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Abstract
The cotangent complex of a map of commutative rings is a central object in deformation
theory. Since the 1990s, it has been generalized to the homotopical setting of E∞-ring spectra
in various ways. In this work we first establish, in the context of ∞-categories and using
Goodwillie’s calculus of functors, that various definitions of the cotangent complex of a map
of E∞-ring spectra that exist in the literature are equivalent. We then turn our attention to a
specific example. Let R be an E∞-ring spectrum and Pic(R) denote its Picard E∞-group. Let
M f denote the Thom E∞-R-algebra of a map of E∞-groups f : G → Pic(R); examples of
M f are given by various flavors of cobordism spectra. We prove that the cotangent complex
of R → M f is equivalent to the smash product of M f and the connective spectrum associated
to G.

Keywords Cotangent complex · Structured ring spectra · Thom spectra · Higher category
theory · Goodwillie calculus

Mathematics Subject Classification Primary 55P43; Secondary 14F10

1 Introduction

1.1 Deformation theory

The cotangent complex arises as a central object of deformation theory. One wishes to
understand extensions of functions between geometric spaces to infinitesimal thickenings of
those spaces. Working algebraically, the simplest example of an infinitesimal thickening of
a commutative R-algebra S is given by a square-zero extension: that is, a surjective map of
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230 N. Rasekh, B. Stonek

commutative R-algebras φ : ˜S → S such that the product of any two elements in the kernel
of φ is zero.

One way to construct square-zero extensions is using derivations. If M is an S-module,
an R-linear derivation S → M is a map of R-modules which satisfies the Leibniz condition.
The S-module of R-linear derivations DerR(S, M) is co-represented by the S-module of
Kähler differentials �S/R . It is also represented by the commutative R-algebra over S given
by the trivial square-zero extension S ⊕ M with multiplication given by (s, m)(s′, m′) =
(ss′, sm′ + ms′). Therefore, we have bijections

HomModS (�S/R, M) ∼= DerR(S, M) ∼= HomCAlgR//S
(S, S ⊕ M) (1.1)

where CAlgR//S denotes the category of commutative rings C with maps of commutative
rings R → C → S composing to the unit of S.

Starting from a class in Ext1S(�S/R, M) represented by an extension of S-modules

M → ˜M → �S/R,

one can build a square-zero extension of S by M by pulling back the second map along the
universal derivation S → �S/R in ModR :

˜S S

˜M �S/R .

The pullback ˜S gets a commutative R-algebra structure, and the map ˜S → S is surjective
with kernel isomorphic to M as an R-module.

However, this does not produce all square-zero extensions: for that, one needs to derive the
module of Kähler differentials. The way this was originally achieved independently byAndré
[5] and Quillen [19] was by simplicial methods. Quillen placed a model structure on the cate-
gory of simplicial commutative algebras. This produces a simplicial S-moduleL�S/R (called
the algebraic cotangent complex by Lurie [18, 25.3]), and the first André-Quillen cohomol-
ogy S-module Ext1S(L�S/R, M) is isomorphic to the S-module of equivalence classes of
square-zero extensions of S by M .

We shall not take this approach, but rather work with the more general E∞-ring spectra.
The module of Kähler differentials in this context is replaced by the cotangent complex: if
A → B is a map of E∞-ring spectra, the cotangent complex is a B-module L B/A. Using
L S/R

1 instead of L�S/R , André-Quillen (co)homology is replaced by topological André-
Quillen (co)homology, also known as T AQ. The precise relation between L�B/A and L B/A

can be found in [18, 25.3.3.7/25.3.5.4].
One can define square-zero extensions of E∞-ring spectra. The cotangent complex helps

classify them. As is usual in homotopy theory, one does not merely want to describe equiva-
lence classes of square-zero extensions. One would like to prove that the whole ∞-category
of square-zero extensions of an E∞-A-algebra B is equivalent to the∞-category of A-linear
derivations B → �M where M is a B-module.2 This is proven in [16, 7.4.1.26], provided
one restricts the∞-categories a bit. Note that the traditional definition of derivations as linear

1 When treating a discrete commutative ring as an E∞-ring spectrum, the Eilenberg–Mac Lane functor shall
be understood.
2 Recall that Ext1B (L B/A, M) � π0(MapModB

(L B/A, �M)).

123



The cotangent complex and Thom spectra 231

maps that satisfy the Leibniz rule does not work in this setup, whereas the interpretations of
(1.1) do.

Apart from the connections to deformation theory, the cotangent complex L B/A helps
detect useful properties of the map f : A → B. For example, if A and B are connective,
then f is an equivalence if and only if π0( f ) : π0(A) → π0(B) is an isomorphism and
L B/A vanishes [16, 7.4.3.4]. The theory of the cotangent complex also helps in proving
theorems that do not mention it at all: for example, if A is an E∞-ring spectrum and a map
of commutative rings π0(A) → B0 is étale, then it lifts in an essentially unique way to an
étale map of E∞-ring spectra A → B [16, 7.5.0.6].

1.2 Different approaches to the cotangent complex

Let us trace the history of the E∞ cotangent complex of a map of E∞-ring spectra A → B,
since it has been defined in different ways in the literature.

The first definition can be found in a preprint by Kriz [13]. It was defined as a sequential
colimit built out of tensoring B ∧A B with spheres, in a certain way.

Basterra [6] took another approach: she defined the cotangent complex to be the inde-
composables of the augmentation ideal I (B ∧A B) of B ∧A B, which is the fiber of the
multiplication map B ∧A B → B. She did not prove the equivalence with Kriz’s approach.

Later, herself and Mandell [8] established the connection between Basterra’s definition
of the cotangent complex and stabilization. Just as Beck had observed in the sixties that the
category of modules over a commutative ring R was equivalently given by the abelian group
objects in augmented commutative R-algebras [7], they proved the E∞-analog. Abelian
group objects have to be replaced by spectra objects. They proved that to get L B/A, one can
start from B ∧A B considered as an augmented commutative B-algebra, then stabilize it, i.e.
apply �∞�∞ to it, then take its augmentation ideal.

It was known to the experts that one could extract from the results of Basterra andMandell
an expression of the cotangent complex as a sequential colimit, similar to Kriz’s expression,
see e.g. [21, Page 164]. However, we think a full description of how these approaches are
connected has not appeared in the literature. We take the opportunity to expand on them in
Sect. 3.

The approach to the cotangent complex taken by Lurie in [16, 7.3] is closest to Basterra
and Mandell’s approach, albeit in the realm of ∞-categories rather than in that of model cat-
egories. We feel a unified study of the different approaches in Lurie’s setting was lacking: we
provide one here. We adopt the language of the Goodwillie calculus of functors as developed
by Lurie in [16, Chapter 6]. Our Sect. 2 will swiftly introduce the necessary results. The fact
that the the cotangent complex can be understood via Goodwillie calculus was known, see
e.g. [14, 5.4].

In summary, we prove in the ∞-categorical context of [16] that the cotangent complex
L B/A can be presented in the following ways:

• As the augmentation ideal of the stabilization of B ∧A B, i.e. I (�∞�∞(B ∧A B))

(3.9/3.10),
• As the excisive approximation of I evaluated in B ∧A B, i.e. (P1 I )(B ∧A B) (3.11),
• As the sequential colimit of B-modules (3.26)

L B/A � colimModB ( S0
˜⊗A B �(S1

˜⊗A B) �2(S2
˜⊗A B) · · · ),

• As the module of indecomposables of the augmentation ideal of B ∧A B (3.34).
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232 N. Rasekh, B. Stonek

Here −⊗̃− is a certain operation to be introduced in Notation 3.24 that takes a pointed space
and an E∞-A-algebra B and returns a B-module.

1.3 Thom spectra

Themain result of this paper is the determination of the cotangent complex of Thom E∞-ring
spectra. Let us quickly recall what these are, following the ∞-categorical approach of [1].
Let G be a space, R be an E∞-ring spectrum, Pic(R) be the Picard space of R (the subspace
of ModR spanned by the invertible R-modules), and f : G → Pic(R) be a map. The colimit

of G
f

Pic(R) ModR is the Thom R-module of f , denoted M f . In fact, Pic(R)

is an E∞-group. When G is an E∞-group and f is a map of E∞-groups, then M f gets the
structure of an E∞-R-algebra [2,3]. Examples of Thom E∞-ring spectra include complex
cobordism MU and periodic complex cobordism MU P .

Theorem 4.3 Let R be an E∞-ring spectrum. Let f : G → Pic(R) be a map of E∞-groups.
There is an equivalence of M f -modules

L M f /R � M f ∧ B∞G.

Here B∞G denotes the connective spectrum associated to G.
A model-categorical version had first appeared in [8]. For example, we recover the equiv-

alence of MU -modules

L MU � MU ∧ bu

of that paper. The result of Basterra and Mandell, however, only applies to Thom spectra
of maps to BGL1(S), whereas ours applies to maps to Pic(R) where R is any E∞-ring
spectrum. This allows for generalized, possibly non-connective Thom E∞-ring spectra. For
example, we get that

L MU P � MU P ∧ ku

as MU P-modules, where ku denotes the E∞-ring spectrum of connective complex topolog-
ical K -theory. In fact, L MU P is actually a Thom E∞-ku-algebra. More generally, we observe
in Proposition 4.9 that when G is an E∞-ring space, then the R-module L M f /R underlies a
Thom E∞-(R ∧ B∞G)-algebra. In other words, with this additional hypothesis the cotangent
complex of a Thom E∞-algebra becomes a Thom E∞-algebra.

In Sect. 5 we extend Theorem 4.3 to cotangent complexes of two types of extensions of
Thom algebras: if M f → B is a map E∞-R-algebras which is either étale or solid (i.e. the
multiplication B ∧M f B → B is an equivalence), then

L B/R � B ∧ B∞G.

This allows us, for example, to recover the equivalence L KU � KU ∧ HQ from [24], where
KU denotes the E∞-ring spectrum of periodic complex topological K -theory.

1.4 Notation and conventions

We will freely use the language of ∞-categories as developed in [15,16].
Let C be an ∞-category. Given a fixed map f : A → B, we denote by CA//B the ∞-

category (C/B) f / of objects C ∈ C together with maps A → C → B which compose to f .
Similarly, we denote by CB//B the ∞-category (C/B)idB/.
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The cotangent complex and Thom spectra 233

If C is an ∞-category with terminal object T , we let C∗ denote the undercategory CT /.
The ∞-category of spaces will be denoted by S , and that of spectra by Sp. Its full

subcategory of connective spectra is denoted by Spcn. We denote by CAlg the ∞-category
CAlg(Sp) of E∞-ring spectra, and by CAlgR that of E∞-algebras over an E∞-ring spectrum
R, i.e. CAlg(ModR). The suspension spectrum functor S → Sp is denoted �∞+ , and if
G ∈ CAlg(S ), then S[G] denotes the E∞-ring spectrum �∞+ (G).

2 Short review of stabilization and Goodwillie calculus

Let us summarize some notions from the Goodwillie calculus of functors which we shall be
using.We shall workwith the∞-categorical version of it as in [16, Chapter 6]. For simplicity,
let us assume that C and D are ∞-categories which are pointed and presentable.

(1) A functor F : C → D is reduced if it takes a final object to a final object. It is excisive if it
takes pushout squares to pullback squares. The full subcategory of Fun(C ,D) spanned
by the excisive functors is denoted Exc(C ,D), and the one spanned by the reduced,
excisive functors is denoted Exc∗(C ,D).

(2) The ∞-category of spectra in C is defined by Sp(C ) = Exc∗(S fin∗ ,C ) where S fin∗ is
the ∞-category of pointed finite spaces [16, 1.4.2.8]. Evaluation at the sphere S0 defines
a functor �∞ : Sp(C ) → C which is an equivalence when C is stable [16, 1.4.2.21];
since C is pointed and presentable, �∞ admits a left adjoint �∞ : C → Sp(C ) [16,
1.4.4.4]. If C is presentable but not pointed, the left adjoint to �∞ is denoted �∞+ and

it factors into two left adjoint functors C
(−)+−−−→ C∗

�∞−−→ Sp(C∗) � Sp(C ) [11, 4.10].
(3) The inclusion Exc(C ,D) → Fun(C ,D) has a left adjoint P1, called the excisive approxi-

mation functor [16, 6.1.1.10]. The unit natural transformation F ⇒ P1F is said to exhibit
P1F as the excisive approximation to F . If F : C → D is reduced, then P1F is reduced,
and by [16, 6.1.1.28],

P1F � colimn(�n
D ◦ F ◦ �n

C ).

(4) [16, 6.2.1.4] If F : C → D is left exact (i.e. preserves finite limits), then composition
with F defines a functor ∂ F : Sp(C ) → Sp(D), the (Goodwillie) derivative which
makes the following diagram commute

Sp(C )
∂ F

�∞
C

Sp(D)

�∞
D

C
F

D .

(5) In the case of an arbitrary functor F : C → D , derivatives admit a general definition [16,
6.2.1.1]: they consist of a functor ∂ F : Sp(C ) → Sp(D) and a natural transformation
F ◦�∞

C ⇒ �∞
D ◦ ∂ F satisfying some properties. Derivatives are unique up to canonical

equivalence [16, 6.2.1.2], and there are very general existence results: in particular, under
the conditions onC andD whichwe have imposed, every F : C → D admits a derivative
[16, 6.2.1.9/6.2.3.13].

(6) [16, Page 1071] If F : C → D is reduced and preserves filtered colimits, then

P1F � �∞
D ◦ ∂ F ◦ �∞

C .
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234 N. Rasekh, B. Stonek

(7) ∂idC � idSp(C ) and P1idC � �∞
C ◦ �∞

C � colimn(�n
C ◦ �n

C ). In particular, if C is
stable then idC � colimn(�n

C ◦ �n
C ).

(8) If F : C → D is reduced, left exact and preserves filtered colimits, then

P1F � F ◦ �∞
C ◦ �∞

C ,

as follows from (6) and (4).

3 The cotangent complex

In this section, we introduce the cotangent complex of a map of E∞-ring spectra and we give
different expressions for it: via the augmentation ideal, via a stabilization process, i.e. as a
sequential colimit, and via indecomposables.

Before going to E∞-ring spectra, let us say a word on the general definition. The relative
cotangent complex according to Lurie is a suspension spectrum, in the following sense:

Definition 3.1 Let C be a presentable ∞-category and f : A → B in C . Consider the
suspension spectrum functor

CA//B
�∞+

Sp(CB//B).

The relative cotangent complex of f is the image of A
f−→ B

id−→ B by this functor, and it is
denoted L B/A. If A is an initial object of C , then L B/A is also denoted L B and it is called
the absolute cotangent complex of B.

Remark 3.2 Let us say a word about the�∞+ functor above. Since id : B → B is the terminal
object of C/B , then

CB//B = (C/B)idB/ � (C/B)∗.

Note as well that CA//B = (C/B) f / � (CA/)/ f . On the other hand, by [16, 7.3.3.9], we have
(CA//B)∗ � CB//B . Therefore, �∞+ factors as

CA//B
−�A B

CB//B
�∞

Sp(CB//B).

In order to address the issue of functoriality of the cotangent complex, Lurie uses the
tangent bundle of CA//B . We shall not be needing this, so for the sake of simplicity we will
not introduce it.

Let us now concentrate on the case C = CAlg.

3.1 The cotangent complex via the augmentation ideal

When C = CAlg, we may identify Sp(CB//B) with a more familiar ∞-category, namely
ModB , as we shall now see. Note that CAlgB//B is the ∞-category of augmented E∞-B-
algebras: its objects are E∞-B-algebras C with a map C → B of E∞-B-algebras.

Definition 3.3 Let B ∈ CAlg. The augmentation ideal functor

I : CAlgB//B → ModB
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The cotangent complex and Thom spectra 235

takes C to the fiber in ModB of the augmentation, i.e. to the pullback

I (C) C

0 B

�

in ModB , where 0 denotes a zero object of ModB .

Remark 3.4 The functor I is right adjoint to the functor ModB → CAlgB//B which takes a
module M to the free E∞-B-algebra

∨

n≥0(M∧B n)�n ∈ CAlgB endowed with the augmen-
tation over B given by projection to the 0-th summand. Here (−)�n denotes the (homotopy)
orbits for the �n-action [16, 3.1.3.14, 7.3.4.5]. Note that I is reduced, as it takes B to the
zero module.

Notation 3.5 We let NUCAB denote the ∞-category of non-unital E∞-B-algebras, which
we call nucas3 [16, 5.4.4.1].

Remark 3.6 The augmentation ideal functor factors through NUCAB as follows:

CAlgB//B
I

I0

ModB

NUCAB

U

whereU is the forgetful functor. Indeed, one can take the pullback defining I in Definition 3.3
in the ∞-category NUCAB instead of in ModB , which defines I0. The functor I0 is a right
adjoint to the functor N �→ B ∨ N , and it is in fact an equivalence [16, 5.4.4.10], [6, 2.2].
Note as well that I commutes with sifted colimits, since U does [16, 3.2.3.1]. In particular,
I commutes with filtered or sequential colimits.

Theorem 3.7 [16, 7.3.4.7/14] The functor

Sp(CAlgB//B)
∂ I

Sp(ModB)

is an equivalence of ∞-categories; in particular, Sp(CAlgB//B)
∂ I−→ Sp(ModB)

�∞−−→ ModB

is an equivalence as well.

Remark 3.8 A model-categorical precedent can be found as Theorem 3 of [8]. There, the
functor fitting in the place of ∂ I is defined as follows. First of all, in their framework a spectrum
in a model category M is a sequence of objects {Xn}n≥0 of M with maps �Xn → Xn+1.
Spectra in M have a model structure whose fibrant objects are the �-spectra. Thus, any
topological left Quillen functor F between model categories enriched over based spaces
induces a left Quillen functor F between the corresponding model categories of spectra: the
arrows �Xn → Xn+1 get sent to �F(Xn) � F(�Xn) → F(Xn+1).

In particular, the augmentation ideal functor from the model category of augmented com-
mutative B-algebras to the model category of B-modules, let us also call it I , induces a
functor I between the respective model categories of spectra. After passing to their underly-
ing ∞-categories, I gives a functor equivalent to ∂ I .

3 The c in nuca stands for commutative.
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236 N. Rasekh, B. Stonek

Remark 3.9 Recall from Sect. 2.(4) that �∞
ModB

◦ ∂ I � I ◦ �∞
CAlgB//B

, i.e. ∂ I commutes with

�∞. On the other hand, note that ∂ I typically does not commute with �∞. If it did, then

�∞
ModB

◦ ∂ I ◦ �∞
CAlgB//B

� �∞
ModB

◦ �∞
ModB

◦ I � I ,

but on the other hand this is equivalent to I ◦ �∞
CAlgB//B

◦ �∞
CAlgB//B

which is the excisive

approximation of I by Sect. 2.(8). Therefore, I would be excisive. Since ModB is stable,
this would mean that I preserves pushouts; since I is also reduced, then I would be right
exact. But this is typically false. For example, I does not commute with coproducts: if we
take B = S, the coproduct of S[S1] with itself in CAlgS//S is S[S1 × S1]. Its augmentation
ideal is �∞(S1 × S1) � �∞S1 ∨ �∞S1 ∨ �∞S2, which is not equivalent to the coproduct
of I (S[S1]) � �∞S1 with itself.

If f : A → B ∈ CAlg, then L B/A ∈ Sp(CAlgB//B) by definition. Given Theorem 3.7, in

this situation we redefine L B/A to mean the image of A
f−→ B

id−→ B under the composition

CAlgA//B
B∧A−

CAlgB//B
�∞

Sp(CAlgB//B)
�∞◦∂ I

� ModB . (3.10)

Therefore, by Sect. 2.(6), L B/A is equivalently the value of an excisive approximation to
I : CAlgB//B → ModB evaluated in B ∧A B. In symbols,

L B/A � (P1 I )(B ∧A B). (3.11)

3.2 The cotangent complex as a colimit

Let A be an E∞-ring spectrum. The general definition of a cotangent complex also applies
to an Ek-A-algebra B. In [16, 7.3.5] Lurie analyzes this particular case. He denotes by L(k)

B/A
the resulting Ek-cotangent complex.

Forgetting structure, every E∞-A-algebra B is an Ek-A-algebra for every k ≥ 0. Lurie
observes in [16, 7.3.5.6] that since the E∞-operad is the colimit of the Ek-operads, these
Ek-cotangent complexes recover the cotangent complex as follows:

L B/A � colim( L(1)
B/A L(2)

B/A L(3)
B/A · · · ).

These Ek-cotangent complexes admit a different expression which is sometimes computable,
as we shall see in this section. That is what we shall use in Sect. 4 to compute the cotangent
complex of Thom E∞-algebras.

Let B ∈ CAlg and C ∈ CAlgB//B . Since I is left exact (it is a right adjoint) and commutes
with sequential colimits (Remark 3.6), then by Sect. 2.(3),

(P1 I )(C) � colim( I (C)
e0

�I (�C)
�e1

�2 I (�2C)
�2e2 · · · ).

(3.12)
Here en : I (�nC) → �I (�n+1C) is the naturalmap obtained as in [16, 1.4.2.12]. Explicitly,
it is obtained as follows. Write �n+1C as the pushout of B ← �nC → B (remember that
B is a zero object of CAlgB//B). Apply I , then en is defined as the universal pullback map
I (�nC) → �I (�n+1C).

Let f : A → B be a morphism in CAlg. Applying (3.12) to C = B ∧A B we get a
quite explicit colimit formula for L B/A. But we can be more explicit: we are going to recast
I (�n(B ∧A B)) in other terms.
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The cotangent complex and Thom spectra 237

Any presentable ∞-category C is tensored over spaces: there is a functor − ⊗ − : S ×
C → C which preserves colimits separately in each variable. If X ∈ S and c ∈ C , then

X ⊗ c � colim(X
{c}−→ C )

where {c} denotes the constant functor with value c. If C is moreover pointed, then it is
tensored over pointed spaces: there is a functor − � − : S∗ × C → C which preserves
colimits separately in each variable. If (X , x0) ∈ S∗ and c ∈ C , then

X � c � cofibC (c � ∗ ⊗ c
x0⊗id−→ X ⊗ c). (3.13)

See [20, Sect. 2] for more details.

Remark 3.14 The suspension � A of an object A in a pointed presentable ∞-category C
can be expressed as S1 � A. Indeed, write S1 = colim(∗ ← S0 → ∗) and apply the
colimit-preserving functor − � A. By induction, �n A � Sn � A for all n ≥ 0.

Notation 3.15 Let �B denote the tensor of CAlgB//B over S∗. Let ⊗A denote the tensor of
CAlgA over S .

Remark 3.16 If f : A → B in CAlg and (X , x0) ∈ S∗, then X ⊗A B ∈ CAlgB//B , with unit
and augmentation given by

B � ∗ ⊗A B
x0⊗id−−−→ X ⊗A B

∗⊗id−−→ ∗ ⊗A B � B.

More generally, if (B
g−→ C

e−→ B) ∈ CAlgB//B , then X ⊗A C ∈ CAlgB//B , with unit and
augmentation given by

B � ∗ ⊗A B
x0⊗g−−−→ X ⊗A C

∗⊗e−−→ ∗ ⊗A B � B.

We shall now prove a couple of results about this construction.

Remark 3.17 The definition of an adjunction in [15, 5.2], which we are implicitly adopting,
uses the theory of correspondences. We shall use the result of Cisinski [10, 6.1.23; Footnote,
Page 250] which says that Lurie’s definition is equivalent to the expected characterization
via natural equivalences of mapping spaces MapC (c, Gd) � MapD (Fc, d).

In the following lemma, we shall need the following notation: if F : C → D is a functor
of ∞-categories and c ∈ C , we denote by F : Cc/ → DF(c)/ the induced functor on
undercategories. Note that if F has a right adjoint G, then by Remark 3.17 we conclude that
F also has a right adjoint. Indeed, if we are given maps c → c′ and c → Gd in C , then the
natural equivalence

MapC (c′, Gd) � MapD (Fc′, d)

restricts to a natural equivalence

MapC c/
(c′, Gd) � MapD Fc/

(Fc′, d).

Explicitly, the right adjoint of F takes an object g : Fc → d to the composition c →
G Fc

Gg−→ Gd . Therefore, if the ∞-categories are presentable and F preserves colimits, then
F also preserves colimits.

We will now consider bifunctors that preserve colimits separately in each variable and
analyze in which way this property passes on to undercategories.
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Lemma 3.18 Let F : C × D → E be a functor of presentable ∞-categories that preserves
colimits separately in each variable. Let (c, d) ∈ C × D . Consider the induced functor

F : Cc/ × Dd/ → EF(c,d)/.

For a given h : c → c′ in C , the functor

F(h,−) : Dd/ → EF(c,d)/

preserves colimits if and only if F(h, idd) : F(c, d) → F(c′, d) is an equivalence.

There is an analogous result in the other variable, starting from an arrow d → d ′ ∈ D ,
but we shall not be needing it.

Proof We can factor the functor F(h,−) as the composition

Dd/
F(c′,−)−−−−→ EF(c′,d)/

F(h,idd )∗−−−−−→ EF(c,d)/.

The first functor preserves colimits by the discussion above applied to F(c′,−) : D → E ,
which preserves colimits by hypothesis. Therefore F(h,−) preserves colimits if and only if
F(h, idd)∗ preserves colimits.

If F(h, idd)∗ preserves colimits, then it preserves initial objects, which forces F(h, idd)

to be an equivalence. The converse is obvious. ��
Remark 3.19 The functor F of Lemma 3.18 always preserves colimits indexed by weakly
contractible simplicial sets separately in each variable, by [15, 4.4.2.9]. We shall not be using
this fact, though.

Proposition 3.20 (1) The functor − ⊗A − : S × CAlgA → CAlgA extends to a functor

− ⊗A− : S∗ × CAlgB//B → CAlgB//B (3.21)

in the sense that the following diagram commutes, where the two vertical maps are
forgetful functors:

S∗ × CAlgB//B
−⊗A−

CAlgB//B

S × CAlgA −⊗A− CAlgA.

The functor (3.21) takes (X , C) to X ⊗A C with unit and augmentation given as in
Remark 3.16.

(2) Letting the second variable of (3.21) be of fixed value (B → C → B) ∈ CAlgB//B, the
restricted functor

− ⊗A C : S∗ → CAlgB//B

preserves colimits if and only if the unit B → C is an equivalence.

(3) Letting the second variable of (3.21) be of fixed value B
id−→ B

id−→ B, the restricted
functor

− ⊗A B : S∗ → CAlgB//B
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is equivalent to − �B (B ∧A B), where B ∧A B denotes the object B
ι0−→ B ∧A B

μ−→ B
of CAlgB//B.4

Proof (1) Since the tensor is a colimit and colimits in overcategories are created in the
original ∞-category [15, 1.2.13.8], the functor −⊗A − : S ×CAlgA → CAlgA begets
a functor

− ⊗A− : S × (CAlgA)/B → (CAlgA)/B (3.22)

which extends the original one and preserves colimits separately in each variable.
Now, note as in Remark 3.2 that

(CAlgA)/B � (CAlgA/)/ f � CAlgA//B .

We now consider (∗, A → B → B) ∈ S∗ ×CAlgA//B and consider the functor induced
by (3.22) in undercategories. This gives the result, since A → B → B is a terminal
object of CAlgA//B , and by Remark 3.2 (CAlgA//B)∗ � CAlgB//B .
The functor we just obtained acts on objects as expected, by construction.

(2) This follows from Lemma 3.18, since the condition there amounts in this case to the map
∗ ⊗A B → ∗ ⊗A C being an equivalence.

(3) To prove − ⊗A B and − �B (B ∧A B) are equivalent, it suffices to see that they send S0

to equivalent objects. Indeed, they are colimit-preserving functors fromS∗ to a pointed
presentable ∞-category, but S∗ is freely generated under colimits by S0 in pointed
presentable ∞-categories [20, 2.29].
Now, indeed both functors send S0 to B ∧A B, and the proof is finished.

��
Lemma 3.23 Let B

u−→ C
c−→ B be an object inCAlgB//B. Then I (C) is naturally equivalent

to the cofiber of u in ModB, i.e.

I (C) = fibModB (c : C → B) � cofibModB (u : B → C)=:J (C).

Proof Consider the following commutative diagram in ModB :

0

id

B

id

u

0

I (C) C

c

J (C)

0 B.

The bottom left square and the big rectangle formed by the two squares on the left are
pullbacks, so the square on the top left is a pullback [15, 4.4.2.1]. It is therefore a pushout,
by stability of ModB . The square on the top right is also a pushout, hence the big rectangle
formed by the two squares on top is a pushout [15, Dual of 4.4.2.1], proving the result. ��

We adopt the notation of [13] or [21, Page 164]:

4 The inclusion ι0 can be replaced by ι1: up to composing with the symmetry B ∧A B
∼−→ B ∧A B, the two

choices are equivalent.
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Notation 3.24 Let X ∈ S∗ and f : A → B in CAlg. By the previous lemma, there is an
equivalence I (X ⊗A B) � J (X ⊗A B) in ModB natural in X and B: we denote the common
value by X ˜⊗A B.

From Proposition 3.20 and Lemma 3.23, we deduce:

Corollary 3.25 Let f : A → B in CAlg and X ∈ S∗. There is an equivalence of B-modules

I (X �B (B ∧A B)) � X ˜⊗A B

natural in X.

We can now recast (3.12) in a different form. Define arrows e′
n : Sn

˜⊗A B →
�(Sn+1

˜⊗A B) as follows. Start by presenting Sn+1 ∈ S∗ as the pushout of ∗ ← Sn → ∗.
Apply − ⊗A B : S∗ → CAlgB//B to it, and then apply I . Now e′

n is the universal pullback
map Sn

˜⊗A B → �(Sn+1
˜⊗A B).

Proposition 3.26 Let f : A → B in CAlg. There is an equivalence of B-modules

L B/A � colimModB ( S0 ˜⊗A B
e′
0

�(S1 ˜⊗A B)
�e′

1
�2(S2 ˜⊗A B)

�2e′
2 · · · )

where � denotes the loop functor in ModB.

Proof We use the characterization L B/A � (P1 I )(B ∧A B) from (3.11). Consider the equiv-
alence (3.12) with C = B ∧A B. By Remark 3.14 and Corollary 3.25, we have

I (�n(B ∧A B)) � I (Sn �B (B ∧A B)) � Sn
˜⊗A B.

The maps en from (3.12) and the maps e′
n are defined in an analogous fashion, so the natural

equivalences above commute with them. ��
Remark 3.27 The previous proposition was known to the experts (it is mentioned e.g in [21,
Page 164]), but we do not think a complete derivation had been spelled out in the literature
before.

Finally, let us make the connection between the ˜⊗ construction and the Ek-cotangent
complex mentioned at the beginning of the subsection.

Remark 3.28 Let B be an E∞-A-algebra. Forgetting structure, we may consider B as an Ek-
A-algebra, for all k ≥ 0, and thus we may form its Ek-cotangent complex L(k)

B/A [16, 7.3.5].
Lurie [16, 7.3.5.1/3] proved that for each k ≥ 1 there is a fiber sequence of B-modules

L(k)
B/A �k−1(Sk−1 ⊗A B)

�k−1(∗⊗id)
�k−1B,

where ∗ : Sk−1 → ∗ denotes the unique map. Since ∗ ⊗ id : Sk−1 ⊗A B → B is the
augmentation of Sk−1 ⊗A B and loops commute with pullbacks, this identifies L(k)

B/A with

�k−1(Sk−1
˜⊗A B) (see also [9, 1.3]), so by Proposition 3.26 we obtain an equivalence of

B-modules

L B/A � colim( L(1)
B/A L(2)

B/A L(3)
B/A · · · )

recovering [16, 7.3.5.6].
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3.3 The cotangent complex via indecomposables

The first published definition of the cotangent complex was established in the context of
model categories using the indecomposables functor [6]. The goal of this subsection is to
prove that this definition of the cotangent complex is equivalent to the definition adopted
in (3.10). We are not aware of a discussion of the approach using indecomposables in the
∞-categorical setting.

The content of this subsection will not be used in the sequel: the reader interested in Thom
spectra should feel free to jump ahead to Sect. 4.

Definition 3.29 Let B ∈ CAlg. We denote by

Q : NUCAB → ModB

the indecomposables functor that takes N to the cofiber in ModB of the multiplication, i.e.
to the pushout

N ∧B N N

0 Q(N )

μ

�

in ModB .

The functor Q is left adjoint to the functor which takes a module M and endows it with a
zero multiplication map. More precisely:

Lemma 3.30 (1) The functor Q is left adjoint to a functor Z : ModB → NUCAB such that
U Z � idModB , and for each M ∈ ModB the multiplication map Z M ∧B Z M → Z M
is zero.

(2) Q ◦ F � idModB , where F : ModB → NUCAB is the free functor.
(3) There exists a unique functor Z : ModB → NUCAB such that U Z � idModB , up to

equivalence.

Here U : NUCAB → ModB denotes the forgetful functor.

Proof (1) We will use a criterion for adjointness from [15, 5.2.4.2]: Q admits a right adjoint
if and only if for every M ∈ ModB , the comma ∞-category (Q ↓ M), defined as the
pullback

(Q ↓ M) NUCAB

(ModB)/M ModB

�

has a terminal object. Fix M ∈ ModB . It suffices to see that there exists a B-nuca Z M

such that M � Q Z M , for then Q Z M � M
id−→ M is a terminal object of (Q ↓ M).

To see this, first recall from Remark 3.6 that the augmentation ideal functor I :
CAlgB//B → ModB factors via an equivalence I0 : CAlgB//B → NUCAB followed by
the forgetful functor.Nowconsider the trivial square-zero extension B⊕M [16, 7.3.4.16].
This is an augmented E∞-B-algebra such that the multiplication map of I0(B ⊕ M) is
zero. Define Z M to be I0(B ⊕ M), so clearly U Z M � M . By definition, Q Z M is
the cofiber in ModB of the multiplication map Z M ∧B Z M → Z M which is zero, so
Q Z M � M as required.
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(2) Q ◦ F is the left adjoint to U ◦ Z � idModB , so it is equivalent to the identity.
(3) The existence of such a Z has just been proven. Now suppose we have a functor Z ′ :

ModB → NUCAB such that U Z ′ � idModB . Let M, M ′ ∈ ModB . We have natural
equivalences of spaces

MapNUCAB
(F M ′, Z ′M) � MapModB

(M ′, U Z ′M) � MapModB
(Q F M ′, M).

Let N ∈ NUCAB . Note that the free-forgetful adjunction (F, U ) is monadic by [16,
4.7.3.5], since NUCAB is an ∞-category of algebras over an ∞-operad in ModB [16,
5.4.4.1] so the forgetful functor is conservative and preserves geometric realizations
of simplicial objects [16, 3.2.2.6/3.2.3.2]. Therefore, by [16, 4.7.3.14/15], there exists
a simplicial object N• in NUCAB which depends functorially on N and satisfies that
colim(N•) � N , N• is given by free nucas; moreover, colim(QN•) � QN by [16,
4.7.2.4]. Using the above, one obtains a natural equivalence of spaces

MapNUCAB
(N , Z ′M) � MapModB

(QN , M).

By Remark 3.17, this proves that Z ′ is a right adjoint to Q, but then by uniqueness of
adjoints [15, 5.2.6.2], we deduce that Z ′ � Z . ��

Remark 3.31 Let K denote the composition

ModB
∼−→ Sp(CAlgB//B)

�∞−−→ CAlgA//B;

here, the first arrow is an inverse to �∞ ◦ ∂ I : Sp(CAlgB//B)
∼−→ ModB . Note that K (M) is

the trivial square-zero extension B ⊕ M [16, 7.3.4.16]. By definition of K and L B/A, we get
the following equivalence for every B-module M ,

MapModB
(L B/A, M) � MapCAlgA//B

(B, B ⊕ M).

These spaces can be interpreted as the spaces of A-linear derivations from B into M [16,
7.3].

Now, observe that K is equivalent to the composition

ModB
Z−→ NUCAB

B∨−−−−→ CAlgB//B → CAlgA//B ,

the last functor being a forgetful functor. Indeed, since B ∨ − is an equivalence with inverse
given by I0, we may equivalently verify that I0 ◦ K � Z . But this follows from Part (2) of
the previous lemma.

In the following theorem,weprove how to get the cotangent complex via indecomposables.
A model categorical version of this result can be found in [8, Theorem 4].

Theorem 3.32 Let B ∈ CAlg. The following diagram commutes:

CAlgB//B
�∞

I0

Sp(CAlgB//B)

� �∞∂ I

NUCAB
Q

ModB .
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Proof Recall from Sect. 2.(6) that P1 I , the excisive approximation to I , is equivalent to
�∞◦∂ I ◦�∞. Thus, we have to prove that Q◦ I0 is equivalent to P1 I . Recall that I � U ◦ I0.
By [16, 6.1.1.30], we have P1 I � P1U ◦ I0. We will now prove that P1U � Q, finishing the
proof.

By Sect. 2.(6), P1U is equivalent to�∞
ModB

◦∂U ◦�∞
NUCAB

. Note that Q is excisive, since
it preserves pushouts and ModB is stable, so Q � P1Q. Therefore, to prove that P1U � Q
it suffices to prove that ∂U � ∂ Q, by Sect. 2.(6) once more.

We have the free–forgetful adjunction ModB
F

NUCAB
U

, and taking derivatives

gives an adjunction Sp(ModB)
∂ F

Sp(NUCAB)
∂U

by [16, 6.2.2.15]. By Lemma 3.30.(2),

Q◦F � idModB , so by [16, 6.2.1.4/24]we get ∂ Q◦∂ F � idSp(ModB ). To prove that ∂ Q � ∂U ,
it suffices to prove that ∂U is an equivalence. Indeed, if it is, then ∂ F ◦ ∂U � idSp(NUCAB ),
so ∂ Q � ∂ Q ◦ ∂ F ◦ ∂U � ∂U .

To prove that ∂U is an equivalence, we proceed similarly as in [16, Proof of 7.3.4.7]:
namely, since U is a monadic functor, then by [16, 6.2.2.17] it suffices to prove that the unit
idModB ⇒ U ◦ F induces an equivalence of derivatives. The proof of this is very similar to
that of [16, 7.3.4.10], only simpler.

Note thatU ◦ F : ModB → ModB is given on objects by M �→ M ∨∨

n≥2(M∧B n)�n and
the unit of the (F, U ) adjunction includes M into the separate M factor, so by [16, 7.3.4.8] it
suffices to see that the derivative of the functor Symn : ModB → ModB , M �→ (M∧B n)�n

is nullhomotopic for n ≥ 2.
To see this, note that Symn is the composition

ModB
diag

Modn
B

−∧B ···∧B−
Fun(B�n,ModB)

colim
ModB

where the first functor is the diagonal functor and the second functor takes (M1, . . . , Mn) to
M1∧B · · ·∧B Mn together with the action by�n which permutes the factors. By [16, 7.3.4.8]
the derivative operator ∂ : Fun∗(ModB ,ModB) → Exc(ModB ,ModB) preserves colimits,
so the derivative of Symn is the colimit of a functor B�n → Exc(ModB ,ModB) with
value ∂

(

(−)∧B n : ModB → ModB
)

. Therefore, it suffices to see that the functor (−)∧B n :
ModB → ModB , n ≥ 2 has nullhomotopic derivative.

By [16, 6.1.3.12], this functor is n-reduced, so it is 2-reduced, which by definition means
that its excisive approximation is nullhomotopic.5 By Sect. 2.(6), its derivative is nullhomo-
topic as well, since ModB is stable. ��
Remark 3.33 The key aspect of the previous proof is the fact that ∂(U ◦ F) � idSp(ModB ),
which is proven in the last paragraph. Notice this is equivalent to

P1(U ◦ F) � idModB ,

as P1(U ◦ F) � �∞ ◦ ∂(U ◦ F) ◦ �∞ by Sect. 2.(6), and �∞,�∞ are equivalences since
ModB is stable. Using the analogy of Goodwillie calculus with classical calculus, we can gain
some intuition for this result. Under this analogy, functors correspond to smooth functions of
the real line, so the functor U ◦ F which maps M ∈ ModB to

∨

n≥1(M∧B n)�n corresponds
to the power series f (x) = ∑∞

n=1 xn . The linear approximation at 0 of this function is
the identity map x �→ x . Continuing with the analogy, linear approximations of functions

5 We have just made use of some higher Goodwillie calculus. The definition of an n-reduced functor can be
found in [16, 6.1.2.1], and the fact that any n-reduced functor is (n−1)-reduced follows from [16, 6.1.1.10/14].
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correspond to 1-excisive approximations of functors, which provides some intuition for the
equivalence P1(U ◦ F) � idModB .

From Theorem 3.32 we immediately deduce:

Corollary 3.34 Let f : A → B be a map of E∞-ring spectra. There is an equivalence of
B-modules

L B/A � Q I0(B ∧A B).

This is analogous to what Basterra [6] adopted as a definition for L B/A in a model-categorical
setting. That was the first published definition. The approach from (3.10) had been used in the
preprint [13], albeit formulated in a different language. Only in [8] were the two approaches
first proven to be equivalent.

4 The cotangent complex of Thom spectra

In this section we will prove the main result, Theorem 4.3, giving an expression for the
cotangent complex of Thom E∞-algebras.

An E∞-monoid is a commutative algebra object in S in the sense of [16, 2.1.3.1], or,
equivalently, a commutative monoid object in S in the sense of [16, 2.4.2.1] (i.e. a special
�-space). They form an ∞-category MonE∞(S ). If an E∞-monoid M is grouplike, i.e. if
the monoid π0(M) is a group, we say M is an E∞-group. These form an∞-category denoted
by GrpE∞(S ).

Let R be an E∞-ring spectrum. An R-module M is invertible if there exists an R-module
N such that M ∧R N � R. We let Pic(R) be the Picard space of R: this is the core (i.e. the
maximal subspace) of the full subcategory of ModR on the invertible R-modules.

If Z is a space and f : Z → Pic(R) is a map of spaces, the Thom R-module of f is
defined as

M f :=colim( Z
f

Pic(R) ModR ).

This defines a functor M : S/Pic(R) → ModR .
As noted in [2, 7.7], [3, Sect. 3], Pic(R) is an E∞-group. If G is an E∞-monoid and

f : G → Pic(R) is an E∞-map, then M f becomes an E∞-R-algebra [2, 8.1], [3, 3.2].
When f = {R} is the constant map at R ∈ Pic(R), then M f � R ∧S[G] as E∞-R-algebras.

4.1 Themain result

We will need the following proposition.

Proposition 4.1 Consider �∞�∞ : Sp → Sp. The counit natural transformation

�∞�∞ ⇒ idSp

exhibits idSp as the excisive approximation to �∞�∞.
In particular, for a spectrum X, there is an equivalence

X � colimSp(�
∞�∞ X → ��∞�∞�X → �2�∞�∞�2X → · · · ) (4.2)

natural in X.
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Proof We will first establish the natural equivalence (4.2). We will then observe that this
equivalence is obtained from the counit �∞�∞ X → X , in such a way that the main
assertion will have been proven, by Sect. 2.(3).

Let X be a spectrum. First, we prove there is a natural equivalence of functors

MapSp(X ,−)
�−→ lim

n∈NMapS∗(�
∞�n X ,�∞�n−)

where the arrows in the sequential limit are loop functors. We do this carefully, taking care
of naturality: indeed, it is easier to see that the two functors are objectwise equivalent using

that Sp � lim(· · · �−→ S∗
�−→ S∗) [16, 1.4.2.24], writing a mapping space as a pullback and

commuting pullbacks with limits.
By [15, 2.2.1.2], it suffices to establish an equivalence of the corresponding left fibrations.

The left hand side corresponds to the left fibration SpX/ → Sp. For the right hand side, first
observe that for n ∈ N, the functor MapS∗(�

∞�n X ,−) corresponds to the left fibration
(S∗)�∞�n X/ → S∗. Pulling back this left fibration along the functor �∞�n : Sp → S∗,

Sp ×S∗ (S∗)�∞�n X/ (S∗)�∞�n X/

Sp S∗�∞�n

gives us the left fibration that classifies the functor MapS∗(�
∞�n X ,�∞�n−). Taking

limits, it follows that the functor limn MapS∗(�
∞�n X ,�∞�n−) corresponds to the left

fibration limn(Sp ×S∗ (S∗)�∞�n X/) � Sp ×limN S∗ limn(S∗)�∞�n X/.
By the Yoneda lemma, a map of left fibrations SpX/ → Sp×limN S∗ limn(S∗)�∞�n X/ is

uniquely determined by a choice of object in the fiber of Sp×limN S∗ limn(S∗)�∞�n X/ → Sp
over X , which is given by the space {X}× limn MapS∗(�

∞�n X ,�∞�n X). Thus the object
(X , (id�∞�n X )n∈N) in the fiber induces a map of left fibrations over Sp

I : SpX/ → Sp ×limN S∗ limn
(S∗)�∞�n X/.

Wewant to prove this map is an equivalence. Note we can recover the right hand side directly
as the following pullback:

Sp ×limN S∗ limn(S∗)�∞�n X/ limn(S∗)�∞�n X/

Sp limNS∗.

π1

�
π2

�

The bottom equivalence is Sp � lim(· · · �−→ S∗
�−→ S∗) = limN S∗, from [16, 1.4.2.24].

This implies that the top horizontal map is an equivalence as well [15, 3.3.1.3]. Thus, in order
to prove that I is an equivalence, by 2-out-of-3 it suffices to show that

π2 ◦ I : SpX/ → lim
n

(S∗)�∞�n X/

is an equivalence.

First, we will construct an equivalence SpX/

�−→ limn(S∗)�∞�n X/. Then we will observe
it is indeed π2 ◦ I . We have

SpX/ � Sp	1 ×Sp 	0 �−→ (lim
N

S∗)	
1 ×limN S∗ 	0.
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Using that limits commute with pullbacks and exponentials (−)	
1
,

lim
N

((S∗)	
1 ×S∗ 	0) � lim

n
(S∗)�∞�n X/

gives us an equivalence.Notice this equivalence takes the object idX in SpX/ to (id�∞�n X )n∈N
and thus, by the Yoneda lemma, is equivalent to π2 ◦ I , as they both take idX to the same
object. This gives us the desired result.

Next, we have a natural equivalence

lim
n

MapS∗(�
∞�n X ,�∞�n−)

�−→ lim
n

MapSp(�
n�∞�∞�n X ,−)

induced by the adjunction (�∞,�∞). Finally, we have a natural equivalence

lim
n

MapSp(�
n�∞�∞�n X ,−)

�−→ MapSp(colimn�n�∞�∞�n X ,−).

Combining all three gives us a natural equivalence

MapSp(X ,−)
�−→ MapSp(colimn�n�∞�∞�n X ,−)

which by the Yoneda lemma is induced by a map colimn�n�∞�∞�n X → X and is
explicitly given by the image of the identity map idX under this natural equivalence. By
inspection, the map colimn�n�∞�∞�n X → X can be characterized as the unique map

that comes from the cocone given by �n�∞�∞�n X → �n�n X
�−→ X where the first

arrow is induced by the counit of the (�∞,�∞) adjunction. ��
Let us fix some notation necessary for the statement of the following theorem and its proof.

Let B∞ : GrpE∞(S ) → Spcn denote the standard equivalence between the ∞-categories
of E∞-groups and of connective spectra [16, 5.2.6.26]. Let B : GrpE∞(S ) → GrpE∞(S )

denote the bar construction functor, which can be defined in this context simply as the
functor that takes G to the pushout ∗ ← G → ∗. We will iterate this functor, getting
Bn : GrpE∞(S ) → GrpE∞(S ) for n ≥ 1.

If we take an E1-group instead of an E∞-group as input, then we can extend the bar
construction to a functor Bar : GrpE1

(S ) → S∗ [16, 5.2.2]. It agrees with BG whenever this
makes sense: namely, if G ∈ GrpE∞(S ), then the pointed space underlying BG is equivalent
to Bar of the E1-group underlying G; this follows from the remarks in [16, 5.2.2.3/4].

There are also iterated bar construction functors Bar(n) : GrpEn
(S ) → S ≥n∗ for n ≥ 1

taking an En-group and giving a pointed (n − 1)-connected space, obtained from iterations
of Bar [16, Page 802, 5.2.3]. These Bar(n) are equivalences [16, 5.2.6.10(3)], and coincide
with Bn after judicious forgetting of structure.

Theorem 4.3 Let R be an E∞-ring spectrum. Let f : G → Pic(R) be a map of E∞-groups.
There is an equivalence of M f -modules

L M f /R � M f ∧ B∞G.

Proof By [20, 4.11], Sn ⊗R M f � M f ∧ S[BnG] in CAlgM f //M f . Now, note that

Sn
˜⊗R M f � M f ∧ �∞ BnG (4.4)

as M f -modules. Indeed, since S0 � ∗+
(x0)+

(BnG)+ BnG is a cofiber sequence
inS∗ where x0 denotes the basepoint of BnG, then applying M f ∧�∞(−) we get a cofiber
sequence in ModM f

M f � M f ∧ �∞+ (∗) → M f ∧ �∞+ BnG → M f ∧ �∞ BnG,

123



The cotangent complex and Thom spectra 247

whereas by the definition of J in Lemma 3.23 we get the equivalence (4.4).
By Proposition 3.26 we get equivalences of M f -modules

L M f /R � colimModM f ( M f ∧ �∞G �(M f ∧ �∞ BG) �2(M f ∧ �∞ B2G) · · · )

� M f ∧ colimSp( �∞G ��∞ BG �2�∞ B2G · · · ) (4.5)

where in the second line we have used the stability of Sp and ModM f together with the fact
that M f ∧ − : Sp → ModM f commutes with colimits; note that � now denotes the loop
functor in Sp.

We will now prove that B∞G is equivalent to the colimit in (4.5), which we can rewrite
as

colimSp(�
∞U0G → ��∞i1Bar(U1G) → �2�∞i2Bar

(2)(U2G) → · · · ) (4.6)

whereUn : GrpE∞(S ) → GrpEn
(S ) is the forgetful functor, E0-groups are pointed spaces,

and in : S ≥n∗ → S∗ is the inclusion functor. Now note that B∞ is constructed as the limit
of the Bar(n) as follows [16, 5.2.6.26] (the functors βn in that reference are the inverses of
Bar(n) [16, 5.2.6.10(3)])

Spcn � lim(· · · �
S ≥n+1∗

�
S ≥n∗

� · · · �
S ≥1∗

�
S∗)

GrpE∞ (S ) � lim(· · ·

B∞ ∼

GrpEn+1
(S )

Bar(n+1)

GrpEn
(S )

Bar(n)

· · · GrpE1
(S )

Bar

S∗),

id

so in particular we have a commutative diagram

Spcn S ≥n∗

GrpE∞(S )

B∞

Un
GrpEn

(S )

Bar(n)

where the top horizontal functor is the projection to the corresponding term of the limit. After
composing it with in this functor becomes �∞−n = �∞�n : Spcn → S∗, the n-th space
functor. Therefore, (4.6) is equivalent to

colimSp(�
∞�∞ B∞G → ��∞�∞�B∞G → �2�∞�∞�2B∞G → · · · ).

This is equivalent to B∞G by Proposition 4.1. ��
Remark 4.7 Amodel-categorical version of Theorem 4.3 first appeared in [8, Corollary, Page
907]. Their result, however, only applies to Thom spectra of maps to BGL1(S), whereas ours
applies to maps to Pic(R) where R is any E∞-ring spectrum. Already considering maps into
Pic(S) leads to interesting, non-connective examples, as we shall now see.

Example 4.8 Let MU denote the complex cobordism spectrum, which is the Thom E∞-ring
spectrum of the complex J -homomorphism BU → Pic(S). Then

L MU � MU ∧ bu

as MU -modules,where bu denotes B∞ BU . This recovers [8,Corollary, Page 907]. Similarly,
let MU P denote the periodic complex cobordism spectrum, which is the Thom E∞-ring
spectrum of the complex J -homomorphism BU × Z → Pic(S). Then

L MU P � MU P ∧ ku
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as MU P-modules, where ku � B∞(BU ×Z) is the connective complex K -theory spectrum.

4.2 The cotangent complex as a Thom spectrum

IfG is not only an E∞-group but also an E∞-ring space in the sense of [11, 7.1], then B∞G is
a connective E∞-ring spectrum.Many interesting examples of E∞-ring spaces arise as group
completions of E∞-rig spaces (similar to E∞-ring spaces but now the underlying additive
structure does not necessarily admit inverses). For example,

⊔

n≥0 B�n ,
⊔

n≥0 BU (n) and
⊔

n≥0 BGLn(A) where A is a commutative ring are examples of E∞-rig spaces: their corre-
sponding connective E∞-ring spectra areS, ku and the algebraic K -theory K (A) respectively.
See [11, Sects. 7/8] for more details.

Proposition 4.9 Let R be an E∞-ring spectrum, let G be an E∞-ring space and let f : G →
Pic(R) be an E∞-map (with respect to the E∞-group structure of G). Then the R-module
L M f /R underlies a Thom E∞-(R ∧ B∞G)-algebra.

Proof First, note that if R → T is amap of E∞-ring spectra, then extension of scalars restricts
to an E∞-map − ∧R T : Pic(R) → Pic(T ) making the following diagram commute:

Pic(R)

−∧R T

ModR

−∧R T

Pic(T ) ModT .

Indeed, the functor − ∧R T : ModR → ModT takes invertible R-modules to invertible
T -modules.

Now recall that, as an R-module, M f � colim(G
f−→ Pic(R) → ModR). Let T =

R ∧ B∞G. Since − ∧R T : ModR → ModT preserves colimits, we get equivalences of
T -modules

M f ∧ B∞G � M f ∧R T

� colim( G
f

Pic(R) ModR
−∧R T

ModT )

� colim( G
f

Pic(R)
−∧R T

Pic(T ) ModT )

= M((− ∧R T ) ◦ f ).

Since we proved in Theorem 4.3 that M f ∧ B∞G � L M f /R and (−∧R T )◦ f is an E∞-map,
this proves the result. ��
Remark 4.10 This echoes with the result that the factorization homology of a Thom En-
algebra is a Thom spectrum [12, 4.2], or with the related result that the tensor of a Thom
E∞-algebra with a space is again a Thom E∞-algebra [20, 4.10].

Example 4.11 Continuing the example of MU P from Example 4.8, if we take f to be the
complex J -homomorphism BU ×Z → Pic(S), then L MU P � MU P ∧ku underlies a Thom
E∞-ku-algebra, even if ku is not the Thom spectrum of any E3-map from an E3-group [4].

In Proposition 4.9, we proved that L M f /R is the Thom module of an E∞-map provided
G is an E∞-ring space. The hypothesis was not superfluous: let us now give an example of
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a cotangent complex of a Thom E∞-ring spectrum which cannot be the Thom module of an
E∞-map, simply because it would then be an E∞-ring spectrum and this cannot happen in
this example:

Example 4.12 Let G be an abelian group of infinite order such that every element has finite
order. For example, one could takeQ/Z or an infinite direct sum of cyclic groups of arbitrarily
large order.

Let f : G → Pic(S) be the the constant map at S.
Let us prove that L M f is not the underlying spectrum of an E∞-ring spectrum. Such a

structure would induce a ring structure on π0(L M f ), so it suffices to prove that the latter has
no ring structure extending its abelian group structure.

Before we prove this, let us use Theorem 4.3 to compute L M f . We have equivalences of
spectra

L M f � M f ∧ B∞G � �∞+ G ∧ H G �
∨

G

S ∧ H G �
∨

G

H G

where we used the fact that B∞G � H G is the Eilenberg–Mac Lane spectrum of G, and
that since G is a discrete group then �∞+ G is a wedge of sphere spectra. In particular,
π0(L M f ) = ⊕

G G.
Now, note that G ′ = ⊕

G G is again an abelian group of infinite order such that every
element has finite order. This implies that it is not the underlying abelian group of a ring. If it
were, the multiplicative unit would have finite order, and this number would bound the order
of all the other elements, contradicting that G ′ has infinite order.

Remark 4.13 As we just observed, in general L M f /R is not the Thommodule of an E∞-map.
It is, however, the colimit of iterated loops of Thom modules of E∞-maps by (4.5), since by
[20, 4.8]

M f ∧ �∞ BnG � M(G × BnG
π1−→ G

f−→ Pic(R))

and so

L M f /R � colimModM f (�
n M(G × BnG

π1−→ G
f−→ Pic(R))).

5 Étale extensions and solid ring spectra

We will now extend the results of the previous section to compute cotangent complexes of
two different types of extensions of Thom E∞-algebras.

Following [16, 7.5.0.1/2/4], a map of (ordinary) commutative rings A → B is étale if B
is finitely presented as an A-algebra, B is flat as an A-module, and there exists an idempotent
element e ∈ B ⊗A B such that the multiplication map B ⊗A B → B induces an isomorphism
(B ⊗A B)[e−1] ∼= B. If A → B is a map of E∞-ring spectra, it is étale if π0(A) → π0(B)

is étale and B is flat as an A-module, i.e. the natural map

π∗(A) ⊗π0(A) π0(B) → π∗(B)

is an isomorphism.
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Proposition 5.1 If A → B is an étale map of E∞-ring spectra, then L B/A vanishes. There-
fore, if R is an E∞-ring spectrum and A → B is a map of E∞-R-algebras which is étale,
there is an equivalence of B-modules

L B/R � B ∧A L A/R .

Proof The first statement is [16, 7.5.4.5]. Note that Lurie adds a connectivity hypothesis, but
it is not used in the proof. The second statement now follows from the transitivity cofiber
sequence [16, 7.3.3.6]

B ∧A L A/R → L B/R → L B/A.

��
Corollary 5.2 Let R be an E∞-ring spectrum. Let f : G → Pic(R) be a map of E∞-groups.
Let M f → B be a map of E∞-R-algebras which is étale. There is an equivalence of B-
modules

L B/R � B ∧ B∞G.

Proof By Proposition 5.1, L B/R � B ∧M f L M f /R as B-modules, and by Theorem 4.3 we
have an equivalence of M f -modules L M f /R � M f ∧ B∞G. Putting these together finishes
the proof. ��
Example 5.3 Let R be an E∞-ring spectrum and x ∈ π0(R). By [16, 7.5.0.6/7], there is an
étale map of E∞-ring spectra R → R[x−1] which universally inverts the homotopy element
x . We deduce from Proposition 5.1 that there is an equivalence of R[x−1]-modules

L R[x−1] � (L R)[x−1].
There are interesting instances where we want to invert a homotopy element x that is not

in degree 0, as we shall see below. Unfortunately, in this case the map R → R[x−1] may not
be étale: indeed, it may not be flat. For example, if R is connective then any flat R-module
is necessarily connective, as follows from the definition [16, 7.2.2.11].

To remedy this, we recall the notion of solidity: An E∞-A-algebra B is solid if the
multiplication map μ : B ∧A B → B is an equivalence. Note in this case B ∧A B � B as
objects of CAlgB//B .

Proposition 5.4 If A is an E∞-ring spectrum and B is a solid E∞-A-algebra, then L B/A

vanishes. Therefore, if R is an E∞-ring spectrum, A an E∞-R-algebra and B a solid E∞-
A-algebra, then there is an equivalence of B-modules

L B/R � B ∧A L A/R .

Proof For the first statement, consider the equivalences

L B/A � (P1 I )(B ∧A B) � (P1 I )(B)

where the first equivalence is (3.11) and the second follows from solidity. Now (P1 I )(B) is
trivial, since B ∈ CAlgB//B is a zero object and P1 I is reduced (see Sect. 2.(3)).

The second statement now follows from the transitivity cofiber sequence [16, 7.3.3.6]

B ∧A L A/R → L B/R → L B/A.

��
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The following corollary is proven analogously to Corollary 5.2.

Corollary 5.5 Let R be an E∞-ring spectrum. Let f : G → Pic(R) be a map of E∞-groups.
Let B be a solid E∞-M f -algebra. There is an equivalence of B-modules

L B/R � B ∧ B∞G.

Example 5.6 Let R be an E∞-ring spectrum and x ∈ π∗(R). By [17, 4.3.17], there exists
an E∞-R-algebra R[x−1] where x has been universally inverted. Now note that R[x−1] is a
solid E∞-R-algebra. Indeed, by [20, 7.3], we have

R[x−1] ∧R R[x−1] � R[x−1][x−1] � R[x−1].
Therefore, by Proposition 5.4, we have an equivalence

L R[x−1] � (L R)[x−1].
This generalizes Example 5.3, where x was only allowed to be in degree zero.

Example 5.7 Let KU denote the periodic complex topological K -theory E∞-ring spectrum.
Snaith [22], [23] proved that KU � S[K (Z, 2)][x−1] as homotopy commutative ring spectra
(i.e. commutative monoids in the homotopy category of spectra), where x ∈ π2S[K (Z, 2)]
is induced by the fundamental class in K (Z, 2). See [17, 6.5.1] for one improvement of such
an equivalence to an equivalence of E∞-ring spectra.

Since S[K (Z, 2)] � M(K (Z, 2)
{S}−→ Pic(S)), we can apply Corollary 5.5 and Exam-

ple 5.6 to deduce that L KU � KU ∧ �2HZ. Recall that the inclusion Z → Q induces an
equivalence KU ∧HZ � KU ∧HQ [25, 16.25]. Combining this result with Bott periodicity,
we obtain:

L KU � KU ∧ HQ,

the rationalization of KU , a result first gotten in [24, 8.4] in a model-categorical context.
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