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AIDeveloper: Deep Learning Image Classification in Life
Science and Beyond

Martin Kräter,* Shada Abuhattum, Despina Soteriou, Angela Jacobi, Thomas Krüger,
Jochen Guck, and Maik Herbig*

Artificial intelligence (AI)-based image analysis has increased drastically in
recent years. However, all applications use individual solutions, highly
specialized for a particular task. Here, an easy-to-use, adaptable, and open
source software, called AIDeveloper (AID) to train neural nets (NN) for image
classification without the need for programming is presented. AID provides a
variety of NN-architectures, allowing to apply trained models on new data,
obtain performance metrics, and export final models to different formats. AID
is benchmarked on large image datasets (CIFAR-10 and Fashion-MNIST).
Furthermore, models are trained to distinguish areas of differentiated stem
cells in images of cell culture. A conventional blood cell count and a blood
count obtained using an NN are compared, trained on >1.2 million images,
and demonstrated how AID can be used for label-free classification of B- and
T-cells. All models are generated by non-programmers on generic computers,
allowing for an interdisciplinary use.

1. Introduction

Since the development of the first microscope, progress in life
science has become dependent on image acquisition and pro-
cessing. Over the years, extensive research has led to the de-
velopment of tools used for quantitative analysis of informa-
tion in microscopic images. Software such as Cellprofiler,[1]

Fiji,[2] and ImageJ,[3] which are widely distributed and used
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among scientists, allow the user to easily
process and quantify features from images.
However, quantification using these tools
typically results in a set of predefined fea-
tures that often limit the extent of infor-
mation that can be extracted from the im-
ages. In recent years, the emergence of ma-
chine learning (ML) methods, such as deep
learning (DL) which uses neural nets (NN),
substantially augmented the scope of im-
age processing, quantification, segmenta-
tion, and classification. The main advan-
tage of the DL approach is that it does not
rely on handcrafted, predefined features,
but rather automatically finds a set of op-
timal features. This can be especially help-
ful for complex image classification tasks
where relevant features are not obvious to
the human eye. Cellprofiler 3.0, deepIm-
ageJ, and Zen Intellesis are software tools

aiming to provide access to DL methods, but lack the ability
to train NN. KNIME (https://www.knime.com/) and DL studio
(DLS) (https://deepcognition.ai) allow to train NN, but KNIME is
not optimized for image analysis and therefore lacks certain func-
tionality such as image augmentation. Both DLS and KNIME,
don’t allow to adjust hyper-parameters during training which is
available in AIDeveloper (AID).

Dr. A. Jacobi, Dr. T. Krüger
Department of Internal Medicine I
University Hospital Carl Gustav Carus
TU Dresden
Dresden 01307, Germany
Dr. T. Krüger
German Cancer Consortium (DKTK)
Partner Site Dresden
German Cancer Research Center (DKFZ)
Heidelberg 69120, Germany
Dr. T. Krüger
Center for Regenerative Therapies (CRTD)
TU Dresden
Dresden 01307, Germany

Adv. Sci. 2021, 2003743 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2003743 (1 of 12)

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadvs.202003743&domain=pdf&date_stamp=2021-03-18


www.advancedsciencenews.com www.advancedscience.com

Recent publications demonstrated the applicability of DL for
image-based object identification in complex biological samples.
For example, thrombocyte clusters were identified in human
blood samples,[4] cell lineage differentiation was predicted dur-
ing hematopoietic stem cell development,[5] skin cancer was clas-
sified on dermatologist-level,[6] and mitotic cells were detected
in histology images.[7,8] The latter showed DL to even outper-
form histologists in terms of accuracy (accuracy = number of
correctly classified images per total number of images). However,
only customized, task-specific algorithms are currently available,
as the accessibility and utilization of DL algorithms requires
distinct programming skills. Thus, most scientific and clinical
applications of DL-based image classification are restricted to
laboratories that can combine expertise in programming and
biomedicine. This represents a major drawback, which can only
be addressed by the development of DL-based image processing
accessible for the general user.

Here, we present AID (https://www.github.com/maikherbig/
AIDeveloper), a flexible ready-to-use software to train, evaluate,
and utilize NNs for image classification problems available on
the platforms Windows, Mac, and Linux with CPU (all platforms)
and GPU (Windows only) support out-of-the-box. AID covers the
entire workflow of image processing and analysis: from the as-
sembly of datasets and the optimization of NN parameters, to
the application of the generated NN to unclassified image sets.
A simple user interface allows the user to load different image
formats and to visually assess them before and after image size
equalization. For training, the user can either choose built-in NN
architectures of different complexities or use custom-built NNs.
In addition, the interface allows the use of pre-trained models
to transfer the learning process, for example, when insufficient
training data are available[9] or to shorten the training step.

To demonstrate the software´s potential, we trained a convo-
lutional NN (CNN) on CIFAR-10,[10] and Fashion-MNIST,[11] two
datasets containing each a collection of images from 10 differ-
ent classes. We reached a testing accuracy as high as 88% on
RGB and 83% on grayscale images for CIFAR-10 and 93.8% on
Fashion-MNIST. Furthermore, we demonstrate the application of
AID for broad biomedical research. First, we trained a model to
detect differentiated adipocytes using a relatively small dataset
containing only 46 labeled brightfield microscope images. Next,
we show the utility of AID for very large datasets by using 1.2
million images of blood cells obtained with real-time deforma-
bility cytometry (RT-DC),[12] in order to generate an automated
image-based whole blood cell count. We trained a model to rec-
ognize thrombocytes, lymphocytes, red blood cells, monocytes,
neutrophils, and eosinophils based on brightfield images. This
is to our knowledge, the first time that a DL algorithm is capa-
ble of image-based classification of major blood cell types from
whole blood. Additionally, a live cell image of every cell is avail-
able for further analysis. We validated the model by comparing
the result to a conventional whole blood count generated by a
technique frequently used in clinical practice, which agreed well.
Finally, we demonstrate that the tools provided by AID master
even challenging classification tasks by training a classifier to
distinguish B- and T-cells based on brightfield images from RT-
DC. The resulting model reaches a classification performance
that is state-of-the-art for label-free approaches.[13–15] Note that
the focus of this paper is to introduce the software to the bio-

logical community, and demonstrate with a few real-world bio-
logical problems the broad range of its utility for image classifi-
cation tasks. AID is a ready-to-use software package for anyone
who wants to start exploring the power of AI-based image analy-
sis for their own research without the need for any programming
skills.

2. Results

2.1. Using AID to Classify Natural Images from CIFAR-10 and
Fashion-MNIST

AID enables anyone to apply DL for image classification as it
guides the user through the entire project pipeline, starting from
loading and assembling a dataset, proceeding with training and
evaluating a DL model, and ending with classifying new sets
of images (Figure 1A; Figure S1, Video S1, Supporting Infor-
mation). Images for validation and training are simply dragged
and dropped into a designated area of the user interface where
they are converted to a uniform data format. The validation set is
used after every training iteration to validate the generated model.
A library of seven different multilayer perceptrons (MLPs) and
23 CNNs of a wide range of complexity is available for choos-
ing a model architecture (Figure S2, Supporting Information).
In addition, custom-built CNNs as well as pre-trained models
are supported. Video S2 explains how custom NN architectures
can be defined and added to AIDeveloper. Pre-trained models
can be used either for classifying new sets of images or for re-
purposed training on a different classification task, a technique
termed transfer learning.[9] Details on the DNN architectures and
valid input image dimensions are provided in Table S3, Support-
ing Information. At the initiation of a training process, AID au-
tomatically generates the NN architecture according to the re-
quested input and output dimensions. Image sizes are adjusted
either by cropping or padding. AID offers the adjustment of a
range of training parameters before and during the training pro-
cess. These parameters are known as hyper-parameters and in-
clude different image augmentation options, learning rate, and
dropout rate (Video S1, Supporting Information). Example im-
ages can be visualized before and during the training process in
order to assist the adjustment of image augmentation parameters
(Video S1, Supporting Information). The accuracy and the valida-
tion accuracy are plotted in real-time after each training iteration.
Furthermore, F1 score, precision, recall, support, receiver operat-
ing characteristic curve, precision-recall curve, and further com-
mon metrics are shown and can be exported.[16] Once a suitable
model is obtained (i.e., according to validation accuracy) it can be
loaded into AID to assess its performance on testing data (Video
S1, Supporting Information). Since developers might want to use
a trained model in a different framework, AID also provides con-
version tools to protocol buffer format (TensorFlow),[17] ONNX,
PyTorch, Caffe, MXNet, CNTK, and CoreML (Video S1, Support-
ing Information). All analyses for this work were performed us-
ing AID on a standard consumer PC (Intel Core i7-3930K @ 3.2
GHz, 32 GB RAM, Nvidia GTX 1080).

To illustrate the software’s potential, CIFAR-10, a common
dataset for benchmarking new image classification algorithms,
was used. CIFAR-10 contains 6000 different images of each of
the following classes: airplane, automobile, bird, cat, deer, dog,
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Figure 1. AIDeveloper user interface and workflow. A) A representative workflow of setting up a training process. B) Representative grayscale images of
all CIFAR-10 classes (out of 6000 images per class). C) Screenshot showing the “history”-tab of AID, which was used to load the training history file of the
training process for grayscale images. The scatterplot shows the accuracy (red dots) and the validation accuracy (cyan dots) for each training iteration
(also called “epoch”). Arrowheads indicate seven different real-time user adjustments (I to VII) of image augmentation or hyper-parameters. CNNgray
indicates the model at epoch 6311, which reaches the maximum validation accuracy. D) A confusion matrix indicating the true and the predicted label
when classifying the testing set of CIFAR-10 using CNNgray. Matrix items with blue and orange color indicate correctly and incorrectly predicted classes,
respectively. Representative images of incorrect predictions from model CNNgray on CIFAR-10 of class “cat” is shown. The testing accuracy is 81.2%.

frog, horse, ship, and truck (Figure 1B). 4800 images were used
as training set, 200 images of each class as validation set and 1000
images as testing set. We chose a CNN architecture with four
convolutional layers (Figure S2N, Supporting Information)[4] and
converted RGB images to grayscale images to reduce the compu-
tational time and accelerate the training process. During training,
the image augmentation parameters were adjusted seven times.
This caused immediate changes in both the accuracy and the val-
idation accuracy. Importantly, training proceeded with an over-
all improvement of the validation accuracy, and the best model
reached a validation accuracy of 83.2% (indicated as CNNgray in
Figure 1C). Furthermore, we trained the same CNN-architecture
using the original RGB images, resulting in a model with a val-
idation accuracy of 87.9% (CNNRGB). Both models (CNNgray and
CNNRGB) were then applied to the testing set. Aided by man-

ual optimization of hyper-parameters during the training process
(Figure 1C), we reached a testing accuracy of 81.2% and 84.7%
for CNNgray and CNNRGB, respectively. Despite using a fairly low
complex CNN with only four convolutional layers CNNgray and
CNNRGB would reach place 58 and 50 at https://benchmarks.ai/
cifar-10. The resulting confusion matrix for CNNgray indicates
that the distinction between animals, especially classification of
cats, dogs, and frogs, was the most erroneous (highlighted in or-
ange in Figure 1D). In AID, confusion matrices are interactive
and allow the user to visualize the respective images for each ma-
trix position (Figure 1D bottom panel).

In order to evaluate how trained NN models can be re-used
in AID, we applied a transfer learning approach to optimize the
CNNgray model in order to classify images of ten fashion items
(Fashion-MNIST) MNIST[11] an image dataset of 10 different
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Figure 2. Classifying image tiles containing adipogenic differentiated mesenchymal stromal cells. A) Schematic representation of a light microscope to
image cells in 2D culture. Human mesenchymal stromal cells were induced to differentiate into the adipogenic lineage and imaged following Oil Red O
staining. B) Image acquisition strategy. Cells were cultured in a six-well plate and five fixed positions within each well were imaged. Representative images
of the center and edge position of two different examples are shown, indicating the variability in image color and staining quality. C) Image-processing
pipeline to obtain training data. Areas of cell differentiation were labeled and the original 320 × 320 pixels images were divided into 100 tiles (32 ×
32 pixels). Tiles containing more than 5 labeled pixels were assigned to class 1, others to class 0. D) The bar graph presents the averaged validation
accuracy over eight images ± S.D. The image presents the classification of a new image neither contained in the training-set nor the validation set. The
numbers indicate whether a tile was predicted to belong to class 1 (“with differentiation“) or class 0 (”without differentiation”). Scale bars = 50 µm.

classes of fashion items. The dataset contains 7000 images for
each class and we used 5800 images for training, 200 for vali-
dation and 1000 for testing. The CNNgray, previously trained on
CIFAR-10 images (32× 32 pixels) was further trained on Fashion-
MNIST images (28 × 28 pixel). To allow transfer learning, we
utilized the image scaling option in AID to match image sizes.
Initially, only the last layer of the pre-trained CNN was left train-
able while all other layers were frozen. By gradually unfreez-
ing all layers[18] during training, we reached a robust classifica-
tion model with an accuracy of 95.1% on the validation set and
93.8% on the testing set. To our knowledge, this is the highest
testing accuracy ever reported for Fashion-MNIST. The training
progress and a resulting confusion matrix is visualized in Figure
S3, Supporting Information. Furthermore, a video was captured
for demonstration (Video S3, Supporting Information). Note that
we did not develop a new NN architecture, but used a published
architecture[4] which we optimized for this classification task.

2.2. AID in Life Science and Its Potential for Clinical Diagnostics

AID’s ability to train models to natural images could be applied
in mobile app development or autonomous driving, where large
numbers of natural (everyday-life) images are encountered.[19]

Here, we focus on demonstrating its potential for the classifica-
tion of cell images in life science and clinical diagnostics that also
encounter the challenges of processing large image datasets.

Mesenchymal stem cells (MSCs) hold a great potential for the
future of cell-based therapeutic approaches. However, prior to
the transplantation it is essential to characterize MSCs and as-
sess their differentiation potential. One classical approach in-
cludes MSC differentiation into adipocytes, followed by histolog-
ical analysis with the lipid dye Oil Red O and manual quantifica-
tion of the stained cells.[20,21] Here, we acquired brightfield im-
ages (320 × 320 pixels) of Oil Red O stained adipocytes from dif-

ferent positions in the cell culture well (Figure 2A,B). A trained
expert was asked to visually grade and mark the differentiated ar-
eas of the acquired images, which varied significantly in bright-
ness, color, and distribution of Oil Red O staining varied signifi-
cantly (Figure 2B; Figure S4, Supporting Information). We then
used the information from the manual labeling and masked the
differentiated areas with a uniform green color (RGB: 0, 255, 0)
(Figure 2C). Each acquired image was divided into 100 tiles of 32
× 32 pixels and used as a training dataset (Figure 2C). Tiles with
more than 5 labeled pixels were assigned to class 1 (“with differ-
entiation”) while all other tiles are assigned to class 0 (“without
differentiation”). This translates the image segmentation prob-
lem into an image classification problem that can be tackled us-
ing AID. We designed a CNN with six convolutional layers, four
fully connected layers, and residual connections between layers
(Figure S2M, Supporting Information). More complex NNs have
the capacity to learn more image characteristics, but as they typi-
cally contain more parameters, they tend to overfit.[22] This issue
can be overcome by increasing the amount of data. Here, due
to the limited availability of labeled images, we applied a trans-
fer learning approach, which was shown to reduce the need of
data.[9] The model was first trained on RGB images from CIFAR-
10 and subsequently optimized for the task of distinguishing
tiles with and without differentiation. The final model was val-
idated using eight images, resulting in a validation accuracy of
92.1± 4.4% (mean± standard deviation (S.D.) (Figure 2D; Figure
S4, Supporting Information). Finally, we tested the model using
an unlabeled image not contained in the training- nor validation
set. As shown in Figure 2D the tiles classified to class 1 (“with
differentiation”) are in good agreement with stained regions.

AID is designed for image classification problems and not for
image segmentation. Therefore, the problem had to be converted
into a classification problem. A more common practice is to train
a model to return a segmentation map of the same size as the in-
put image, allowing for pixel precise predictions.[23,24] A software
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Figure 3. Image-based whole blood count using RT-DC and AID. A) Schematic representation of RT-DC, a high-throughput imaging technology. A cell
suspension is flushed through a channel constriction in a microfluidic chip. Cells are illuminated by an LED and recorded by a high-speed camera.
Multiple parameters including area and average brightness of the cells are determined in real-time. Scale bar = 10 µm B) The brightness versus area
scatter-plot of whole blood measurements is used to distinguish populations of the major blood cells (I thrombocytes, II erythrocytes, III erythrocyte
doublets, IV lymphocytes, V monocytes, VI neutrophils, and VII eosinophils).[29] Corresponding images of each population highlight the phenotype of
these cells. Manual gating of these populations was carried out to assemble a dataset for training a CNN to perform an image-based whole blood count.
Scale bar = 10 µm C) The bar-graphs present the relative fraction of enucleated cells (I thrombocytes, II erythrocytes, and III erythrocyte doublets) as
well as the leucocytes (IV lymphocytes, V monocytes, VI neutrophils, and VII eosinophils), determined using the CNN and a conventional blood count.
Mean ± S.D. of 17 independent blood measurements is displayed.

that is designed for image segmentation tasks is ilastik, which we
used to train a segmentation model.[25] The resulting validation
accuracy of 92.2 ± 7.4% shows that the average performance is
similar, but as the model failed for some images with pronounced
yellowness, the S.D. is higher compared to the model obtained
using AID.

A broad range of diagnostic techniques relies on high-
throughput imaging of biological samples, followed by manual
image-based analysis by trained experts.[26] However, manual
analysis of large datasets can delay diagnostics and these images
might include useful information that is overlooked by the hu-
man eye. An automated AI-based image classification is poten-
tially the future for advancing the field of image-based real-time
diagnosis. RT-DC is an imaging flow cytometer where bright-
field images of cells in flow are captured by a high-speed cam-
era (Figure 3A) at rates of 100–1000 cells per s. In order to in-
crease the frequency of leucocytes, whole blood was first depleted
from RBCs by dextran-sedimentation.[27,28] As recently published
by Toepfner et al., the individual cell populations can be identi-
fied simply by considering cross-sectional area and brightness,
calculated as the average grayscale value of all pixels belonging
to the cell (Figure 3B). These parameters are sufficient to distin-
guish thrombocytes, RBCs, RBC doublets, lymphocytes, mono-
cytes, neutrophils, and eosinophils[29] and were used to manually
label the dataset. To avoid incorrect labeling, a conservative gat-
ing was applied, by excluding events where a distinction was not
obvious. Basophils are excluded from our model as they are diffi-
cult to distinguish based only on area and brightness. Addition-
ally, datasets were processed by different individuals in order to
reduce human bias. Furthermore, they are very rare and we were
not able to label a sufficient number of cells for training. We as-
sembled a training and a validation set containing ≈1.2 million
images and trained a convolutional NN with 2 convolutional and
3 dense layers (LeNet-5; Figure S2D, Supporting Information),
reaching a validation accuracy of 97.3%. Multiple image augmen-
tation methods were used during training, including changes in
orientation (rotation) and brightness levels to ensure robustness

of the model. To cope with the relatively high number of RBCs
compared to the other cell types, we used the option in AID to
randomly sample a defined number of images for each class in
each training iteration. This feature would actually be difficult to
implement even by direct programming. Testing data were ac-
quired by measuring 17 additional blood samples using RT-DC
and comparing to a conventional blood count measured in par-
allel under clinical settings. The trained model was applied to
classify the images from the RT-DC experiments. The resulting
cell count was comparable to the conventional blood count (Fig-
ure 3C). Using RT-DC, an additional population of RBC doublets
was found, which is not reflected in the conventional blood count.

To further emphasize the potential of DL and AID in the con-
text of blood analysis, we set out to classify lymphocytes into B-
and T-cells label-free, a task not yet feasible routinely in clini-
cal diagnostics. To discriminate between B- and T-cells in whole
blood, we used real-time fluorescence and deformability cytome-
try (RT-FDC).[30] This technique is similar to RT-DC, but allows
for fluorescence detection in parallel to imaging. We generated
a labeled dataset from three healthy donors, by using a panel of
three fluorescent antibodies specific for each cell type; “cluster of
differentiation” 19 (CD19) for B-cells; CD3 for T-cells and CD56
for natural killer (NK)-cells, a subset of T-cells. As previously de-
scribed, we identified lymphocytes based on area and brightness
(blue in Figure 4A). B- and T-cells were identified based on ex-
pression of the different fluorescent markers as shown in Fig-
ure 4A. We used this ground truth to assemble a dataset which
can be used to train a model to distinguish B versus T lympho-
cytes using the bright field images only. Training and validation
sets were assembled using data from three donors. We used a 4th
measurement from a different healthy donor as testing dataset.
Acquired images for B-cells (CD19+ events) and T-cells (CD19+

or CD56+ events) were loaded into AID and assigned to individ-
ual classes. We used a transfer learning approach by loading the
previously trained CNNgray (Figure 1C; Figure S2N, Supporting
Information), into AID and continued training using RT-FDC
images of B- and T-cells (Figure 4B). While CNNgray was trained
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Figure 4. Label-free classification of B- and T-cells from human blood.
A) Gating strategy for acquiring training data for B- and T-cell classifica-
tion. A scatter-plot (brightness vs area) of human fractionated blood, mea-
sured using real-time deformability and fluorescence cytometry (RT-FDC)
is shown. Lymphocytes were gated (dashed square) based on brightness
and area.[29] B- and T-cells were labeled according to standard surface CD
markers (CD3—T-cells, CD19—B-cells, and CD56—NK-cells). B) A repre-
sentative schema of a transfer learning process, which can be easily ap-
plied in AID. The pre-trained CNNgray, with a validation accuracy of 83.2%
on the CIFAR-10 dataset, was loaded into AID and optimized to classify
images of B- and T-cells, acquired from fractionated blood using RT-FDC.
A final validation accuracy of 89.3% and a testing accuracy of 86.2% was
achieved. C) Confusion matrix of B- versus T-cells as well as the probability
histogram showing the performance of the model on the testing set. The
abscissa in the histogram shows the predicted probability to be a T-cell
(pT).

on a very different image dataset, elementary image features such
as edges or corners also exist. Such simple image features are de-
scribed by the first convolutional layer[31] so we omitted this layer
from training to reduce the risk of overfitting and the computa-
tion time. We continued training over the course of one month
to promote a model with highest validation accuracy possible,

demonstrating stable execution of AID for long run-times. The
final model reached a validation accuracy of 89.3%. We used AID
to apply the model on testing data and obtained the following
scores: testing accuracy = 86.2%, F1 score = 89.3%, precision =
92.3%, recall = 86.5%, and an area under curve of the receiver-
operating characteristic and the precision recall curve of 94% and
97%, respectively. The probability histogram of the testing-set
(Figure 4C) indicates that above a threshold of pT = 0.9, 98.3%
of the events are classified as T-cells and below pT = 0.1, 95.9%
of the events as B-cells.

3. Discussion

3.1. Graphical User Interface Provides Simple Access to Deep
Learning Methods

Advances in the acquisition of imaging data necessitate the
availability and accessibility of automated processing tools that
can drive scientific insights toward routine application. The ex-
ponential rise seen in the last decade in artificial intelligence
publications[32,33] was accompanied with a rise in DL models for
addressing scientific problems; such as medical image process-
ing, diagnostics, image interpretation, and classification. How-
ever, despite the availability of multiple imaging software that
employ DL approaches, a ready-to-use software is to our knowl-
edge not yet available. Moreover, the fact remains that real-life
application of DL and training of NNs require expert program-
ming skills that pose a real challenge to non-expert users. The
open source community is capable to drive such software devel-
opment, but the continuous evolution of programming environ-
ments and the fast turnover of software libraries impedes a co-
operative progress. More importantly, the complex terminology
of DL can prevent correct data assembly, successive training, and
application of NNs, especially for users with limited ML knowl-
edge. Furthermore, even installing intercompatible software re-
quirements for DL can be a substantial burden, especially, when
GPU support is desired.

3.2. Comparison to Other Machine Learning Software

AID was designed to assist researchers to tackle image classifi-
cation problems, without the complexity of expert coding skills
or installation of a programming environment. Advances in au-
tomated image data acquisition has led to the development of
various software that offer image analysis using DL architecture.
Commercial software, though easy to use, are limited by their
cost, and more importantly by the limited accessibility on how
the data are processed. To address these issues, the open source
community has developed many tools that offer researchers more
flexibility and ease-of-use, but also allow image analysis using DL
architectures.

We compared AID to eight other existing open-source and
commercial software and the major findings are summarized
in Table S2, Supporting Information. For example, Cell Profiler
3.0, deepImageJ, and ilastik, are open-source software with a
user-friendly interface that allow the user to employ pre-trained
NN for image segmentation and feature extraction.[25,34–36] In
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ilastik, the extracted features can then be used to train a random
forest[37] for image segmentation. A drawback of ilastik is the
requirement for additional packages such as Python, Python li-
braries, and CUDA (optional for GPU support) in order to use the
pre-trained NN. Zen Intellesis, is another image segmentation
tool that employs pre-trained CNNs for feature extraction to train
random forests, but unlike ilastik, it does not require installation
of auxiliary software. However, the program is only commercially
available.

Overall many existing graphical user interface (GUI) based
tools that apply ML to classify or segment images, including
Cell Profiler 3.0, deepImageJ, and ilastik, lack the option to train
DNN. DIGITS by Nvidia, offers the possibility to train DNNs but
requires installation of multiple Python packages and for GPU
utilization, installation of CUDA is required. In addition DIG-
ITS provides limited access to hyper-parameters and a limited
number of NN that require specific input image dimensions.
To adjust a model to other image dimensions or numbers of
classes, programming skills are required. DLS from DeepCog-
nition (https://deepcognition.ai) is a proprietary all-round soft-
ware solution for training DNNs. Similar to AID, image augmen-
tation methods are readily implemented. Overall, DLS is a very
complete and powerful software. Unfortunately, offline execution
of DLS and GPU acceleration are only supported in a paid ver-
sion. KNIME (https://www.knime.com) is an open source soft-
ware with user interface that offers multiple ML techniques, in-
cluding DNNs. KNIME can be applied to many data formats, in-
cluding images, however as it is not specialized in image analy-
sis, it lacks image augmentation methods. In addition, in order
use DL methods in KNIME, a Python distribution and particu-
lar packages have to be installed manually and for GPU support
further installations (e.g., CUDA) are required. Finally, both DLS
and KNIME, do not allow adjustment of hyper-parameters dur-
ing training which is available in AID. However, while KNIME
and DLS allow processing of multiple data types, AID is limited
to 2D squared images. For a detailed comparison of AID with
numerous existing ML software tools please refer to Table S2,
Supporting Information.

AID addresses these issues by providing a standalone
executable, including an intuitive GUI, which allows also non-
programmers to train, evaluate, and apply NNs to their image
datasets. Moreover, AID includes different NN architectures with
different levels of complexity ranging from very simple MLPs
to contemporary CNNs with many layers. All these networks
can be extended, updated, or replaced easily. The DNNs can be
selected in a dropdown list where the models appear in order
(low complexity first). Hence, users could initially train a low
complexity NN (top in the list) and subsequently choose to train
a more complex DNN (lower in the list) if a higher accuracy is
desired. Moreover, the user-interface of AID offers the option
to omit layers from training. This strategy reduces the risk of
overfitting and lowers the computational time since less param-
eters need to be updated during training. Larger NNs might be
favorable to maximize the classification accuracy while smaller
models allow for real-time applications. Facilitating AID, label-
free cell sorting for neutrophils from human blood was already
demonstrated.[38]

AID guides the user through the workflow to develop classi-
fication models, quantify their performance, and apply them to

new data. Established methods for image normalization and aug-
mentation are integrated. Interactive visualization tools allow a
seamless link between user-settings and their effect on image
data or the training process. For analysis of unbalanced datasets
(i.e., different numbers of images in each class), AID provides
tools to randomly sample a defined number of images in each
training iteration—a feature not straight-forward to implement
by programming (Figure S5A, Supporting Information). Further-
more, the loss contribution of the classes can be balanced us-
ing scalar coefficients (Figure S5B, Supporting Information). The
software assists the user in choosing sensible coefficients. Auto-
matic documentation of the training process keeps track of all
user-settings and model performance progression during train-
ing. Standard methods for quantification of model performance
are embedded. Tooltip annotations help the user to understand
the underlying ML concepts and roles of different hyper parame-
ter settings. Execution of AID is identical on Windows, Mac, and
Linux, allowing for reproducibility, sharing of models, and con-
tinuation of training using different PC setups. During creation
of the standalone executable, we focused on achieving compat-
ibility to a broad range of PC systems. Therefore, we integrated
support for CPU, single GPU, and multiple GPUs (GPU support
is currently only available for Windows OS). Dedicated GUI ele-
ments allow to select the hardware for training. Currently, any
Nvidia graphics card with a compute capability larger 3.7 is auto-
matically detected. As AID is open source it can also be run from
script which allows more broad GPU support. Thus, AID could
empower people to use DL for image classification, with impli-
cations for a wide range of disciplines, from life science to app
development.

3.3. Introducing AID Using CIFAR-10 and Fashion-MNIST

We introduced the features of AID using CIFAR-10, a dataset of
images commonly used as a standard to compare and benchmark
image classification methods. Overall, AID can be used to load
published NN architectures and train new models to classify both
RGB and grayscale images. AID can convert RGB into grayscale
upon user request. Furthermore, when creating a new NN, AID
adjusts the input layer of the model according to the channel di-
mensions and user-defined input image size. Here, image input
size is adjusted by center-cropping or padding. Currently, only
squared input images are supported, but in the future rectangu-
lar image support will be implemented. Moreover, an interactive
confusion matrix is displayed when a model is applied to new
data (e.g., testing data), allowing the user to visualize correctly or
incorrectly classified images.

The models for CIFAR-10 (CNNgray and CNNRGB) were trained
on an Intel Core i7-3930K, which took 77.9, and 210.4 h, re-
spectively. Training times of multiple hours are typical in the
field of DL. In another study, which achieved an accuracy of
98.52% for CIFAR-10, training times of 5000 GPU hours (esti-
mated for an Nvidia Tesla P10) are reported.[39] Using more effi-
cient hardware, the training time can be lowered. For example
by switching from CPU (Intel Core i7-3930K) to GPU (Nvidia
GTX 1080), we achieved a speedup of ≈20× when training the
model for Fashion-MNIST, which allowed us to obtain a record
breaking testing accuracy of 93.8% within only 3.2 h training
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time. A benchmark dashboard (http://fashion-mnist.s3-website.
eu-central-1.amazonaws.com/#) summarizes other approaches
to Fashion-MNIST and training times up to 50 h are reported.

3.4. AID for Life Science Applications and Clinical Blood
Diagnostics

Biomedical research and clinical diagnostics often utilize
image-based techniques, such as microscopy, flow cytometry,
histopathology, and immunohistochemisty, which result in an
increasing demand for automated image classification. While
large tech-companies such as Google (https://deepmind.com/
about/health) and Microsoft (https://www.microsoft.com/en-us/
research/project/medical-image-analysis) have initiated dedi-
cated projects that focus on medical imaging, smaller research
groups or start-up companies cannot always afford specialized
personnel for data analysis. Furthermore, enabling experts in a
respective discipline to independently perform image analysis
is advantageous for accurate data interpretation. AID could ad-
dress a variety of biological applications including classification
of histopathology images or identification of novel subpopula-
tions within a larger dataset of imaging flow cytometry, as well
as quantification of immunofluorescent and immunocytochem-
istry images. Here, we chose three applications to demonstrate
the potential use of AID in biomedical research and/or as a tool
for facilitating clinical diagnostics: 1) quantification of adipogenic
differentiation of MSCs from brightfield microscopy; 2) label-
free blood count; and 3) label-free B- versus T-cell discrimination
from imaging flow cytometry (RT-DC).

3.4.1. Quantification of Adipogenic Differentiation of Mesenchymal
Stem Cells

MSCs are a major source of stem cells used in cell therapy.[40]

Their differentiation potential is assessed by measuring areas
of adipogenic differentiation in an MSC layer, which involves
cell staining, imaging, and classification of the differentiated ar-
eas. Manual classification is laborious and time consuming. Cur-
rently, computer-based quantification is challenging because of
variability in image brightness, cell density, uniformity of stain-
ing, and morphological differences (Figure 2B; Figure S4, Sup-
porting Information). For example, ilastik, reported that classifier
performance can be affected by imaging conditions, such as in-
tensity or imaging artefacts.[25] Our segmentation model trained
using ilastik reflects such issues as the model fails for certain
images with pronounced yellowness. Implementing additional
color normalization methods could help to improve the classifica-
tion accuracy. On the contrary, our validation results confirm that
the model trained using AID can robustly quantify MSC differen-
tiation despite different imaging artefacts and changes in image
intensity. Ultimately we believe that using AID for the analysis of
microscopy images or histopathology samples has the potential
to reduce the burden on the personnel and also reduce delays in
diagnosis.

We used a transfer learning approach to train a NN with
CIFAR-10 images and then continued training with images of
differentiated MSCs; achieving a validation accuracy of 92.1%.

In fact, application of this model to a classical research quantifi-
cation task revealed that the model returned sensible predictions
for new data.[41]

Datasets were acquired using one imaging system and the re-
sulting classification model is optimized for the corresponding
image phenotype. Before employing the model for data from a
different imaging system, an assessment of the classification per-
formance is necessary.

The computational time required for classification (inference
time) is ≈1.7 ms for a single tile (32 × 32 pixels) and 0.2 s for
a complete image (320 × 320 pixels) on an Intel Core i7-3930K
CPU, rendering this model applicable for high-throughput analy-
sis. In comparison, manual labeling takes ≈20 s per image, which
is 100 times longer. The DNN was trained using AID on an Intel
Core i7-3930K, which took 28.2 h.

3.4.2. Label-Free Blood Count

The complete blood count is a routine diagnostic tool used to as-
sess the health of a patient and detect abnormalities such as infec-
tions or blood disorder. We have previously shown that utilizing
RT-DC we can identify all major blood cell types based on their
morpho-rheological phenotype.[29] Whereas manual microscopy
can capture ≈1 image per second, imaging cytometers, like RT-
DC, easily speed up this task by a factor of 1000, resulting in con-
siderably larger datasets. Here, we highlight the ability of AID to
train CNNs on large datasets, by employing RT-DC to capture 1.2
million brightfield images of blood cells (Figure 3A). Cell subpop-
ulations were gated manually, according to size and brightness
(Figure 3B; as described in Toepfner et al., 2018) prior to load-
ing into AID and performing training. Despite the simple dimen-
sionality of the gating strategy, an automated classification strat-
egy would not be feasible, since the brightness in RT-DC is manu-
ally adjusted by the user for each experimental setup. These vari-
ations between experiments can substantially affect the perfor-
mance of an automated classification strategy. However, AID has
proven to achieve high classification performance despite these
technical alterations. Indeed the resulting blood count was com-
parable to a conventional clinical blood count (Figure 3C) indicat-
ing that the model is not influenced by mislabeled cells. This was
expected since DL algorithms were shown to be robust against la-
beling noise, especially when using large datasets.[42]

Another advantage of this model is that the inference time for
a single image is ≈1 ms (on an Intel Core i7-3930K CPU), corre-
sponding to a prediction rate of 1000 cells per s, which matches
the image acquisition rate of RT-DC. Thus, in principle the model
can be applied for on-the-fly prediction. Moreover, AID was able
to detect a subpopulation of RBC doublets that is not readily de-
tectable by standard diagnostics techniques. This could comple-
ment the conventional whole blood count and provide additional
information that might facilitate the pathologists to speed up and
improve diagnosis. For example, RBC aggregates could be used
as a diagnostic marker since their appearance is correlated to
infection through increased fibrinogen concentration.[43,44] Fur-
thermore, RBC aggregation is linked to erythrocyte sedimenta-
tion rate, which is a widely used marker to diagnose inflamma-
tory or pathophysiological conditions.[45] The DNN was trained
using AID on an Intel Core i7-3930K, which took 6.8 h.
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3.4.3. Label-free Discrimination of B- and T-cells

Lymphocytes, which includes B-, T- and NK- cells, are a subset
of blood cells that are involved in immune responses. In clini-
cal diagnostics, lymphocyte cell counts are critical for determin-
ing whether a patient’s immune system is fighting an infection.
Conventional B- and T- cell counts require fluorescent labeling
and flow cytometry analysis, as these cells are morphologically
indistinguishable.[46] Here, we demonstrated that we were able
to train a CNN to distinguish two subtypes of lymphocytes, B and
T- cells, using only brightfield images obtained from RT-DC. Our
results show that the classification performance of that model is
at least similar to other publications showing label-free discrimi-
nation of B- and T-cells.[13–15] These results suggest feasibility of
label-free image-based discrimination of subpopulations of cells,
which could be used to complement blood cell counts. Moreover,
one promising prospect of AID is to apply it for the detection
and isolation of cells based on their morphological properties.
Given the large margin between the predicted probabilities of B-
and T-cells (Figure 4C), combining label-free image-based sort-
ing using this model could result in highly pure B- or T-cells sam-
ples. Label-free image-based sorting was recently demonstrated
for neutrophils using AID and platelet aggregates.[4,38] This sort-
ing approach opens the possibility to use the cells for downstream
applications without the risk of contamination from molecular la-
beling, and also reducing costs and preparation time. The DNN
for B versus T cell discrimination was trained using AID on an
Intel Core i7-3930K, which took 720.0 h. We deliberately used the
CPU to demonstrate stable execution of AID for such long train-
ing times. In practice, we would recommend using a GPU for
this training task. Using, for example, an Nvidia GTX 1080 we
achieve approximately a 20× speedup on our setup, which would
translate to a drop of the training time to 36 h.

In conclusion, we present a software tool which drastically in-
creases the accessibility of DL-based image classification to non-
experts. AID can handle RGB and grayscale images in small and
large datasets and has state-of-the-art techniques for improved
training of NNs, such as image augmentation and transfer learn-
ing already implemented. Moreover, since AID can employ CPU,
GPU, or even multiple GPUs for processing, it can run on almost
any PC system; without the need for additional, expensive hard-
ware. In a proof of concept approach, we have demonstrated the
power of AID for obtaining robust classifiers for multiple use-
cases covering a wide spectrum of applications. Further work is
required to evaluate the performance of AID in other biomedical
areas including immunohistochemistry, radiology, histopathol-
ogy, and other medical imaging techniques. We envision that AID
can be applied by anyone, ranging from expert programmers to
clinicians, to image classification problems in life science and
beyond; with the potential to improve accuracy and speed of in-
terpretations.

4. Experimental Section
Software Development: AIDeveloper (AID) is an open source soft-

ware (license BSD 3-Clause License; https://github.com/maikherbig/
AIDeveloper), written in Python 3.5 using PyQt (package for GUI), Keras
(https://keras.io/) and TensorFlow[17] (packages for DL), and further open
source Python packages (Table S1, Supporting Information). AID features

CUDA (Nvidia) out-of-the-box (Windows only), allowing for automatic de-
tection of Nvidia GPUs (compute capability > 3.7). Dedicated UI elements
allow to distribute processing tasks to CPU, GPU, or multiple GPUs.

PyInstaller (https://www.pyinstaller.org) was used to generate stan-
dalone executables of AID for Windows, Mac, and Linux. No installation of
Python or CUDA was required when running AID from these executables.
Alternatively, a detailed protocol is also provided to set up a Python devel-
opment environment for AID including all required packages (Video S4,
Supporting Information). Within such an environment, developers could
implement new features for their specific task and even create new stan-
dalone executables (Video S4, Supporting Information). The novelty of
AID lays in the simple access to powerful image classification algorithms
through an intuitive user interface. AID addresses the issue of a growing
number of image datasets which requires fast and reproducible analyses.
During a training process, AID automatically documents which data were
used and tracks all hyper-parameters. Hence, training routines in AID are
transparent and repeatable.

AID supports 2D grayscale and RGB images and provides tools for
conversion. To convert RGB images to grayscale, AID uses the luminosity
method, which performs a weighted average of the channels of an RGB im-
age, accounting for the higher sensitivity of the human eye to green color:
gray = 0.21 × R + 0.72 × G × 0.07 × B (Figure 1B). To convert grayscale to
RBG, AID stacks three copies of the grayscale image.

Optionally, images can be scaled which is useful for example when
working with multiple image sets that were captured at different magni-
fication. Beside nearest neighbor interpolation, AID also provides linear,
quadratic, and cubic interpolation.[47] The final size of the images is set
by the user and AID performs center cropping or padding to obtain the
requested size. The final cropping step is performed after random rota-
tion of images in order to avoid edge effects. Further image augmentation
options are available and choosing sensible parameters is assisted by the
display of example images. As image augmentation is computationally ex-
pensive, AID provides efficient algorithms leveraging implementations of
OpenCV.[48]

Image normalization methods improve training speed. AID provides
the option to divide each pixel value by 255. Furthermore, two standard
scaling methods are implemented, which use the mean and S.D. of the
whole training set or of each image individually.

By default, the entire dataset were loaded into RAM before a train-
ing process. Alternatively, loading to RAM could be omitted and datasets
larger than the available RAM memory could be processed from hard disk.

NN selectable in AID are defined in a Python script (model_zoo.py),
which also contains minimal examples. By editing this script, the user can
modify and add NN architectures which are then available within AID. Edit-
ing the model_zoo.py does not require an installation of Python but can
be accomplished using a text editor (Video S2, Supporting Information).

For training NN, a PC system with an Intel Core i7-3930K CPU @
3.2 GHz, an Nvidia GTX 1080 GPU, and 32 GB RAM was used.

CIFAR-10 and Fashion-MNIST: CIFAR-10 is a labeled image dataset
containing 60 000 RGB-images of 10 different classes.[10] The dataset were
downloaded from https://pjreddie.com/projects/cifar-10-dataset-mirror.
In this dataset, 50 000 images are dedicated to training and 10 000 to
testing. 200 random training images of each class were picked to create a
validation set.

During training, facilitating a CNN with 4 convolutional and 2 dense
layers (nitta_6layer; Figure S2N, Supporting Information) on grayscale im-
ages, the hyper-parameters were adjusted seven times and changes were
tracked automatically in a meta-file. For normalization, the pixel values
were divided by 255. Images were randomly flipped along the central ver-
tical axis and randomly rotated by up to ±5°. Furthermore, images were
shifted in each direction by up to one pixel and zoomed by a factor of up
to ±0.35. The brightness of the images was altered after each training it-
eration by randomly adding ±15 and multiplying the grayscale values by
a random number between 0.6 and 1.4 (before normalization). Gaussian
noise with random scale of up to 10 was added.

Fashion-MNIST is a labeled image dataset containing 7000 images for
each class of 10 classes of fashion items. 5800 images were used for train-
ing, 200 for validation, and 1000 images for testing. The Fashion-MNIST
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grayscale images were 28 × 28 pixel. The dataset were downloaded from
https://github.com/zalandoresearch/fashion-mnist. The image size was
increased to 32 × 32 pixels by scaling using a factor of 1.15 (nearest neigh-
bor) in order to allow for transfer learning using CNNgray. After loading
CNNgray, all layers but the last one were frozen (i.e., no updates of weights
during training). Each time, a plateau in validation accuracy was reached,
a further layer was made available for training. Images were randomly
flipped along the vertical axis, rotated by ±10°, shifted in each direction
by up to one pixel. Brightness levels were randomly altered by adding up
to ±15 and multiplying each image by values between 0.7 and 1.3. Gaus-
sian noise with random scale of up to 5 was added.

Mesenchymal Stromal Cell Isolation, Culture, Differentiation, and Dataset
Acquisition: MSC isolation was performed in compliance with the Dec-
laration of Helsinki. Bone marrow (BM) aspirates were taken from
healthy volunteer donors while routine BM donation, after obtaining in-
formed written consent, and cells were isolated (ethical approval no.
EK221102004, EK47022007) by adapting a previously reported method.[20]

In detail, BM aspiration was done according to the rules of the BM trans-
plantation center of the medical faculty of the TU Dresden (Universität-
sklinikum Carl Gustav Carus Dresden). After BM transplantation the re-
maining BM was washed out from the transplantation pouch by adding
phosphate buffered saline (PBS; Sigma Aldrich, Germany) at a ratio of
1:2. BM/PBS mixture was removed from the pouch using a 5 mL syringe
(VWR International, USA) and a blunt filling needle (Becton Dickinson,
USA). A density gradient centrifugation (400 g for 15 min at room temper-
ature, slowest acceleration, and no brake setting) was performed using a
20 mL BM/PBS aliquot layered over 12.5 mL of a 1.073 g mL−1 Percoll
solution (Biochrom GmbH, Germany) in a 50 mL conical centrifuge tube
(Greiner Bio One, Germany). The fraction of mononucleated cells (MNCs)
was transferred to a T-25 cell culture flask (Greiner Bio One, Germany) in
10 mL MSC medium and allowed to adhere for 24 h. MSC medium was
prepared using Dulbecco’s modified Eagle medium (DMEM) with glucose
and L-glutamine (DMEM Culture Media; VWR, USA) and 10% fetal calf
serum (BD, USA). After 24 h MSCs were purified by removing medium
supernatant from the cell culture flask and excess cells (non-adherent)
were washed of by 3 washing steps using 15 mL pre-warmed PBS. For
adipogenesis, MSCs were detached by a washing step with 15 mL PBS,
followed by a 5 min incubation time using 2 mL trypsin-EDTA (0.25%)
(Thermo Fisher, USA). Trypsin was blocked by adding 5 mL MSC medium
and 105 MSCs were transferred to 3 wells of a 6-well tissue culture plate
(Greiner Bio One, Germany) in 2 mL per well MSC medium. Adipogenic
differentiation was induced when cells reached 80% confluency as previ-
ously described.[21] Briefly, adipogenesis was induced by exchanging MSC
culture medium with a medium containing 1 µmol L−1 dexamethasone,
0.5 mmol L−1 3-isobutyl-1-methylxanthine, 100 µmol L−1 indomethacin,
and 10 µmol L−1 insulin (Sigma Aldrich, St. Louis, USA) in MSC culture
medium for 14 days. All cultures were kept at 37 °C with 5% CO2 in a water-
jacked incubator. Medium changes were performed weekly. For histologi-
cal visualization differentiated cells were fixed with 4% paraformaldehyde
(Merck KGaA, Darmstadt, Germany) in PBS. Adipogenic differentiation
was assessed by 2 to 5 min Oil Red O staining with 0.1% Oil Red O solu-
tion (Sigma Aldrich, St. Louis, USA) in ethanol (VWR International, USA),
followed by five washes with distilled water. To generate the image dataset
an inverted microscope (Axiovert 25, Carl-Zeiss, Jena, Germany) equipped
with a digital camera (Olympus E330, Olympus, Hamburg, Germany) was
used. Images from five different positions of each well were taken (Fig-
ure 2A,B).

Labeling was performed by an expert marking each pixel that corre-
sponded to an area of differentiated MSCs, resulting in a pixel precise
map. In total, 46 images from 16 different donors were labeled. 38 la-
beled images were used for training and the remaining 8 images for val-
idation. Each original image of 320 × 320 pixels in size was partitioned
into 100 tiles of 32 × 32 pixels (Figure 2C). The chosen size of 32 × 32 pix-
els approximately met the size of differentiated area and also reflects a
compromise between large tiles which would often contain several dif-
ferentiated areas and single-pixel-tiles that would prevent a model from
learning about the morphology of the differentiated areas. A tile was as-
signed to class 0 (“without differentiation”), if it contained less than five

marked pixels or to class 1 (“with differentiation”) if it contained more
or equal to 5 pixels. After equally partitioning all images, tiles of class 1
were clearly under-represented. Therefore, more tiles from random loca-
tions containing more than four marked pixels were added. This strategy
helped to balance the dataset and allowed to obtain tiles with objects at
various locations in the image. The latter could help to train a more trans-
lation invariant model. A single image of a completely different dataset
was used to test the trained model (Figure 2D) in order to highlight the
applicability of the obtained model to new input.

The random forest based segmentation model was trained using ilastik
v.1.3.3 using the following features: Gaussian smoothing, Laplacian of
Gaussian, Gaussian gradient magnitude, difference of Gaussians, struc-
ture tensor eigenvalues, and Hessian of Gaussian eigenvalues.

Real-time Fluorescence and Deformability Cytometry for Blood: RT-DC
and RT_FDC were performed as described elsewhere.[12,30] Briefly, a
microfluidic chip made from polydimethylsiloxane (SYLGARD, Dow Corn-
ing, USA) was mounted on an inverted microscope (Observer Z1, Zeiss,
Jena, Germany) equipped with an LED (CBT-120, Luminus Devices, USA)
and a high-speed camera (EoSens CL MC1362, Mikrotron, Germany)
(Figure 3A). Two syringe pumps (NemeSyS, Cetoni, Germany) were used
to deliver cells suspended in measurement Buffer (MB) and sheath fluid
into the chip at a sample flow rate of 0.015 µL s−1 and a sheath flow rate
of 0.045 µL s−1 resulting in a total flow rate of 0.06 µL s−1. For suspending
cells, a MB based on Mg2+-and Ca2+-free PBS (Sigma Aldrich, Germany),
supplemented with 0.6% w/w methylcellulose (Sigma Aldrich, Germany)
viscosity adjusted to 26 mPa s at room temperature, was used. An image
of every cell was captured in a region of interest of 250 × 80 pixels at a
frame rate of 2000 fps inside a constriction channel of 20 µm × 20 µm
cross-section (Figure 3A). RT-DC technology, RT-FDC technology and
all consumables are commercially available (Zellmechanik Dresden
GmbH).

For preparation of whole blood samples, venous blood was drawn from
human donors using a 20-gauge multifly needle (Sarstedt, Germany) into
sodium citrate tubes (S-Monovette 10 mL 9NC, Sarstedt, Germany) by
vacuum aspiration. Whole blood samples were prepared by diluting 50 µL
of whole blood in 950 µL of MB as previously published.[29]

To prepare RBC-depleted blood samples, 2 mL of a 6% dextran solution
(Dextran T500, Pharmacosmos A/S, Denmark) diluted in sodium chloride
(0.9% Sodium Chloride Irrigation, Baxter Healthcare, Switzerland) were
added to 10 mL of whole citrated blood drawn using a 20-gauge multifly
needle (Sarstedt, Germany) into sodium citrate tubes (S-Monovette 10 mL
9NC, Sarstedt, Germany) by vacuum aspiration. After gentle mixing, RBCs
were allowed to sediment for 30 min.[27,28] The supernatant was trans-
ferred to a 15 mL conical centrifuge tube (Greiner Bio One, Germany) and
centrifuged for 10 min at 120 g (Universal 30RF, Hettich, Switzerland).
After removing the cell-free plasma, the pellet was resuspended in 2 mL
MB.

For B- and T-cell classification fractionated blood was used. Blood
aspirates were diluted in PBS (Sigma Aldrich, Germany) at a ratio of 1:5,
followed by a density gradient centrifugation (400 g for 15 min at room
temperature, slowest acceleration and no brake setting) using a 20 mL
aliquot layered over 12.5 mL of a 1,073 g mL−1 Percoll solution (Biochrom,
Berlin, Germany) in a 50 mL conical centrifuge tube (Greiner Bio One,
Germany). The fraction of MNCs was transferred to a 15 mL conical cen-
trifuge tube (Greiner Bio One, Germany) and the tube was filled up with
PBS (Sigma Aldrich, Germany) to 15 mL. The cells were centrifuged (400 g,
5 min at room temperature) and resuspended in PBS to a concentration of
5× 106 cells mL−1. 100 µL aliquots were used to stain for B-cells using 5 µL
of an antibody against CD19 (coupled to allophycocyanin; APC) (Clone:
REA675; Miltenyi Biotec, Germany), T-cells using 5 µL of an anti-CD3
antibody (coupled to fluorescein; FITC) (Clone: REA613; Miltenyi Biotec,
Germany), and NK-cells, as a subset of T-cells using 5 µL of an anti-CD56
antibody (coupled to phycoerythrin; PE) (Clone: REA196; Miltenyi Biotec,
Germany). After another washing step using PBS, and a centrifugation
step (400 g, 5 min at room temperature) the cells were finally resuspended
in MB. Each blood sample was stained and measured independently.
Manual gating was performed for each measurement independently
and by different individuals to reduce human bias. For each replicate,
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the individual subpopulations appear at slightly different fluorescence
intensities, but were always clearly distinguishable (see Figure 4A).

RT-FDC was performed similar to RT-DC as described elsewhere.[30]

Briefly, cells were flushed through a constriction in a microfluidic chip at
a flowrate of 0.06 µL s−1. A laser sheet was projected into the middle of
the channel. When cells passed through the sheet, three lasers (488, 561,
and 640 nm) excited the fluorescence signal and the fluorescence intensity
was measured by dedicated detectors; resulting in three 1D-fluorescence
traces for each cell. Here, the maximum peak-height of the fluorescence
traces was used to quantify whether the corresponding cell was express-
ing a particular fluorescent marker. Since brightfield image and fluores-
cence acquisition were synchronized, the fluorescence information could
be used as ground truth to label each image. RT-FDC technology and all
consumables are commercially available (Zellmechanik Dresden GmbH).

All studies complied with the Declaration of Helsinki and involved writ-
ten informed consent from all participants. Donors were recruited at the
University Medical Centre Carl Gustav Carus Dresden and ethics for exper-
iments with human blood were approved by the ethics committee of the
Technische Universität Dresden (EK89032013, EK458102015).

Statistical Analysis: All bar plots were expressed as the mean ± stan-
dard deviation (S.D.). Accuracy was calculated by dividing the total num-
ber of events by the number of correctly classified events. All statistical
analyses were performed using Python 3.5.9.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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