fā6

b̄ = 0), then this is precisely an
example of the non-metric three algebra of [65–67]. We emphasise though that not every
(coboundary) double can be embedded in this way; one must still ensure that equation (5.2)
holds.

5.4 Explicit examples

We now present a selection of explicit examples that illustrate coboundary and non-
coboundary EDAs.

5.4.1 Trivial non-examples based on SO(p, q)

To illustrate that the EDA requirements are indeed quite restrictive we can first consider
the case of g = so(p, q) with p + q = 4. A direct consideration of the Leibniz identities
reveals that there is no non-zero solution for fab1...b3 (in fact the cocycle conditions alone
determine this). Equally the Leibniz identities admit only trivial solutions in the case of
iso(p, q) = so(p, q) nRp+q+ with p+ q = 3.

5.4.2 An example both coboundary and non-coboundary solutions

We consider an indecomposable nilpotent Lie algebra N6,22 of [70] specified by the structure
constants15

f12
3 = 1 , f13

5 = 1 , f15
6 = c0 , f23

4 = 1 , f24
5 = 1 , f34

6 = c0 . (5.4)

We find a family of solutions

f1
356 = d1 , f1

456 = d2 , f2
156 = d3 , f2

346 = −d3 ,

f2
356 = d4 , f2

456 = d5 , f3
456 = −d1 + d3 ,

(5.5)

which indeed satisfies the closure constraints. In particular, if we choose c0 = 0, we can
clearly see that this EDA contains a 10D Drinfel’d double {Tā, T ā6} (ā = 1, . . . , 5) as a Lie
subalgebra.

15Here we introduced a parameter c0 for convenience, which is 1 in [70].
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We can also find ρabc by considering the coboundary Ansatz. Supposing c0 6= 0, the
general solution to the generalised Yang-Baxter equation and compatibility condition is

ρ146 = e1 , ρ156 = e2 , ρ256 = e3 , ρ346 = −e2 , ρ356 = e4 , ρ456 = e5 , (5.6)

where e1 = 0 or e3 = 0 . The corresponding structure constants are

f1
356 = e3 , f1

456 = e2 , f2
156 = e1 , f2

346 = −e1 ,

f2
356 = −2e2 , f2

456 = e4 , f3
456 = e1 − e3 .

(5.7)

This means that only when di (i = 1, . . . , 5) have the form

d1 = e3 , d2 = e2 , d3 = e1 , d4 = −2e2 , d5 = e4 , (5.8)

and satisfy d1 = 0 or d3 = 0, the cocycle becomes the coboundary.

5.4.3 An example with ρ6

In the previous example ρ6 is absent. By considering the Lie algebra of the form g =
g4 ⊕ u(1)⊕ u(1), where g4 denotes a real 4D Lie algebra that is classified in [71], one can
construct a number of examples16 (based on unimodular Lie algebras) that admit ρ6. To
illustrate this let us consider the case that g4 = A4,1 specified by structure constants

f24
1 = 1 , f34

2 = 1 . (5.9)

We find the generalised Yang-Baxter and compatibility equations admit the following family
of solutions:

ρ123 = d1 , ρ125 = d2 , ρ126 = d3 , ρ135 = d1d4d8
2d0

, ρ136 = d1d5d8
2d0

, ρ145 = d4 ,

ρ146 = d5 , ρ156 = d6 , ρ256 = d7 , ρ356 = d8 , ρ456 = 2d0
d1

, ρ123456 = d0 .

(5.10)

The corresponding dual structure constants are

f2
156 = 2d0

d1
, f3

125 = d4 , f3
126 = d5 , f3

256 = 2d0
d1

,

f4
125 = −d1d4d8

2d0
, f4

126 = −d1d5d8
2d0

, f4
156 = −d7 , f4

256 = −d8 .

(5.11)

5.4.4 An r-matrix EDA

In order to find a non-trivial example of the r-matrix EDAs, we consider a solvable Lie
algebra Nαβ

6,29 of [72] defined by structure constants:

f13
3 = 1 , f15

5 = α , f16
6 = 1 , f23

3 = 1 , f24
4 = 1 , f25

5 = β , f46
3 = −1 ,

(5.12)
16In the notation of [71] examples with ρ6 6= 0 are found when g4 is one of the following: A3,1 + u(1),

A−1
3,4 + u(1), A0

3,5 + u(1), A4,1, A−2
4,2, A

a,b,−(a+b)
4,5 , A−2b,b

4,6 .
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where α2 + β2 6= 0 . This algebra contains a subalgebra generated by ḡ = span(Tā)
(ā = 1, . . . , 5) and is non-trivial in the sense that it satisfies fā6

b̄ 6= 0 and fā6
6 6= 0.

Supposing αβ 6= 0, we find the general solution for ρabc is given by

ρ135 = c1 , ρ235 = −c1 , ρ356 = c2 , ρ345 = c3 , (5.13)

where c1 = 0 when α 6= β . The corresponding dual structure constants are

f1
135 = (1 + α)c1 , f1

235 = −(1 + α)c1 , f1
345 = (1 + α)c3 , f1

356 = (2 + α)c2 ,

f2
135 = (1 + β)c1 , f2

235 = −(1 + β)c1 , f2
345 = (2 + β)c3 , f2

356 = (1 + β)c2 ,

f4
345 = −c1 , f6

356 = −c1 .

(5.14)

This solution contains an r-matrix EDA as a particular case c1 = c3 = 0 .

6 Conclusion and outlook

In this work we have consolidated the exploration of exceptional Drinfel’d algebras intro-
duced in [17, 18] extending the construction to the context of the E6(6) exceptional group.
The algebraic construction here requires the introduction of a new feature: we have to
consider not only a Lie algebra g together with a three-algebra specified by f3 ≡ fa

b1...b3

as in [17, 18], but we have to also include a six-algebra f6 ≡ fa
b1...b6 . The Leibniz iden-

tities that the EDA must obey enforce a set of fundamental (Jacobi-like) identities for
the three- and six-algebra as well as some compatibility conditions. These compatibility
conditions require that f3 be a g-cocycle and f6 be an f3-twisted g-cocycle. In terms of
the g coboundary operator d this can be stated as

df3 = 0 , df6 + f3 ∧ f3 = 0 . (6.1)

We can solve this requirement with a coboundary Ansatz, f3 = dρ3 and f6 = dρ6+ 1
2ρ3∧dρ3,

reminiscent of the way a Drinfel’d double can be constructed through an r-matrix. Indeed,
we find a generalised version for the Yang Baxter equation for ρ3, concisely expressed as

σ[123],[45][ρ123 + ρ234, ρ145] = 1
2 (ρ12345;5 + ρ12345;4) . (6.2)

We proposed a ‘quantum’ relation from which this classical equation can be obtained. This
feature, and the resultant interplay between one-, three-, and six-algebras, opens up many
interesting avenues for further exploration.

The construction of the EDA is closely motivated by considerations within exceptional
generalised geometry. We have shown how the EDA can be realised as a generalised Leibniz
parallelisation of the exceptional generalised tangent bundle of a group manifold G. The
data required to construct this mean that G is equipped with a 3-bracket and a 6-bracket
which invites the consideration of Nambu-Lie groups.

Now we come to solving the various constraint equations that govern the structure of
the EDA. The first thing to note is that due to the dimension, the only solutions to the
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fundamental identities have vanishing f6 (and consequently a trivial 6-bracket on G). We
believe however that in higher dimension this condition is less stringent and that there will
solutions for which the structure described above is exhibited in full.

We then provided a range of examples that illustrate the various features here. We
have examples with and without Drinfel’d double subalgebras, and examples that are both
of coboundary type (specified by a ρ3 and ρ6) and not of coboundary type. All of the
coboundary examples presented here (and indeed in all the numerous other examples we
have found) can be obtained from the procedure of ρ-twisting i.e. starting with a semi-
Abelian EDA and applying an E6(6) transformation parametrised by the ρ3 and ρ6. Despite
the dimensionality induced restriction to f6 = 0, there are examples for which ρ6 6= 0. We
provide examples where ρ3 can be parametrised in terms of a Yang-Baxter r-matrix for a
lower dimensional algebra, as well as where this is not the case.

There are several exciting open directions here that we share in the hope that others
may wish to develop them further:

• Extensions of the EDA to E7(7) and higher are likely to shed further light on the
structures involved. As the space gets larger there is more scope to find interesting
solutions.

• It would be interesting to develop a more general classification of EDA solutions.

• One feature of the EDA is that they may admit multiple decompositions into physical
spaces, and a resultant notion of duality. Further development should go into this
very interesting aspect.

• Here we make some robust requirements that result in structures compatible with
maximally supersymmetric gauged supergravities. It would likely be interesting to see
how the requirements of the EDA can be consistently relaxed to lower supersymmetric
settings, for example using [73].

• On a mathematical note perhaps the most intriguing area of all is to develop the
‘quantum’ equivalent of the classical EDA proposed here.
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A E6(6) × RRR+ algebra and conventions

The matrix representations of the En(n) generators (tα)AB in the R1-representation are

Kc
d ≡


δca δ

b
d 0 0

0 −2 δa1a2
[b1|d| δ

c
b2] 0

0 0 −5 δa1...a5
[b1...b4|d| δ

c
b5]

+ δcd
9− n 1 ,

Rc1c2c3 ≡


0 −

3! δc1c2c3
ab1b2√

2! 0

0 0 −
5! δa1a2c1c2c3

b1...b5√
5! 2!

0 0 0

 , Rc1...c6 ≡


0 0 −

6! δc1...c6
ab1...b5√

5!
0 0 0
0 0 0

 ,

Rc1c2c3 ≡


0 0 0

3! δba1a2
c1c2c3√

2! 0 0

0
5! δa1...a5

b1b2c1c2c3√
2! 5! 0

 , Rc1...c6 ≡


0 0 0
0 0 0

6! δba1...a5
c1...c6√

5! 0 0

 ,

(A.1)

and that of the R+ generator is simply (t0)AB = −δBA .
The non-vanishing components of symmetric invariant tensor of E6(6), dABC , are

dab1b2c1...c5 =
2! δa[b1

εb2]c1...c5√
10

, da1a2b1b2c1c2 = εa1a2b1b2c1c2√
10

, (A.2)

and those of dABC are given by the same with indices in opposite positions. Using this we
have the useful tensor given by

ηAB
C ≡
√

10 dABD kDC , (A.3)

in which, kAB connects R1 = 27 and R2 = 27,

(kAB) ≡


0 0 δa

b εb1···b6√
6!

0 − εa1a2b1···b4√
2! 4!

εa1···a5b√
5! 0 0

 , (kAB) ≡


0 0 εb1···b5a

√
5!

0 − εb1b2a1···a4√
2! 4!

δa
b ε

a1···a6
√

6! 0 0

 .

(A.4)

This plays a similar role to that of the O(d, d) invariant inner product of generalised geom-
etry and indeed can be used to construct the Y-tensor [41] given by Y AB

CD = ηABE ηCD
E =

10 dABE dCDE that is ubiquitous in exceptional field theory/generalised geometry.
The invariance of ηABC under En(n) × R+ symmetry can be expressed as

(tα̂)AD ηDBC + (tα̂)BD ηADC = ηAB
D (tα̂)DC . (A.5)
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From this relation, we find the matrix representation (tα)AB in the R2-representation is

Kc
d ≡

−δ
a
d δ

c
b 0 0

0 −4δa1...a4
de1e2e3

δce1e2e3
b1...b4

0
0 0 −6δa1...a6

de1...e5
δce1...e5
b1...b6

δa
′
b′−δ

a1...a6
b1...b6

δa
′
d δ

c
b′

+ 2 δcd
9−n 1 ,

Rc1c2c3 ≡

0 −
√

4!δac1c2c3
b1...b4

0
0 0 −3

√
30δa1...a4d1d2

b1...b6
δc1c2c3
b′d1d2

0 0 0

 , Rc1...c6 ≡

0 0
√

6!δc1...c6
b1...b6

δa
′
b′

0 0 0
0 0 0

 ,

Rc1c2c3 ≡

 0 0 0√
4!δa1...a4

bc1c2c3
0 0

0 3
√

30δa1...a6
b1...b4d1d2

δa
′d1d2
c1c2c3 0

 , Rc1...c6 ≡

 0 0 0
0 0 0

−
√

6!δa1...a6
c1...c6 δ

a′
b′ 0 0

 .
(A.6)

In terms of these generators we can express the EDA product as,

TA ◦ TB = Θ̂A
α̂ (tα̂)BC TB , (A.7)

where {tα̂} ≡ {t0, tα}, {tα} ≡ {Ka
b, R

a1a2a3 , Ra1···a6 , Ra1a2a3 , Ra1···a6}. The explicit form
of Θ̂A

α̂ is as follows:

Θ̂a
α tα ≡ fabcKb

c + 1
3! fa

c1c2c3 Rc1c2c3 + 1
6! fa

c1···c6 Rc1···c6 ,

Θ̂a1a2α tα ≡ −fc1c2
[a1 Ra2]c1c2 − fcda1a2 Kc

d ,

Θ̂a1···a5α tα ≡ −
5
2 fc1c2

[a1 Ra2···a5]c1c2 + 10 fc[a1a2a3 Ra4a5]c − fcda1···a5 Kc
d ,

Θ̂a
0 ≡ fac

c

9− n , Θ̂a1a20 ≡ −fc
ca1a2

9− n , Θ̂a1···a50 ≡ −fc
ca1···a5

9− n .

(A.8)

We can now recast the algebra of frame fields (3.8) as

LEA
EB = −Θ̂A

α̂ (tα̂)BC EC , (A.9)

such that making us of (3.7), (3.11), and (A.5), we can easily find that the generalized
frame field in the R2-representation also transforms covariantly as

LEA
EB = −Θ̂A

α̂ (tα̂)BC EC . (A.10)
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