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KERNELS FOR GRASSMANN FLOPS

MATTHEW R. BALLARD, NITIN K. CHIDAMBARAM, DAVID FAVERO, PATRICK K. MCFADDIN,
AND ROBERT R. VANDERMOLEN

Abstract. We develop a generalization of the Q-construction of the first author, Diemer,
and the third author for Grassmann flips. This generalization provides a canonical idem-
potent kernel on the derived category of the associated global quotient stack. The idempo-
tent kernel, after restriction, induces a semi-orthogonal decomposition which compares the
flipped varieties. Furthermore its image, after restriction to the geometric invariant theory
semistable locus, “opens” a canonical “window” in the derived category of the quotient
stack. We check this window coincides with the set of representations used by Kapranov
to form a full exceptional collection on Grassmannians.

Introduction

Derived categories, once viewed as a mere technical book-keeping device, have flourished
as a topic of investigation as volumes of literature have exposed their geometric nature.
Derived categories of coherent sheaves on algebraic varieties bind algebraic geometry to
commutative algebra, representation theory, symplectic geometry, and theoretical physics
in deep and surprising ways.

These bindings come in the form of fully-faithful functors or, better yet, equivalences
relating different varieties or categories. An obvious and central question: what is a reason-
ably robust and general source for such functors? Experience in algebraic geometry tells us
that moduli spaces are often a good place to look but beyond this source the examples of
fully-faithful functors are more idiosyncratic.

Recently, a new construction, in the context of group actions, was introduced in [BDF17],
which we call the Q-construction. Given a variety X with a Gm-action, the authors con-
structed an idempotent kernel on the equivariant derived category Db([X/Gm]). The kernel
Q, being the identity on its essential image, fully-faithfully identifies an interesting compo-
nent of the derived category Db([X/Gm]). In fact, it always gives a two-term semi-orthogonal
decomposition. This construction has some natural extensions.

Following Drinfeld [Dri13], we can recognize it as a piece of a more general story. The
inclusion Gm ⊂ A1 can be viewed as a partial compactification of Gm as a monoid in schemes.
The fibers of the multiplication map A1×A1 → A1 are a family of Gm orbits which degenerate
over 0 ∈ A1. From Drinfeld’s perspective, the idempotent kernel constructed in [BDF17] is
the structure sheaf of a variety that parametrizes such degenerations in X.

This viewpoint allows for an immediate generalization: we can replace A1 with M where
M is monoidal scheme. If we have a variety with an action of the units of M , we can
produce a kernel for X. In this paper, we study the monoidal scheme End(V ) for V a finite
dimensional vector space and the natural action of the units GL(V ) on the vector space
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Z = Hom(V,W ) × Hom(W ′, V ) where W,W ′ are two additional finite dimensional vector
spaces.

In this setting, we construct an object Q ∈ Db([Z ×Z/GL(V )×GL(V )]) and show that
the idempotent property still holds:

Theorem 1. There exists a morphism of kernels Q → ∆ inducing an isomorphism of
Q ◦Q→ Q, where ◦ denotes convolution of kernels and ∆ is the kernel of the identity.

The robustness of the equivariant setting is indicated by the fact that any flip between
normal varieties arises as a variation of GIT problem for a Gm action on a variety. We
remind the reader of the following conjecture of Bondal and Orlov [BO95] extended by
Kawamata [Kaw02]:

Conjecture (Bondal-Orlov 1995). Assume that X and X ′ are smooth complex varieties.
If X and X ′ are related by a flop, then there is a C-linear triangulated equivalence of their
bounded derived categories of coherent sheaves

D
b(X) ∼= D

b(X ′).

As an application of the Q-construction, in [BDF17], the first author, Diemer, and the
third author gave a means of constructing a kernel on X ×X ′ for any D-flip (X,X ′). For
flops of smooth projective varieties, the associated integral transform is conjectured to be
the desired equivalence of Bondal and Orlov. This provides a single unified, though still
conjectural, approach to constructing equivalences from flops.

In the setting of this paper, variation of GIT between Z+, Z−, the two GIT quotients
of Z, amounts to a flip which was studied by Donovan and Segal [DS14] when W and W ′

have the same dimension and k is an algebraically-closed base field of characteristic zero.
This is called a Grassmann flop since it comes from contracting the zero section of a vector
bundle over a Grassmannian. Donovan and Segal exhibited equivalences for Grassmann flops
using a set of representations identified by Kapranov [Kap88]. In [BLVdB16], Buchweitz,
Leuschke, and Van den Bergh showed that structure sheaf of fiber product OZ+×ZZ− for
Grassmann flop is a kernel of the equivalence and they showed that, for the analogous flip
setting, it provides admissible embeddings of derived categories.

As an application to these conjectures, we show the Q-construction descends to provide
an appropriate kernel for Grassmann flips.

Theorem 2. Let k be an (arbitrary) field of characteristic zero. For a Grassmann flip,
the Q construction, restricted to the semi-stable loci, induces the following semi-orthogonal
decompositions:

(1) If dimW > dimW ′, then there is a semi-orthogonal decomposition

D
b(Z+) = 〈OdimV,dimW−1,D

b(Z−)〉

where OdimV,dimW−1 is a category of explicitly described objects supported on the
unstable locus for Z− (see in Definition 5.4.2).

(2) If dimW < dimW ′, then there is a semi-orthogonal decomposition

D
b(Z−) = 〈OdimV,dimW ′−1,D

b(Z+)〉

where OdimV,dimW ′−1 is a category of explicitly described objects supported on the
unstable locus for Z+ (see Definition 5.4.2).
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(3) If dimW = dimW ′, then there is an equivalence

D
b(Z+) ∼= D

b(Z−).

We also check, a posteieri, that the kernel from the Q-construction agrees with the fiber
product. Additionally, we show that the equivalence holds for any twisted Grassmann flop
over a general field in characteristic 0.

Finally, the utility of “windows” in equivariant derived categories is evident from works
such as, for example [HL15, BFK19, DS14, SVdB17]. Identifying windows involves some
choices or special conditions. The next result indicates that windows come simply from the
choice of the monoid M compactifying G.

Theorem 3. Let Q+ := Q|Z+×Z . Then

• The functor

ΦQ+
: Db(Z+) → D

b ([Z/GL(V )])

is fully-faithful.
• The restriction map j∗ : Db ([Z/GL(V )]) → Db(Z+) is a left inverse to ΦQ+

.
• Kapranov’s representations form a set of generators for the essential image of ΦQ+

.

Theorem 3, in particular, provides a completely geometric explanation for the appearance
of Kapranov’s representations. Our method of monoid compactification can therefore be
seen as part of a program to produce canonical windows for quotients via linearly reductive
groups.

Theorems 2 and 3 demonstrate that, in the case of Grassmann flips, the Q-construction
plays a unifying role in understanding the relationship between birational geometry and
derived categories.

Remark. The authors became aware of [BLVdB16] after the submission of this article. We
thank Michel Van den Bergh for pointing it out.

2. Notation and Conventions

Throughout, k denotes a field of characteristic zero. For ℓ ∈ N, ℓ 6= 0, we let [ℓ] :=
{1, ..., ℓ}. We denote by Veck the category of finite-dimensional k-vector spaces. We utilize
standard results in Geometric Invariant Theory and use the notation of [Mum65] as much
as possible. All schemes considered here are k-schemes. For a k-scheme Z, we denote its
ring of regular functions by k[Z]. The word point will always mean a k-point.

Throughout, fix a d-dimensional k-vector space V , a m-dimensional vector space W and
a m′-dimensional vector space such that dimW,dimW ′ ≥ dimV . For any k-vector space U
we can associate a scheme over Spec(k) defined as the spectrum of the symmetric algebra
of the dual space U∨, that is

Spec
(
Sym

(
U∨

))
.

More generally, for a k-scheme X and a locally free OX -module M we can consider the
relative spectrum of the symmetric sheaf of algebras of M∨, which we refer to as the total

space of M .
We fix the group G to be the general linear algebraic group

G = GL(V ) := Spec
(
k

[
C, (det (C))−1

])
,
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where C = (cij)i,j∈[d] is a collection of indeterminates. We use det (C) to denote the

polynomial

det (C) :=
∑

δ∈Sn

(−1)sgn(δ)


∏

i∈[d]

ciδ(i)


 .

Next, recall that for a k-scheme Z, an action of G on Z is defined by a morphism of
schemes

σZ : G×k Z → Z.

If Z and Y are k-schemes with G-actions given by σZ and σY , we say that a morphism
f : Z → Y is G-equivariant whenever the following diagram commutes:

G×k Z G×k Y

Z Y

1G×kf

σZ σY

f

Most of this work deals with categories whose objects carry a G-action and whose morphisms
are G-equivariant. To denote such categories, we simply use the superscriptG. For example,
let R be a commutative ring with a G-action. Then, we denote the category of G-equivariant
modules by ModG(R).

In practice, we will consider the case where R is a polynomial ring and think of the
coordinates along with the G-action as follows. Given a collection A = {aij}i∈[m],j∈[d] of
indeterminates, for any subsets J ⊆ [d], I ⊆ [m], we let AI,J denote the collection of
variables

AI,J := (aij)i∈I, j∈J .

For I ⊆ [m] with |I| = d, we may list this set in increasing order, and denote the corre-
sponding ordered set by I := {ℓ1, .., ℓd}. We then write

det
(
AI,[d]

)
:=

∑

σ∈Sd

sgn(σ)


 ∏

1≤i≤d

Aℓi,σ(i)


 .

Given two collections A = {aij}i∈[m],j∈[d] and B = {bij}i∈[d],j∈[m], we use BA to denote the
collection of polynomials {

m∑

ℓ=1

biℓaℓj

}

i∈[d],j∈[d]

.

Lastly, given two k-algebras R and S and elements r ∈ R and s ∈ S, we let rL and sR

denote the elements r ⊗ 1 and 1⊗ s in R⊗k S.
Throughout the text, we will use Z to denote the following affine space

Z := HomVeck
(V,W )×HomVeck

(W ′, V ),

and we will denote its coordinate ring by

R := k[Z].
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3. The kernel

Recall that in [BDF17] the authors exhibit a kernel using a partial compactification of a
certain Gm-action. We follow a similar line of reasoning in the case of G-actions on spaces
of a certain type.

3.1. The Grassmann flip. The vector space

HomVeck
(V,W )⊕HomVeck

(W ′, V ),

carries a natural action ofG; for ς ∈ G (a point), ϕ ∈ HomVeck
(V,W ), and ϑ ∈ HomVeck

(W ′, V )
the action is given as

ς · (ϕ, ϑ) = (ϕ ◦ ς, ς−1 ◦ ϑ)

Let us provide a few more specifics concerning the above action of G. For such an object
Z, the induced action

σZ : G×k Z → Z

is equivalent to the co-action as Hopf algebra modules as follows. Choosing bases for V , W
and W ′, we may write

Z = Spec
(
k
[
{aij}i∈[d],j∈[m′], {bij}i∈[m],j∈[d]

])
,

where we recall that m = dimW and m′ = dimW ′. Letting B := (bij) and A := (aij), we
have

(3.1) Z = Spec (k [A,B]) .

The co-action on the global sections

σ♯Z : k[Z] → k [G]⊗k k[Z],

is defined on the generators as

bij 7→ (det(C))−1
d∑

r=1

Adj(C)rj ⊗k bir

aij 7→

d∑

r=1

cir ⊗k arj,

where Adj(C) is the adjugate matrix of C.
Furthermore, the projection

πZ : G×k Z → Z

induces the map

π♯Z : k[Z] → k [G]⊗k k[Z].

In order to get our GIT problem of interest, we consider the two open sets

U+ :=
(
Hom(V,W ) \ {ϕ : rank(ϕ) ≤ (d− 1)}

)
⊕Hom(W ′, V )

U− := Hom(V,W )⊕
(
Hom(W ′, V ) \ {ϑ : rank(ϑ) ≤ (d− 1)}

)
,

and define the associated GIT quotients as

Z+ :=
[
U+/G

]
, Z− :=

[
U−/G

]
.
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The resulting birational transformation between Z+ and Z− is called the Grassmann flip.
It is called a Grassmann flop when dimW ′ = dimW .

3.2. The object Q. Before turning attention to our object Q, we introduce the object ∆,
which gives the kernel of the identity functor in the equivariant setting.

Notation 3.2.1. Given Z = Hom(V,W )× Hom(W ′, V ) as before, we define the following
scheme

∆Z := Z ×k G.

The scheme ∆Z is equipped with a natural G×k G-action as follows.

Lemma 3.2.2. The scheme ∆Z has a natural (G×k G)-action

σ∆Z
: G×k G×k ∆Z → ∆Z

uniquely determined by the co-action

σ♯∆Z
: k[∆Z ] = k[G] ⊗R→ k [G]⊗k k [G]⊗k k[∆Z ]

defined by

σ♯∆Z
(1⊗ r) =

(
ι1 ⊗ 1∆Z

)
◦ σ♯Z(r)

σ♯∆Z
(t⊗ 1) =

((
1⊗ µ♯

)
◦
(
β♯ ⊗ 1

)
◦ s♯ ◦ µ♯(t)

)
⊗ 1R.

Here r ∈ R, t ∈ k[G] and ι1 : k [G] → k [G] ⊗k k [G] is the natural inclusion into the first
component;

• β♯ : k [G] → k [G] is the co-inverse,
• µ♯ : k [G] → k [G]⊗ k [G] is the group co-multiplication, and
• s♯ : k [G]⊗ k [G] → k [G]⊗ k [G] switches the factors in the tensor product.

Moreover, the map πZ ×k σZ : G×k Z → Z ×k Z is equivariant with respect to this G×k G
action.

Proof. The proof is a straight-forward diagram chase and is left to the reader. �

Then, by using the (G×k G)-equivariant morphism

πZ ×k σZ : Z ×k G→ Z ×k Z,

we get a (G ×k G)-equivariant sheaf of modules over Z ×k Z associated to ∆Z , which we
denote

∆̃Z := (πZ ×k σZ)∗O∆Z
,

where O∆Z
denotes the structure sheaf of the affine scheme ∆Z .

We view ∆̃Z as an object of Db(QcohG×kGZ ×k Z), and claim that it is Fourier-Mukai
kernel for the identity functor on the bounded G-equivariant derived category Db(QcohGZ).

Lemma 3.2.3. Let Z = Spec(R) be before and M be an object of ModG(R). Then there is
a k[G]-co-module isomorphism

(
k[G] ⊗k M

)G
∼=M,

where k[G]⊗k M is given the left k[G]-co-action as a k[∆Z ]-module.
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Proof. Note that there is a natural morphism

M →
(
k[G]⊗k M

)G

given by the equivariant structure of M . Since the extension k/k is faithfully-flat, it suffices
to show that this map is an isomorphism over k. Assume that k = k.

By the Peter-Weyl Theorem, there is a decomposition k[G] =
⊕
Si ⊗ S∨

i , where Si runs
over every irreducible representation of G. Furthermore, since G is linearly reductive, we
have a decomposition M =

⊕
Mi into irreducible components. Thus, we have

(
k[G]⊗k M

)G
∼=

⊕
Si ⊗ (S∨

i ⊗Mi)
G ∼=

⊕
Si ⊗HomG

k (Si,Mi),

and our result follows from Schur’s Lemma. �

Lemma 3.2.4. The object

∆̃Z ∈ D
b(QcohG×kG(Z ×k Z))

is the Fourier-Mukai kernel of the identity functor on Db(QcohG Z).

Proof. For an R-module M , the integral transform associated to ∆̃Z is given by

Φ∆̃Z
(M̃ ) :=

[
Rπ2∗

(
∆̃Z ⊗L Lπ∗1M̃

)]G
,

where πi are the natural G-equivariant projections Z×kZ → Z (see [BFK14, Section 2] for
background). Our desired result is a consequence of the following calculation:

Φ∆̃Z
(M̃) =

[
Rπ2∗

[
((πZ ×k σZ)∗O∆Z

)⊗L
OZ×

k
Z
(Lπ∗1M̃ )

]]G

∼=
[
π2∗(πZ ×k σZ)∗

[
O∆Z

⊗O∆Z

(
(π ×k σZ)

∗π∗1M̃
)]]G

∼=
[
σZ∗π

∗
ZM̃

]G

∼=
[
O∆Z

⊗OZ
M̃

]G

∼=
[
(OG ⊗k OZ)⊗OZ

M̃
]G

∼=
[
OG ⊗k M̃

]G

∼= M̃,

where the first isomorphism follows from the projection formula, and the last follows from
Lemma 3.2.3. Furthermore, on the second isomorphism we may forego the process of
deriving these functors as they are either exact or remain an adapted class (as discussed
above). As each of the above isomorphisms is induced by a natural transformation of
functors, the above sequence yields a natural isomorphism between Φ

∆̃Z
and the identity

functor. �

We now define the natural generalization of the object Q from [BDF17, Defn 2.1.6].
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Definition 3.2.5. Given the scheme Z = Spec(R) as before, define

QZ :=
(
π♯Y (R), σ

♯
Y (R), C

)
⊆ k [G×k Z] .

that is the k-subalgebra of k[G × Z] generated by the images of σ♯Z , π
♯
Z and the image of

the inclusion k[End(V )] →֒ k[G ×k Z]. For ease of notation we denote QZ := Spec(QZ).

Remark 3.2.6. Similar to the functor Q in [BDF17, Def 2.1.6] our definition provides a
partial compactification of the action of G on Z. For ease of reference we recall the definition
of a partial compactification next.

Definition 3.2.7. Let G be an algebraic group and Z a k-scheme with G-action. Also, let
Z̃ be a k-scheme together an action of G×kG which is equipped with a (G×kG)-equivariant
open immersion

i : G×k Z →֒ Z̃,

as well as a (G×k G)-equivariant morphism

(p, s) : Z̃ → Z ×k Z

such that the following diagram commutes

Z̃

G×k Z Z

p s
i

π

σ

where σ is the action of G on Z and π is the projection to Z. In this case, we refer to Z̃,
with the maps p, s, i, as a partial compactification of the action of G on Z.

Example 3.2.8. In the case that dimV = 1, G = Gm, and the definition of Q given here
recovers that found in [BDF17].

Lemma 3.2.9. There are morphisms

QZ Z.
p

s

which compose with the open immersion ∆Z → QZ to give the morphisms πZ and σZ.

Proof. By definition, the maps π♯Z and σ♯Z both have images which lie in QZ . �

Lemma 3.2.10. We have an isomorphism

(3.2) QZ
∼= k

[
AL, BL, AR, BR, C

]
/
(
BL −BRC,AR − CAL

)
∼= k[AL, BR, C].

Proof. We provide the reader with an easily verifiable isomorphism defined on the generators
by

cij 7→ cij , π♯Z(aij) 7→ aLij , π♯Z(bij) 7→ bLij,

σ♯Z(aij) 7→ aRij, σ♯Z(bij) 7→ bRij . �

Remark 3.2.11. It follows from Equation (3.2) that QZ is isomorphic to the closed sub-
variety of (Z ×k Z)×k End(V ), consisting of the following points

{(ψ1, ψ2, ψ3, ψ4, ϕ)|ψ1 = ψ3 ◦ ϕ, ψ4 = ϕ ◦ ψ2}
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Lemma 3.2.12. The scheme QZ admits a (G×kG)-action, denoted σQZ
, which is uniquely

defined by the co-action

σ♯QZ
: k[AL, BR, C] → k[DL, (detDL)−1]⊗ k[DR, (detDR)−1]⊗ k[AL, BR, C],

which maps the generators

bRij 7→
(
det(DR)

)−1
n∑

r=1

Adj(DR)rj ⊗k b
R
ir,

aLij 7→

n∑

r=1

dLir ⊗k a
L
rj ,

cij 7→
(
det(DL)

)−1
n∑

r=1

Adj(DL)sj ⊗k d
R
ir ⊗k crs,

where Adj(D) is the adjugate of the matrix D.

Proof. To check commutativity of the appropriate diagrams, we can pass to k[G×Z]. Since
(QZ)detC = k[G × Z] and detC is a non-zero-divisor, base change is flat. For k[G × Z],
we are describing, in coordinates, the co-action corresponding to the previously specified
G×G action on ∆Z . �

The next lemma gives explicit descriptions of the two module structures that QZ pos-
sesses.

Lemma 3.2.13. For Z = Spec(k[A,B]) , we have the following two k[A,B]-module struc-
tures on QZ given by p♯ and s♯, respectively:

p♯ : k[A,B] → k[AL, BR, C]

B 7→ BRC

A 7→ AL

s♯ : k[A,B] → k[AL, BR, C]

B 7→ BR

A 7→ CAL

Proof. These are just the maps induced by the description of QZ from Lemma 3.2.10 under
the identification

QZ = k[AL, BR, C]. �

Remark 3.2.14. We could define Q and ∆ as functors from affine varieties with a G-
action to affine schemes over k[End(V )] with a G×G-action, thereby generalizing the work
of [BDF17]. However, as our focus in this paper is the case of Grassmann flops as considered
by [DS14], we do not consider these generalizations.

Now, we prove some properties of Q that will be used in Section 3.4 to prove the fullness
of a Fourier-Mukai transform constructed using Q.

Lemma 3.2.15. For an object Z = Spec(R) as before, we have

Tori(pQZ , sQZ) = 0
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for all i > 0, where the subscripts preceding QZ denote the R-module structures given by p♯

or s♯, respectively.

Proof. Let R := k[A,B] as in Equation (3.1). By Lemma 3.2.13, we have

pQZ
∼= k[A,B,B′, C]

/(
B −B′C

)

sQZ
∼= k[A,B,A′, C]

/(
A− CA′

)

Let us compute QZ s⊗
L
p QZ using the above expressions:

QZ s⊗
L
p QZ = k[A,B,A′, C]

/(
A− CA′

)
⊗L

k[A,B] k[A,B,B
′, C]

/(
B −B′C

)

∼= k[A,B,A′, C]
/(
A− CA′

)
⊗k[A,B] Kk[A,B,B′,C](B −B′C)

∼= Kk[A,B,A′,B′,C1,C2]/(A−C2A′) (B −B′C1)

∼= Kk[B,A′,B′,C1,C2](B −B′C1),

where we resolved the regular sequence (B −B′C) by the Koszul complex, denoted by K,
on the second line.

Finally, we see that the sequence (B−B′C1) is still regular in the ring k[B,A′, B′, C1, C2]
and hence all the higher homologies vanish. �

Notation 3.2.16. We denote by

Q̂Z := (p ×k s)∗OQZ
.

the sheaf of modules over Z associated to QZ . We will use the same notation in the derived
setting (see Section 3.3, particularly Remark 3.3.4). Furthermore, as ∆Z is an open subset
of QZ we will denote the natural open immersion as

η : G×k Z → QZ .

It will be useful to consider the following open covers of the quasi-affine sets U+ and U−

defined before. Let

U+ =
⋃

J⊆[m], |J |=d

U+
J ,(3.3)

U− =
⋃

I⊆[m′], |I|=d

U−
I ,(3.4)

where

U+
I := Spec

(
k

[
A,B,

(
det(A[d],I

)−1
])

U−
J := Spec

(
k

[
A,B,

(
det(BJ,[d]

)−1
])

and (for example) det
(
A[d],I

)
denotes the (d× d) minor of A consisting of the rows indexed

by I. Therefore, we have the following affine open covers:

(3.5) U+ ×Z//0 U
− =

⋃

I⊆[m], J⊆[m′], |I|=|J |=d

U+
I ×Z//0 U

−
J ,

(3.6) U+ ×k U
− =

⋃

I⊆[m], J⊂[m′], |I|=|J |=d

U+
I ×k U

−
J ,



KERNELS FOR GRASSMANN FLOPS 11

where Z//0 := Spec(k[A,B]GL(V )) denotes the invariant theoretic quotient of Z.

Lemma 3.2.17. There is an isomorphism

k
[
Z ×Z//0 Z

]
∼= k

[
AL, BL, AR, BR

]
/
(
BLAL −BRAR

)
,

where the generators and relations are as in Definition 3.2.5.

Proof. From Weyl’s fundamental theorems for the action of G (for example see [KP96,
Chapter 2.1] or the original text [Wey46]) we have

Z//0 = {D ∈ Homk(W,W ) | rankD ≤ dimV }.

The map Z → Z//0 is thus given by the homomorphism

k[Z//0] → k[A,B]

D 7→ BA.

Hence,

k
[
Z ×Z//0 Z

]
= k[AL, BL]⊗k[Z//0] k[A

R, BR] ∼= k[AL, BL, AR, BR]/(BLAL −BRAR). �

Lemma 3.2.18. There exists a morphism

κ := p# ⊗ s# : k[AL, BL]⊗k[Z//0] k[A
R, BR] → QZ .

Proof. This follows since p# and s# are equal on k[Z//0], by definition. �

Lemma 3.2.19. With the conventions above we have the following containment of ideals
in the ring k[AL, BL, AR, BR, C]:

(
BLAL −BRAR

)
⊂

(
BL −BRC,AR − CAL

)
.

Proof. This follows from

(BL −BRC)AL +BR(CAL −AR) = BLAL −BRAR. �

Proposition 3.2.20. Let Z = Spec(k[A,B]) as usual and QZ as in Equation (3.2). Let

Q̂Z |U+×kU− be the restriction of Q̂Z to the open subset U+ ×k U
− ⊂ Z ×k Z. Then κ

restricts to an isomorphism

κ|U+×kU− : Q̂Z

∣∣∣
U+×kU−

∼
−→ OU+×Z//0U− .

Proof. We look affine-locally using the covers of Equations 3.5 and 3.6. We need only show
that under the above localization the map κ : k[Z ×Z//0 Z] → QZ becomes an isomorphism.
For surjectivity, it suffices to show that there is an element (we find two such) which map
to C. Indeed, we have

(
(BR)J [d]

)−1
BL 7→ C

AR
(
(AL)[d]I

)−1
7→ C,

easily verified by the relations BL −BRC and AR −CAL in Q(k[A,B]) given in Definition
3.2.5.

For injectivity, it suffices to check that under this localization we have the containment
(
BL −BRC,AR −CAL

)
⊂

(
BLAL −BRAR

)
,
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since the opposite containment is Lemma 3.2.20. To see this, simply note that by multiplying
by the appropriate elements in the above identification, we have

(BL)J [d] = (BR)J [d]C and (AR)[d]I = C(AL)[d]I .

Hence, multiplying by the appropriate units in our localization, we have
(
BL −BRC,AR − CAL

)
=

(
(BR)J [d]

(
AR − CAL

)
,
(
BL −BRC

)
(AL)[d]I

)
.

For example, by Equation (3.2), we have

(BR)J [d]
(
AR − CAL

)
=

(
(BR)J [d]A

R − (BL)J [d]A
L
)
∈
(
BLAL −BRAR

)
,

while the other relation follows similarly. This gives our desired isomorphism. �

Consider the restriction Q|U+×U− . By descent, we have a corresponding object P on the
quotient Z+ × Z−.

Theorem 3.2.21. We have an isomorphism

P ∼= OZ+×Z0
Z−

Proof. This follows immediately by passing to the quotient in Proposition 3.2.20. �

We now examine a useful invariant when studying kernels in the next subsection. Note
that for Z, the tensor product QZ s⊗p QZ is equipped with a natural G×4-action. This
induces a G×3-action, which we denote

σ3 : G
×3 ×k Q×2

Z → Q×2
Z

and is defined as the product of the following compositions

G×3 ×k Q×2
Z

G×2 ×k QZ G×2 ×k QZ

QZ QZ

π1,2,4 π2,3,5

σQZ
σQZ

Here πi,j,k : G×3×kQ
×2
Z → G×2×kQZ is the projection onto the ith, jth and kth components.

For any ring T with G×3-action, we will denote the invariant subring associated to the action
corresponding to the middle component of G×3 by T ⊲⊳. The notation (−)⊲⊳ is suggestive
of pinching a module in the middle. Since taking invariants is functorial for equivariant
morphisms, we obtain the following:

Lemma 3.2.22. The following diagram commutes

(QZ p⊗σ ∆Z)
⊲⊳

(QZ p⊗s QZ)
⊲⊳ QZ

(∆Z π⊗s QZ)
⊲⊳

∼(1⊗η)⊲⊳

(η⊗1)⊲⊳
∼
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Furthermore, the morphism ρZ : (QZ p⊗s QZ)
⊲⊳ → QZ is an isomorphism.

Proof. First recall that we have a presentation from Lemma 3.2.13 of sQZ and pQZ , which
for ease of calculation we set the following simplified notation, with the hope that no
confusion arises:

pQZ
∼= k[A,BL, BR, C]/

(
BL −BRC

)
∼= k[A,BR, C]

:= k[A,B,C]

sQZ
∼= k[AL, AR, B,C]/

(
AR − CAL

)
∼= k[AL, B,C]

:= k[A,B,C]

Further we recall the notational preference that for k-algebras R,S and r ∈ R, s ∈ S that
the following pure tensors will be denoted: r ⊗ 1 := rL and 1 ⊗ s := sR. With these
conventions we have the following presentations of rings:

QZ p⊗s QZ
∼= k[AL, AR, BL, BR, CL, CR]

/(
BLCL −BR, AL − CRAR

)

∼= k[AR, BL, CL, CR]

k[∆Z ] π⊗s QZ
∼= k[AL, AR, BL, BR, CL, CR,det(CL)−1]

/(
BL −BR, AL − CRAR

)

∼= k[AR, BL, CL, CR,det(CL)−1]

QZ p⊗σ k[∆Z ] ∼= k[AL, AR, BL, BR, CL, CR,det(CR)−1]
/(

BL −BR
(
CR

)−1
, AL − CRAR

)

∼= k[AR, BL, CL, CR,det(CR)−1]

Hence, commutativity of the above diagram is clear. Furthermore, one verifies that we have
an isomorphism k[∆Z ] π⊗s QZ

∼= QZ p⊗σ k[∆Z ], and thus

(k[∆Z ] π⊗s QZ)
⊲⊳ ∼= (QZ p⊗σ k[∆Z ])

⊲⊳ .

It is clear that the maps on the right-hand side of the diagram are isomorphisms since k[∆Z ]
is the kernel of the identity by Lemma 3.2.4. We claim that

(QZ p⊗s QZ)
⊲⊳ = k[AR, BL, CL · CR]

(QZ p⊗σ k[∆Z ])
⊲⊳ = k[AR, BL, CL · CR]

from which it follows that these rings are isomorphic. This claim is simply Weyl’s Theorem
for the invariants of k[V ⊗ V ∨]. �

3.3. The integral kernel. We now use Q to construct Fourier-Mukai kernels. We begin
by recalling the following from [BDF17, Definition 3.1.4].

Definition 3.3.1. Let Z̃ be a partial compactification of an action σ : G×k Z → Z, with

maps p, s, and i as above. We define the boundary of Z̃ to be

∂s
Z̃
:= Z̃ \ i (G×k Z) ,

the s-unstable locus to be
Zus
s := s

(
∂Z̃

)
,

and the s-semistable locus to be
Zss
s := Z \ Zus.

One similarly defines the p-unstable and p-semistable loci.
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Remark 3.3.2. It follows from [BDF17, Example 3.1.10] that the s-semistable locus Zss
s

coincides with U+ from Equation (3.3). Similarly, the p-semistable locus Zss
p coincides with

U− from Equation (3.4).

Definition 3.3.3. For an object Z as before, we let

Q̂Z := (p× s)∗OQZ
∈ D

b
(
QcohG×kG Z ×k Z

)
,

where the pushforward is understood to be derived. We denote by Q̂+
Z the quasi-coherent

sheaf on Zss
s ×k Z realized by restricting Q̂Z from Z ×k Z. That is,

Q̂+
Z = (j × 1Z)

∗Q̂Z ,

where j : Zss
s → Z is the inclusion. Finally, taking Q̂+

Z as the Fourier-Mukai kernel, we have
the functor

(3.7) ΦQ̂+
Z
: Db

(
QcohG Zss

s

)
→ D

b
(
QcohG Z

)
.

Remark 3.3.4. Since the functor (p × s)∗ is exact, Q̂Z is just the G-linearized sheaf
associated to QZ with its (p, s)-bimodule structure given in Lemma 3.2.2. This justifies our

use of Q̂Z in Notation 3.2.16.

Lemma 3.3.5. The functor Φ
Q̂+

Z
is faithful.

Proof. Our proof follows from the fact that the functor

i∗ : Db(QcohG(Z
ss
s )) → D

b(QcohG(Z))

is the left inverse of ΦQ̂+
Z
. To see this, note that for any maximal minor m of B, we have

Rm⊗sQZ
∼= k[G]⊗kR = k[∆Z ]. Indeed, inverting a minor on the left amounts to inverting

the determinant of C. Since ∆Z is the kernel of the identity, we obtain the desired result. �

The fullness of this functor depends on certain localization properties, which are the focus
of the next section.

3.4. Bousfield localizations. This section recalls Bousfield (co)-localizations which will
be used to establish fullness of the functor Φ

Q̂+ from Equation (3.7). We recall that the

existence of a Bousfield triangle produces a semi-orthogonal decomposition, and we show
that the essential image of our functor is an inclusion into one of these pieces. We refer the
reader to [Kra10] for a more detailed treatment of these concepts. While the proofs of the
statements refer to [BDF17] we recall all of the statements here for ease of reference.

Definition 3.4.1. Let T be a triangulated category. A Bousfield localization is an exact
endofunctor L : T → T equipped with a natural transformation δ : 1T → L such that:

a) Lδ = δL and
b) Lδ : L→ L2 is invertible.

A Bousfield co-localization is given by an endofunctor C : T → T equipped with a natural
transformation ǫ : C → 1T such that:

a) Cǫ = ǫC and
b) Cǫ : C2 → C is invertible.
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Definition 3.4.2. Assume there are natural transformations of endofunctors

C
ǫ
→ 1T

δ
→ L

of a triangulated category T such that

Cx
ǫCx−→ x

δx−→ Lx

is an exact triangle for any object x of T . Then we refer to C → 1T → L as a Bousfield
triangle for T when any of the following equivalent conditions are satisfied:

1) L is a Bousfield localization and C(ǫx) = ǫCx

2) C is a Bousfield co-localization and L(δx) = δLx

3) L is a Bousfield localization and C is a Bousfield co-localization.

For a proof that the above properties are indeed equivalent, we refer the reader to [BDF17,
Definition 3.33]. Denoting S := k[∆Z ]/QZ , we have morphisms

QZ
η♯
→ k[∆Z ] → S → QZ [1]

in Db(ModG k[Z]), where η♯ is the morphism induced by η as in Equation 3.2.16. This yields
an exact triangle. Furthermore, if we let η̂ : ΦQ̂Z

→ 1 denote the morphism induced by η♯,

we see that for any x in Db(QcohG Z) the following is also exact:

ΦQ̂Z
(x) → x→ ΦS̃(x)

With these observations in mind, we present one of the main results of this section.

Proposition 3.4.3. The triangle of functors

Φ
Q̂Z

η̂
→ 1 → Φ

S̃
.

is a Bousfield triangle.

Proof. This follows identically as in [BDF17, Lemma 3.3.6], by Lemma 3.2.15 and Lemma
3.2.22. �

We are now ready to prove that Φ
Q̂+ is full. Let J+ := j∗ ◦ j

∗, where j : Zss
s → Z is the

natural inclusion, and let Γ+ be the local cohomology.

Proposition 3.4.4. There is a semi-orthogonal decomposition

D(QcohG Z) = 〈ImΦ
S̃
, ImΦ

Q̂+, ImΦQ ◦ Γ+〉,

where Im denotes the essential image. Furthermore, ΦQ̂+ is fully-faithful.

Proof. This follows identically to the proof of Proposition 3.3.9 in [BDF17] �

Letting j′ : Zss
p → Z be the inclusion and Γ+ its local cohomology, we have the following

dual statement.

Proposition 3.4.5. There is a semi-orthogonal decomposition

D(QcohG Z) = 〈ImΦS̃ , ImΦQ̂−, ImΦQ ◦ Γ−〉,

where Im denotes the essential image. Furthermore, Φ
Q̂− is fully-faithful.
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4. A geometric resolution

For this section, we will denote Z as the scheme

Hom(V,W )⊕Hom(W ′, V ).

Having established that ΦQ̂+ is fully faithful, the remaining objective of this work is to

examine the essential image of the functor Φ
Q̂+. We will show that this image is generated

by an exceptional collection first discovered by Kapranov in [Kap88]. The method which
we use is based on the underlying techniques of the well known ‘geometric technique’ of
Kempf (see e.g. [Wey03]).

4.1. A sketch of Kempf. The objective of the method of Kempf is to provide a free
resolution of special modules by pulling back to a trivial geometric bundle over a projective
variety.

Consider an algebraic variety Y . The total space of the sheaf O⊕n
Y is the scheme Y ×An.

Now let X be the total space of a locally free sheaf F ⊂ O⊕n
Y on Y . Let π denote the

projection Y × An → Y .
We have the exact sequence of locally free sheaves on Y × An

0 π∗F π∗O⊕n
Y π∗T 0,

f

where T is the quotient sheaf.
Consider the section s := f ◦ taut : OY×An → π∗T , where taut denotes the tautological

section of π∗O⊕n
Y on Y × An. Then, we have the following statement.

Proposition 4.1.1. With the above notation, a locally free resolution of the sheaf OX as a
OY×An-module is given by the Koszul complex

K (s)• : 0 →
∧rnk(T ) (

π∗T ∨
)
→ . . .→

∧2 (
π∗T ∨

)
→ π∗T ∨ → OY×An

Proof. On the vanishing locus Z(s), the tautological section taut factors through π∗F .
Hence, the vanishing locus is the total space of the sheaf F , which is X. We see that the
section is regular as the codimension of Z(s) equals the rank of the sheaf π∗T ; and the
Koszul complex resolves OX . For more details, see [Wey03, Proposition 3.3.2]. �

4.2. The resolution. Now we are ready to present a resolution which will open a window
to view Im(ΦQ̂+). First recall that we set dim(V ) := d. We define Q+

Z as the base change:

Q+
Z QZ

Zss
s × Z Z × Z

p×s

Let S be the tautological bundle on Gr(d,W ) i.e. the locally free sheaf on Gr(d,W ) =
[Hom(V,W )sss /G

L] corresponding to the GL-representation V . Then, we have the Euler
sequence for the Grassmannian Gr(d,W ):

0 → S →W → Q → 0.

Consider the pullback of the above sequence to Gr(d,W ) × Hom(W ′, V ) along q and ap-
ply H om(t∗V,−), where q : Gr(d,W ) × Hom(W ′, V ) → Gr(d,W ) and t : Gr(d,W ) ×
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Hom(W ′, V ) → Hom(W ′, V ) are projections

(4.1) 0 → H om(t∗V, q∗S)
ρ
−→ H om(t∗V, q∗W )

Ξ
−→ H om(t∗V, q∗Q) → 0.

Let us denote T := H om(t∗V, q∗Q). We denote the total space of the locally free sheaf
H om(A,B) as Hom(A,B). From the discussion in the previous subsection, we get the
following result:

Lemma 4.2.1. The following Koszul complex is a free resolution for OHom(t∗V,q∗S) as an
OGr(d,W )×Z-module.

(4.2) K (s)• :

d(m−d)∧
π∗T ∨ → . . . →

2∧
π∗T ∨ → π∗T ∨ → OGr(d,W )×Z

where π : Gr(d,W )×Hom(V,W )×Hom(W ′, V ) → Gr(d,W )×Hom(W ′, V ) is the projection
morphism.

Proof. We choose Y = Gr(d,W ) × Hom(W ′, V ), and F = H om(t∗V, q∗S), and apply
Proposition 4.1.1. Notice that the total space of H om(t∗V, q∗W ) on Gr(d,W )×Hom(W ′, V )
is Gr(d,W )× Z. �

Now, we can identify [Q+
Z/G

L] as the total space Hom(t∗V, q∗S).

Lemma 4.2.2. The quotient space [Q+
Z/G

L] is GR-equivariantly isomorphic to the total
space Hom(t∗V, q∗S) as schemes over Gr(d,W )×Hom(W ′, V ).

Proof. Recall from Equation (3.2), that QZ is associated to the module

k[AL, BR, C]

Geometrically, we may view QZ as the total space of the locally free sheaf End(V ) over
Speck[AL, BR]. Once we base change to the semistable locus and take the quotient with
respect to the GL action, we get that [Q+

Z/GL(V )L] is isomorphic to the total space

Hom(t∗V, q∗S) → Gr(d,W )×Hom(W ′, V ).

Moreover, the inclusion, H om(t∗V, q∗S) → H om(t∗V, q∗W ) realizes it as a subspace of
the total space Hom(t∗V, q∗W ) over Gr(d,W )×Hom(W ′, V ) which is Z ×Gr(d,W ).

This inclusion H om(t∗V, q∗S) → H om(t∗V, q∗W ) is induced by the ring homomorphisn

k[AL, AR, BR] → k[AL, BR, C]

AL 7→ AL

AR 7→ CAL

BR 7→ BR.

which is equivariant with respect to the remaining GR-action. �

We denote π1 : [Zss
s /G

L] → [Hom(V,W )sss /G
L] as the projection. Putting Lemma 4.2.1

and Lemma 4.2.2 together, we get a resolution of the sheaf (π1 × IdZ)∗Q̂
+
Z .

Corollary 4.2.3. The Koszul complex (4.2) is a locally free resolution of the sheaf (π1 ×

IdZ)∗Q̂
+
Z of OGr(d,W )×Z-modules.
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Remark 4.2.4. We note that we could also have constructed a locally free resolution of

Q̂+
Z on Zss

s × Z by the same method, and this will also lead to a similar proof as in the
remainder of this paper.

5. Analyzing the integral transform

In this section, we show that the kernel Q̂+
Z induces a derived equivalence for a Grassmann

flop. We begin by showing that the essential image of this functor coincides with the
‘window’ description studied by Donovan and Segal in [DS14, Section 3.1]. Specifically, we
will show that the image of Φ

Q̂+
Z
is generated by a collection of vector bundles corresponding

to representations identified by Kapranov [Kap88].
Let us recall Kapranov’s collection. Consider the standard G representation V , where

GL(V ) acts by left multiplication. Consider the Schur modules of V associated to a Young
diagram (or equivalently, partition) α, and denote them by LαV . Kapranov’s collection is
defined by

--K--d,m :=
{
LαV

∣∣∣ α ∈ Young diagrams of height ≤ m− d and width ≤ d
}
.

We also consider pull backs of these representations to Gr(d,W ) along the structure
morphism. As V pulls back to the tautological bundle S, the Schur functors LαV pull back
to LαS and these are the locally free sheaves considered by Kapranov. By abuse of notation,
we will consider --K--d,m as a collection of locally free sheaves on Hom(V,W ) ⊕ Hom(W ′, V )
or Hom(W ′, V ) (again, by pulling back along the structure morphism). Note that when
k = C, this is exactly the dual of the zeroth window W0 from [DS14, Section 3.1].

It is the objective of this section to show that the thick triangulated subcategory gener-

ated by elements of --K--d,m is equivalent to Im
(
ΦQ̂+

Z

)
. We show one containment in Propo-

sition 5.1.1, which relies on the work of Section 4.

5.1. Windows from a resolution. Consider the projection π1 : Zss
s → Hom(V,W )sss .

To demonstrate that the image of ΦQ̂+
Z

is contained in 〈--K--d,m〉, we exhibit a particular

GL(V )L × GL(V )R-equivariant resolution K• of (IdZ ×π1)∗Q̂
+
Z over Hom(V,W )sss × Z i.e.

we resolve the kernel of the functor ΦQ̂+
Z
◦ π∗1. Equivalently, this is a GL(V )R-equivariant

resolution of (IdZ ×π1)∗Q̂
+
Z over Gr(d,W )×Z. The resolution obtained in equation (4.2.1)

in Section 4.2 is the one we are looking for.
In this subsection, we will show that the components Ki of the resolution have a filtration

whose associated graded pieces are of the form J ⊠K with K ∈ --K--d,m. This decomposition
of the Fourier-Mukai transform ΦQ̂+

Z
◦ π∗1 yields a functorial way to describe ΦQ̂+

Z
◦ π∗1(M)

using objects of --K--d,m for all objects π∗1(M) ∈ Db([Zss
s /GL(V )]). As such objects generate

Db([Zss
s /GL(V )]) this is enough to conclude the goal of this section, Im

(
Φ
Q̂+

Z

)
⊆ 〈--K--d,m〉.

Proposition 5.1.1. With notation as above, we have

Im
(
ΦQ̂+

Z

)
⊆ 〈--K--d,m〉,

where 〈--K--d,m〉 is the thick triangulated subcategory generated by elements in --K--d,m.
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Proof. By Corollary 4.2.3, we have a quasi-isomorphism with the Koszul complex

K•
∼= (IdZ ×π1)∗Q̂

+
Z

The components of the Koszul complex are
∧l π∗H om(t∗V, q∗Q)∨ for 0 ≤ l ≤ d. We

can appeal to the Cauchy Formula, e.g. [Wey03, Theorem 2.3.2(a)], to get a filtration on∧i t∗π∗H om(t∗V, q∗Q)∨ whose associated graded pieces are

π∗


⊕

|λ|=i

LλV ⊠ Lλ′Q∨


 .

Thus, each term in the Koszul complex can be generated using iterated exact sequences
from the locally free sheaves

π∗
(
LλV ⊠ Lλ′Q∨

)
.

These components, in turn, generate Q̂+
Z . Hence, for all M , ΦQ̂+

Z
(π∗1M) is generated by

objects of the form

Φπ∗(LλV ⊠LλQ∨)(π
∗
1M) = RΓ(M ⊗ LλQ

∨)⊗k LλV

all of which lie in --K--d,m. Now, since π1 is an affine map, Db([Zss/G]) is generated by the
essential image of π∗1 . The result follows. �

5.2. Truncation operator. In this section we will see that ΦQ̂+
Z
has a useful description

on G-representations. Yet before we go deeper into the representation theory we define a
truncation operator over our field k of characteristic zero.

Definition 5.2.1. Let M ∈ ModG(k[Hom(V,W )]), we define the truncation operator as
follows

M≥0 :=
(
M ⊗ k[End(V )]

)G

Recall, further that there is a G×k G-module decomposition

(5.1) k[End(V )] ∼=
⊕

N∨
i ⊗k Ni,

where we sum over all irreducible representations of G with all positive weights [Pro07],
these representations are also referred to as polynomial representations. Since G is linearly
reductive over a field of characteristic zero, we may decompose any G-module M as M ∼=⊕
Mi, where Mi is irreducible and we have the following description of the truncation

operator 5.2.1:

Remark 5.2.2. LetM ∈ ModG(k[Hom(V,W )]); then decomposeM over k into irreducibles
as

(5.2) M =
⊕

Mi irreducible

Mi.

Then the truncation operator may be described as follows

M≥0 =
⊕

Mi irreducible
and polynomial

Mi
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Lemma 5.2.3. For any M ∈ ModG(k[Hom(V,W )]), M≥0 is a k[Hom(V,W )]-submodule of
M and ( )≥0 is exact.

Proof. The exactness of the functor follows since G is linearly reductive and thus our opera-
tor is just a projection. ThatM≥0 is a k[Hom(V,W )]-submodule follows since k[Hom(V,W )]≥0 =
k[Hom(V,W )] since k[Hom(V,W )] is a polynomial representation. �

To deliver a cleaner picture we define some more notation Y ′ := Hom(V,W ). For the
remainder of this subsection we will exploit the commutativity of the following diagram.

U+
Z Hom(V,W )⊕Hom(W ′, V )

U+
Y ′ Hom(V,W )

j

q1|U+
Z

q1

i

Lemma 5.2.4. Let M ∈ ModG(k[Hom(V,W )]) then

ΦQY ′
(M) =M≥0

Proof. The coaction map defines a morphism

M≥0 → (k[End(V )]⊗M≥0)
G →֒ (k[End(V )]⊗M)G,

which we claim is an isomorphism. Notice that the coaction map lands in
k[End(V )] ⊂ k[G] as M≥0 is a polynomial representation. To check that this map is an

isomorphism, we may base change to k (which is faithfully flat over k). Hence, assume that
k = k.

Using Equation (5.1) and Remark 5.2.2, we get

(k[End(V )]⊗M)G ∼=
⊕

Nj ⊗ (N∨
j ⊗Mi)

G

∼=M≥0

where we are considering the left G invariant submodule and the second line follows from
Schur’s Lemma.

Finally, by Lemma 3.2.10 we have QY ′
∼= k[A]⊗ k[End(V )], and we get

(QY ′ ⊗M)G ∼= k[A]⊗ (k[End(V )]⊗M)G

∼=M≥0. �

Lemma 5.2.5. We have an isomorphism

(q1 × Id)∗ s(QZ)p
∼= (Id×q1)

∗
s(QY ′)p

as objects of ModG×G(Y ′ × Z).

Proof. This follows from the following calculation.

sQZ
∼= k[AL, BR, C]

∼= k[AR, BR]⊗k[A] k[A
L, C]

∼= Z ⊗k[Y ′] QY ′ ,

where the first isomorphism follows from Lemma 3.2.13 and in the second line, k[A] acts on
the left by going to AR and on the right by going CAL. �
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Corollary 5.2.6. Let M ∈ ModG(k[Y ′]), then

ΦQZ
(q∗1M) ∼= q∗1ΦQY ′

(M)

Proof. This follows from Lemma 5.2.5 which says that it is true at the level of the Fourier-
Mukai kernels. �

Lemma 5.2.7. For LαV ∈ --K--d,m we have that

(Ri∗Li
∗LαV )≥0

∼= LαV

Proof. To see this we will denote the irreducible components as ( )β where β is the highest
weight corresponding to the isotypical piece, and by β ≥ 0 we denote weights correspond
to polynomial representations.

(Ri∗Li
∗LαV )≥0 =

⊕

β≥0

(Ri∗Li
∗LαV )β

∼=
⊕

β≥0

(Ri∗Li
∗LαV ⊗ LβV

∨)G

∼=
⊕

β≥0

(Ri∗Li
∗(LαV ⊗ LβV

∨))G

∼=
⊕

β≥0

RΓ(Gr(d,W ), LαS ⊗ LβS
∨)

∼=
⊕

β≥0

Γ(Gr(d,W ), LαS ⊗ LβS
∨)(5.3)

∼=
⊕

β≥0

Γ(Hom(V,W ), LαV ⊗ LβV
∨)G(5.4)

∼=
⊕

β≥0

(Sym(Hom(W,V ))⊗ LαV ⊗ LβV
∨)G

∼= Sym(Hom(W,V ))⊗ LαV(5.5)
∼= OHom(V,W ) ⊗ LαV

Equation (5.3) follows from [Kap88, Lemma 3.2.a] (this uses the assumption that LαV ∈
--K--d,m and the fact that the weights of the irreducible summands of LαV ⊗ LβV

∨ are all
strictly larger than −(m−d).) Equation (5.4) follows as Gr(d,W ) has co-dimension greater
than 2 in the global quotient stack [Hom(V,W )/G]. Equation (5.5) follows from Schur’s
Lemma and the fact that all representations in Sym(Hom(W,V )) ⊗ LαV are polynomial
(this uses the fact that LαV is polynomial). �

Proposition 5.2.8. If LαV ∈ --K--d,m then

ΦQ+
Z
(LαV ) ∼= LαV

Proof. This result follows from another calculation,

ΦQ+
Z
(LαV ) ∼= ΦQ(Rj∗Lj

∗LαV )

∼= π∗ΦQY ′
(Ri∗Li

∗LαV )

∼= π∗
(
Ri∗Li

∗LαV
)
≥0
,
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where the second line follows from Corollary 5.2.6 and the last line by Lemma 5.2.4. Hence
our result follows from Lemma 5.2.7. �

Corollary 5.2.9. ImΦ
Q̂+

Z
= 〈--K--d,m〉.

Proof. This is an immediate consequence of Proposition 5.1.1 and Lemma 5.2.8. �

Note that we have a similar equality for Φ
Q̂− .

Corollary 5.2.10. ImΦ
Q̂−

Z
= 〈

(--K--d,m′

)∨
〉 = 〈--K--d,m′ ⊗ det(V ∗)m

′−d〉.

Proof. We can switch the roles of W and W ′ by taking transposes. This is anti-equivariant,
i.e., equivariant up to inversion in G. Consequently, we replace all representations with
their duals which gives the first equality. The second is a standard identity. �

5.3. The equivalence. Finally, we combine things to provide Fourier-Mukai equivalences
for (twisted) Grassmann flops. As usual, let k be an (arbitrary) field of characteristic zero.

We recall that P is the object obtained by the restriction of Q to Z+ × Z−.

Theorem 5.3.1. Assume dimW ′ ≥ dimW . The wall crossing functor

ΦP : Db(Z+) → D
b(Z−)

is fully-faithful. If dimW ′ = dimW , it is an equivalence.

Proof. Proposition 3.4.4 tells us that ΦQ̂+
Z

is fully-faithful. Thus, we reduce to checking

that j∗− is fully-faithful on the image of Φ
Q̂+

Z
. Also, from Proposition 3.4.5, we know that

j∗− is fully-faithful on the image of ΦQ̂−

Z
.

From Corollaries 5.2.9 and 5.2.10, we see that

ImΦ
Q̂+

Z
⊆ ImΦ

Q̂−

Z
⊗ det(V ∗)d−m′

.

Since restriction commutes with tensoring with a line bundle, if j∗− is fully-faithful on a
full subcategory C then it is also on C ⊗ L for any line bundle L. Now Corollaries 5.2.9
and 5.2.10 show j∗− must be fully-faithful on the image of Φ

Q̂+
Z
. The containment becomes

an equality in the case dimW ′ = dimW . �

Remark 5.3.2. In Section 5.4, we use the fully-faithful wall-crossing functors (when, say
dimW ′ > dimW ) in order to construct semi-orthogonal decompositions for Db(Z−).

Remark 5.3.3. If k = k, once one knows that

ImΦQ̂+
Z
= 〈--K--d,m〉

one can conclude Theorem 5.3.1 using [DS14, Proposition 3.6]. But, the technology pre-
sented here makes for a simple direct proof.

Remark 5.3.4. In general, if we have two smooth projective varieties X and Y over k,
then the existence of an equivalence

D
b(X

k
) ∼= D

b(Y
k
)

does not guarantee the existence of an equivalence

D
b(X) ∼= D

b(Y ).
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A simple class of counter-examples is Severi-Brauer varieties.
One needs, at least, a kernel over k which base changes to furnish the equivalence to

appeal to [Orl02, Lemma 2.12]. Without providing a kernel for general k for the equivalence
in [DS14], the results in loc.cit. cannot be used to deduce equivalences over arbitrary fields
of characteristic zero.

One can go even further. We give the following definition.

Definition 5.3.5. We say

Y + Y −

Y0

is a twisted Grassmann flop if the base change to the separable closure of k

Y +
ksep Y −

ksep

(Y0)ksep

is isomorphic to a Grassmann flop.

Example 5.3.6. Let A be a central simple k-algebra of degree n. For 0 < l < n, the l-th
generalized Severi-Brauer variety SBl(A) of A is the variety parameterizing right ideals of
dimension ln in A. Such a variety is a twisted form of Gr(l, n), ie

SBl(A)ksep ∼= Gr(l, n)ksep .

On SBl(A), the tautological vector bundle T , whose fibers are the ideals, base changes to
Hom(W,S). Let T denote the associate geometric vector bundle. The map

SBl(A) → SpecΓ(T,OT )

contracts the zero section and base changes to Z+ → Z0. One can then take two copies of
SpecΓ(T,OT ) and identify them with the involution that base changes to transposition the
linear maps. The resulting diagram is a(n honestly) twisted Grassmann flop.

We also have equivalences for twisted Grassmann flops in characteristic zero.

Corollary 5.3.7. Assume char k = 0. If we have a twisted Grassmann flop, then there is
an equivalence

D
b(Y +) → D

b(Y −).

Proof. Theorem 3.2.21 says that the structure sheaf of the fiber product Y +
ksep ×(Y0)ksep Y

−
ksep

is a Fourier-Mukai kernel. Applying [Orl02, Lemma 2.12] shows that the Y +×Y0
Y − is also

a Fourier-Mukai kernel. �
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5.4. Semi-orthogonal decompositions. In this section, we identify the orthogonal to
the image of the wall-crossing functor studied in the previous section. We will assume
throughout this section that dimW = m is strictly greater than dimW ′ = m′, and thus
obtain a semi-orthogonal decomposition for Db(Z+). (Of course, one can study the case
where m′ is strictly greater than m using very similar methods.)

Firstly we need to introduce some relevant notation. Consider a vector space H of
dimension d− 1. Then we have the following morphism

S :=
[
Hom(W ′,H)⊕Hom(H,V )/GL(H)×G

]
−→

[
Hom(W ′, V )/G

]
,

obtained by composition and then forgetting the GL(H)-action. We consider the open

substack S̃ ⊂ S where we restrict to injective maps Hom(H,V )inj ⊂ Hom(H,V ), and

denote the map from S̃ to [Hom(W ′, V )/G] as

h̃ : S̃ →
[
Hom(W ′, V )/G

]
.

By base changing from Hom(W ′, V ) to Z, we get the morphism

h : S → [Z/G] ,

where

S :=
[
Hom(V,W )⊕Hom(W ′,H)⊕Hom(H,V )inj/GL(H)×G

]
.

Remark 5.4.1. Note that the fiber of the map h̃ (similarly, h) at a point t in [Hom(W ′, V )/G]
is empty unless t is a map that is not of full-rank, i.e., not surjective. The non-trivial
fibers are the quotients [Hom(H, coker t)ss/GL(H)], where the semi-stable locus is the
set of maps of rank d − dim(Im t) − 1. We may identify this with the projective space
P∨(coker t) ∼=

[
Hom(coker t,k)surj/Gm

]
.

Now, we define certain subcategories of D(QCohG(Z)), which we will later identify as
orthogonals to our window subcategories.

Definition 5.4.2. We define the subcategory Od,s, where d < m′ ≤ s, of D(QCohG(Z))
inductively on s.

• For m′ ≤ j ≤ s, define USd,j as the one generated by the objects (h∗ (LλH
∨))∨,

USd,j :=
〈(
h∗

(
LλH

∨
))∨〉

,

where λ runs over the set of Young diagrams of height j + 1− d and width d− 1
• Let Od,m′ = USd,m′ . Then for j ≥ m′, defineOd,j+1 as the smallest thick triangulated
subcategory generated by the objects Od,j ⊗ detV and USd,j .

Remark 5.4.3. The category Od,s is the smallest thick triangulated subcategory generated
by the objects USd,i ⊗ detV s−i for m′ ≤ i ≤ s.

The semi-orthogonal decomposition of Db(Z+) is given by the following theorem.

Theorem 5.4.4. Let d ≤ m′ ≤ s. There is a semi-orthogonal decomposition
--K--d,s+1 = 〈Od,s,

--K--d,m′〉

which induces a semi-orthogonal decomposition

D
b(Z+) = 〈Od,m−1,D

b(Z−)〉
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Proof. By Corollary 5.2.10 and Proposition 3.4.4, --K--d,m′ is admissible. Hence, it suffices to
check generation and orthogonality.

Lemma 5.4.9 shows that --K--d,j+1 is generated by the categories --K--d,j and Od,j . By induc-

tion, we see that --K--d,s is generated by Od,s,Od,s−1, · · · ,Od,m′ and --K--d,m′ . However, notice

that Od,s ⊃ Od,s−1 ⊃ · · · ⊃ Od,m′ from Definition 5.4.2, and hence we see that --K--d,s+1 is

generated by Od,s and --K--d,m′ . The orthogonality of Od,s and --K--d,m′ is the statement of
Lemma 5.4.10.

In order to get the semi-orthogonal decomposition of Db(Z+), we use the equivalences
provided by Corollary 5.2.9 and Corollary 5.2.10. �

Remark 5.4.5. As mentioned earlier, the map h lands in the negative unstable locus of Z,
i.e., where the maps Hom(W ′, V ) are not surjective. Hence the generating objects of Od,m′

are supported on the negative unstable locus as well.

We claim that the category --K--d,m is generated by the categories --K--d,m′ and Od,m′ . In
order to prove this, we need to recall certain exact sequences discovered by Donovan and
Segal in [DS14, Appendix A.2].

Proposition 5.4.6 ([DS14, Theorem A.7]). Let δ be a Young diagram of width < d. Then
there is an exact sequence of sheaves

(5.6) 0 → LδKV
∨ ⊗

sK∧
W ′ → . . . → Lδ1V

∨ ⊗

s1∧
W ′ → Lδ0V

∨ → h∗
(
LδH

∨
)
→ 0 ,

where the δk and sk are defined as follows.
We define a sequence of Young diagrams δk starting from δ = δ0 of width < d:

• δ1 is obtained from δ0 by adding boxes to the first row until it reaches width r.
• δk is obtained from δk−1 by adding boxes to the k-th row until its width is one more
than the width of the (k − 1)-th row of δ.

Then, sk is defined as the difference in the size of the diagrams δk and δ0. The sequence
terminates when we reach a positive integer K such that sK+1 > m′.

Proof. We refer the reader to [DS14, Theorem A.7]. We note that the restriction on the
height of the Young diagram in the statement of Theorem A.7 is unnecessary, as the state-
ment is proved in Section A.3 of loc.cit. without any such restrictions. �

Remark 5.4.7. We note that the notational difference in the above proposition (where
columns and rows have been exchanged) to Theorem A.7 in [DS14] can be attributed to
the difference in definitions of our Schur functor Lλ to the Sλ of Donovan and Segal. The
contents of both statements are exactly the same.

In what follows, we use the following standard fact about G-representations [Wey03, §2
Exercise 18].

Proposition 5.4.8. There is a canonical isomorphism

Lλ1,...,λsV = Ln−λs,...,n−λ1
V ∨ ⊗ detV s.

�

Lemma 5.4.9. Assume d ≤ m′ ≤ s. The category --K--d,s+1 is generated by the categories
--K--d,s and Od,s.
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Proof. The idea of the proof is as follows: we can partition the Young diagrams of --K--d,s+1

by the number of full rows and use the exact sequence (5.6) to work a downward induction
on that number.

Let us set

Λt :=
{
LλV

∣∣λi = d for 1 ≤ i ≤ s−m′ + 1− t , λs+1−d 6= 0 and λi = 0 for i > s− d+ 1
}
.

So Λt has s −m′ + 1− t full rows of length d. Furthermore, we set Λ−1 := --K--d,s. For each
λ ∈ Λt we set

λ = ( d, · · · , d︸ ︷︷ ︸
s−m′+1−t times

, δ).

The base case of t = −1 is clear. Next, we treat the inductive step for 0 ≤ t < s−m′+1.

To do so, we tensor the exact sequence (5.6) for δ by (detV ∨)s−m′

. From Lemma 5.4.8,
tensoring LνV

∨ with detV ∨ gives Lν′V
∨, where ν ′ is obtained by adding a row of size d to

the diagram ν. Then all the terms appearing in the exact sequence, excluding the last term

h∗ (LδH
∨) ⊗ (detV ∨)s−m′

, and the first term LλV
∨, only involve diagrams that appear in

Λs with s < t. Dualizing, we get triangles generating LλV from Λs with s < t and Od,s.
Finally, we treat the inductive step of t = s −m′ + 1, i.e., no full rows. Choose λ to be

a Young diagram that is a part of the definition of --K--d,s+1 of width d − 1 that is not in
--K--d,s. Then, all the terms except for the right-most two terms in the exact sequence (5.6)
(note δ = λ here) belong to the set of vector bundles that we have already generated under
the induction hypothesis. Again, by taking the dual of the sequence, we see that we can
generate LλV . �

In order to get a semi-orthogonal decomposition of --K--d,m′+1, we need the following coho-
mology vanishings.

Lemma 5.4.10. There are no Homs of any homological degree from --K--d,s to Od,s, i.e.

Hom∗(--K--d,s,Od,s) = 0.

Proof. Consider a generator (h∗ (LδH
∨))∨ ⊗ (detV )⊗s−i of Od,s, where 0 ≤ s− i ≤ s+1−

d − h(δ) (h(δ) denotes the height of δ), and a generator LλV of --K--d,m′ . Then, we want to
show that the following Hom set vanishes (for all shifts).

Hom∗
(
LλV,

(
h∗

(
LδH

∨
))∨

⊗ (detV )⊗s−i
)

(5.7)

= Hom∗
(
h∗

(
LδH

∨
)
, LλV

∨ ⊗ (detV )⊗s−i
)

= Hom∗
(
LδH

∨, h!LλV
∨ ⊗ (detV )⊗s−i

)

= RΓ
(
S, LδH ⊗ LλV

∨ ⊗ (detV )⊗m′+1−d ⊗ (detV )⊗s−i ⊗
(
detH∨

)⊗m′−d
)

(5.8)

= RΓ
(
S, LδH ⊗ Lλ′V ⊗

(
detH∨

)⊗m′−d
⊗ detV s−i

)
,(5.9)

In order to get line (5.8), we use the following expression [DS14, Equation (28)] for the
upper shriek functor

h!(−) = h∗(−)⊗ (detV )⊗m′+1−d ⊗
(
detH∨

)⊗m′−d
[d−m′ − 1].
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In line (5.9), λ′ := ( d, · · · , d︸ ︷︷ ︸
s−i+1 times

, d − λm′−d, ..., d − λ1) and we use the identity of Proposi-

tion 5.4.8. In particular, note that λ′ has at least one row of length d.
We claim that all the cohomologies in line (5.9) vanish. Notice first that the stack

[
Hom(W ′,H)⊕Hom(H,V )inj/GL(H)

]

is the total space of a vector bundle over the projective space P(V ∨) = Gr(d − 1, V ), and
(after suppressing the G-invariants) line (5.9) becomes

RΓ
([

Hom(W ′,H)⊕Hom(H,V )inj/GL(H)
]
, LδH ⊗ Lλ′V ⊗

(
detH∨

)⊗m′−d
⊗ Sym(W∨ ⊗ V )

)

= RΓ
(
Gr(d− 1, V ), LδH ⊗ Lλ′V ⊗

(
detH∨

)⊗m′−d
⊗ Sym(W∨ ⊗ V )⊗ Sym(W ′ ⊗H∨)

)(5.10)

= RΓ
(
Gr(d− 1, V ), Lδ′H

∨ ⊗ (detH)⊗h(δ)−m′+d ⊗ Lλ′V ⊗ Sym(W∨ ⊗ V )⊗ Sym(W ′ ⊗H∨)
)(5.11)

=
⊕

µ

RΓ
(
Gr(d− 1, V ), Lδ′H

∨ ⊗ LµH
∨ ⊗ (detH)⊗h(δ)−m′+d ⊗ Lλ′V ⊗ Sym(W∨ ⊗ V )⊗ LµW

′
)(5.12)

=
⊕

µ,ν

RΓ
(
Gr(d− 1, V ), (LνH

∨)
⊕cν

δ′,µ ⊗ (detH)⊗h(δ)−m′+d ⊗ Lλ′V ⊗ Sym(W∨ ⊗ V )⊗ LµW
′
)
.

(5.13)

Here, h(δ) denotes the height of the diagram δ and δ′ = (d− 1− δh(δ), · · · , d− 1− δ1). In
line (5.11) we use Proposition 5.4.8. In line (5.12), we use the decomposition

Sym(A⊗B) =
⊕

µ

Lµ(A)⊗ Lµ(B),

where we sum over all Young diagrams µ. To get the last line (5.13), we use the Littlewood-
Richardson rule, and cνδ′,µ denotes the Littlewood-Richardson coefficients.

Now, we can use the tautological exact sequence on Gr(d − 1, V ) to get the following
identification

H∨ = U∨, detH = U⊥ ⊗ detV,

where U∨ and U⊥ are the vector bundles appearing in the tautological exact sequence

0 → U⊥ → V ∨ ⊗OGr(d−1,V ) → U∨ → 0.

This allows us to use the Borel-Weil-Bott theorem [Dem76] to compute the cohomologies
appearing in equation (5.13) (see [Kuz08] for a review of this method) as follows.

First, we assume that h(δ)−m′+d ≤ 0. Then the expression in equation (5.13) becomes

=
⊕

µ,ν

Γ
(
Gr(d− 1, V ), (Lν′H

∨)
⊕cν

δ′,µ ⊗ Lλ′V ⊗ Sym(W∨ ⊗ V )⊗ LµW
′
)
.

where ν ′ is obtained from ν by adding m′ − h(δ) − d rows of length d − 1 to the top of ν.
The only non-trivial vector bundle component in the above expression is Lν′H

∨ which has
no higher cohomology since it is a Schur functor applied to H∨ = U∨. Furthermore, global
sections of Lν′H

∨ = Lν′U
∨ returns nothing more than Lν′V

∨.
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Hence, the above expression is reduced to

⊕

µ,ν

(Lν′V
∨)

⊕cν
δ′,µ ⊗ Lλ′V ⊗ Sym(W∨ ⊗ V )⊗ LµW

′,

where the sum is over all ν of width < d (since dimH = d− 1). Now simply notice that ν ′

always has width < d but any irreducible representation in Lλ′V ⊗ Sym(W∨ ⊗ V ) is built
from adding to λ′ which has a row length d. Therefore, no representations can cancel and
this expression vanishes upon taking G-invariants.

Now, we consider the case when h(δ) −m′ + d > 0. Applying Borel-Weil-Bott, see e.g.
[Kuz08, Theorem 3.1, Corollary 3.4] , gives us the following.

⊕

µ,ν

RΓ

(
Gr(d− 1, V ), (LνU

∨)
⊕cν

δ′,µ ⊗
(
U⊥ ⊗ detV

)⊗h(δ)−m′+d
⊗ Lλ′V ⊗ Sym(W∨ ⊗ V )⊗ LµW

′

)

=
⊕

µ,ν

(Lσ•αV
∨[l(σ)])

⊕cν
δ′,µ ⊗ (detV )⊗h(δ)−m′+d ⊗ Lλ′V ⊗ Sym(W∨ ⊗ V )⊗ LµW

′.

(5.14)

Here we define the diagram α (of width d) by adding a column of height h(δ) −m′ + d in
the d-th position (the right-most one) to ν. We define an element σ of the symmetric group
Sd (uniquely) as follows. To the diagram α, we first ‘add’ a diagram ρ = (d, d − 1, · · · , 1)
vertically, i.e., we add d boxes to the first column, d− 1 boxes to the second column and so
on. Then, we pick (the unique) symmetric group element σ that permutes the columns in
order to make them non-increasing to give a diagram, say σ.α. Finally, we subtract ρ from
σ.α vertically, i.e, we remove d boxes from the first column, d − 1 boxes from the second
column and so on. This gives a diagram that we denote by σ • α. (For the convenience of
the reader, we provide a short graphical illustration of the procedure described above to get
the diagram σ • α from the diagram ν, immediately after the end of this proof.)

The key observation for us is that the diagram σ • α has at most h(δ) − m′ + d full
rows. This is because the d-th column of α has height h(δ) − m′ + d, and the operation
σ • α cannot increase the height of this column. Thus, we see that every term (Lσ•αV

∨)⊗

(detV )⊗h(δ)−m′+d appearing in equation (5.14) can be rewritten as (LγV
∨)⊗(detV )p where

γ has no full rows and p ≥ 0. On the other hand, as before Lλ′V has a full row and hence
the G-invariants of equation (5.14) vanish. �

Example 5.4.11. We illustrate the procedure in the above proof to get the diagram σ • α
from the diagram ν (using the notation introduced in the proof). Assume d = 3, and that
h(δ) −m′ + d = 3 and choose a diagram ν = (2, 1). Then, we have the following,

ν = −→ α = −→ σ.α = −→ σ • α = .
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