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1. Introduction

Let (Pn)n≥0 be the Pell sequence given by

P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn for all n ≥ 0.

It is well-known that
P 2
n + P 2

n+1 = P2n+1 holds for all n ≥ 0. (1.1)

From this identity, we see that the equation

P xn + P xn+1 + · · ·+ P xn+k−1 = Pm (1.2)

has the solution m = 2n + 1 with (x, k) = (2, 2), for all n ≥ 1. We call this a trivial solution.
Another trivial solution is given by x = k = 1 and m = n. We will ignore such solutions. We prove
the following theorem.

Theorem 1.1. The Diophantine equation (1.2) has only trivial solutions in positive integers
(m,n, k, x).

We use Baker’s method to prove our main result.

2. Some properties of the Pell sequence

Let α = 1+
√

2 and β = 1−
√

2 be the roots of the characteristic quadratic equation x2−2x−1 = 0
of the Pell sequence (Pn)n≥0. The Binet formula

Pn =
αn − βn

2
√

2
holds for all n ≥ 0. (2.1)
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This easily implies that the inequalities

αn−2 ≤ Pn ≤ αn−1 (2.2)

hold for all integers n ≥ 1. It is easy to prove that

Pn
Pn+1

≤ 3

7
(2.3)

holds for all n ≥ 2. It is also easy to check that the inequality

P1 + · · ·+ Pn < Pn+1 (2.4)

holds for all n ≥ 1.

3. The small cases

We find it convenient to rule out the small cases here, namely the cases when k ∈ {1, 2} and
x = 1. We will later rule out the case of x = 2 in Section 7. Note that for k = 1, the equation
becomes P xn = Pm, which has only trivial solutions (see [11: Theorem 1]).

If k = 2, then we get only trivial solutions by the main result in [12]. Thus, k ≥ 3, so n+ k ≥ 4.
Furthermore, from inequality (2.4), we have

Pn+k < Pn + Pn+1 + · · ·+ Pn+k < Pn+k+1.

Therefore, there is no non-trivial solution for x = 1.

4. Linear forms in logarithms

The proof of our main theorem uses lower bounds for linear forms in logarithms of algebraic
numbers and a version of the Baker-Davenport reduction method. So let us recall some results.
For any non-zero algebraic number η of degree d over Q, whose minimal polynomial over Z is

a0

d∏
i=1

(
X − η(i)

)
(with a0 > 0), we denote by

h(η) =
1

d

(
log a0 +

d∑
i=1

log max
(

1,
∣∣∣η(i)

∣∣∣ ))
the usual absolute logarithmic height of η. With this notation, Matveev proved the following
theorem (see [9]).

Theorem 4.1. Let α1, . . . , αr be real algebraic numbers and let b1, . . . , br be nonzero integers. Let
D be the degree of the number field Q(α1, . . . , αr) over Q and let Aj be a positive real number
satisfying

Aj ≥ max
{
Dh(αj), | logαj |, 0.16

}
for j = 1, . . . , r.

Assume that
B ≥ max{|b1|, . . . , |br|}.

If Λ =
r∏
j=1

α
bj
j − 1 6= 0, then∣∣∣∣ r∏
j=1

α
bj
j − 1

∣∣∣∣ ≥ exp
(
− 1.4 · 30r+3 · r4.5 ·D2(1 + logD)(1 + logB)A1 . . . Ar

)
.
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When r = 2 and α1, α2 are positive and multiplicatively independent, we can use a result of
Laurent, Mignotte and Nesterenko [7]. Namely, let in this case B1, B2 be real numbers larger than
1 such that

logBi ≥ max

{
h(αi),

| logαi|
D

,
1

D

}
, for i = 1, 2,

and put

b′ :=
|b1|

D logB2
+

|b2|
D logB1

.

Put
Λ := b1 logα1 + b2 logα2. (4.1)

We note that Λ 6= 0 because α1 and α2 are multiplicatively independent. The following result is
due to Laurent, Mignotte and Nesterenko ([7: Corollary 2, p. 288]).

Theorem 4.2 (Laurent, Mignotte, Nesterenko). With the above notations, assuming that α1, α2

are positive and multiplicatively independent, then

log |Λ| > −24.34D4

(
max

{
log b′ + 0.14,

21

D
,

1

2

})2

logB1 logB2. (4.2)

Note that Γ = eΛ−1 in case r = 2, which explains the connection between Theorems 4.1 and 4.2.

5. Reduction method

In 1998, Dujella and Pethő in [6: Lemma 5(a)] gave a version of the reduction method based
on the Baker-Davenport lemma [1]. We next present the following lemma from [4], which is an
immediate variation of the result due to Dujella and Pethő [6], and will be one of the key tools
used in this paper to reduce the upper bounds on x or m of the Diophantine equation (1.2).

Lemma 5.1. Let M be a positive integer, let p/q be a convergent of the continued fraction of the
irrational γ such that q > 6M , and let A,B, µ be some real numbers with A > 0 and B > 1. Let

ε = ‖µq‖ −M · ‖γq‖,
where ‖ · ‖ denotes the distance from the nearest integer. If ε > 0, then there is no solution of the
inequality

0 < |mγ − n+ µ| < AB−k

in positive integers m,n and k with

m ≤M and k ≥ log(Aq/ε)

logB
.

The above lemma cannot be applied when µ = 0 (since then ε < 0). In this case, we use
the following classical result in the theory of Diophantine approximation, which is the well-known
Legendre criterion (see [10: Theorem 8.2.4]).

Lemma 5.2 (Legendre). (i) Let τ be real number and x, y integers such that∣∣∣τ − x

y

∣∣∣ < 1

2y2
. (5.1)

Then x/y = pk/qk is a convergent of τ . Furthermore,∣∣∣τ − x

y

∣∣∣ ≥ 1

(ak+1 + 2)y2
. (5.2)
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(ii) If x, y are integers with y ≥ 1 and

|yτ − x| < |qkτ − pk|,
then y ≥ qk+1.

6. A inequality for m in terms of n, k, x

Recall that we are working on equation (1.2) and we are now assuming that k ≥ 3, x ≥ 3.
Observe that

P xn + P xn+1 + · · ·+ P xn+k−1 > P xn+k−1 ≥ α(n+k−3)x,

where we used inequality (2.2). On the other hand, we have

P xn + P xn+1 + · · ·+ P xn+k−1 ≤ (Pn + Pn+1 + · · ·+ Pn+k−1)x

≤ (P0 + P1 + P2 + · · ·+ Pn+k−1)x < P xn+k ≤ α(n+k−1)x,
(6.1)

where we used the fact that inequality (2.4) holds for all n ≥ 1. Thus,

α(n+k−3)x < P xn + P xn+1 + · · ·+ P xn+k−1 < α(n+k−1)x

and

αm−2 ≤ Pm ≤ αm−1.

Comparing the two bounds above, we get:

(n+ k − 3)x < m− 1 < m and m− 2 < (n+ k − 1)x,

so that

(n+ k − 3)x < m ≤ (n+ k − 1)x+ 1.

We record this as a lemma.

Lemma 6.1. If (m,n, k, x) is any nontrivial solution of (1.2) in positive integers, then the inequal-
ities

(n+ k − 3)x < m ≤ (n+ k − 1)x+ 1

hold.

7. The case when x = 2

We consider the case x = 2, k ≥ 3. In this case, equation (1.2) becomes

P 2
n + P 2

n+1 + · · ·+ P 2
n+k−1 = Pm.

By Lemma 6.1, we have 2(n+k−3) < m ≤ 2(n+k−1)+1. That is, 2(n+k)−5 ≤ m ≤ 2(n+k)−1.
However, since P 2

n+k−2 + P 2
n+k−1 = P2n+2k−3, it follows that

Pm = P 2
n + · · ·+ P 2

n+k−2 + P 2
n+k−1

≥ P 2
n + P2n+2k−3 > P2n+2k−3,

so m ≥ 2n+ 2k − 2. If k is even then

Pm ≤ (P 2
n + P 2

n+1) + · · ·+ (P 2
n+k−2 + P 2

n+k−1)

= P2n+1 + · · ·+ P2n+2k−3 < P2n+2k−2,
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so m < 2n + 2k − 2, which is a contradiction. The same conclusion holds when k is odd since in
that case

Pm ≤ (P 2
n−1 + P 2

n) + · · ·+ (P 2
n+k−2 + P 2

n+k−1)

= P2n−1 + · · ·+ P2n+2k−3 < P2n+2k−2.

8. Bounds on x,m in terms of n+ k

Recall that k ≥ 3, x ≥ 3 and n+ k ≥ 4. Now, we rewrite equation (1.2) as

αm

2
√

2
− P xn+k−1 = P xn + P xn+1 + · · ·+ P xn+k−2 +

βm

2
√

2
.

So ∣∣∣∣ αm2
√

2
− P xn+k−1

∣∣∣∣ ≤ P xn + P xn+1 + · · ·+ P xn+k−2 +
|β|m

2
√

2
and using again inequality (2.4), we have that

P xn + P xn+1 + · · ·+ P xn+k−3 ≤ (Pn + Pn+1 + · · ·+ Pn+k−3)x < P xn+k−2,

so that P xn + P xn+1 + · · ·+ P xn+k−2 < 2P xn+k−2. Then∣∣∣∣ αm2
√

2
− P xn+k−1

∣∣∣∣ < 2P xn+k−2 +
|β|m

2
√

2
< 3P xn+k−2,

since P xn+k−2 ≥ 1, while |β|m /(2
√

2) < 1. Dividing both sides of the inequality above by P xn+k−1

and using the inequality (2.3), we obtain∣∣∣αm(2
√

2)−1P−xn+k−1 − 1
∣∣∣ < 3

(
Pn+k−2

Pn+k−1

)x
<

3

2.3x
. (8.1)

Let
Λ1 := αm(2

√
2)−1P−xn+k−1 − 1, (8.2)

which is the expression appearing under the absolute value of the left-hand side of inequality (8.1).

Let us check that Λ1 6= 0. If Λ1 = 0, then αm = 2
√

2P xn+k−1, which implies that α2m = 8P 2x
n+k−1 ∈

Z. This is a contradiction since no power of α in nonzero integer exponent can be an integer. Thus,
Λ1 6= 0. We will use Matveev’s theorem to get a lower bound for Λ1. Put

r := 3, α1 := α, α2 := 2
√

2, α3 := Pn+k−1, b1 := m, b2 := −1, b3 := −x.
Note that α1, α2, α3 ∈ Q(

√
2). Thus, we take D := 2. Since

h(α1) = (logα)/2, h(α2) = (log 8)/2 and h(α3) = logPn+k−1 ≤ (n+ k − 2) logα,

we take
A1 := logα, A2 := log 8, A3 := 2(n+ k − 2) logα.

Finally, Lemma 6.1 implies that m > (n + k − 3)x ≥ x since n + k − 3 ≥ 1, so we take B := m.
Hence, Matveev’s theorem implies that

log |Λ1| ≥ −1.4× 306 × 34.5 × 22 × (1 + log 2)(logα)(log 8)× 2(n+ k − 2) logα(1 + logm).

So

log |Λ1| > −3.14× 1012(n+ k − 2)(1 + logm). (8.3)

Thus, inequalities (8.1) and (8.3) imply that

x < 3.77× 1012(n+ k − 2)(1 + logm) < 6.04× 1012(n+ k − 2) logm, (8.4)
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where we used the fact that 1 + logm < 1.6 logm, for m ≥ 6. Using again Lemma 6.1, we have
that

m < (n+ k − 1)x+ 2 < 6.04× 1012(n+ k − 2)(n+ k − 1) logm+ 2

< 6.04× 1012(n+ k)2 logm.

So
m

logm
< 6.04× 1012(n+ k)2. (8.5)

Using the fact that for all A ≥ 3
y

log y
< A yields y < 2A logA,

with A := 6.04× 1012(n+ k)2, y := m, we get that

m < 2× 6.04× 1012(n+ k)2 log
(
6.04× 1012(n+ k)2

)
< 1.21× 1013(n+ k)2

(
log(6.04× 1012) + 2 log(n+ k)

)
< 1.21× 1013(n+ k)2 (29.43 + 2 log(n+ k))

< 2.82× 1014(n+ k)2 log(n+ k).

In the above chain of inequalities, we used the fact that n+ k ≥ 4, which implies that

29.43 + 2 log(n+ k) < 23.3 log(n+ k).

Going back to inequality (8.4), we get that

x < 6.04× 1012(n+ k − 2) log
(
2.82× 1014(n+ k)2 log(n+ k)

)
= 6.04× 1012(n+ k − 2)

(
log(2.82× 1014) + 2 log(n+ k) + log log(n+ k)

)
< 6.04× 1012(n+ k − 2) (33.28 + 3 log(n+ k))

< 6.04× 1012(n+ k − 2) (27.1 log(n+ k))

< 1.64× 1014(n+ k − 2) log(n+ k).

In the above chain of inequalities, we used the fact that log log(n+ k) < log(n+ k) together with
the fact that 33.28 + 3 log(n+ k) < 27.1 log(n+ k) for n+ k ≥ 4. We record this as a lemma.

Lemma 8.1. If (m,n, k, x) is any nontrivial solution in positive integers of equation (1.2) with
x ≥ 3, k ≥ 3 and n+ k ≥ 4, then both inequalities

x < 1.64× 1014(n+ k − 2) log(n+ k); and m < 2.82× 1014(n+ k)2 log(n+ k)

hold.

9. The case of small n+ k

Here, we assume that 4 ≤ n+ k ≤ 90. Then, by Lemma 8.1, we have

x < 1.64× 1014(n+ k − 2) log(n+ k)

< 1.64× 1014 × 88 log 90 < 6.5× 1016,

and

m < 2.82× 1014(n+ k)2 log(n+ k)

< 2.82× 1014 × 902 log 90 < 1.03× 1019.
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We consider again the expression Λ1 given by expression (8.2). Since x ≥ 3, we have from (8.1)
that

|Λ1| <
3

2.33
<

1

4
.

By Lemma 6.1, we have m ≤ (n+ k − 1)x+ 1 < (n+ k)x ≤ 90x. We put

Γ1 := m logα− log(2
√

2)− x logPn+k−1.

Thus, Λ1 = eΓ1 − 1. Since the inequality

|Λ1| <
1

4
implies |Γ1| <

1

2

and since |x| < 2 |ex − 1| holds for all x ∈ [−1/2, 1/2], we get that

|Γ1| < 2
∣∣eΓ1 − 1

∣∣ = 2 |Λ1| <
6

2.3x
.

So

0 <

∣∣∣∣∣m( logα

logPn+k−1

)
− x−

( log(2
√

2

logPn+k−1

)∣∣∣∣∣
<

6

2.3x logPn+k−1
<

4

2.3x
<

4

(2.31/90)m
,

(9.1)

where we used the fact that logPn+k−1 ≥ logP3 ≥ log 5 > 1.5. For us, inequality (9.1) is

0 < |mγ − x+ µ| < AB−m,

where

γ :=
logα

logPn+k−1
, µ := − log(2

√
2)

logPn+k−1
, A := 4, B := 1.009 < 2.31/90.

We can take M := 1.03 × 1019. For the computations, if the first convergent p/q of γ such that
q > 6M does not satisfy the condition ε > 0, then we use the next convergent until we find the
one that satisfies the condition. We do this for n + k ∈ {4, 5, . . . , 90}. In all cases, we obtained
m ≤ 18164.

Next, since (n+ k − 3)x ≤ m, we have

x ≤ m/(n+ k − 3) < 18164/(n+ k − 3).

A computer search with Maple revealed that there are no solutions to the equation (1.2) in the
range n+ k ∈ {4, 5, . . . , 90}, m ∈ [6, 18164] and x ∈ [3, 18164/(n+ k − 3)].

10. The bound on x

From now on, we suppose that n+ k ≥ 91.

Lemma 10.1. If (k, n,m, x) is any nontrivial solution in positive integers of equation (1.2) with
k ≥ 3, x ≥ 3, then x ≤ 5.

P r o o f. We suppose that x ≥ 6 in order to get a contradiction. By Lemma 8.1, we have

x

α2(n+k−1)
<

1.64× 1014(n+ k − 2) log(n+ k)

α2(n+k−1)
<

1

αn+k
,
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where we used the fact that the inequality 1.64 × 1014(n + k − 2) log(n + k) < αn+k−2 holds for
n+ k ≥ 45, which is the case for us. We now write

P xn+k−1 =
α(n+k−1)x

8x/2

(
1− (−1)n+k−1

α2(n+k−1)

)x
.

If n+ k − 1 is odd, then

1 <

(
1− (−1)n+k−1

α2(n+k−1)

)x
=

(
1 +

1

α2(n+k−1)

)x
= exp

(
x log

(
1 +

1

α2(n+k−1)

))
< exp

( x

α2(n+k−1)

)
< exp

(
1

αn+k

)
< 1 +

2

αn+k
,

because
1

αn+k
≤ α−91 is very small while if n+ k − 1 is even, then

1 >

(
1− (−1)n+k−1

α2(n+k−1)

)x
= exp

(
x log

(
1− 1

α2(n+k−1)

))
> exp

(
−x

α2(n+k−1)

)
> exp

(
−1

αn+k

)
> 1− 2

αn+k
,

again because
1

αn+k
≤ α−91 is very small. Hence, we obtain

P xn+k−1 =
α(n+k−1)x

8x/2

(
1− (−1)n+k−1

α2(n+k−1)

)x
=
α(n+k−1)x

8x/2
(1 + ζ), |ζ| < 1

αn+k
.

In particular, |ζ| < 1/2, so that

α(n+k−1)x/8x/2 ∈ ((2/3)P xn+k−1, 2P
x
n+k−1).

Thus,

αm

81/2
− α(n+k−1)x

8x/2
(1 + ζ) =

βm

81/2
+

( n+k−2∑
j=n

P xj

)
.

Dividing across by α(n+k−1)x/8x/2, we get∣∣∣αm−(n+k−1)x8(x−1)/2 − 1
∣∣∣ ≤ |ζ|+ 1

81/2αm

(
8x/2

α(n+k−1)x

)
+

(
8x/2

α(n+k−1)x

)( n+k−2∑
j=n

P xj

)
.

We have |ζ| < 1/αn+k. Since α(n+k−1)x/8x/2 ∈ ((2/3)P xn+k−1, 2P
x
n+k−1), we also have

1

81/2αm

(
8x/2

α(n+k−1)x

)
<

3

2 · 81/2αmP xn+k−1

<
1

αn+k
.

Finally, since P`/P`+1 ≤ 3/7 for all ` ≥ 2, we have that(
8x/2

α(n+k−1)x

)( n+k−2∑
j=n

P xj

)
<

3

2

((
Pn+k−2

Pn+k−1

)x
+

(
Pn+k−3

Pn+k−1

)x
+ · · ·+

(
Pn

Pn+k−1

)x)

=
3

2

(
Pn+k−2

Pn+k−1

)x(
1 +

(
Pn+k−3

Pn+k−2

)x
+ · · ·+

(
Pn

Pn+k−2

)x)
<

1

2.3x

(
2 +

(
3

7

)2

+

(
3

7

)4

+ . . .

)
<

2.23

2.3x
.

1340



ON THE EXPONENTIAL DIOPHANTINE EQUATION Px
n + Px

n+1 + · · · + Px
n+k−1 = Pm

Thus, ∣∣∣αm−(n+k−1)x8(x−1)/2 − 1
∣∣∣ < 2

αn+k
+

2.23

2.3x
<

5

2.3min{x,n+k} .

Recall that x ≥ 6. Then the above upper bound is smaller than 1/2, so

|(m− (n+ k − 1)x) logα− (x− 1) log(2
√

2)| < 10

2.3min{x,n+k} . (10.1)

The expression on the right is smaller than 1/2, so |m − (n + k − 1)x| < 2x. Here, we apply
Theorem 4.2 with

r := 2, α1 := α, α2 := 2
√

2, b1 := m− (n+ k − 1)x, b2 := x− 1.

Again K = Q(
√

2) has D = 2. We take logB1 := 1/2, logB2 := (log 8)/2. Thus,

b′ =
|m− (n+ k − 1)x|

2 logB2
+

x− 1

2 logB1
=
|m− (n+ k − 1)x|

log 8
+ x− 1 < 2x

since
|m− (n+ k − 1)x|

log 8
<

2x

log 8
< x.

We thus get that

log |Λ| > −24.34× 24(1/2)(log 8)/2 max{log(2x) + 0.14, 10.5}2

> −203(max{log(2.5x), 10.5})2.

Combining the above inequality with (10.1), we get

min{x, n+ k} log(2.3)− log(10) < 203(max{log(2.5x), 10.5})2.

If the maximum in the right above is 10.5, then log(2.5x) ≤ 10.5 which leads to

x < 14, 527. (10.2)

Otherwise, we get
min{x, n+ k} log(2.3)− log(10) < 203(log(2.5x))2,

which leads to
min{x, n+ k} < 625(log x)2,

where we used the fact that

log(2.5x) = log(2.5) + log x < 0.92 + log x < 1.6 log x for all x ≥ 6.

If
min{x, n+ k} = x,

we get x < 625(log x)2. This implies
x < 80, 000. (10.3)

Finally, it remains to consider the possibility

min{x, n+ k} = n+ k.

In this case, we get n+ k < 625(log x)2. So, by Lemma 8.1, we get that

n+ k < 625
(
log(1.64× 1014(n+ k − 2) log(n+ k))

)2
< 625 (32.74 + 2 log(n+ k)))

2

< 625 (32.74 + 2 log(n+ k)))
2
< 56, 406.3 (log(n+ k))

2
,

where we used the fact that log log(n+ k) < log(n+ k) and log(1.64× 1014) < 32.74 and

32.74 + 2 log(n+ k) < 9.5 log(n+ k),
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which holds for n+ k ≥ 90. Thus,

n+ k < 1.6× 107.

So, again by Lemma 8.1, we get that

x < 1.64× 1014 × 1.6× 107 log(1.6× 107),

which gives

x < 4.4× 1022. (10.4)

In conclusion, from (10.2), (10.3) and (10.4), we have that inequality (10.4) always holds. We now
return to inequality (10.1) and divide it across by (logα)(x− 1) to get∣∣∣∣∣ log(2

√
2)

logα
− (n+ k − 1)x−m

x− 1

∣∣∣∣∣ < 10

(logα)(x− 1)2.3min{x,n+k} . (10.5)

Since x ≥ 6, we have 2.3x > (20/ logα)(x− 1). Furthermore, since n+ k ≥ 91, we have

2.3n+k

(20/ logα)
≥ 2.391

(20/ logα)
> 3.6× 1031 > x− 1.

To summarize, the assumption x ≥ 6 implies

2.3min{x,n+k}

(10/ logα)
> 2(x− 1),

and therefore inequality (10.5) implies∣∣∣∣∣ log(2
√

2)

logα
− (n+ k − 1)x−m

x− 1

∣∣∣∣∣ < 1

2(x− 1)2
.

Thus, we can apply Lemma 5.2 to conclude that ((n + k − 1)x − m)/(x − 1) = pt/qt for some

convergent pt/qt of τ := log(2
√

2)/ logα. The continued fraction of τ starts as

[1, 5, 1, 1, 3, 3, 1, 1, 7, 3, 1, 1, . . .]

with the 46st convergent p46/q46 satisfying q46 > 2.2× 1023 > x. Thus, by Lemma 5.2, we have

|(m− (n+ k − 1)x) logα− (x− 1) log(2
√

2)| ≥ (logα)|m− (n+ k − 1)x− (x− 1)τ |
> (logα)|p45 − q45τ | > 3.96× 10−24,

and now inequality (10.1) shows that

2.3min{x,n+k} <
10× 1024

3.96
< 2.53× 1024.

This gives min{x, n+ k} ≤ 67, so x ≤ 67, since n+ k ≥ 91. The sequence of convergents of τ is

1,
6

5
,

7

6
,

13

11
,

46

39
,

151

128
, . . . .

The only convergents of the form pt/qt with qt a divisor of (x − 1) and x ∈ [6, 67] are the first 5
numbers above. Thus, t ∈ {0, 1, 2, 3, 4}. For each one of them, we get that qt | x− 1 so x ≥ qt + 1.
Thus, x ≥ max{6, qt + 1}. Now inequality (10.5) implies that∣∣∣∣∣ log(2

√
2)

logα
− pt
qt

∣∣∣∣∣ < 10

(logα) max{5, qt}2.3max{6,qt+1} .

We checked that this last inequality fails for all t ∈ {0, 1, 2, 3, 4}. Thus, the assumption x ≥ 6 is
false, therefore x ≤ 5 which is what we wanted. �

1342



ON THE EXPONENTIAL DIOPHANTINE EQUATION Px
n + Px

n+1 + · · · + Px
n+k−1 = Pm

11. Bounding k

From now, we assume that 3 ≤ x ≤ 5 and n + k ≥ 91. We take l to be some number in
{n, n + 1, . . . , n + k − 1} such that l ≥ 45. For example, we can take l = n + bk/2c and then
certainly l ≥ (n + k)/2 ≥ 45 since n + k ≥ 91. Further, if say k ≤ 46, we can take l = n =
(n+k)−k ≥ 91−46 = 45. We make these choices more precise later. Let j ∈ {l+1, . . . , n+k−1}.
We have

x

α2j
≤ 5

α2l+2
<

α2

α2l+2
=

1

α2l
,

We now write

P xj =
αjx

8x/2

(
1− (−1)j

α2j

)x
.

If j is odd, then

1 <

(
1− (−1)j

α2j

)x
=

(
1 +

1

α2j

)x
= exp

(
x log

(
1 +

1

α2j

))
< exp

( x

α2j

)
< exp

(
1

α2l

)
< 1 +

2

α2l
,

because
1

α2l
≤ α−90 is very small. If j is even, then

1 >

(
1− (−1)j

α2j

)x
= exp

(
x log

(
1− 1

α2j

))
> exp

(
−2x

α2j

)
> exp

(
−2

α2l

)
> 1− 2

α2l
,

again because
1

α2l
≤ α−90. So, we have that∣∣∣∣P xj − αjx

8x/2

∣∣∣∣ =
αjx

8x/2

∣∣∣∣(1− (−1)j

α2j

)x
− 1

∣∣∣∣ < αjx

8x/2

(
2

α2l

)
.

We now return to our equation (1.2) and rewrite it as

αm − βm

2
√

2
= Pm = P xn + P xn+1 + · · ·+ P xl + P xl+1 + · · ·+ P xn+k−1,

and furthermore

αm − βm

2
√

2
= P xn + P xn+1 + · · ·+ P xl +

n+k−1∑
j=l+1

αjx

8x/2
+

n+k−1∑
j=l+1

(
P xj −

αjx

8x/2

)
.

Thus, ∣∣∣∣∣ αm81/2
− α(l+1)x

8x/2

n+k−l−2∑
i=0

αix

∣∣∣∣∣
=

∣∣∣∣∣∣ β
m

81/2
+

n+k−1∑
j=l+1

(
P xj −

αjx

8x/2

)
+ P xn + P xn+1 + · · ·+ P xl

∣∣∣∣∣∣
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≤ 1

αm
+

n+k−1∑
j=l+1

∣∣∣∣P xj − αjx

8x/2

∣∣∣∣+ P xn + P xn+1 + · · ·+ P xl

<
1

αm
+

n+k−1∑
j=l+1

∣∣∣∣P xj − αjx

8x/2

∣∣∣∣+ P xl

(
1 +

(
Pl−1

Pl

)x
+

(
Pl−2

Pl

)x
+ . . .

)

<
1

αm
+

n+k−1∑
j=l+1

αjx

8x/2

(
2

α2l

)
+ P xl

(
2 +

1

3
+

1

32
+ . . .

)

=
1

αm
+
α(l+1)x

8x/2

(
2

α2l

) n+k−l−2∑
i=0

αix + 2.5α(l−1)x. (11.1)

In the above chain of inequalities, we used the facts that Pi/Pi+1 ≤ 3/7 < 1/2.3 for i ≥ 2, the fact
that 2.3x > 3 since x ≥ 2 and P xl < α(l−1)x. Multiplying both sides of the above inequality (11.1)

by α−(n+k−1)x8x/2, we obtain∣∣∣∣∣αm−(n+k−1)x8(x−1)/2 −
n+k−l−2∑

i=0

α−ix

∣∣∣∣∣
≤ 8x/2

αm+(n+k−1)x
+

2

α2l

n+k−l−2∑
i=0

α−ix +
2.5× 8x/2

α(n+k−l)x

<
1

α(n+k−1)x
+

2

α2l

n+k−l−2∑
i=0

α−ix +
2.5

α(n+k−l−1.2)x

<
3.5

α(n+k−l−1.2)x
+

2

α2l

∑
i≥0

1

3i

<
3.5

α(n+k−l−1.2)x
+

3

α2l

<
6.5

αmin{(n+k−l−1.2)x,2l} .

(11.2)

In the above, we used the fact that m > (n+k−3)x ≥ 88x (see Lemma 6.1), so αm > α88x > 8x/2,
the fact that αx ≥ α3 > 3, the fact that ∑

i≥0

3−i =
3

2
,

as well as the fact that
√

8 < α1.2. On the other hand, one has

n+k−l−2∑
i=0

α−ix =
∑
i≥0

1

αix
−

∑
i≥n+k−l−1

1

αix

=
1

1− 1/αx
− 1

α(n+k−l−1)x

(
1 +

1

αx
+

1

α2x
+ . . .

)
=

αx

αx − 1
+ η,

where

|η| < 1

α(n+k−l−1)x

(
1 +

1

3
+

1

32
+ . . .

)
<

1.5

α(n+k−l−1)x
.
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Hence, we obtain ∣∣∣∣αm−(n+k−1)x8(x−1)/2 − αx

αx − 1

∣∣∣∣
<

6.5

αmin{(n+k−l−1.2)x,2l} + |η|

<
6.5

αmin{(n+k−l−1.2)x,2l} +
1.5

α(n+k−l−1)x

<
8

αmin{(n+k−l−1.2)x,2l} .

(11.3)

We want to show that (n+ k − l − 1.2)x ≤ 6. Suppose that (n+ k − l − 1.2)x > 6. Since 2l ≥ 90,
inequality (11.3) certainly implies that∣∣∣αm−(n+k−1)x8(x−1)/2 − 1

∣∣∣ < 8

α6
+

αx

αx − 1
− 1

=
8

α6
+

1

αx − 1
<

1

4
,

(11.4)

since x ≥ 3. So

|(m− (n+ k − 1)x) logα− (x− 1) log(2
√

2)| < 1

2
.

Hence, we have that |m− (n+ k− 1)x| < 2x. We now take l := n+ bk/2c. Note that 2l ≥ 90 since
l ≥ 45. We then get∣∣∣∣αm−(n+k−1)x8(x−1)/2 − αx

αx − 1

∣∣∣∣ < 8

αmin{(k−bk/2c−1.2)x,90} .

We checked that for x ∈ [3, 5], there is no integer t := m− (n+ k − 1)x, t ∈ (−2x, 2x) such that∣∣∣∣αt8(x−1)/2 − αx

αx − 1

∣∣∣∣ < 8

α6
.

The way we checked that was to check numerically that for every x in our range and for all

t ∈ [−2x + 1, 2x − 1], the minimum of
∣∣∣αt8(x−1)/2 − αx

αx−1

∣∣∣ is > 0.23 > 8
α6 , which certainly shows

that such t cannot exit. This shows that (k − bk/2c − 1.2)x ≤ 6. Since x ≥ 3, this shows that
k − bk/2c − 1.2 ≤ 2, so k − bk/2c ≤ 3.4, showing that k ≤ 6. We now take l = n. Then
l = (n + k) − k ≥ 91 − 6 > 45, so this choice of l is also valid. In this case, we get again that
n+ k − l − 1.2 = k − 1.2 > 0, so inequality (11.3) becomes∣∣∣∣αm−(n+k−1)x8(x−1)/2 − αx

αx − 1

∣∣∣∣ < 8

αmin{(k−1.2)x,90} .

The preceding argument shows that (k − 1.2)x ≤ 6 and since x ≥ 3, we get k ≤ 3. Then k = 3,
since k ≥ 3. Let us record what we have proved.

Lemma 11.1. If (k, n,m, x) is any nontrivial solution of equation (1.2) in positive integers with
k ≥ 3, x ≥ 3, then k = 3.

12. The final contradiction

To finish, we take k = 3, x ∈ [3, 5]. Lemma 6.1 shows that

t := m− (n+ k − 1)x ∈ (−2x, 1],
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so t ∈ [−9, 1]. Put X := αn. Then βn = εX−1, where ε = (−1)n ∈ {±1} according to whether n
is even or odd. Now, by the Binet formulas, equation (1.2) becomes

α2x+tXx − β2x+tεxX−x

2
√

2
= Pm =

2∑
j=0

P xn+j =

2∑
j=0

(
αjX − βjεX−1

2
√

2

)x
or

α2x+tX2x − β2x+tεx

2
√

2
=

2∑
j=0

(
αjX2 − βjε

2
√

2

)x
. (12.1)

For fixed x ∈ [3, 5], t ∈ [−9, 1] and ε ∈ {±1}, this reduces to a polynomial equation in X of
degree at most 2x. We could compute all these equations and all their roots positive real roots
X and check that these roots are not of the form αn for some positive integer n; that is, that
logX/ logα is not a positive integer n. Instead of doing that, we will prove directly that the roots
X of equation (12.1) cannot be as large as X = αn for some n = (n+ k)− k ≥ 91− 3 = 88.

Well, assume that this is so for a contradiction. The general term of the sum the right hand
side is (

αjX2 − βjε
2
√

2

)x
=
αjxX2x

8x/2

(
1− εβj

αjX2

)x
=
αjxX2x

8x/2
(1 + εj)

x
, εj := − εβj

αjX2
.

Note that

|εj | =
1

α2jX2
< 10−60

is very small since X = αn ≥ α88 > 1033 is very large. By an argument used before, since x ≤ 5 is
small, we have

(1 + εj)
x = 1 + εx,j , where |εx,j | < 2x|εj | =

2x

α2jX2
.

Thus, (
α2x+t

2
√

2
−

2∑
j=0

αjx

8x/2

)
X2x − β2x+tεx

2
√

2
=

2∑
j=0

εj,x
αjx

8x/2
X2x.

We move the second term in the left on the right hand side and take absolute values to get that∣∣∣∣α2x+t

2
√

2
−

2∑
j=0

αjx

8x/2

∣∣∣∣X2x =

∣∣∣∣β2x+tεx

2
√

2
+

2∑
j=0

εj,x
αjx

8x/2
X2x

∣∣∣∣
≤ α3

81/2
+

2∑
j=0

|εj,x|
αjx

8x/2
X2x

< α2 +
2x

8x/2

2∑
j=0

αj(x−2)X2x−2

< α2 +
6x

8x/2
α2(x−2)X2x−2

≤ α2 +
6× 5

83/2
α2×3X2x−2

< α2 + 2α6X2x−2

< 3α6X2x−2.

In the above chain of inequalities we used the fact that t ≥ −9, therefore

2x+ t ≥ 2× 3− 9 = −3,
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and at the end we used that X2x−2 > X > 1033 > α2. The minimum of the expression∣∣∣∣α2x+t

2
√

2
−

2∑
j=0

αjx

8x/2

∣∣∣∣
for x ∈ [3, 5], t ∈ [−9, 1] is > 0.06. Thus, we get

0.06X2x < 3α6X2x−2,

which gives

X2 <
3α6

0.06
= 50α6 < α5+6 = α11,

so X < α5.5, a contradiction. Thus, there are no solutions with n+ k ≥ 91, and this completes the
proof of Theorem 1.1.
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