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Shortcuts to adiabaticity is a general method for speeding up adiabatic quantum protocols, and has many
potential applications in quantum information processing. Unfortunately, analytically constructing short-
cuts to adiabaticity for systems having complex interactions and more than a few levels is a challenging
task. This is usually overcome by assuming an idealized Hamiltonian [e.g., only a limited subset of energy
levels are retained, and the rotating-wave approximation (RWA) is made]. Here we develop an analytic
approach that allows one to go beyond these limitations. Our method is general and results in analytically
derived pulse shapes that correct both nonadiabatic errors and non-RWA errors. We also show that our
approach can yield pulses requiring a smaller driving power than conventional nonadiabatic protocols. We
show in detail how our ideas can be used to analytically design high-fidelity single-qubit “tripod” gates in
a realistic superconducting fluxonium qubit.

DOI: 10.1103/PRXQuantum.2.030306

I. INTRODUCTION

Quantum gates based on adiabatic evolution [1–8] are
generally desirable because of their intrinsic robustness
against imperfections in control pulses, and have been
implemented in a variety of platforms (see e.g., Refs.
[9–11]). They, however, require extremely long evolution
times, making them potentially susceptible to dissipation
and noise. An intriguing possibility is to try to “acceler-
ate” adiabatic gates using techniques drawn from the field
of shortcuts to adiabaticity (STA) [12–16]. STA protocols
seek to modify pulses to completely cancel nonadiabatic
errors. They are usually developed for simple evolutions
that do not correspond to a true quantum gate, as their
form is tied to a specific choice of initial state. How-
ever, they can be adapted for true gates. Ribeiro and Clerk
[17] showed how a particular shortcut approach [superadi-
abatic transitionless driving (SATD) [18] ] could be used to
accelerate a true (arbitrary) single-qubit gate, the paradig-
matic “tripod” adiabatic gate introduced in Refs. [3,4]
(see Fig. 1). Other STA approaches to gates were pre-
sented in Refs. [19–23]. Note that STA-accelerated gates
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are conceptually distinct from the so-called nonadiabatic
holonomic gates (see e.g., Ref. [24]) and have distinct
advantages [17].

While the above results are promising, they are lim-
ited by a constraint that plagues most STA approaches
to quantum control: accelerated protocols can be derived
analytically for only few-level systems (or systems that
reduce to uncoupled few-level systems). Furthermore, one
needs to ignore fast-oscillating nonresonant terms [i.e., one
must necessarily make the rotating-wave approximation
(RWA)]. In many realistic settings, unwanted non-RWA
dynamics and couplings to higher levels cannot be ignored
and will limit the operation fidelity even if nonadiabatic
errors are suppressed. For this reason, the utility of ana-
lytic STA protocols for high-fidelity operations in complex
systems has remained unclear.

In this paper, we present a generic approach for improv-
ing STA protocols in settings where assuming an idealized
dynamics is not possible (e.g., non-RWA terms cannot be
ignored). The result is a general method for analytically
deriving pulse sequences that both fully cancel nonadi-
abatic errors and partially mitigate non-RWA errors. To
highlight the efficacy of our approach, we focus on a
specific, experimentally relevant setting: an accelerated
geometric tripod gate implemented in a fluxonium-style
superconducting circuit [25–28]. The isolated qubit lev-
els of this system make conventional approaches to gates
problematic, providing motivation for new ideas that do
not require a direct coupling of qubit levels. The so-called
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FIG. 1. A single-qubit gate realized using a four-level tripod
energy structure consisting of three lower energy levels (|0〉, |1〉,
and |a〉) resonantly coupled to an excited state |e〉 by three dif-
ferent driving tones, with envelopes �0e(t), �1e(t), and �ae(t),
respectively. This tripod-energy structure can be engineered in
a multienergy spectrum (shown above are the ten lowest energy
levels) of a fluxonium qubit, whose device schematic is shown in
the inset. The driving fields can drive unwanted transitions that
give rise to coherent errors, e.g., transitions between the energy
levels outside the tripod structure (shown using light gray) and
the energy levels in the tripod structure as well as the transitions
inside the tripod structure driven by nonresonant tones.

tripod gate [3,4] is a natural candidate. However, as shown
in Fig. 1, a fluxonium circuit has a complex level struc-
ture, implying that nonresonant, non-RWA corrections will
be important. Using realistic parameters compatible with
experiment, we show (via full master-equation solutions
including dissipation, non-RWA effects, and power con-
straints from cavity-based driving) that, subject to realistic
noise, our enhanced STA gate achieves gate fidelities of
0.9991–0.9997 with a gate time of tg = 100 ns.

Our gate performance is roughly comparable to results
obtained using fully numerical optimal control on a related
superconducting circuit [29]. It also demonstrates that the
accelerated tripod gate can be advantageous, despite the
ability to realize a perfectly isolated tripod level structure.
Note that the use of our enhanced protocol is crucial: if
one simply uses the STA derived without corrections, the
fidelity error for the same gate time is orders of magnitude
higher.

The paper is organized as follows. We begin in Sec. II
by introducing the most general version of our problem:
how can one analytically design STA protocols in com-
plex multilevel systems? In Sec. III, we briefly review
the basic (RWA) geometric tripod gate [3,4] as well as
its accelerated version [17]. In Sec. IV, we go beyond
the RWA, and discuss how in general STA approaches
can be further enhanced to mitigate nonresonant errors.
In Sec. V, we explore the utility of these methods by

applying them to design an accelerated gate in a realistic
fluxonium superconducting circuit. Results for gate perfor-
mance are presented in Sec. VI, and comparison against a
simpler “direct-driving” gate is presented in Sec. VII. We
summarize our results in Sec. VIII.

II. GENERAL PROBLEM:
SHORTCUT-TO-ADIABATICITY APPROACHES

FOR COMPLEX DRIVEN SYSTEMS

We begin by considering a generic driven multilevel
system whose Hamiltonian in the laboratory frame has the
form

Ĥ(t) =
∑

k

εk|k〉〈k| +

⎛

⎜⎝V(t)
∑

(k,l) |
l>k

nkl|k〉〈l| + H.c.

⎞

⎟⎠ , (1)

where εk and |k〉 are the eigenenergies and eigenstates of
the undriven system, respectively, and nkl = 〈k|n̂|l〉 is an
effective dipole matrix element. The full control pulse V(t)
consists of several distinct drive tones ωj , each associated
with a slowly varying complex envelope Vj (t), i.e.,

V(t) = 1
2

∑

j

[
Vj (t)eiωj t + H.c.

]
. (2)

We next move to an interaction picture defined by Ûdiag =
e−iĤdiagt, where Ĥdiag = ∑

k εk|k〉〈k|. The Hamiltonian in
this frame takes the general form

Ĥ(t) = Ĥ0(t) + Ĥerr(t). (3)

Here Ĥ0(t) describes resonant processes, and is time
dependent only through its dependence on the envelope
functions Vj (t). Defining εkl = εl − εk, we have

Ĥ0(t) = 1
2

∑

j

∑

(k,l) |
l>k & εkl=ωj

[
Vj (t)nkl|k〉〈l| + H.c.

]
. (4)

In contrast, Ĥerr(t) describes all nonresonant processes:

Ĥerr(t) = 1
2

(∑

j

∑

(k,l) |
l>k & εkl �=ωj

Vj (t)e−i(εkl−ωj )tnkl|k〉〈l|

+
∑

j

∑

(k,l) |
l>k & εkl �=−ωj

V∗
j (t)e

−i(εkl+ωj )tnkl|k〉〈l|
)

+ H.c.

(5)

The standard next step in most analytic STA approaches
to quantum control is to make the RWA: one assumes that
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the energy detunings in Ĥerr(t) are sufficiently large that
this error Hamiltonian can be approximated as zero. The
result is a much simpler Hamiltonian that involves only the
slowly varying amplitudes Vj (t) and which typically cou-
ples only a small subset of levels. It is in this context that
many exact STA protocols have been derived; these proto-
cols yield a perfect, error-free evolution within the RWA.
Examples range from accelerated versions of the two-level
Landau-Zener problem [12,14,15,30] to more complex
three-level [18,31–34] and four-level [17] protocols.

Despite the power of the above STA approaches, they
address only nonadiabatic errors associated with the RWA
Hamiltonian Ĥ0(t). A crucial question is whether they can
also be adapted to address additional errors arising from
the non-RWA dynamics described by Ĥerr(t). Corrections
to the RWA are important in many physical systems if
one is interested in realizing truly high-fidelity operations.
One could in principle try to derive an STA for the full
multilevel fast-oscillating Hamiltonian H(t) but in most
cases this is completely infeasible. Not only does this
involve dealing with a large-dimensional Hilbert space but
it also involves working with a starting Hamiltonian that
has extremely fast time-dependent terms [i.e., in Ĥerr(t)],
and hence is nowhere close to an adiabatic limit.

A central goal of this work is to present a much more
tractable approach to adapting exact STA protocols so
that they also mitigate nonresonant, non-RWA errors. Our
method is ultimately perturbative, and amounts to modify-
ing the original (RWA) STA protocol to correct the leading
effects of Ĥerr(t). We stress that our approach retains the
crucial feature of the original STA pulse sequence of being
described and derived fully analytically (i.e., no recourse
is made to numerical optimal-control approaches). While
our method is extremely general, we focus in what follows
on a particularly promising protocol involving acceler-
ated geometric gates using a tripod level structure [3,4]
[see Fig. 2(a)]. The general approach we present is com-
pletely distinct from recent work [35,36] that deliberately
introduced additional high-frequency oscillatory terms to a
RWA Hamiltonian to approximately engineer desired STA
protocols.

III. REVIEW: ACCELERATED ADIABATIC
QUANTUM GATES

In this section we briefly review the basic geometric tri-
pod gate introduced in Refs. [3,4,7,37] and its accelerated
version [17]. All these analyses were done in the context
of a simplified four-level RWA Hamiltonian. Our review
here sets the stage for our following discussion on how
these approaches can be modified and effectively imple-
mented in a realistic multilevel superconducting circuit
where non-RWA effects play a crucial role.

(a) (b)Tripod Λ system

Qubit Qubit

|e〉 |e〉

|a〉
|0〉

|1〉
|a〉

Ωae(t)Ωae(t)

|0〉
|1〉

Ω1e(t)Ω1e(t)
Ω0e(t)

FIG. 2. (a) An ideal tripod system consisting of three lower
energy levels (the qubit states |0〉 and |1〉 as well as the aux-
iliary state |a〉) resonantly coupled to an excited state |e〉 by
three different driving tones, with envelopes �0e(t), �1e(t), and
�ae(t), respectively. (b) An effective � system (consisting of the
state |1̃〉 and the state |a〉 resonantly coupled to the state |e〉)
used to describe the dynamics of the tripod system. The control
pulses �1̃e(t) and �ae(t) perform a double STIRAP protocol that
cyclically evolves the zero-energy dark states in the � system.

A. Double stimulated Raman adiabatic passage
protocol in an ideal tripod system

Starting with the full driven Hamiltonian in Eq. (1), we
assume a situation where within the RWA we realize a so-
called tripod level configuration [see Fig. 2(a)]. An ideal
tripod system consists of three lower levels (labeled by |0〉,
|1〉, and |a〉) that are controllably coupled to a common
excited state |e〉 [see Fig. 2(a)]. Denoting these (complex)
couplings as �je(t) (j = 0, 1, a), we can write the tripod
Hamiltonian as (� = 1)

Ĥ0(t) = 1
2

[
�0e(t)|0〉〈e| + �1e(t)|1〉〈e|

+ �ae(t)|a〉〈e| + H.c.
]

, (6)

where

�je(t) = Vje(t)nje (7)

for j = 0, 1, a. We take the states |0〉 and |1〉 to encode
a logical qubit, while |a〉 and |e〉 serve as auxiliary states
used to perform gate operations.

The basic idea of the gate is that Ĥ0(t) always has two
degenerate zero-energy adiabatic eigenstates, and hence
cyclic adiabatic evolution can result in a nontrivial geo-
metric 2 × 2 unitary in this subspace. To understand this
more concretely, we follow Ref. [17], and consider control
pulses of the form

�0e(t) = �0 cos(α) sin[θ(t)], (8a)

�1e(t) = �0 sin(α) sin[θ(t)]eiβ , (8b)

�ae(t) = �0 cos[θ(t)]eiγ (t). (8c)

The angles α and θ control the relative magnitudes of the
pulses, while β and γ control relative phases; α and β are
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time independent and we only require θ(t) and γ (t) to be
time dependent. The overall amplitude �0 sets the instan-
taneous adiabatic gap of Ĥ0(t), which we choose to keep
constant:

�ad(t) ≡ 1
2

√
|�0e(t)|2 + |�1e(t)|2 + |�ae(t)|2 = �0

2
.

(9)

At every instant in time, Ĥ0(t) has two zero-energy dark
states (orthogonal to |e〉), and bright states at energy
±�0/2.

The tripod system in Fig. 2(a) can be related to an effec-
tive three-level � system by moving into a suitable frame
defined by the time-independent control pulse parameters
α and β [38,39] [Fig. 2(b)]. In this representation, the gate
corresponds to a “double stimulated Raman adiabatic pas-
sage (STIRAP) protocol” in the � system, where the dark
state

|d(t)〉 = cos[θ(t)]|1̃〉 − eiγ (t) sin[θ(t)]|a〉 (10)

undergoes a cyclic adiabatic evolution |1̃〉 → |a〉 → |1̃〉.
This requires an appropriate cyclic variation of the pulse
parameter θ(t) (see Ref. [17] and Appendix A for details).
This cyclic evolution can result in a Berry phase. We take
the gate to start at t = 0 and end at t = tg . For the case
where the pulse parameter γ (t) is chosen as

γ (t) = γ0


(
t − tg

2

)
, (11)

with 
(t) being the Heaviside step function, this geometric
phase is simply γ0 [17].

In the adiabatic limit θ̇ (t)/�0 → 0, the gate unitary in
the qubit subspace is given by [17]

ÛG,01 = exp (−iγ0/2) exp
(
−i

γ0

2
n · σ̂ 01

)
, (12a)

n = [sin(2α) cos(β), sin(2α) sin(β), cos(2α)], (12b)

where σ̂ 01 = (|0〉〈1| + H.c., −i|0〉〈1| + H.c., |0〉〈0| − |1〉〈1|)
is the vector of the Pauli matrices in the qubit subspace.
For example, the X gate can be realized by using the angle
parameters α = π/4, β = 0, and γ0 = π .

B. Accelerated tripod gates

The geometric tripod gate yields a perfect gate fidelity
in the adiabatic limit where the protocol time is infinitely
longer than 1/�0. In many realistic systems, dissipa-
tive effects involving the lower tripod levels make such
long evolution times infeasible. It would thus be desir-
able to reduce the gate time without introducing nonadi-
abatic errors. This is exactly the goal of STA methods
[12–14,17,18,30].

Following Ref. [17], we consider an STA protocol based
on the SATD method [18], where nonadiabatic errors are
mitigated by having the system follow a dressed adiabatic
eigenstate (see Appendix B). The accelerated protocol is
implemented by simply modifying the complex envelope
of the original control pulse [17,18,40,41]. Specifically,
the SATD protocol requires that one corrects the original
pulses via

�0e(t) → �̃0e(t)

≡ �0 cos(α)

(
sin[θ(t)] + 4

cos[θ(t)]θ̈ (t)
�2

0 + 4θ̇2(t)

)
,

(13a)

�1e(t) → �̃1e(t)

≡ �0 sin(α)eiβ
(

sin[θ(t)] + 4
cos[θ(t)]θ̈ (t)
�2

0 + 4θ̇2(t)

)
,

(13b)

�ae(t) → �̃ae(t)

≡ �0eiγ (t)
(

cos[θ(t)] − 4
sin[θ(t)]θ̈ (t)
�2

0 + 4θ̇2(t)

)
,

(13c)

where the angle γ (t) [Eq. (11)] remains unchanged. It
can be shown [17] that the resulting accelerated protocol
obtained using correction in Eq. (13) achieves the same
unitary ÛG,01 in the qubit subspace as in the adiabatic limit
[see Eq. (12)]. In what follows, we use a tilde to denote
SATD-corrected pulse parameters.

C. Infinite family of perfect RWA protocols

For our ideal (RWA) tripod systems, our SATD
approach yields an infinite number of perfect protocols
(i.e., pulse sequences) that realize a given gate in a fixed
gate time tg . These protocols are indexed by �0 [see Eq.
(9)], which is the scale of amplitudes of the uncorrected
pulse (and the corresponding time-independent adiabatic
gap). For every choice of �0, there is a corresponding
SATD protocol [given by Eq. (13)] that yields a pulse
sequence with a perfect gate fidelity. At a heuristic level,
for �0 � 1/tg the uncorrected protocol is already almost
in the adiabatic limit, meaning that the additional SATD
modification of pulses will be minimal. In contrast, for
�0 < 1/tg , the SATD correction to the original pulse shape
will be extremely large (to cancel nonadiabatic errors).
Figure 3 shows the time profiles of pulse envelopes used
to realize perfect X gates in an ideal tripod system for
different choices of �0tg . Besides the degeneracy in choos-
ing �0, there is also a degeneracy resulting from different
choices of the pulse-shape function P(t/tg) [Eq. (A6)] that
determines θ(t) [Eq. (A5)].
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FIG. 3. Time profiles of the envelopes of the three driving
tones used to realize X gates in an ideal tripod system: (a)
�̃0e(t) = �̃1e(t); (b) �̃ae(t). Pulses are calculated with use of Eq.
(13) with θ(t) given in Eq. (A5) and other angle parameters given
by α = π/4, β = 0, and γ0 = π . Shown here are pulses for a
fixed gate time tg but with different uncorrected gap frequen-
cies: �0/2π = 4/tg (red curve), �0/2π = 2/tg (green curve),
and �0/2π = 0.2/tg (blue curve). The SATD correction to the
adiabatic pulse becomes larger as �0 decreases.

IV. ENHANCING STA PROTOCOLS TO
MITIGATE NONRESONANT ERRORS

We now return to the central question of this work: can
STA approaches still be effective in settings where non-
resonant, non-RWA processes also degrade fidelity? The
non-RWA terms can in general induce energy shifts of
the main tripod levels, cause leakage to nontripod levels,
and also drive additional higher-order processes; these all
represent error mechanisms. In this section, we present a
general strategy for improving STA protocols to partially
mitigate non-RWA errors. For concreteness, we do this in
the specific context of the accelerated tripod gate intro-
duced above. To achieve a gate in a fixed time tg , our
strategy has two basic steps:

1. We first use the degeneracy of perfect STA protocols
that exists in the RWA limit (see Sec. III C) to pick
a protocol that minimizes the “size” (appropriately
defined) of our control fields. Since the non-RWA
errors increase with increasing pulse amplitude, this
step mitigates all non-RWA errors.

2. Next, we use a perturbative approach to partially
correct non-RWA errors. We focus on correcting the
leading-order error mechanism, which is unwanted
energy shifts of the computational states (i.e., Stark
shifts). As we see in Sec. IV C, there is in gen-
eral a wide range of gate times where leakage (and
higher-order processes) does not play a significant
role, meaning that this perturbative approach is very
beneficial. To this end, we modify the SATD pulse
shape by chirping the control fields to offset fre-
quency shifts arising from non-RWA terms. The
form of the required chirp can be found analytically
using a perturbative approach.

As we see later, this two-pronged, fully analytic approach
results in a modified set of pulses that yield excep-
tional gate performance even when non-RWA effects are
included. Thus, our correction strategy is well suited for
obtaining high-fidelity gates. We now discuss each step of
our general method in more detail, focusing on the specific
case of our accelerated tripod gate.

A. Step 1: Power minimization

The nonresonant, non-RWA processes described by
Ĥerr(t) [see Eq. (5)] yield new unwanted coherent dynam-
ics that will degrade the performance of our gate; example
processes are sketched in Fig. 4. One effect of these terms
is to generate effective time-dependent energy shifts of
the four levels involved in our tripod gate. We define
�

(j )
kl,± = εl − εk ± ωje as the detuning associated with the

transition between the energy level |k〉 and the level |l〉
associated with the drive tone ωje. Recall that in our tri-
pod gate, there is a drive tone for each ground-state level
(see Fig. 2), and hence j = 0, 1, a. Using a Magnus-based
approach (see Ref. [42]), one can derive the leading-order,
time-dependent energy shift δεk(t) of energy level |k〉 due
to Ĥerr(t). This energy shift has the usual form expected
from second-order perturbation theory, i.e.,

δεk(t) =
∑

j =0,1,a
σ=±

∑

l |�(j )
kl,σ �=0

|Ṽje(t)nkl|2
4�

(j )
kl,σ

. (14)

The sum here is over all nonresonant processes that
involve the state |k〉. We are interested in energy shifts
of the four tripod levels (i.e., k = 0, 1, a, e). Note that
the intermediate states l in Eq. (14) include the four
tripod levels [i.e., “crosstalk” process; Fig. 4(a)] and
nontripod states [i.e., couplings to “leakage” levels;
Fig. 4(b)]. Formally, Eq. (14) is valid in the perturbative
limit where |Ṽje(t)nkl| 	 |�(j )

kl,±| and the quasistatic limit

| ∫ tg
0 ∂t′ Ṽje(t′)nkle

−i�(j )
kl,±t′dt′| 	 |�(j )

kl,±|.
The simplest way to mitigate errors associated with

the above non-RWA generated energy shifts is to mini-
mize their size by minimizing the SATD-corrected pulse
amplitudes Ṽje(t). We would like to find a simple metric
to characterize the size of these amplitudes in a mean-
ingful manner. We see that at each instant in time, the
relevant quantity is the square of these amplitudes (as the
energy shifts are a second-order effect). This motivates
us to characterize the “size” of our control pulses by the
root-mean-square (rms) voltage of the control field, i.e.,

Ṽrms ≡
√

1
tg

∫ tg

0

[
Ṽ(t)

]2
dt. (15)

Here Ṽ(t) is the total real-valued control pulse function
(including the SATD correction); see Eq. (2).
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(a) Crosstalk (b) Coupling to a leakage level 

Δ

|0〉|0〉
|1〉 |1〉

|f〉

|e〉|e〉

|a〉 |a〉

e0
(1)

,−

Δ(1)
0f,−

Spurious non-resonant (non-RWA) processes 

Ω1e(t) Ω1e(t)

FIG. 4. Spurious non-RWA processes giving rise to coherent
errors. (a) Crosstalk where the driving tone �1e(t) drives the
|0〉 ↔ |e〉 transition. The frequency of the driving tone �1e(t)
is detuned by �

(1)

0e,− from the |0〉 ↔ |e〉 transition. (b) Coupling
to spurious level |f 〉, where the driving tone �1e(t) drives the
|0〉 ↔ |f 〉 transition. The frequency of the driving tone �1e(t) is
detuned by �

(1)

0f ,− from the |0〉 ↔ |f 〉 transition.

In general, coherent errors increase with increasing drive
strength (i.e., pulse amplitude), which we characterize by
the rms voltage of our pulses. By minimizing Ṽrms, we can
therefore limit the effects of these errors on the perfor-
mance of our gate. As discussed in Sec. VII A, there are
also other factors that contribute to a desire to limit the
overall amplitude of the drive pulses. For example, when
the qubit is indirectly driven through a cavity, it is prefer-
able to use a smaller driving power to constrain the cavity
photon number. High drive-induced cavity photon num-
bers are believed to cause heating effects, which may result
in a coherence loss of the qubit, potentially further limiting
the performance of our gate.

Using the specific form of the SATD pulses in Eqs. (13),
we can write the rms voltage in Eq. (15) as

Ṽrms �
√√√√ 1

2tg

∫ tg

0
dt
∑

j =0,1,a

∣∣Ṽje(t)
∣∣2

=
√

cos2 α

|n0e|2 + sin2 α

|n1e|2 + 1
|nae|2

�̃rms(tg)
2

, (16)

where n0e, n1e, and nae are the tripod matrix elements, and

�̃rms(tg) ≡
√

1
tg

∫ tg

0
dt
[
|�̃0e(t)|2 + |�̃1e(t)|2 + |�̃ae(t)|2

]

= �0

√√√√ 1
tg

∫ tg

0
dt

[
1 +

(
θ̈ (t)

θ̇2(t) + �2
0/4

)2]
.

(17)

In the first line of Eq. (16), we have used the fact that
the terms involving differences of tone frequencies almost

exactly average to 0. Furthermore, in the second line, we
have used the fact that our protocol is symmetric about
t = tg/2, i.e., θ(t) = π/2 − θ(t − tg/2) for tg/2 < t ≤ tg
[Eq. (A5)].

From Eq. (16), we can see that Ṽrms is related to a more
fundamental metric �̃rms/2 [Eq. (17)]: the time-averaged
rms value of the instantaneous gap of our Hamiltonian
Ĥ0(t) for a SATD-corrected pulse sequence. This metric is
solely a property of the ideal tripod Hamiltonian Ĥ0(t) and
our SATD pulse sequence. The SATD correction makes
the adiabatic gap time dependent, and necessarily increases
�̃rms(tg) above �0.

Finally we can use the property discussed in Sec. III C:
in the RWA limit, there are an infinite number of SATD
protocols that yield a perfect gate fidelity for a given
gate time tg . Out of this set, we choose the protocol that
minimizes �̃rms [and hence approximately minimizes the
phase errors arising from the non-RWA energy shifts δεk(t)
in Eq. (14)]. As discussed, the different SATD protocols
are indexed by �0, the adiabatic gap associated with the
uncorrected pulses. We thus seek to identify the value
of �0tg that minimizes the SATD energy cost �̃rms. The
behavior of this quantity [obtained numerically for the
specific smooth pulse-shape function P(t) given in Eq.
(A6)] is shown in Fig. 5. We find that �̃rms/2π has a
minimum value of approximately 1.92/tg , occurring for
�0/2π = 1.135/tg . We have confirmed that attempting
further optimization by using more complex pulse-shape
functions P(t) does not yield appreciable improvements.
We have thus completed step 1 of our two-step approach
to enhancing accelerated gates to minimize non-RWA

SATD

Double swap/hybrid

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2.0

2.5

3.0

3.5

4.0

Ω̃
rm

st
g
/
2π

Ω0tg/2π

FIG. 5. �̃rmstg/2π versus �0tg/2π for the SATD protocol
(orange curve) as well as the double swap protocol and the hybrid
protocol (red line). For the SATD protocol, �̃rms = �0 in the
adiabatic limit (�0tg → ∞). Away from the adiabatic limit, the
SATD correction increases �̃rms above �0. The minimum of
the SATD plot is �̃rmstg/2π = 1.92, occurring at �0tg/2π =
1.135. The red line �̃rmstg/2π = 2 is the value of �̃rms for the
double-swap protocol and the hybrid protocol.
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errors: use the degeneracy of STA protocols to pick a
minimum-energy pulse.

Before proceeding, we pause to note something some-
what remarkable: by our optimizing the parameter �0, the
SATD pulses are able to achieve an energy-time trade-off
(as quantified by the product �̃rmstg) that is better than
more obviously fast, nonadiabatic population-transfer pro-
tocols (see the red curve in Fig. 5). These are the so-called
double-swap protocols (see e.g., Refs. [43,44]) (where one
sequentially moves a population through the three levels)
and the “hybrid” protocol [44] (a nonadiabatic holonomic
protocol). This point and connections to a formal quantum
speed limit valid for time-dependent Hamiltonians [45] are
discussed in Appendix C.

B. Step 2: Modifying accelerated protocol pulses to
cancel non-RWA phase errors

The next step of our method is to go beyond simply
minimizing the non-RWA energy shifts δεk(t) in Eq. (14)
and actually cancel them by slightly modifying our SATD
pulses. In keeping with our general philosophy, we derive
an analytic prescription for how to do this (as opposed to
resorting to a brute-force numerical optimization).

The method here is conceptually simple: to offset the
unwanted, time-dependent non-RWA energy shifts, we
introduce a time-dependent variation of the central tones in
our pulse (i.e., a generalized chirp). Concretely, this means
that we introduce a time-dependent shift in each of the
three center frequencies ωje (j = 0, 1, a) that appear in our
pulse:

ωje → ω̃je(t) = ωje − δεj (t) + δεe(t), (18)

where δεj is given by Eq. (14). These frequency shifts
ensure that at each instant in time, each tone is resonant (to
leading order) with the appropriate transition it is intended
to drive. Our chirping procedure does not require any addi-
tional calibration procedure: the matrix elements required
to calculate the frequency chirps [see Eq. (14)] can be com-
puted using the circuit parameters, parameters that must be
accurately estimated even in the absence of chirping.

The net result of our approach is thus a two-step cor-
rection to the original pulse in Eq. (8). For a given desired
gate time tg , we first pick an optimal value of �0 as per
Sec. IV A and add the SATD correction to the pulses as
per Eq. (13). Subsequently, we chirp each of the three cen-
ter frequencies as per Eq. (18). We can write the overall
modification of each control tone in Eq. (2) as

Vje(t) exp
(
iωjet

) → Ṽje(t) exp
(

i
∫ t

0
ω̃je(t′)dt′

)
, (19)

where Ṽje(t) = �̃je(t)/nje are the SATD-corrected pulse
envelopes and ω̃je(t) are the chirp-corrected central drive
frequencies.

C. Leakage errors and connections to derivative
removal by adiabatic gate

Our discussion so far has focused only on errors aris-
ing from energy shifts generated by the non-RWA terms in
Ĥerr(t). There is another generic kind of error to consider:
the non-RWA terms can drive transitions out of the tripod
subspace, leading to a final population of nontripod levels.
This kind of error is commonly referred to as “leakage,”
and has been discussed extensively in many other set-
tings (e.g., in discussing gate errors in weakly anharmonic
transmon-style superconducting qubits [42,46,47]).

The general approach we take in mitigating non-RWA
errors partially minimizes leakage by minimizing the size
of the control pulses (see Sec. IV A). However, we do not
make any additional modifications of our pulses to further
reduce leakage errors. This is in contrast to our treatment of
phase errors (which we further mitigate through frequency
chirping). It is also in contrast to the well-known deriva-
tive removal by adiabatic gate (DRAG) technique [46,47]
for dealing with leakage errors in superconducting circuits
driven by a single control tone.

There are two key rationales for our apparent ignoring
of pure leakage errors. The first is purely pragmatic: in
general there are many equally important leakage levels,
and there is no simple way to modify our pulses (using
the Magnus strategy of Ref. [42]) to simultaneously correct
all of these error channels. This is because the corrections
needed to mitigate leakage are not additive in a simple
way: adding a correction to cancel one leakage transi-
tion could make another leakage transition even worse.
This is in stark contrast to the usual DRAG problem in
superconducting circuits, where there is just a single rel-
evant leakage level (i.e., the second excited state of the
qubit). The second rationale is that in the perturbative
limit (where non-RWA errors are small), leakage errors are
much smaller than the phase errors associated with energy
shifts. As shown in Refs. [41,48] in the long-gate time limit
(tg � 1/�

(j )
kl,σ ), phase errors scale as 1/(�

(j )
kl,±tg)2, while

leakage errors are much weaker, scaling as 1/(�
(j )
kl,±tg)4.

As we see in the next section (where we implement our
ideas in a realistic multilevel superconducting fluxonium
circuit), our approach yields extremely good results despite
the lack of any specific leakage correction. That said, it
would be an interesting topic for future work to devise new
methods for mitigating leakage in truly multilevel systems;
for example, the general semianalytic method in Ref. [41]
may provide a route for doing this.

V. FLUXONIUM QUBIT

A. Basic setup

The tripod gate we have analyzed is ideally suited to
systems where it is difficult to directly drive transitions
between qubit levels |0〉 and |1〉. This is often the case in
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(a) (b)

EJ
ELEC

Φext

kl ωkl/2π
(GHz)

|nkl|

01 0.81 0.02
0e 8.42 0.27
1e 9.23 0.46
ae 7.58 0.16

FIG. 6. (a) Circuit diagram of a fluxonium. (b) The qubit and
tripod transition frequencies (ωkl) as well as the magnitude of
the charge matrix elements (nkl) of the fluxonium whose energy
spectrum is given in Fig. 1. The computational states in the
tripod system are labeled by |0〉, |1〉, |a〉, and |e〉. The fluxo-
nium parameters used to get the values of ωkl and nkl in (b)
are EL/h = 0.063 GHz, EJ /h = 9.19 GHz, EC/h = 2 GHz, and
�ext = 0.17�0.

qubits that have long T1 relaxation times. A paradigmatic
example that has received considerable attention recently
is a fluxonium-style superconducting qubit [25–28]. A
fluxonium circuit consists of a single Josephson junction
(energy EJ ) in parallel with both a capacitor (charging
energy EC) and a superinductor (inductive energy energy
EL, typically implemented using a chain of Josephson
junctions) [Fig. 6(a)]. Experiments demonstrate that these
qubits can possess exceptionally long relaxation times
(on the order of milliseconds) [26–28,49]. Moreover, they
can also be made first-order insensitive to the dephas-
ing from 1/f charge noise [50]. These properties make
a fluxonium an attractive quantum computing platform.
A complication, however, is that the relative isolation of
qubit levels (which yields long T1 times) also makes con-
ventional approaches to gates challenging. This makes our
accelerated tripod gate especially attractive.

The fluxonium Hamiltonian is

Ĥf = 4ECn̂2 − EJ cos(ϕ̂ − 2π�ext/�0) + 1
2

ELϕ̂
2, (20)

where n̂ and ϕ̂ are, respectively, the charge and phase oper-
ators. They obey the commutation relation [ϕ̂, n̂] = i. �ext
is the external magnetic flux biasing the loop formed by
the Josephson junction and its shunting inductance, and
�0 = h/2e is the flux quantum. Equation (20) shows that
the effective phase potential consists of a cosine potential
superimposed on a parabolic background (see Fig. 1). The
highly tunable, anharmonic nature of the fluxonium allows
us to engineer a variety of different candidate four-level
tripod systems.

B. Optimal parameters for a tripod gate

A first question is to identify parameters yielding an
“optimal” tripod configuration, meaning that we have both
a long T1 time and an accelerated SATD gate with small
(non-RWA) coherent errors. This leads to the following
selection criteria:

1. The ground states should be well isolated from each
other (i.e., small charge matrix element connect-
ing them) and be nondegenerate. Strong isolation
ensures a long T1 time.

2. The charge matrix elements coupling the excited
state to the ground states of the tripod system must
be large and have the same order of magnitude. The
latter helps minimize coherent errors arising from
non-RWA processes.

Criterion 1 requires us to choose circuit parameters sat-
isfying EJ � EC and EL 	 EJ (for well-localized ground
states) as well as 0 < �ext � �0/4 (to lift the degener-
acy of the ground states). Criterion 2, on the other hand,
implies that we have to pick the excited state |e〉 of the tri-
pod gate to be the first excited state of the central well.
Furthermore, this state should be delocalized over the
potential wells where the ground states |0〉, |1〉, and |a〉
are located, but should still be somewhat separated from
higher-lying energy levels. This implies that the state |e〉
must lie near the top edge of the cosine potential, which
requires

√
8ECEJ � 2EJ . It is obvious that we cannot ful-

fill criteria 1 and 2 simultaneously in a standard fluxonium
circuit.

Since the above requirements cannot be perfectly satis-
fied simultaneously, we choose parameters that strike an
optimal balance, ensuring that we can end up with both
a long-lived qubit and a tripod that allows a high-fidelity
SATD gate. To this end, we perform a numerical search
through parameter space to identify optimal regimes (see
Appendix D). The result is the following near-ideal param-
eter set for realizing high-fidelity SATD tripod gates in
a T1-protected regime: EL/h = 0.063 GHz, EJ /h = 9.19
GHz, EC/h = 2 GHz, and �ext = 0.17�0 (see Appendix
D for parameter justification). The small inductive energy
here puts our device in same regime as the “Blochnium”
circuit recently realized in experiment [51].

For the above parameter set, the qubit and tripod transi-
tion frequencies together with their corresponding charge
matrix elements are shown in Fig. 6(b). The corresponding
energy spectrum and wave functions are plotted in Fig. 1.
We label the energy levels used for the tripod system by
|0〉, |1〉, |a〉, and |e〉. The charge matrix element connect-
ing qubit states |0〉 and |1〉 is extremely small as desired:
|n01| ≡ |〈0|n̂|1〉| = 0.02. In contrast, the charge matrix ele-
ments for the desired tripod transitions are much larger
and comparable in magnitude to one another: |n0e| = 0.27,
|n1e| = 0.46 and |nae| = 0.16 [right column of the table in
Fig. 6(b)].

C. SATD protocols for tripod gates in a fluxonium

To realize our accelerated tripod gate, we drive the
fluxonium circuit with a microwave pulse [described by
a voltage V(t)] that couples to the charge operator n̂. In
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the eigenbasis of the bare fluxonium Hamiltonian Ĥf [Eq.
(20)], we can write the Hamiltonian of the driven flux-
onium exactly in the general form given in Eq. (1). To
realize the accelerated tripod gate, the driving voltage V(t)
[Eq. (2)] consists of three driving tones Vje(t) = �je(t)/nje
for j = 0, 1, a [see Eq. (7)]. Here �je(t) is the complex cou-
pling given in Eq. (8) for the uncorrected pulse and Eq.
(13) for the SATD-corrected pulse.

The envelopes of the driving tones �̃je(t) of the SATD
tripod gate pulse (for optimal �0tg) are shown in Fig 7(a).
We have slightly modified the pulses derived in Sec. III B
so that V(t) goes smoothly to zero at the start and end
of the protocol (as would be in the case in experiment).
We do this by sandwiching the ideal pulses with a short
ramp up (down) of duration tramp = 0.01tg at the beginning
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FIG. 7. Driving tones used to realize the SATD X gate in
a realistic fluxonium. (a) Time profiles of the driving tone
envelopes. (b) Time profiles of the frequency chirps δωje(t) =
δεe(t) − δεj (t) of each driving tone. (c) The Fourier transform of
the driving tones |V̄(f )| showing distinct peaks corresponding to
the tripod transition frequencies shown in Fig. 6(b). The pulse
sequences in (a) are given in Eq. (E1). They are obtained by our
sandwiching the pulses in Eq. (13) by a ramp time tramp at the
beginning and end of the protocol, during which the �̃ae(t) pulse
[green curve in (a)] is turned on and off, respectively, with use of
the smooth polynomial function given in Eq. (A6). The parame-
ters used are tg = 100 ns, turn-on and turn-off time tramp = 1 ns,
and �0/2π = 1.135/tg = 11.35 MHz. The parameter set for the
fluxonium is the same as that used for Fig. 6.

(end) of the protocol. During this ramp, the �̃ae(t) tone is
smoothly turned on and off, respectively (see Appendix E).
We specifically use Eq. (A6) for a smooth ramp function
that turns the pulse on and off. Including these ramps does
not appreciably change our results.

Figure 7(b) shows the size of the frequency chirps
δωje(t) applied to each driving tone [ωje → ωje + δωje(t)
for j = 0, 1, a], to correct for the energy shift of the com-
putational levels due to the non-RWA terms. The sizes of
these corrections δωje(t) are on the order of megahertz,
while the base frequency ωje is on the order of gigahertz.
The Fourier transform of the driving pulse is shown in
Fig. 7(c), where each distinct peak in the plot corresponds
to one of the tripod transition frequencies whose values are
given in the table in Fig. 6(b).

VI. GATE PERFORMANCE: COMPARING
DIFFERENT ERROR CHANNELS

To quantify the performance of our accelerated tripod
gate, we calculate the state-averaged fidelity of the gate.
This is given by [52]

F̄ = 1
6

∑

m=±x,±y,±z

Tr
[
Ûqρ̂mÛ†

qρ̂m(tg)
]

, (21)

where ρ̂m is an axial pure state on the qubit’s Bloch sphere
with m ∈ {±x, ±y, ±z} [e.g., ρ̂x = 1/2(|0〉 + |1〉)(〈0| +
〈1|)]. ρ̂m(tg) is the laboratory-frame density matrix of the
system at the end of the protocol (t = tg) for the initial state
ρ̂m. Here Ûq is a product of the ideal target unitary gate
operation in the qubit subspace ÛG,01 [see Eq. (12)] and an
innocuous phase factor corresponding to dynamical phases
in the laboratory frame:

Ûq = Ûdiag,01(tg)ÛG,01, (22)

where Ûdiag,01(tg) = ∑
k=0,1 e−i

∫ tg
0 εk(t)dt|k〉〈k|. Here εk(t) =

εk for unchirped protocols and εk(t) = εk + δεk(t) for
chirped protocols. In what follows, we use this standard
metric to characterize a target X qubit gate in the presence
of both coherent (non-RWA) errors and dissipation.

A. Effects of coherent errors only

Consider first the case where dissipation is ignored and
the only sources of gate errors are the non-RWA terms
in Eq. (5). To calculate gate performance in this limit,
we numerically evolve initial states as per the laboratory-
frame Hamiltonian [Eq. (1)] using the PYTHON package
QuTiP [53,54]. We perform the simulation by including
the 18 lowest energy levels of the fluxonium and all charge
matrix elements in this space. We check that including
more energy levels in the simulations does not change the
results.
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FIG. 8. State-averaged gate error ε̄ = 1 − F̄ (solid curves)
versus gate time tg for different realizations of a tripod X gate
in a fluxonium qubit in the absence of dissipation. We keep the
lowest 18 levels of the circuit and include all non-RWA error
channels. The curves correspond to uncorrected adiabatic pulses
(green curve), SATD pulses without frequency chirping (purple
curve), and SATD pulses with frequency chirping (red curve).
For all pulses, we use the optimal value of the uncorrected gap
frequency �0/2π = 1.135/tg that minimizes the rms voltage.
Also shown is the leakage population outside the tripod subspace
for the chirped SATD protocol (dashed gray curve).

In Fig. 8, we plot the gate errors ε̄ = 1 − F̄ for a target
tripod gate ÛG,01 = −σ̂x,01 (an X gate) obtained for differ-
ent choices of pulses. For all curves, the uncorrected gap
frequency at each protocol time tg is picked to be the opti-
mal value �0/2π = 1.135/tg (see Sec. IV A). If we use
the uncorrected adiabatic pulses [see Eq. (8); green curve],
errors arise both from nonadiabatic transitions and from
non-RWA processes. If instead we use the SATD-corrected
pulses [see. Eq. (13); purple curve], nonadiabatic errors
are completely canceled, leaving only non-RWA errors.
Finally, if we also frequency chirp the SATD pulses as
per Eq. (18) (red curve), we further reduce gate errors by
reducing the leading non-RWA errors. This yields a dra-
matic improvement over the unchirped SATD protocol at
long gate times.

As discussed, our corrections do not specifically can-
cel pure leakage errors. To characterize these, we calculate
the state-averaged population outside the tripod subspace
(leakage population) at the end of the protocol. This is
given by

1 − P̄tripod = 1 − 1
6

∑

m=±x,±y,±z

Tr
[
P̂tripodρ̂m(tg)

]
, (23)

where P̄tripod and P̂tripod are, respectively, the state-
averaged population and the projector in the tripod sub-
space. The final state-averaged leakage population is plot-
ted as a dashed gray curve in Fig. 8. As discussed, leakage

makes a minimal contribution to the error at moderate to
long gate times.

B. Effects of 1/f dephasing noise only

1. Effective modeling of non-Markovian noise

We now turn to modeling additional gate errors arising
from dissipation.This will give rise to a nontrivial com-
petition: mitigating coherent non-RWA errors favors long
gate times (and hence low powers), whereas minimizing
dissipative errors favors short gate times. Given our oper-
ating point (isolated qubit states, but not at the flux sweet
spot), 1/f flux noise will often be the dominant dissipation
mechanism. In what follows, we thus focus on dephasing
dissipation and the resulting competition between coher-
ent and dissipative errors. In the relevant basis of dressed
states, dephasing noise can cause transitions; hence, for our
scheme, there is no strong qualitative difference between
the effects of dephasing and T1 relaxation. That said, the
additional effect of explicit T1 relaxation is analyzed in
detail in Appendix F.

As is common [55–59], we model the 1/f non-
Markovian noise using an approximate Markovian
description that qualitatively captures the relevant dephas-
ing timescales correctly. Letting ρ̂(t) denote the fluxonium
reduced density matrix, we model our system by the
Lindblad-form master equation

∂tρ̂(t) = −i[Ĥ(t), ρ̂(t)] +
(

Ẑρ̂Ẑ − 1
2
{Ẑ2, ρ̂}

)
. (24)

Ĥ(t) is the driven fluxonium Hamiltonian [Eq. (1)], and the
Hermitian operator Ẑ has the general form

Ẑ =
∑

k

sgn
(

∂εk

∂�ext

)√
2�k|k〉〈k|. (25)

Heuristically, this describes the fact that each fluxonium
energy level εk depends on the bias flux, and hence flux
noise causes each energy to fluctuate. We have written the
coupling constant associated with each level |k〉 in terms
of an overall sign (which captures whether εk increases or
decreases with increasing flux) and a magnitude �k.

To fix the couplings �k, we use the fact that for classi-
cal, Gaussian 1/f noise, free induction decay of a given
coherence ρkl ≡ 〈k|ρ̂|l〉 has a decay envelope of the form
exp

[−(t/Tϕ,kl)
2
]

(up to logarithmic corrections). A stan-
dard calculation (see e.g., Ref. [57]) yields

1/Tϕ,kl = A�ext |∂�ext(εk − εl)|
√

| ln D|. (26)

Properties of the flux-noise spectral density enter only
through A�ext (the standardly defined flux-noise ampli-
tude) and D (the product of the measurement time and the
low-frequency cutoff of the noise; see Refs. [29,57]).
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We construct our approximate Markovian master
equation by picking the couplings �k to ensure that for
free induction decay over a time tg , the final decay of a
large set of coherences is captured correctly. In particu-
lar, we take |1〉 as a reference level (i.e., the lowest energy
level of the fluxonium), and insist that the net decay of
any coherence ρk1 (k �= 1) after an evolution time tg is the
same for our Markovian dynamics as it would be following
the non-Markovian, Gaussian-lineshape decay described
by Eq. (26). This leads to the choice �1 = 0, and for k �= 1:

�k = �k(tg) = tg/(Tϕ,k1)
2. (27)

We stress that �k (and hence our master equation) depends
only on the choice of total evolution time tg; during the
evolution the dephasing superoperator is constant.

The above choice guarantees that at the end of evolu-
tion for a time tg , the overall free induction decay of any
coherence involving the qubit level |1〉 (the lowest energy
state of the circuit) is captured correctly. As discussed in
Appendix G, there is no way to make a choice for �k that
captures the decay of all coherences correctly. Nonethe-
less, as shown in Appendix G, our approach if anything
overestimates the dominant dephasing within the tripod
subspace (see Table II in Appendix G). Note also that our
approach overestimates dephasing compared with alterna-
tive approximations that use an explicitly time-dependent
�k [58,59]. Moreover, our modeling of dephasing as being
Markovian is also a worst-case scenario, as there is spec-
tral weight for arbitrary transitions (which would not be
true for realistic 1/f noise, where there is little spec-
tral weight to drive transitions between levels with large
energy detunings).

In what follows we take A�ext = 3μ�0 (which is typ-
ical for state-of-the-art experiments [27,28,60]), and also
choose (following Refs. [29,57,61]) D = (2π × 1 Hz) ×
10 μs. With these choices and for the circuit parame-
ters used here, we find dephasing times Tϕ,kl that are on
the order of approximately 1 − 100 μs (see Table II in
Appendix G). The dephasing of the qubit levels is Tϕ,01 =
7 μs. Our results are largely unchanged if one adds T1
decay processes (e.g., dielectric loss with dielectric quality
factor Qdiel � 5 × 106); see Appendix F.

2. RWA gate performance in the presence of dephasing
noise

We numerically evolve the master equation [Eq. (24)]
(with the above form for the dephasing superoperator) and
use the results to calculate the state-averaged gate error
ε̄ = 1 − F̄ of a tripod X gate [see Eq. (21)]. We first con-
sider the case where all non-RWA terms in the coherent
Hamiltonian are ignored so that errors are the result of only
dissipation or nonadiabaticity. The results as a function of
gate time tg are shown in Fig. 9, where the performances of
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FIG. 9. State-averaged gate error ε̄ = 1 − F̄ as a function of
gate time tg for ideal (four-level, RWA) tripod X gates. We
compare uncorrected adiabatic pulses (orange curve) against the
accelerated SATD pulses (red curve) in the presence of 1/f flux
noise. The scale of the uncorrected pulses is set by �0/2π = 100
MHz, and the 1/f flux noise has a strength parameterized by
A�ext = 3μ�0 (yielding a qubit dephasing time Tϕ,01 = 7 μs).
Fluxonium parameters match those given in the caption for
Fig. 6.

the uncorrected and accelerated (SATD) pulses are com-
pared. The simulations of the gate dynamics for all gate
times tg are done for fixed �0/2π = 100 MHz.

The behavior here is generic and as expected. In the
adiabatic regime where tg � 1/�0, the uncorrected and
SATD gates have almost identical performance. In this
regime the error ε̄ is dominated by dephasing and grows
quadratically with tg (reflecting the quadratic loss of
coherence expected from 1/f noise at short times). This
quadratic-in-tg error scaling continues down to small val-
ues of tg for the SATD curve, as in this case dephasing
is the only error mechanism. In contrast, the uncorrected
curve has much larger errors at short time, corresponding
to nonadiabatic errors. There are special sharply defined
values of tg where these nonadiabatic errors construc-
tively cancel; as discussed in Ref. [17], these are dif-
ficult to exploit experimentally as they require extreme
fine-tuning.

VII. FULL GATE PERFORMANCE AND
COMPARISON AGAINST BRUTE-FORCE DIRECT

DRIVING

A. Direct driving gate and power scaling

Having investigated the impact of different error chan-
nels (nonadiabatic errors, non-RWA errors, and dephas-
ing), we are now ready to study the accelerated tripod gate
with all error channels present. To properly understand the
advantages of our accelerated tripod gate, it is instructive
to compare its performance against that of gates realized
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using other approaches. For example, one can consider
comparing it against a traditional Raman gate (realized by
indirectly driving the qubit states via off-resonant coupling
to a common excited state [39]) or against “direct driv-
ing” (DD) gates (where one resonantly drives the qubit
transition between |0〉 and |1〉). One key advantage of
the SATD tripod approach over these alternatives is their
intrinsic robustness: the SATD gate inherits the resilience
to control-pulse imperfections that would be expected by
a purely adiabatic gate. For example, there is a marked
resilience to errors in the magnitude of �0, which could
arise either from imperfect pulse calibration or from uncer-
tainties in matrix elements. This advantage persists even in
the accelerated adiabatic regime [17].

In what follows we demonstrate additional advantages
of our tripod gate by specifically comparing its perfor-
mance against that of the simple DD gate (see Appendix
H for comparisons with Raman gates). To this end, we
note that as we are working with a T1-protected qubit, the
magnitude of the matrix element used to drive the qubit
transition in the DD gate (|n10|) is small; however, for a
large enough power, one could, in principle, still achieve
a given gate. To compare our tripod approach against the
DD gate, we want to compare not only the gate error ε̄

but also the power required to achieve the gate. As we see
in what follows, in many experimental systems, additional
constraints limit the magnitude of pulses that can be used.
This will provide a strong advantage in many regimes for
the tripod gate.

We begin by writing a simple pulse shape that can be
used to realize a DD gate [41]:

ṼDD(t) = χ

tg|n01|1 − cos
(

2π t
tg

)
cos

[∫ t

0
dt′ω̃01(t′)

]
,

(28)

where χ = π for an X gate. Similarly to our accelerated
adiabatic gate, we perform chirping to partially correct
for non-RWA errors, and hence ω̃01(t) = ω01 + δε1(t) −
δε0(t) [see Eq. (18)].

Using the definition in Eq. (30), we can calculate the rms
time-averaged voltage of the DD gate. We can also use
our previous result [Eq. (16)] for the rms time-averaged
voltage of the SATD gate (using the optimal value of �0tg
discussed in Sec. IV A). These two rms voltages are given
by

Ṽrms,DD =
√

3χ

2|n01|tg,DD
, (29a)

Ṽrms,SATD = 1.92π

tg,SATD

√
cos2 α

|n0e|2 + sin2 α

|n1e|2 + 1
|nae|2 . (29b)

In both cases, the rms voltage scales inversely with the gate
time tg , but note the crucial dependence on matrix elements
and gate type.

It follows from Eq. (29a) that an X gate is the most
energy-consuming (and hence problematic) gate if one
uses the DD approach. We thus focus on this gate in what
follows, and compare it against our accelerated adiabatic
approach. Substituting the matrix elements for the fluxo-
nium parameters used throughout this paper [see Fig. 6(b)]
in Eqs. (29a) and (29b), we get Ṽrms for the X gate (χ = π

for the DD approach and α = π/4 for the tripod approach)
as

Ṽrms,DD = 136
tg,direct

, (30a)

Ṽrms,SATD = 42.1
tg,SATD

. (30b)

The equations already describe a crucial advantage of
the tripod approach over direct driving: for a fixed gate
time, the SATD tripod approach requires drive amplitudes
that are 3.2 times smaller, corresponding to a factor of 9 or
greater saving in power. An immediate consequence is that
if we fix the rms voltage to be the same for both protocols,
the SATD tripod gate will be faster.

We stress that a constraint on the size of drive ampli-
tudes emerges naturally in typical superconducting cir-
cuits, where drives are applied via a sufficiently detuned
microwave cavity mode (e.g., ωcav/2π = 2 GHz; see
Appendix I 3 for a justification) that couples to the circuit
as

Ĥc =
∑

kl

gnkl|k〉〈l|(â† + â). (31)

Here g is the cavity-fluxonium coupling strength, nkl is a
charge matrix element, and â is the cavity photon annihi-
lation operator. A standard constraint in such setups is that
the time-averaged intracavity photon number n̄cav should
not exceed some small value to avoid additional dissipa-
tive mechanisms; here we require n̄cav ≤ 0.05. This in turn
directly constrains the rms voltage via the relation (see
Appendix I)

Ṽ2
rms = 2n̄cavg2 ≤ 0.1g2. (32)

Instead of constraining the cavity photon number, one
could consider minimizing some other quantities that are
sensitive to the power delivered to the system. This is
expected to yield results qualitatively similar to those
obtained with our chosen constraint on n̄cav, which is
motivated by experimental observations as well as other
theoretical studies (e.g., Ref. [29]). We stress that the
motivation for limiting power is empirical, and is not
based on some rigorous theory of large-drive dissipation.
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A variety of experiments exhibit performance degradation
when high-amplitude drive pulses are used (see, e.g., Refs.
[26,62–64]). Many mechanisms could contribute to these
observations, including a simple heating of the circuit envi-
ronment induced by high drive power. The specific nature
of the mechanism is not relevant to the results we present
below.

Finally, we remark that since the qubit frequency is
lower than the drive frequencies of our tripod gate, instead
of driving the qubit via a cavity, one could consider cou-
pling the fluxonium circuit directly to a transmission line
that includes a high-pass filter [65]. Such a scenario would
not only be less constraining on the amplitudes of the
high-frequency tones required to perform our tripod gate
but would also still protect the qubit subspace from the
undesired transitions caused by the low(er)-frequency fluc-
tuations of the transmission line. Nevertheless, here we
concentrate on studying the case of driving the qubit indi-
rectly via a cavity, as that is the most widely used approach
in experiments, and hence might be the easiest thing to try
in a first experimental realization of our gate.

In what follows, we compare the SATD tripod gate
against the DD gate for fixed values of g (and hence fixed
maximum possible Ṽrms). We see that this physically moti-
vated power constraint gives the accelerated adiabatic gate
an important advantage. Further details about driving via
a cavity (including the driving pulse applied to the cav-
ity and constraints that allow one to ignore cavity-induced
dissipation) are given in Appendix I.

B. Comparison of gate performance, coherent errors
only

We first compare the accelerated tripod gate with the DD
gate in the absence of dissipation, but including all non-
RWA terms. Figure 10 shows the state-averaged gate errors
ε̄ for an X gate as a function of gate time tg for our cho-
sen fluxonium parameters. To mitigate non-RWA errors,
the SATD protocol is implemented with use of the optimal
value of �0 (see Sec. IV A) and is frequency chirped (see
Sec. IV B); the DD gate is also chirped.

We see that for both approaches, errors increase as tg is
reduced. This simply reflects the higher drive amplitudes
needed at shorter times (which in turn increase non-RWA
errors). For all gate times, the coherent errors are larger
for SATD versus DD. This is a result of the SATD proto-
col using multiple drive tones and being subject to more
near-resonant non-RWA error channels (including those
involving higher-energy excited states). Interference
between its multiple drive tones causes the SATD error
curve to exhibit fast, low-amplitude oscillations as a func-
tion of tg (see the inset in Fig. 10).

The results in Fig. 10 may seem depressing. However, as
we argue in what follows, they are misleading. For a given
gate time, we have already seen (see Sec. VII) that DD

101 102

Gate time tg (ns)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

G
at

e
er

ro
r
ε̄

X gate, coherent errors only

SATD
Direct

55 60
Gate time tg (ns)

0.0010

0.0012

0.0014

G
at

e
er

ro
r
ε̄

FIG. 10. State-averaged gate error ε̄ = 1 − F̄ as a function of
gate time tg , for SATD tripod (red curve) and direct-driving
(blue curve) realizations of a fluxonium X gate. Dissipation is
not included here, but non-RWA error channels are. The inset
shows an enlargement of the SATD gate error. The gates are
calculated with the 18 lowest energy levels of the circuit. For
the SATD gate, we use the optimal uncorrected gap frequency
�0/2π = 1.135/tg that minimizes the rms voltage at each gate
time tg . The fluxonium parameters are as for Fig. 6.

requires considerably larger pulse amplitudes than SATD.
Once we enforce power constraints associated with realis-
tic driving via a cavity (and also include dissipation), the
accelerated tripod gate will have a marked advantage.

C. Qubit gates with 1/f flux noise

We next compare the DD gate and accelerated SATD
tripod gate including 1/f flux noise (modeled as per Sec.
VI B1) as well as non-RWA errors; the results are shown in
Fig. 11(a). For both protocols, the error is nonmonotonic
with gate time tg . For short times (gray shaded region),
the errors are dominated by non-RWA effects and decrease
with increasing tg . For longer times, dephasing dominates,
causing the error to increase with increasing tg . In this
latter regime, both curves increase quadratically, but the
SATD curve has the higher error. This corresponds to a
shorter decoherence timescale for tripod coherences (as
used in SATD) versus the qubit 01 coherence (see Table
II in Appendix G).

In Fig. 11(b) we replot these results in a way that now
accounts for power constraints that arise when driving is
performed through a cavity (see Sec.VII). Each vertical cut
corresponds to a fixed value of the rms voltage [see Eq.
(30)]; given that DD uses more power, fixing the voltage
thus results in tg approximately 3.2 smaller for SATD (for
our parameter choices) than for DD (hence the different tg
axes for DD versus SATD). We thus see that once power is
constrained (through Ṽrms), the accelerated tripod gate has
a marked advantage over DD for tg � 100 ns; this is the
regime where dephasing dominates non-RWA errors, and
hence the faster speed of SATD is advantageous.
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FIG. 11. Comparison between state-averaged X-gate error ε̄ = 1 − F̄ for SATD (red curve) and direct-driving (blue curve) protocols
in our fluxonium system, including effects of 1/f flux noise dephasing as well as non-RWA errors; 18 fluxonium levels are included
in the simulations. Dephasing is treated as per Sec. VI B1 with a 1/f flux noise amplitude A�ext = 3μ�0 corresponding to the qubit
dephasing time Tϕ,01 = 7 μs. (a) Log-log plot of gate error ε̄ versus gate time tg . For each time, the DD protocol has a smaller error but
uses significantly larger pulse amplitudes. (b) Linear plot of gate error ε̄ for both protocols at equal power levels Ṽrms [see Eq. (30)].
The shaded (unshaded) region corresponds to the time regime where the gate errors are dominated by non-RWA errors (dephasing).
For the same value of Ṽrms, the gate time for the DD protocol is longer than for the SATD protocol (hence the two distinct x axes).
Vertical lines indicate the shortest gate times possible [corresponding to the maximum allowed Ṽrms; see Eq. (32)] for cavity-based
driving for time-averaged cavity photon number n̄cav = 0.05 and a fixed cavity-fluxonium coupling g (purple vertical lines). Fluxonium
parameters are the same as for Fig. 6.

We can quantify this relative advantage by the ratio of
DD and SATD errors for the same fixed Ṽrms:

ζ ≡ ε̄DD(Ṽrms)

ε̄SATD(Ṽrms)
. (33)

In the dephasing-limited regime, the gate errors for the
SATD and DD gates both exhibit a quadratic scaling with
tg . For our chosen parameters and 1/f flux noise strength,
we find

ζ = ε̄DD

ε̄SATD
= 5.3. (34)

We thus have a central conclusion of our work: our
analytically designed accelerated tripod gate allows one
to suppress gate errors (associated with an X gate) by
more than a factor of 5 compared with the more simplis-
tic DD approach. This conclusion holds for Ṽrms values
small enough that errors are dominated by dephasing. As
discussed in Sec. VII, the maximum value of Ṽrms is deter-
mined by the cavity-qubit coupling g and the requirement
that the time-averaged intracavity photon number n̄cav ≤
0.05. As shown in Fig. 11 (purple vertical lines), realistic
choices of g put us squarely in this dephasing-dominated
regime where we have a strong advantage.

While we have focused on comparing our accelerated
tripod gate against DD, it is also worthwhile to consider its
absolute performance. As shown in Fig. 11(a), we are able
to achieve a fidelity of approximately 0.9997 in gate time

tg = 100 ns (including 1/f flux noise with A�ext = 3μ�0
and non-RWA error channels). This compares well with
gates designed for similar systems using state-of-the-art
numerical optimal control methods. For example, Abdel-
hafez et al. [29] used numerical optimal control to design
gates in a fluxonium circuit operated in a T1-protected
regime. They constrained the drive power in a manner
similar to our approach but used slightly different fluxo-
nium parameters and a lower level of flux noise (A�ext =
1μ�0, 3 times smaller than in our work). They achieved
an X gate with F̄ ≈ 0.996 in time tg = 60 ns. The main
difference in parameters is that Abdelhafez et al. [29]
used flux bias �ext = 0.45�0 (versus �ext = 0.17�0 in
our work) and had more isolated qubit states: |n01| = 0.01
in their work, a factor of 2 smaller than in our model
system.

Our results thus show that even with the inclusion
of the effects of 1/f dephasing, our SATD tripod gate
can achieve excellent performance. These results are
essentially unchanged if one now also includes T1 dissi-
pation, as long as the relevant T1 times are long enough.
Appendix F provides a thorough analysis of our gate per-
formance obtained by our including realistic T1 effects
due to dielectric losses (which is believed to be the dom-
inant mechanism in a fluxonium [27,28]). We find that
high gate fidelities are still possible: for example, the gate
fidelity at tg = 100 ns is 0.9991–0.9997 for reasonably
high but realistic [66,67] values of dielectric quality factor
Qdiel ≥ 106.
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VIII. CONCLUSIONS

We have presented a general strategy showing how ana-
lytic shortcuts-to-adiabaticity techniques can be used even
in complex multilevel systems where the rotating-wave
approximation is not valid. Our strategy to mitigate non-
RWA errors involves first exploiting the degeneracy of per-
fect STA protocols in the RWA limit and then correcting
pulses with (analytically derived) frequency chirps. As a
demonstration of our technique, we theoretically analyzed
the implementation of an accelerated adiabatic “tripod”
gate in a realistic multilevel superconducting circuit (a
driven fluxonium qubit). We focused on parameter regimes
where the qubit levels are highly isolated, yielding T1 pro-
tection but making traditional gates more problematic. Our
analysis revealed that our techniques combined with a judi-
cious choice of system parameters yield an accelerated
adiabatic gate having competitive performance. Including
realistic levels of 1/f flux noise dephasing and T1 dissipa-
tion noise, we achieve a gate fidelity of 0.9991–0.9997 in a
gate time of 100 ns. We also showed that our approach can
compare favorably against a more straightforward direct-
driving approach to gates in this system. Using power
constraints arising from a realistic setup as if the qubit is
driven through a cavity, we found that for an X gate, our
approach yields errors more than 5 times smaller than the
direct driving approach.

While our test system consists of a fluxonium qubit,
our discussion and methods are very general and can be
readily applied to various other architectures. This, along
with the fact that the pulses are described analytically,
while still providing good performance, will hopefully
prove to be very useful in various quantum-control-related
applications.

ACKNOWLEDGMENTS

This work is supported by the Army Research Office
under Grant No. W911NF-19-1-0328. We thank Helin
Zhang, Srivatsan Chakram, Brian Baker, and Jens Koch
for fruitful discussions. F.S. is grateful to Long B. Nguyen
for enlightening discussions. We acknowledge the Univer-
sity of Chicago Research Computing Center for support of
this work.

APPENDIX A: BASIC WORKING OF THE TRIPOD
GATE

In this section, we give a brief overview of the basic
four-level geometric tripod gate introduced in Refs. [3,4]
[see Fig. 2(a)]; the discussion here follows Ref. [17]. The
tripod Hamiltonian Ĥ0(t) [Eq. (6)] has two instantaneous
zero-energy dark states that span the dark-state manifold
and are orthogonal to |e〉. The basic tripod gate uses the
geometric evolution of states in the dark-state manifold. In
this manifold, there is always one (time-independent) state

(defined by the time-independent control pulse parameters
α and β) that is purely qubitlike:

|0̃〉 = sin(α)|0〉 − exp(iβ) cos(α)|1〉. (A1)

The qubit state orthogonal to this dark state is

|1̃〉 = cos(α)|0〉 + exp(iβ) sin(α)|1〉. (A2)

Expressing Ĥ0(t) in these new qubit basis states, we have

Ĥ0(t) = 1
2

[
�1̃e(t)|1̃〉〈e| + �ae(t)|a〉〈e| + H.c.

]
, (A3)

where �1̃e = �0 sin[θ(t)] and �ae = �0 cos[θ(t)]eiγ (t)

[Eq. (8c)]. In this new basis, the qubit state |1̃〉 and the
states |a〉 and |e〉 form a three-level � system [38,39] [see
Fig. 2(b)]. One can write a geometric phase [68,69] onto
the state |1̃〉 by performing the “double STIRAP proto-
col,” where one slowly varies control pulses to realize the
cyclic adiabatic evolution |1̃〉 → |a〉 → |1̃〉. The resulting
phase is the basis of the tripod adiabatic single-qubit gate
[3,4]. One can perform an arbitrary single qubit gate in this
manner, without requiring precise pulse timing and without
requiring direct couplings between the logical qubit states.

To understand the above double STIRAP protocol in
more detail, note that the dark state relevant to our �

system (and orthogonal to |0̃〉) is

|d(t)〉 = cos[θ(t)]|1̃〉 − eiγ (t) sin[θ(t)]|a〉. (A4)

The required cyclic adiabatic evolution is achieved by
varying the pulse parameter θ(t), which brings the dark
state |d(t)〉 from the state |1̃〉 at t = 0 to |a〉 at t = tg/2 and
back to |1̃〉 at the final gate time t = tg . To do this, we use
a symmetric form for θ(t), i.e.,

θ(t) =
{

π
2 P(t/tg), 0 ≤ t ≤ tg

2 ,
π
2

[
1 − P

(
t

tg
− 1

2

)]
, tg

2 < t ≤ tg ,
(A5)

where P(x) is a function that increases monotonically
from P(0) = 0 to P(1/2) = 1. Furthermore, to ensure a
smooth turn on and turn off of the control fields, we choose
a polynomial that gives θ̇ (0) = θ̇ (tg/2) = θ̇ (tg) = θ̈ (0) =
θ̈ (tg/2) = θ̈ (tg) = 0. In particular, we use the simplest
polynomial satisfying the above criteria, which is given by
[17]

P(x) = 6 (2x)5 − 15 (2x)4 + 10 (2x)3 . (A6)

One also needs a nontrivial relative pulse phase γ (t) to
obtain a net Berry phase. Following Ref. [17], we use the
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simple form of γ (t) as given in Eq. (11):

γ (t) = γ0


(
t − tg

2

)
, (A7)

where 
(t) is the Heaviside step function.
In the adiabatic limit θ̇ (t)/�0 → 0, one can show [17]

that the dark state |d(t)〉 accumulates a geometric phase γ0
at t = tg , and the qubit subspace evolves independently of
the auxiliary-level subspace. The net result is a geometric
single-qubit gate controlled by the pulse parameters α, β,
and γ0. It is described by the unitary in the qubit subspace
ÛG,01 given in Eq. (12). The full adiabatic limit unitary has
the form ÛG = ÛG,01 ⊕ ÛG,ae, where ÛG,01 and ÛG,ae are
the unitaries acting in the qubit and auxilary subspaces,
respectively (see Ref. [17]).

APPENDIX B: SATD DRESSING FOR STA
PROTOCOLS

We review briefly how the “dressed state” approach to
constructing STA protocols [17,18] can be used to accel-
erate the tripod gate [17]. The general goal is to have the
system follow a “dressed” version of the original adiabatic
eigenstate that coincides with the original state at the start
and end of the protocol. This can be achieved by using
a time-dependent dressing function ν(t) that vanishes at
t = 0 and t = tg . Following Refs. [17,18], we introduce
|dν〉, a dressed version of the original dark state |d〉 [Eq.
(10)]:

|dν(t)〉 = exp
(
−iν(t)Ĵx

)
|d(t)〉. (B1)

Here Ĵ x = [|b+(t)〉〈d(t)| + |b−(t)〉〈d(t)| + H.c.]/
√

2, and
|b±(t)〉 denote the bright adiabatic eigenstates of Ĥ0(t) with
energies ±�0/2.

As discussed in Ref. [17], for the phase accumulated by
this state to be purely geometric and equal to the adiabatic-
limit geometric phase γ0, we require ν(tg/2) = 0. A partic-
ular dressing that satisfies this constraint is SATD [17,18],
where the dressing angle ν is given by

ν(t) = νSATD(t) ≡ arctan
[

2θ̇ (t)
�0

]
. (B2)

Using the SATD dressing function, one can show [17,18]
that the accelerated protocol is implemented by modifying
the original uncorrected pulse according to Eq. (13).

APPENDIX C: COMPARING SATD AGAINST
SIMPLE NONADIABATIC PROTOCOLS

In Sec. IV A, we discussed how �̃rms, the time-averaged
adiabatic gap of our Hamiltonian, is a relevant metric of

our protocol’s energy cost. We also discussed that by opti-
mizing SATD, one can achieve an energy cost �̃rms/2π =
1.92/tg , where tg is the gate time. In this appendix, we
show that this compares surprisingly favorably with sim-
pler, nonadiabatic pulse protocols.

First, consider the double-swap and hybrid scheme pro-
tocols (see, e.g., Refs. [43,44]). To understand these proto-
cols, consider the effective three-level � system as shown
in Fig. 2(b) [with the Hamiltonian given in Eq. (A3)].
The double-swap protocol involves two sequential swap
operations for each STIRAP process, where in the first
half of the protocol the pulse �1̃e(t) is first turned on
with a constant value of �0 for half of the time and is
then turned off with a simultaneous turn on of the pulse
�ae(t) with a constant value of �0 for the other half
of the time. The whole sequence is then reversed for
the second half of the protocol. It follows that to gen-
erate a geometric quantum gate that cyclically evolves
the state |1̃〉 → |e〉 → |a〉 → |e〉 → |1̃〉, the protocol must
be executed for a total gate time tg = 2π/(�0/2). So
we have �̃rms = �0 = 4π/tg . As shown in Fig. 5, this is
slightly larger than the energy cost of the optimized SATD
protocol.

Alternatively, consider the hybrid scheme. This has both
pulses [�1̃e(t) and �ae(t)] turned on for the whole pro-
tocol with a constant value of �0. For a cyclic evolution
of the state, the protocol must then be performed for
a total gate time tg = 2π/(

√
2�0/2). Since both pulses

are turned on for the whole protocol, we have �̃rms =√
2�0 = 4π/tg , which is the same as for the double-swap

protocol.

1. Proof for the lower bound of �̃rms

Finally, we establish a rigorous lower bound on �̃rms
using the quantum speed limit of Ref. [45], which general-
ized previous work [70,71]. The lower bound on �̃rms that
we derive below holds for any generic dressing function
ν(t) [Eq. (B1)], including the SATD dressing function [Eq.
(B2)]. We begin by applying the bound in Ref. [45] to the
first half of our gate protocol. Letting ρ̂0 (ρ̂tg/2) denote the
initial system state (state after evolution for a time tg/2),
we have

LQF(ρ̂0, ρ̂tg/2) ≤ 1
�

∫ tg/2

0
dt
√

〈Ĥ 2
0 (t)〉 − 〈Ĥ0(t)〉2, (C1)

where LQF(ρ0, ρtg/2) = arccos
√

F(ρ0, ρtg/2), where

F(ρ0, ρtg/2) = Tr
√√

ρ0ρtg/2
√

ρ0 is the Uhlmann fidelity.
The left-hand side is the distance of the initial and final
states according to the quantum Fisher information metric.
The right-hand side of this inequality is the time-integrated
instantaneous energy uncertainty of our Hamiltonian Ĥ0(t)
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with the accelerated protocol. The symmetry of our pro-
tocol implies the left-hand side also bounds the energy
uncertainty over the interval (tg/2, tg).

To apply this to our accelerated protocol, note that dur-
ing the first half of the evolution, the zero-energy dark state
|d(t)〉〈d(t)| [Eq. (10)] evolves from the initial state ρ0 =
|1̃〉〈1̃| to an orthogonal state ρtg/2 = |a〉〈a|. As a result, the
left-hand side of Eq. (C1) becomes π/2.

For a generic dressing function ν(t), we can obtain the
accelerated Hamiltonian Ĥ0(t) in the right-hand side of
Eq. (C1) from the adiabatic Hamiltonian [Eq. (A3)] by
modifying the original pulse angle and amplitude via [18]

θ(t) → θ̃ (t) = θ(t) + arctan
(

ν̇(t)
θ̇(t)/ tan[ν(t)]

)
, (C2a)

�0 → �̃(t) =
√

ν̇2(t) +
(

θ̇ (t)
tan[ν(t)]

)2

. (C2b)

Using the fact that the accelerated protocol guarantees
that the system’s state follows (at all times) the “dressed”
dark state |dν(t)〉 defined in Eq. (B1), we can calculate
the instantaneous energy uncertainty [right-hand side of
Eq. (C1)] from the probability p± of the dressed dark
state being in the instantaneous eigenstates |b±(t)〉 of
Ĥ0(t). Here |b±(t)〉 are the bright states of Ĥ0(t) with
eigenenergies ±�̃/2:

|b±(t)〉 = 1√
2

(
± sin[θ̃ (t)]|1̃〉 ± eiγ (t) cos[θ̃ (t)]|a〉 + |e〉

)
.

(C3)

The probabilities p± are given by

p±(t) = |〈dν(t)|b±(t)〉|2

= 1
2

[(
ν̇2(t)

�̃2(t)

)
cos2[ν(t)] + sin2[ν(t)]

]
. (C4)

Using Eq. (C4), we calculate the instantaneous values of
〈Ĥ0(t)〉 and 〈Ĥ 2

0 (t)〉 as

〈Ĥ0(t)〉 = �̃(t)
2

(p+−p−) = 0, (C5a)

〈Ĥ 2
0 (t)〉 = [�̃(t)]2

4
(p++p−) = 1

4

(
ν̇2(t) + θ̇2(t)

sec2[ν(t)]

)
.

(C5b)

Substituting Eq. (C5) into Eq. (C1), we then have

π

2
≤ 1

2

∫ tg/2

0
dt

√

ν̇2(t) + θ̇2(t)
sec2[ν(t)]

≤ 1
2

√∫ tg/2

0
dt

√∫ tg/2

0
dt
(

ν̇2(t) + θ̇2(t)
1 + tan2[ν(t)]

)

<
tg
4

√
2
tg

∫ tg/2

0
dt
(

ν̇2(t) + θ̇2(t)
tan2[ν(t)]

)
= tg

4
�̃rms.

(C6)

In going to the second line of Eq. (C6), we used the
Cauchy-Schwarz inequality and the relation sec2(x) = 1 +
tan2(x). From Eq. (C6), we can write the bound for �̃rms as

�̃rms > 2π/tg . (C7)

APPENDIX D: OPTIMAL FLUXONIUM
PARAMETER REGIME FOR A TRIPOD GATE IN

THE T1-PROTECTED REGIME

To get a tripod gate with small non-RWA errors as
well as a qubit with a long T1 coherence time, we use
the following criteria in choosing the fluxonium circuit
parameters:

1. The ground states (i.e., low-lying energy levels of
the tripod that are labeled by |0〉, |1〉, and |a〉) should
be well isolated from each other and be nondegener-
ate. The requirement of strong isolation is necessary
to obtain a T1-protected qubit. On the other hand, the
nondegeneracy of ground states is required to ensure
sufficiently large detuning of the spurious crosstalk
transitions from the driving frequencies to reduce
the coherent errors due to crosstalk.

2. The charge matrix elements coupling the excited
state to the ground states of the tripod system should
be large and have the same order of magnitude.
This requirement helps to minimize coherent errors
arising from non-RWA processes.

Criterion 1 requires us to pick circuit parameters that sat-
isfy EJ � EC and EL 	 EJ (for well-localized ground
states) as well as 0 < �ext � �0/4 (to lift the degener-
acy of the ground states). Criterion 2, on the other hand,
requires that we pick the excited state |e〉 of the tripod gate
to be the first excited state of the central well that is delo-
calized over the potential wells where the ground states
|0〉, |1〉, and |a〉 reside but be somewhat separated from
the much more densely spaced higher energy levels. This
means that the state |e〉 must lie in the vicinity of the top
edge of the cosine potential, requiring

√
8ECEJ � 2EJ . It

is clear that criteria 1 and 2 cannot be satisfied simulta-
neously in a standard fluxonium circuit. That forces us to
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seek a balanced parameter set, ensuring that we can end
up with both a long-lived qubit and a tripod that allows a
high-fidelity SATD gate.

To achieve this balance, we initially do a numerical
search over experimentally realizable circuit parameters,
enforcing conditions on the energy-level structure that do
not strongly violate our desired selection criteria outlined
in criteria 1 and 2 above. These include, for example,
requiring that the charge matrix element between levels |0〉
and |1〉 be small (which maximizes T1), and that the tripod
transition energies ωje, with j = 0, 1, a, are not degenerate
(to minimize effects of crosstalk). After applying this pro-
cedure, we end up with a much reduced parameter space,
which in turn is used to perform a more focused search on
the circuit parameter set that optimizes the fidelity of an
actual SATD gate (although without the frequency chirp-
ing). Taking all of the above factors into account, we end
up with a final choice of parameters: EL/h = 0.063 GHz,
EJ /h = 9.19 GHz, EC/h = 2 GHz, and �ext = 0.17�0.
We stress that the small inductive energy of our fluxo-
nium puts our EL in same regime as the Blochnium device
that was recently realized experimentally [51]. The corre-
sponding energy level structure and the potential energy
landscape are shown in Fig. 1. Because of the small matrix
element between qubit levels |0〉 and |1〉 (|n01| = 0.02), our
qubit is not T1 limited, and because of the positioning of
the excited level |e〉, a tripod with relatively strong tripod
matrix elements (|n0e| = 0.27, |n1e| = 0.46, and |nae| =
0.16) can be realized.

APPENDIX E: ACCOUNTING FOR A SMOOTH
TURN ON AND TURN OFF OF THE PULSE AT

THE BEGINNING AND END OF THE PROTOCOL

Since realistic pulses are off at the beginning and the
end of the protocol, we sandwich the pulse in Eq. (8) by a
ramp time tramp during which the pulse �̃ae(t) is smoothly
turned on (off) at the beginning (end) of the protocol. The
full driving pulses can then be written as smooth piecewise
continuous functions that can be separated into three time
regions (region I, 0 ≤ t < tramp; region II, tramp ≤ t ≤ tg +
tramp; region III, tg + tramp < t ≤ tg + 2tramp) as

�̃0e(t)
�0

=

⎧
⎪⎪⎨

⎪⎪⎩

0 (I),

cos α

(
sin[θ(t−)] + cos[θ(t−)]θ̈ (t−)

θ̇2(t−)+�2
0/4

)
(II),

0 (III),
(E1a)

�̃1e(t)
�0

=

⎧
⎪⎪⎨

⎪⎪⎩

0 (I),

e−iβ sin α

(
sin[θ(t−)] + cos[θ(t−)]θ̈ (t−)

θ̇2(t−)+�2
0/4

)
(II),

0 (III),
(E1b)

�̃ae(t)
�0

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P
(

t
2tramp

)
(I),

e−iγ t−
(

cos[θ(t−)] − sin[θ(t−)]θ̈ (t−)

θ̇2(t−)+�2
0/4

)
(II),

1 − P
(

t−−tg
2tramp

)
(III),

(E1c)

where t− = t − tramp. Specifically, we choose tramp =
0.01tg to be short enough compared with the overall pulse
length such that it will not significantly affect the whole
dynamics but long enough such that there is no sharp jump
in the pulse when it is turned on or off. In Eq. (E1c) we
have used the function P(x) given in Eq. (A6) to ensure
a smooth turn on and turn off of the pulse �̃ae(t) during a
duration tramp at the beginning and end of the protocol. The
time profile of the driving pulse with the inclusion of the
ramp function is shown in Fig. 7(a).

APPENDIX F: EFFECTS OF THE T1 DECAY
PROCESS ON THE GATE ERROR

In this section, we discuss the effects of T1 decay on the
gate error. We focus only on the most dominant T1 relax-
ation process that involves the computational states (i.e.,
the relaxation from the state |e〉 to the state |1〉). We have
checked that the other T1 relaxation processes affecting the
computational states are much longer and hence do not
impact the gate performance significantly. We consider the
T1 decay process to be due to the dielectric loss in capac-
itors since it is typically the most significant relaxation
process in experiments [27,28]. The T1 relaxation time for
any |k〉 → |l〉 transition due to the dielectric loss is given
by

1/(T1)kl = |ωlk|ωlk

8ECQdiel

[
coth

(
ωlk

2kBT

)
+ 1

]
|〈l|ϕ̂|k〉|2,

(F1)

where Qdiel is the dielectric quality factor, EC is the capac-
itive energy, ωlk ≡ εk − εl is the energy transition between
the state |l〉 and the state |k〉, and ϕ̂ is the phase operator.
Table I shows the (T1)e1 relaxation time, corresponding
to the |e〉 → |1〉 decay, calculated at zero temperature
(T = 0) for different values of Qdiel. We take into account
this relaxation process by adding the relaxation Lindblad
operator

Ẑ =
√

1/(T1)e1|1〉〈e| (F2)

to the master equation [Eq. (24)].
Figure 12 shows a comparison between the state-

averaged X-gate error ε̄ for SATD protocols calculated
with and without inclusion of the T1 relaxation process.
For all plots, we take into account the effects of both 1/f
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TABLE I. Relaxation times (T1)e1 for the |e〉 → |1〉 decay. The
relaxation times are calculated at zero temperature with use of
Eq. (F1) for different values of the dielectric quality factor Qdiel.
For comparison, the qubit dephasing time Tϕ,01 = 7.03 μs. The
fluxonium parameters used are as for Fig. 6.

Qdiel (T1)e1 (μs)

5 × 105 11.9
1 × 106 23.8
2 × 106 47.6
1 × 107 238

flux noise and the coherent errors. As seen in Fig. 12, for
(T1)e1 values slightly larger than Tϕ,01, e.g., Qdiel ≈ 106

[see Table I for (T1)e1 values calculated for different Qdiel
values], the T1 relaxation mechanism can still have an
appreciable effect on the gate error. This is because our
Markovian modeling of the non-Markovian 1/f dephasing
noise (as discussed in Sec VI B1 and Appendix G) gives
an effective dephasing rate tg/(Tϕ,kl)

2 [Eq. (27)], which
is smaller than the decay rate 1/(T1)kl of a T1 Marko-
vian decay process when (T1)kl ≈ Tϕ,kl. Here Tϕ,kl is the
pure dephasing time calculated from the standard free-
induction-decay calculation for the state |k〉 with use of the
state |l〉 as the reference state. On the other hand, for high
values of Qdiel (i.e., Qdiel � 5 × 106), the T1 relaxation pro-
cess does not significantly change the gate error. We note
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G
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SATD X gate with dissipations
With T1, Qdiel = 5 × 105

With T1, Qdiel = 1 × 106

With T1, Qdiel = 2 × 106

With T1, Qdiel = 1 × 107

Without T1

FIG. 12. Comparison between the state-averaged X-gate error
ε̄ = 1 − F̄ for SATD protocols with and without T1 relaxation
rate. We take into account only the most dominant relaxation pro-
cess (T1)e1, i.e., the relaxation from the state |e〉 to the state |1〉.
The relaxation time (T1)e1 is calculated with Eq. (F1) for differ-
ent values of the dielectric quality factor Qdiel [see Table I for the
values of (T1)e1]. The effects of 1/f flux noise dephasing as well
as non-RWA errors are taken into account; 18 fluxonium levels
are included in the simulations. Fluxonium parameters and the
dephasing amplitude (corresponding to the qubit dephasing time
Tϕ,01 = 7.03 μs) are the same as for Fig. 11.

that the use of capacitors with high values of Qdiel (e.g.,
Qdiel � 106) is typical for present experiments [67,72].

For cases where the T1 dissipation dominates, we
can reoptimize the gate error by using a value of �0
that is larger than the power-optimal �0 [i.e., �0 =
1.135(2π)/tg]. This is because for a fixed tg , SATD proto-
cols populate the excited state |e〉 less for larger values of
�0 [18], and hence they are less susceptible to the T1 decay
process. However, one cannot use an arbitrarily large value
of �0, as beyond a certain value of �0 the coherent errors
will start to dominate over the T1 decay process. To this
end, we perform a numerical minimization of gate errors in
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FIG. 13. State-averaged SATD X-gate errors ε̄ = 1 − F̄ calcu-
lated in the presence of the (T1)e1 relaxation process, 1/f flux
noise dephasing, and non-RWA errors. (a) Gate error ε̄ versus
�0tg/2π for different gate times tg . The dashed red line indicates
the value of power-optimal �0, i.e., �0tg/2π = 1.135. (b) Gate
error ε̄ versus gate time tg calculated with the power-optimal �0
(magenta curve) and optimal values of �0 (inset) that minimize
the gate errors in the presence of the T1 decay process (blue
curve). The shaded (unshaded) region corresponds to the time
regime where the gate errors are dominated by non-RWA errors
(T1 dissipation). The inset shows the optimal value of �0 that
minimizes the gate error in the presence of the T1 decay pro-
cess as a function of gate time tg , where the dashed red line
corresponds to the power-optimal value �0tg/2π = 1.135. The
relaxation time (T1)e1 used is 23.8 μs, which corresponds to
dielectric quality factor Qdiel = 1 × 106. Eighteen fluxonium lev-
els are included in the simulations. Fluxonium parameters and the
dephasing amplitude (corresponding to the qubit dephasing time
Tϕ,01 = 7.03 μs) are the same as for Fig. 11.
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the T1-dominated regime by doing a brute-force optimiza-
tion of �0. Figure 13(a) shows the gate error versus �0tg
calculated for different gate times tg . In the coherent-error-
dominated regime (i.e., tg � 100 ns), the value of �0 that
gives the minimum gate error is close to the power-optimal
�0 [shown as a red dashed line in Fig. 13(a) and inset
of Fig. 13(b)]. However, for the T1-dissipation-dominated
regime (i.e., tg � 100 ns), the optimal value of �0 that
minimizes the gate error at fixed tg is larger than the power-
optimal �0 [see the inset in Fig. 13(b)]. In Fig. 13(b), we
compare the gate errors calculated with the power-optimal
�0 (magenta curve) with those obtained with optimal val-
ues of �0 (one for each tg value) that minimize the gate
errors in the presence of the T1 decay process (blue curve).
In the coherent-error-dominated regime (shaded region),
the minimum gate errors are approximately the same as
those obtained with the power-optimal �0. However, in the
T1-decay-dominated regime, there is a reduction in the gate
errors obtained with use of the reoptimized values of �0.

APPENDIX G: APPROXIMATING
NON-MARKOVIAN NOISE WITH MARKOVIAN

DYNAMICS

In this appendix, we show that approximating non-
Markovian dynamics of 1/f noise with the Markovian
master equation cannot capture the decay rate of all coher-
ences correctly. In the main text, we constructed our Lin-
blad master equation by picking the decay rate �k of the
coherences ρk1 ≡ 〈k|ρ̂|1〉 (coherences that involve the ref-
erence level, i.e., the qubit state |1〉) such that the final
decay of the coherences ρk1, for all k �= 1, at the gate time
tg is the same for our Markovian dynamics as it would be
following the non-Markovian, Gaussian-lineshape decay
with an envelope of the form exp

[−(t/Tϕ,kl)
2
]
, where Tϕ,kl

is the free induction decay time given by Eq. (26). (Note
that we can equivalently choose the qubit state |0〉 as the
reference level as both choices will result in the same value
of state-averaged fidelities.) While the decay of ρk1 coher-
ences can be captured correctly, the dephasing times of
coherences that do not involve the reference level (ρkl, for
all k, l �= 1) in our Markovian dynamics are in general not
the same as the free induction decay times calculated from
Eq. (26). To see this, we can write the Lindblad master
equation [Eq. (24)] in terms of the density matrix elements
as

ρ̇kl(t) = −i[Ĥ(t), ρ̂(t)]kl

−
[

sgn
(

∂εk

∂�ext

)√
�k − sgn

(
∂εl

∂�ext

)√
�l

]2

ρkl

= −i[Ĥ(t), ρ̂(t)]kl − tg
(

Teff
ϕ,kl

)2 ρkl, (G1)

where we have identified

TABLE II. Dephasing times for transitions between compu-
tational states |k〉 and |l〉 calculated by two different methods:
directly from the free induction decay formula [Eq. (26)] (mid-
dle column) and indirectly from the Lindblad master equation
[Eq. (G2)] (right column).

kl Tϕ,kl (μs) Teff
ϕ,kl (μs)

01 7.03 7.03
a1 6.97 6.97
e1 53.43 53.43
a0 3.50 1.75
e0 8.09 17.31
ae 6.16 3.76

1
Teff

ϕ,kl

≡
∣∣∣∣sgn

(
∂εk

∂�ext

)
1

Tϕ,k1
− sgn

(
∂εl

∂�ext

)
1

Tϕ,l1

∣∣∣∣ .

(G2)

We can see that the effective dephasing time Teff
ϕ,kl [Eq.

(G2)], for all k, l �= 1, calculated from the Lindblad mas-
ter equation is in general not the same as the free induction
dephasing time Tϕ,kl calculated from Eq. (26). As shown in
Table II, our approach if anything overestimates the dom-
inant dephasing processes within the tripod subspace, e.g.,
Teff

ϕ,a0 and Teff
ϕ,ae.

APPENDIX H: COMPARISON WITH RAMAN
GATES

In this section, we compare the performance of our tri-
pod gate against that of the Raman gate. In the Raman
protocol, detuned drives couple the excited state |e〉 to the
qubit states |0〉 and |1〉, leading to an effective direct cou-
pling between the qubit states [39]. The requirement that
the drives in a Raman approach be highly detuned means
that (for fixed drive amplitudes) it will result in a much
slower gate than is possible, for example, by using our
SATD tripod approach (which uses resonant drive).

To make the comparison more explicit, let � denote the
detunings of both drives used in a Raman protocol and let
�0 denote the drive amplitudes. The Raman gate is based
on adiabatically eliminating the excited state to generate
an effective qubit-only Hamiltonian. This elimination nec-
essarily requires �0 	 �, leading to a Raman gate time
tg = 2π�/�2

0 � 1/�0. In contrast, using our tripod gate,
we are able to achieve much shorter gate times tg ∼ 1/�0
for the same drive amplitude. As a result, we expect the
Raman gate to be more susceptible to dissipation than
our tripod gate, which gives an enormous advantage for
the tripod gate if dissipation prevents the use of long
gate times. Moreover, unlike the direct-driving and Raman
gates, our SATD gate is robust against imperfections in
control pulses [17].
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APPENDIX I: INDIRECT QUBIT DRIVING
THROUGH A COUPLED CAVITY

To provide Purcell protection, in practice, superconduct-
ing qubits are often driven indirectly through a coupled
cavity. In this appendix, we discuss the details of such driv-
ing of our fluxonium qubit, especially in the context where
the drive power is constrained such that additional dissipa-
tive mechanisms due to the cavity can be avoided. In the
following, we show how the driving field applied to the
qubit-coupled cavity is related to the driving field seen by
the qubit V(t) [Eq. (2)].

1. Driving field for the cavity

In this subsection we derive an explicit relationship
between the field that drives the cavity u(t) and the volt-
age V(t) [Eq. (2)] seen by the qubit. We begin by writing
the Hamiltonian for the driven cavity-coupled fluxonium
as

ĤJC(t) =
∑

k

εk|k〉〈k| + ωcavâ†â

+
∑

k,l

gnkl|k〉〈l|(â† + â) + u(t)(â† + â), (I1)

where εk and |k〉 are the fluxonium eigenenergies and
eigenstates, respectively, and ωcav is the cavity frequency.
The qubit-cavity coupling strength is g, while nkl = 〈k|n̂|l〉
is the fluxonium charge matrix element. The driving field
on the cavity is u(t) and the operators â† and â are the
cavity photon creation and annihilation operators, respec-
tively.

We consider operating the cavity-qubit system in
the dispersive regime where gnkl 	 |εl − εk − ωcav|, and
applying a highly off-resonant drive to limit the cavity pho-
ton population. We also consider the drive strength to be
weak enough that the cavity photon number is small so
to avoid cavity-induced dissipations. In this weak driving
power regime, we can estimate the relationship between
the applied cavity field u(t) and the driving field on the
qubit V(t) by first solving for the classical cavity field
independently (i.e., in the limit g → 0). To this end, we
model the cavity as a stand-alone, damped, driven har-
monic oscillator. The Heisenberg equation of motion for
the cavity-photon annihilation operator â(t) can be written
as [73]

˙̂a(t) = i[ĤJC(t), â(t)] − κ

2
â(t) − √

κ b̂in(t)

= −iωcavâ(t) − iu(t) − κ

2
â(t) − √

κ b̂in(t). (I2)

Here κ is the cavity photon decay rate (due to photon
leakage to the bath) and b̂in(t) is the standard bath anni-
hilation operator, which represents the noise [73]. The

equation of motion for â†(t) can be obtained by taking
the Hermitian conjugate of Eq. (I2). By treating the cav-
ity field classically and writing the equation of motion in
terms of the mean value of the photon field displacement
x = 〈â + â†〉/√2, we have

ẍ(t) = −
(

ω2
cav + κ2

4

)
x(t) − κ ẋ(t) −

√
2ωcavu(t), (I3)

where we have used 〈b̂in(t)〉 = 〈b̂†
in(t)〉 = 0. The solution

of Eq. (I3) is

x(t) = xp(t) + xh(t), (I4)

where

xh(t) = Ae− κ
2 t sin(ωcavt + φ) (I5)

is the homogeneous solution and xp(t) is the inhomo-
geneous solution. To solve for xp(t), we first define the
Fourier transforms of x(ω) and u(ω) as

x(ω) =
∫ ∞

−∞
x(t)e−iωtdt,

u(ω) =
∫ ∞

−∞
u(t)e−iωtdt

(I6)

and their inverse Fourier transforms as

x(t) = 1
2π

∫ ∞

−∞
x(ω)eiωtdω,

u(t) = 1
2π

∫ ∞

−∞
u(ω)eiωtdω.

(I7)

Taking the Fourier transform of Eq. (I3), we have

(
−ω2 + iκω + ω2

cav + κ2

4

)
x(ω) = −

√
2ωcavu(ω), (I8)

which gives

x(ω) =
√

2ωcavu(ω)

ω2 − iκω − (
ω2

cav + κ2/4
) . (I9)

We can relate the mean photon displacement x(t) to the
qubit driving voltage V(t) by replacing the cavity degree
of freedom in the cavity-qubit coupling Hamiltonian by its
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classical value, i.e.,

Ĥc ≈
∑

kl

g〈â† + â〉nkl|k〉〈l|

=
√

2gx(t)
∑

kl

nkl|k〉〈l|. (I10)

Comparing Eq. (I10) with the qubit driving term in the
Hamiltonian in Eq. (1), we can identify

√
2gx(t) = V(t), (I11)

where in the frequency domain it can be written as

√
2gx(ω) =

∫ ∞

−∞
V(t′)e−iωt′dt′. (I12)

Substituting Eq. (I9) into Eq. (I12), we have

u(ω) = [ω2 − iκω − (ω2
cav + κ2/4)]

2gωcav

∫ ∞

−∞
V(t′)e−iωt′dt′.

(I13)

Finally, taking the inverse Fourier transform, we arrive at
an expression for the time-domain form of the cavity pulse
u(t) that is required to generate a qubit drive V(t) as

u(t) = − 1
2gωcav

(
d2

dt2
+ κ

d
dt

+ ω2
cav + κ2

4

)
V(t). (I14)

2. Relation between the rms voltage and the
time-averaged cavity photon number

In this section, we establish the relationship between the
rms voltage Ṽrms of the qubit driving field and the time-
averaged cavity photon number n̄cav, where

n̄cav = 1
tg

∫ tg

0
〈â†â〉dt

≈ 1
tg

∫ tg

0
〈â†〉〈â〉dt = 1

tg

∫ tg

0
dt|η(t)|2. (I15)

Here we treat the photon field classically, which allows us
to replace 〈â†〉 and 〈â†〉 by the classical field amplitudes
η∗(t) and η(t), respectively. Using this classical field in Eq.
(I10), we can identify the qubit driving voltage as

V(t) = 2gRe η(t). (I16)

The rms voltage of the qubit driving field is then given by

Ṽrms =
√

1
tg

∫ tg

0
|V(t)|2

= g
√

2n̄cav, (I17)

where in evaluating the second line, we used the relation

1
tg

∫ tg

0
[Re η(t)]2 =

∑

j

1
tg

∫ tg

0
|ηj (t)|2 cos2(ωj t + φj )

� 1
2tg

∫ tg

0
|η(t)|2 = n̄cav

2
. (I18)

Without loss of generality, in Eq. (I18), we have writ-
ten the photon field as a multicomponent field, i.e.,
η(t) = ∑

j ηj e−i(ωj t+φj ). To avoid cavity-induced dissipa-
tion mechanisms, it is preferable to have a small cavity
photon number, i.e., n̄cav = 〈â†â〉 	 1; for our simulations
in the main text, we specifically set n̄cav = 0.05. This con-
strains the maximum rms voltage for a fixed cavity-qubit
coupling strength g as shown in Eq. (32). Each vertical cut
of the plot in Fig. 11(b) corresponds to different maximum
allowed values of Ṽrms, where the purple vertical lines
show explicitly two different fixed values of the cavity-
qubit coupling strength g corresponding to two different
maximum allowed values of Ṽrms.

3. Effects of the cavity on the qubit’s T1 and T2 times

In this section we briefly outline the effects of thermal
photons in the cavity on the coherence times of the qubit,
and show that they do not limit the performance of our
gates. In particular, we consider a regime where the cav-
ity photon decay rate κ 	 g2/|�cav

kl,±|, for all k, l, where
�cav

kl,± = εl − εk ± ωcav is the detuning of the cavity fre-
quency ωcav from the |k〉 ↔ |l〉 energy transition involving
the computational levels. The first noise channel we con-
sider is the Purcell relaxation time, which we denote as
T1,cav and can be calculated as [74]

(T1,cav)jk = (�cav
kl,±)2/(κg2|nkl|2). (I19)

Since all the relevant transitions are sufficiently detuned
from the cavity frequency, we expect the Purcell relax-
ation process to be weak. Another relevant noise channel is
due to photon shot noise, and leads to pure dephasing. We
denote the corresponding time scale as T2,cav, which can be
approximated by [75,76]

T2,cav = 1/κ n̄th. (I20)

We stress that Eq. (I20) is valid in the limit of small cav-
ity photon decay rate relative to all the relevant dispersive
shifts (κ 	 g2/|�cav

kl,±|), a regime that we are interested
in. Moreover, we also consider operating in the disper-
sive limit (gnkl 	 |�cav

kl,±|, for all k, l) and small cavity-
thermal-photon-number regime (n̄th 	 1) such that the
cavity response can be treated independently of the qubit
(see Sec. I 1). As an example, we can pick ωcav/2π = 2
GHz [chosen to be sufficiently detuned from all of the tran-
sition frequencies in our fluxonium (Fig. 1)], κ/2π = 10
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kHz, g/2π = 250 MHz, and n̄th = 0.05 (corresponding to
a temperature T ≈ 30 mK). Substituting the above param-
eters into Eqs. (I19) and (I20), we obtain (T1,cav)01 = 0.15
s and T2,cav = 0.32 ms. Since the cavity-induced relax-
ation time (T1,cav)01 and dephasing time T2,cav are much
larger than the dephasing times due to the 1/f flux noise
(see Table II), we can ignore the effect of cavity-thermal-
photon-induced dissipation on the gate dynamics.
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