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SUMMARY

Knowledge of the structure of a problem, such as relationships between stimuli, enables rapid learning and
flexible inference. Humans and other animals can abstract this structural knowledge and generalize it to solve
new problems. For example, in spatial reasoning, shortest-path inferences are immediate in new environ-
ments. Spatial structural transfer ismediated by cells in entorhinal and (in humans)medial prefrontal cortices,
whichmaintain their co-activation structure across different environments and behavioral states. Here, using
fMRI, we show that entorhinal and ventromedial prefrontal cortex (vmPFC) representations perform a much
broader role in generalizing the structure of problems.We introduce a task-remapping paradigm, where sub-
jects solve multiple reinforcement learning (RL) problems differing in structural or sensory properties. We
show that, as with space, entorhinal representations are preserved across different RL problems only if
task structure is preserved. In vmPFC and ventral striatum, representations of prediction error also depend
on task structure.

INTRODUCTION

Reinforcement learning (RL) theory has given deep insights into

the brain’s algorithms for learning but has remained relatively

mute about the representations that are the foundation for this

learning. For example, how might a task, or an element of a

task, be represented in the brain? Some recent progress has

been made through comparison with spatial navigation, where

representations are better understood. It has been suggested

that the same representations that map Euclidean space (such

as hippocampal place cells [O’Keefe and Dostrovsky, 1971]

and entorhinal grid cells [Hafting et al., 2005]) may be extended

to a broad range of non-spatial problems. In these cases, instead

of representing physical location, they may represent location in

an abstract space that captures the regularities of the task at

hand (Behrens et al., 2018; Garvert et al., 2017; Gershman and

Niv, 2010; Niv, 2019; Schuck et al., 2016; Stachenfeld et al.,

2017; Wang et al., 2018; Whittington et al., 2020; Wilson

et al., 2014).

One attractive corollary of these ideas is that non-spatial tasks

might benefit from the profound representational efficiencies

that are known in space. In space, cells in the entorhinal cortex

(EC) and adjacent subiculum generalize across different environ-

ments and behavioral states. For example, object-vector cells

(Høydal et al., 2019) are active when an animal is a specific dis-

tance and direction from an object, regardless of the particular-

ities of the object or the environment. Boundary-vector cells

(Lever et al., 2009), which fire when an animal is a specific dis-

tance and direction from a boundary, show similar invariances

to the sensory features of the boundary or the environment.

Border cells (Solstad et al., 2008) and boundary cells (Savelli

et al., 2008) show similar generalization properties. In ‘‘remap-

ping experiments,’’ entorhinal grid cells maintain their cell-cell

relationships across environments (Barry et al., 2012; Fyhn

et al., 2007; Yoon et al., 2013). This representational structure

is even transferred to different behavioral states like sleep (Gard-

ner et al., 2019; Trettel et al., 2019). In new spatial environments,

these powerful generalization mechanisms allow immediate

transfer of knowledge—it is not necessary to re-learn the associ-

ations implied by the structure of 2D space. Instead, it is suffi-

cient to learn what sensory observation is where in the map

(Whittington et al., 2020), and inferences (such as shortest paths

[Bush et al., 2015; Tolman, 1948]) can be made immediately.

These ideas have also been demonstrated causally, by showing

that disrupting grid cells’ firing impairs path integration (Gil

et al., 2018).

The ability to transfer structural knowledge in non-spatial tasks

would, similarly, bestow efficiencies. The structure of a problem,

learnt in one situation, could be mapped onto a new situation

with different sensory observations, and solutions could
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immediately be inferred. Behaviorally, it is clear that both hu-

mans and animals profit from such efficiencies. In psychology,

this phenomenon is known as ‘‘learning-set’’ (Harlow, 1949)—

subjects with prior exposure to the structure of a problem are

routinely better at solving new examples.

Might similar mechanisms support both spatial and non-

spatial generalization? For this to be true, one prerequisite is

that brain regions that contain structural representations in

Euclidean spatial tasks should also represent the structure of a

non-Euclidean RL task. A second is that, like in Euclidean

spaces, these representations should (a) generalize across

different sensory exemplars of the same structural problem

and (b) differ between two problems of different structures.

To answer these questions, we designed an RL task where we

manipulated either the problem structure (by changing the corre-

lation structure of serial bandits) or the sensory stimuli in a 232

factorial design. This design mirrors a spatial remapping exper-

iment with two important differences: (1) it is non-spatial task el-

ements that are being remapped, as opposed to locations in 2D

space. (2) We include 2 separate structures as well as 2 separate

environments (sensory stimuli) in each structure. This design

therefore enabled us to test for representations of the task struc-

ture, factorized from the representations of the stimuli they were

tied to. We hypothesized that the EC will harbor such represen-

tations. Though we did not directly compare spatial and non-

spatial tasks, this hypothesis was based on the EC’s generaliza-

tion properties in space.

We embedded this factorial design within a variant of a

standard RL bandit task. Historically, there has been great

success in identifying BOLD correlates of algorithmic RL vari-

ables like value and prediction error in such tasks (e.g., Hamp-

ton et al., 2006; Ramnani et al., 2004; Wimmer et al., 2012).

These findings, however, have been limited to univariate ana-

lyses of bulk activity. Our design enabled us to use multivar-

iate techniques to ask new questions about the fine-grained

nature of these signals: if learning signals have different con-

sequences in different task structures, they may also conform

to the representational predictions in the previous paragraph.

Instead of a unitary representation of prediction error, these

regions might generalize prediction error representations

across different problems with the same task structure but

have different representations across problems with different

structures.

Using fMRI in humans, we found that the EC contained a rep-

resentation that differed between different task structures but

generalized over different sensory examples of the same struc-

ture. Similarly, prediction error signals in regions including

vmPFC and ventral striatum maintained different voxelwise pat-

terns for different task structures, again generalizing over

different environments with the same structure.

RESULTS

Task
Subjects performed a task where three 1-armed bandits were

interleaved pseudo-randomly. Two of the bandits (bandits A

and B) had correlated outcome probabilities, while the third (C)

was independent. Crucially, we manipulated two features of

the task across the different blocks: (1) the sign of the correlation

between the A and B bandit probabilities. We refer to this corre-

lation as the relational structure of the stimuli. (2) The stimuli set,

with two possible triplets of images. Thus, there were 4 block-

types, each with a specific combination of a relational structure

and a stimuli set, arranged in a 232 factorial design (Figure 1B).

The fMRI experiment comprised of 8 blocks of 30 trials each (10

trials per stimulus), divided into 2 independent runs of the 4

block-types, with a pseudo-random block order counterbal-

anced across subjects. Hence, in total subjects completed 8

blocks, 2 of each block-type.

In each trial, subjects viewed one of the three stimuli and had

to indicate their prediction for its associated binary outcome (a

‘‘good’’ or a ‘‘bad’’ outcome, demarked by a King of Hearts or

Two of Spades card, respectively) by either accepting or reject-

ing the stimulus (Figures 1A and S1A). Thus, there was always

one correct answer in each trial: subjects should accept a stim-

ulus if they predict the outcome to be the ‘‘good’’ outcome and

should reject if they predict the outcome to be the ‘‘bad’’

outcome (Figure 1A). Only in accepted trials, the subject would

either win or lose a point, depending on the outcome. Outcome

identity was revealed in all trials, including rejection trials, even

though the subject’s score did not change in these trials (Fig-

ure 1A). Predictions of the outcomes could be formed based

on the recent history of outcomes. The outcome probabilities

switched pseudo-randomly between 0.9 and 0.1 with an average

switch probability of 0.15. As the two correlated bandits

switched together (Figure 1C), subjects could use their knowl-

edge of the correlation structure to learn from the outcome on

one related stimulus about the other.

The outcome probabilities associated with the related stimuli

were negatively correlated (�Corr pairs) in half of the blocks (Fig-

ure 1C, left two panels), and positively correlated (+Corr pairs) in

the other half (Figure 1C, right two panels). In all blocks the third

stimulus had an outcome probability which was uncorrelated

with the other two stimuli (0Corr pairs). The current block-type

was signaled by the background color of all stimuli in the block.

Subjects learned the mapping between background color and

correlation structure prior to scanning. Consequently, the only

learning performed during scanning was of outcome probabili-

ties, not of the relational structure—knowledge of which was

available from the first scanning trial.

Behavioral modeling
Wemodeled the subjects’ behavior using an adapted delta-rule,

with a crucial addition of ‘‘cross-terms’’ that enable learning from

one stimulus to another. Note this is not intended to be a process

model of how the brain solves the task. It is intended as a

descriptive model that allows us to test whether, and to what

extent, subjects are guided by the relational structure of the

task. The model separately tracks the probabilities of a ‘‘good’’

outcome associated with the three stimuli, all of which are up-

dated every trial. Following an outcome at trial t where stimulus

X was presented, the estimate of the outcome probability asso-

ciated with X is updated according to the classic delta-rule:

bgX

t + 1 = ð1�aÞbgX

t +ayt (Equation 1)
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where bgX
t is the outcome probability estimation for stimulus X

before trial t, a is the learning rate, and yt˛f�1; 1g is the binary

outcome at trial t.

Crucially, the estimates of the probabilities associated with the

two other stimuli are also updated:

bgY

t + 1 = ð1�ajHXY jÞbgY

t +aHXYyt (Equation 2)

whereHXY is the cross-term between stimuliX andY , fitted to the

subject’s behavior in each block. HXY = 1 indicates subjects

treated X and Y as the same stimulus for learning purposes—

for +Corr stimuli pairs, this is the correct correlation structure.

Similarly, HXY = � 1 and HXY = 0 indicate correct correlation

knowledge for �Corr and 0Corr pairs, respectively. yt is still

the outcome in trial t (a trial where stimulus X was presented).

We henceforth refer to the full model, including the 3 cross-

terms, as STRUCT. We also used a structure-naive Rescorla-

Wagner model (equivalent to setting the cross-terms in the

STRUCT model to 0), which we refer to as NAÏVE.

Subjects’ behavior
To determine whether subjects used the relational structure to

inform their decisions we employed two approaches: a cross-

validation approach and a cross-terms analysis approach. In

the cross-validation analysis, for each subject we separately

fitted the parameters of the STRUCT and NAÏVE models to data

from the 4 block-types, treating trials from each block-type as a

separate training set. This resulted in 8 fitted models: 4 STRUCT

models and 4 NAÏVE models. We then performed cross-valida-

tion by testing how well each of the 8 models predicts subjects’

choices in all 4 datasets (Figure 2A). As expected, STRUCT

models generalized much better when trained and tested on

different datasets of the same relational structure (despite

different stimuli, squares highlighted in pink), than when trained

on one relational structure and tested on the other (squares high-

lighted in green; comparison of sum(-log(likelihood)) of pink

versus green elements; two-tailed paired t test, t(27) = 9.54, p <

10^�9). Notably, the within-structure cross-validated STRUCT

models (squares highlighted in pink) performed better than the

NAÏVE models, even when the latter were trained and tested on

the same data (squares highlighted in gray; compare pink versus

gray elements in Figure 2A: two-tailed paired t test, t(27) = 4.29,

p = 0.0002). To further demonstrate this effect, weplotted the his-

tograms of outcome probability estimations ðbgÞ from the relevant

within-structure cross-validated STRUCT model (pink elements

in Figure 2A; Figure 2B, left) and the NAÏVE model trained and

tested on the same data (gray elements in Figure 2A; Figure 2B,

right), split by subjects’ choices.When themodelsmadedifferent

predictions (see Figure S1B for further characterization of these

trials), subjects tended to choose in accordance with the

A

C

B

Figure 1. Task design

(A) Possible progressions of a single trial.

(B) Experimental design and neural predictions for structure-encoding brain regions: 232 factorial design of stimuli set 3 relational structure.

(C) Example of the reward schedule for one subject in the four block-types. Solid gray lines and dashed black line are the probabilities of a good outcome for the

related stimuli and the control stimulus, respectively. Xs mark the stimuli (color) and actual binary outcomes (y axis: 0.1 and 0.9 are bad and good outcomes,

respectively) in each trial. For visualization purposes, the two 30 trials long blocks of each of the four block-typeswere concatenated.While related stimuli in +Corr

blocks (right panels) are associated with exactly the same probability, their corresponding light and dark gray lines are slightly offset for visualization purposes.
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within-structure cross-validated STRUCT models (Figure 2B).

These results suggest that sensitivity to the correlation structure,

here afforded by the cross-terms of STRUCT models, is needed

to capture subjects’ behavior.

Due to the small number of trials in each block-type, for the an-

alyses in the rest of themanuscriptwe trainedSTRUCTandNAÏVE

on each subject’s concatenated data from all blocks of the same

structure. This resulted in 10 (5parameters32 structures) and4 (2

parameters 3 2 structures) fitted parameters per subject for the

STRUCT and NAÏVE models, respectively. The fitted cross-terms

of theSTRUCTmodel indicated that subjects indeedused thecor-

relation structure correctly (Figure 2C; Corr versus 0Corr (mean

across all blocks of
���H�;+

AB

��� versus ðjHACj + jHBCjÞ=2), one-tailed
paired t test, t(27) = 13.06, p < 10^�12). The STRUCT model ex-

plained subjects’ behavior better than the NAÏVE model, even

whenaccounting for the extra freeparameters (seea formalmodel

comparison in Table S2). Subjects benefited from the extra infor-

mation afforded by the correlation structure and performed better

in trials of one of the two related stimuli than in the control stimulus

trials (FigureS1C). Therewerenosignificantdifferences in reaction

times between trials under the three possible correlation types

(Figure S1D) and no effect of task switching costs on reaction

times between related and unrelated pairs of stimuli (Figure S1E).

These results indicate that the subjectswhowere scanned indeed

used the relational structure.

The reward network and the hippocampus use the
relational structure to encode the value of the chosen
action
Our first aim for the analysis of the fMRI data was to replicate a

previous report by Hampton et al. (Hampton et al., 2006), who

found evidence of knowledge about the relational structure of

the task in known neural signals of RL. We compared how well

a model that uses relational structure (STRUCT) explained neural

signals relative to one that does not use structure (NAÏVE). In both

models, we calculated the value of the chosen action (accept/

reject) on each trial of the two related stimuli (A and B). Note

that the chosen action value has the samemagnitude as the stim-

ulus value tracked by the models but has an opposite sign on re-

jected trials. The chosen action value estimates were used to

construct one regressor per model at the time of stimulus presen-

tation (GLM1). Estimates from both models were pitted against

each other in the same GLM, meaning any variance explained

by a particular regressor was unique to that regressor, allowing

us to compare the neural signals uniquely explained by each

model. The contrasts in this section only included the two related

stimuli in each block, as the differences between the models for

the control stimulus were negligible.

A network of regions including the medial prefrontal cortex

(mPFC), the amygdala (AMG), the anterior hippocampus (HPC),

and the EC coded positively for the chosen action value from the

STRUCT model, while a network including the anterior cingulate

cortex (ACC), insula, angular gyrus, and most of the orbitofrontal

cortex (OFC) showed negative coding (Figure 2D; Table S3).

Similar results were obtained for a GLM that included reaction

time as a covariate (Figure S2A) and for the STRUCT > NAÏVE

contrast (Figure S2B). This indicates the reward network and

HPC use the relational structure to calculate the value of chosen

actions. See STAR methods and Figure S2C for a discussion of

the equivalent analysis of prediction error signals at outcome time.

Entorhinal representations generalize across tasks with
the same structure, but not those with different
structures
A representation of the relational structure of the task should be

similar (generalize) for stimuli which are part of the same

A C

DB

Figure 2. Subjects use the correlation

structure correctly

(A) Negative log likelihoods for STRUCT (left) and

NAÏVE (right) models (same scale for both

matrices). Pink elements: STRUCTmodels, cross-

validated within-structure. Green elements:

STRUCT models, cross-validated across struc-

tures. Grey elements: NAÏVE models, trained and

tested on the same data.

(B) Histograms of the estimated outcome proba-

bilities for trials where subjects accepted (blue) or

rejected (orange). Left: STRUCTmodels trained on

data with the same structure but different stimuli

set (pink elements in A). Right: NAÏVE models,

trained and tested on the same data (gray ele-

ments in A). Histograms only include trials where

the models make different predictions.

(C) Fitted cross-terms for pairs of stimuli in all

�Corr (top) and +Corr (bottom) blocks. Red cen-

tral line is the median, the box edges are the 25th

and 75th percentiles, the whiskers extend to the

most extreme datapoints that are not considered

outliers, and the outliers are plotted as red circles.

(D) Effect of the chosen action value estimates

from STRUCT model, in a GLM where it competes

with estimates from NAÏVE model (replication of

Hampton et al., [2006]).
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relational structure, but dissimilar for stimuli under a different

relational structure. We asked whether any region on the cortical

surface displayed these properties at the times of stimulus pre-

sentation, using representational similarity analysis (RSA [Krie-

geskorte et al., 2008]) with a searchlight approach.

A searchlight centered on a cortical voxel consisted of the 100

surrounding voxels with the smallest surface-wise geodesic dis-

tance from the central voxel. For each searchlight, we obtained

16 patterns of (whitened within-searchlight) regression coeffi-

cients of the responses to presentations of each of the two

related stimuli (A and B) in each of the 8 blocks (GLM2). In other

words, we obtained two patterns, one from each of the repeated

runs, for each of our 8 conditions (a particular A or B stimulus un-

der a particular correlation structure). To control for effects of

time, we used a ‘‘cross-run correlation distance’’ where only pat-

terns fromdifferent runs (i.e., more than 30min apart) were corre-

lated with each other. That is, to define the distance di;j between

conditions i and j, we first calculated the correlation distance

ð1�rÞ between the condition i pattern from run 1 and condition

j pattern from run 2, and then calculated the correlation distance

between the condition j pattern from run 1 and condition i pattern

from run 2. di;j was defined as the mean of these two distances.

Notably, this means that the diagonal in the symmetric represen-

tational dissimilarity matrix (RDM) is meaningful and shows the

consistency between the two runs of the same condition.

This resulted in an 8-conditions-by-8-conditions symmetric

RDM, summarizing the representational geometry in the search-

light (e.g., Figure 3B). The ideal structural representation can be

formalized as an 838 model RDM, where the distances between

conditions are determined by relational structure (Figure 3A). To

test whether the data RDM of a given searchlight was consistent

with the model RDM, we calculated the contrast between the

means of the data RDM’s hypothesized ‘‘dissimilar’’ and

‘‘similar’’ elements (white and black elements in Figure 3A,

respectively). We verified that this contrast did not correlate

with possible behavioral confounds such as reaction time, cor-

rectness, or task switching costs (Figure S1F, left). We repeated

this procedure for each cortical voxel (searchlight center) of each

subject, resulting in a cortical map of contrast values for each

subject. To perform group analysis, we projected the maps of

all participants to a common cortical surface, resulting in a [num-

ber of subjects] long vector of contrast values for each cortical

vertex. We then used permutation tests to ask whether this

contrast was significantly positive across subjects, resulting in

a cortical map of p values that can be corrected formultiple com-

parisons (e.g., Figure 3D, see STAR methods) or a single p value

for an ROI (calculated from the average data RDM across all ROI

vertices).

We first tested our a priori hypothesis that a representation of

the relational structure of the task would be found in EC. Using a

searchlight analysis, we found a strong effect in the right EC (p =

0.005 small volume corrected for cluster-mass in a right EC

anatomical mask (Fischl et al., 2009), p = 0.01 after Bonferroni

correction for bilateral EC, cluster-forming threshold p < 0.001,

peak MNI coordinates: [25,�5,�28]). When averaging across

the entire anatomical regions defined by the right and left EC

masks, there was no effect in left EC (p = 0.73) but a highly sig-

nificant effect in right EC (p = 0.006). When averaged across the

entire right EC, the structure in the data can be seen by eye and is

clearly revealed in dendrograms derived from the distance ma-

trix (Figure 3E). While we did not hypothesize a hemispheric dif-

ference, the difference between hemispheres did pass a nominal

statistical test (p = 0.04). This statistical difference should be

treated with caution given the post hoc nature of the test.

Although we set out to test an a priori ROI, we note that the focal

EC cluster revealed by the searchlight analysis was the strongest

response in the whole brain (Figures 3B–3D, top, peak MNI co-

ordinates: [25,�5,�28]). The only other notable cluster to survive

the cluster-forming threshold of p < 0.001 was in the right tempo-

ral-parietal junction (TPJ). We verified that the EC effect was not

driven by a small number of subjects using a leave-one-out

approach (Figure S3A).

The effect was also present in a GLM where we collapsed the

two related stimuli in each block onto a single regressor (GLM2a,

Figures 3F and S3B). This GLM is somewhat more suited to visu-

alize the relational structure effect, which is blind to stimuli iden-

tity: because in this task it is undefined which stimulus is ‘‘A’’ and

which is ‘‘B,’’ it is not possible to align exact stimuli when

comparing across stimuli sets. The effect did not change when

we repeated the analysis usingmodel RDMswhere same-stimuli

or same stimuli set elements were ignored (Figures S3C and

S3D). The effect was therefore not driven by background color

or low-level plasticity between stimuli that appear in the same

block, but rather by a representation of the relational structure

between the stimuli in the task.

To verify that our analysis approach was indeed valid, we

tested for stimulus visual identity coding using a similar proced-

ure with an appropriate model RDM (Figure 3A, bottom). As ex-

pected, we observed bilateral effects in visual areas, peaking in

the lateral occipital cortex (LOC, Figures 3B–3D, bottom, p <

0.001 FWE corrected for cluster mass across hemisphere, clus-

ter-forming threshold p < 0.001, peak MNI coordinates:

[44,�74,�4]). The comparison of the EC relational structure ef-

fect to a visual object identity effect in LOC can also help to

give a sense of the meaningfulness of the RSA measures we

are using. The effect of interest (difference between distances

of ‘‘same’’ and ‘‘different’’ pairs of conditions, blue bars in Fig-

ure 3C) is on average twice as large yet twice as variable for

the relational structure contrast at the EC peak (95% confidence

intervals = [0.011,0.03]) than the visual identity contrast at the

LOC peak (95% confidence intervals = [0.006,0.016]). This

shows that the differences in fMRI pattern correlation between

conditions in both cases are roughly on the same scale, even

though the baseline pattern correlation distances in the peak vi-

sual identity LOC searchlight are much smaller than in the peak

EC relational structure searchlight (y axis ranges in Figure 3C).

The fact that the cluster mass FWE-corrected p value is much

lower in the former effect than the latter can be explained by

the difference sizes of the regions: the LOC is a much larger re-

gion than the EC, and can therefore support larger clusters.

vmPFC and ventral striatum represent the relational
structure in learning signals
We hypothesized that vmPFC learning signals of the type typi-

cally observed in RL tasks (Hampton et al., 2006; Ramnani

et al., 2004; Wimmer et al., 2012) may be sensitive to the
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relational structure. That is, because prediction errors have

different implications for learning under the two different rela-

tional structures, vmPFC might not only simply encode a signal

that monotonically increases with prediction error as previously

reported (Hampton et al., 2006; Ramnani et al., 2004; Wimmer

et al., 2012). Instead, we hypothesized that the representation

of prediction errors across voxels would differ depending on

the relational structure.

We first found a strong univariate prediction error signal in a

network of regions including vmPFC (inset Figures 4B–4C; Fig-

ure S2D left) and the ventral striatum (vStr, inset Figure 4D; Fig-

ure S2D right), in line with previous findings (Hampton et al.,

2006; Ramnani et al., 2004; Wimmer et al., 2012). Note that the

prediction error used here is the ‘‘correctness’’ prediction error,

defined as the magnitude of the prediction error from the

STRUCT model, and a sign that depends on the congruence be-

tween the subject’s choice and the outcome: positive when the

outcome matches the subject’s choice (accept–‘‘good’’

outcome; reject–‘‘bad’’ outcome), and negative when choice

and outcome are incongruent (accept–‘‘bad’’ outcome; reject–

‘‘good’’ outcome). This prediction error is exactly the same as

a classic reward prediction error, under the assumption that

avoiding punishment (correct reject trial) and gaining a reward

(correct accept trial) are equivalent.

We next asked whether the multivoxel pattern of this

prediction error signal depends on the relational structure on a

A

E F

B C D

Figure 3. The relational structure of the task is represented in the entorhinal cortex

Top: relational structure effect, peaking in EC. Bottom: stimulus identity effect, peaking in LOC.

(A) Model RDMs. Black elements should be similar, white elements should be dissimilar. Pairs of stimuli with purple and orange rectangles around them are�Corr

and +Corr, respectively.

(B) Visualization of the data RDM from peak vertex of the effect, marked with an arrow in (D).

(C) Visualization of the paired mean difference effects between same (black RDM elements in A) and different (white elements in A) pairs of conditions from the

peak vertex of the effects. Both groups are plotted on the left axes as a slope-graph: each paired set of observations for one subject is connected by a line. The

paired mean difference is plotted on a floating axis on the right, aligned to the mean of the same group. The mean difference is depicted by a dashed line

(consequently aligned to the mean of the diff group). Error bars indicate the 95% confidence interval obtained by a bootstrap procedure.

(D) Whole surface results, right hemisphere. Clusters surviving FWE correction across the whole surface at a cluster forming threshold of p < 0.001 are indicated

in green.

(E and F) Average data RDMs (left) across the entire (anatomically defined) right EC, and dendrograms constructed from them (right). (E) Same GLM as in (B–D).

(GLM2); (F) A GLM where the two related stimuli in each block were collapsed onto a single regressor (GLM2a). The control stimuli were omitted from the data

RDMs for visualization purposes but are included in the dendrograms (labeled ‘‘0’’).
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fine-grained scale, in a multivariate analysis. We conducted a

searchlight RSA analysis similar to the one from the previous

section, with two notable differences: (1) the patterns used as in-

puts to the RSA were not the average responses to the stimuli,

but instead the regression coefficients of the prediction errors

on the two related stimuli (A and B) in each block. This means

the patterns entering this analysis are the local spatial variations

in the representation of prediction errors. (2) These analyses only

have a single measure per block as opposed to two (separate

stimuli) in Figures 3B–3E. This is similar to GLM2a (Figure 3F),

but with prediction error parametric regressors at outcome

time rather than onset regressors at stimulus presentation

time. The resulting RDMs are therefore 434, not 838 (Figures

S4A and S4B).

Because we are testing the multivariate differences on the

(orthogonal) univariate prediction error effect, we could use the

peaks of the univariate effect to constrain our regions of interest.

The top three univariate peakswere in bilateral vmPFC (left hemi-

sphere (LH) peak MNI [�2,48,�18], t(27) = 9.3, inset of Figure 4B

and Figure S4C left; right hemisphere (RH) peak MNI [8,44,�11],

t(27) = 9.36, inset of Figure 4C and Figure S4C right) and vStr

(peak MNI [�10,8,�12], t(27) = 10.24, inset of Figure 4D). In

searchlights centered on these peaks, themultivariate prediction

error 3 structure interaction effect was significant (LH vmPFC:

p = 0.014, Figures 4A, 4B, S4B, and S4C left; RH vmPFC:

p = 0.02, Figures 4C and S4C right; vStr: p = 0.034, Figure 4D).

See Figure S4C for exploratory results of this effect in a bilateral

reward-related network including posterior cingulate cortex

(PCC) and ventrolateral PFC (Rushworth et al., 2011). As with

the relational structure effect, we verified its interaction with pre-

diction errors did not correlatewith any behavioral confound (Fig-

ure S1F, right). In addition, our results held when we ran the GLM

A

C

B

D

Figure 4. Prediction error signals in vmPFC

and ventral striatum depend on the current

relational structure of the task

(A) Visualization of whole-surface results of the

multivariate prediction error 3 relational structure

interaction effect, medial left hemisphere.

(B) Interaction effect at the left hemisphere vmPFC

peak of the univariate prediction error effect (MNI:

[�4,44,�20]).

(C) Interaction effect at the right hemisphere

vmPFC peak of the univariate prediction error ef-

fect (MNI: [8,44,�11]).

(D) Interaction effect at the ventral striatum

peak univariate prediction error effect (MNI:

[�10,8,�12]). Brain images in the insets of (B), (C),

and (D) show the univariate prediction error effect

(projected on the surface in B and C). Legend for

(B), (C), and (D) is the same as in Figure 3C.

using an HRF with a delay that was fitted

to the peak of the univariate prediction er-

ror signal (delay of 8.5 s, instead of the

default delay of 6 s, see STAR methods

and Figure S2C for details).

It is important to note that here we do

not test for the existence of structural in-

formation in the prediction error signals, as we do for value sig-

nals in Figure 2D (see additional resources for a discussion of

the equivalent analysis for prediction errors). Rather, the results

in this section indicate that there is spatial variation in the predic-

tion error signals in vmPFC and vStr (and perhaps vlPFC and

PCC) that depends on the current relational structure of the

task. The critical difference between the two relational structures

in our experiment is not how the prediction error should be

computed, but rather how it should be used to inform future

behavior—how should ‘‘credit’’ for the error be assigned (Gersh-

man et al., 2015; Gershman and Niv, 2010; Jocham et al., 2016;

Rudebeck et al., 2017; Walton et al., 2010; Wilson et al., 2014).

One intriguing possibility is therefore that different representa-

tions of prediction errors allow different credit assignment for

the same prediction errors in the two relational structures. Facto-

rizing these computations from the sensory particularities of the

task allows them to be rapidly ‘‘remapped’’ to new stimuli for

rapid learning.

DISCUSSION

Understanding how the brain represents abstract task state-

spaces remains a major challenge. Our data join growing

evidence suggesting state-space representations rely on the

hippocampal formation (Garvert et al., 2017; Miller et al., 2017;

Stachenfeld et al., 2017; Vikbladh et al., 2019; Wang et al.,

2020; Zhou et al., 2019b) and interconnected regions in the

ventral PFC (Schuck et al., 2016; Vaidya et al., 2020; Wang

et al., 2020; Wilson et al., 2014; Zhou et al., 2019a, 2019b).

This is particularly interesting in light of the historical role of these

regions in generalization and relational reasoning (Barron et al.,

2013; Bowman and Zeithamova, 2018; Cohen and Eichenbaum,
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1993; Morrissey et al., 2017; Preston and Eichenbaum, 2013;

Zeithamova and Preston, 2010), which are essential for efficient

task representations. Here, we show that these regions gener-

alize the relational structure of a non-Euclidian RL task. EC rep-

resentations of stimuli generalized over tasks with the same

structure, but not over tasks with a different structure. The

same was true for vmPFC (and vStr) representations of predic-

tion error. These results suggest a common framework for the

representation and generalization of task structures in a wide va-

riety of domains.

Our experiment can be viewed as a set of non-spatial ‘‘re-

mapping experiments.’’ The vertical arms in Figure 1B (same

task structure, different stimuli) are analogous to the classic

spatial sensory remapping experiments in rodents (Barry

et al., 2012; Fyhn et al., 2007), where an animal is moved be-

tween different sensory examples of the same task structure

(namely free foraging in a Euclidean 2D space). In these exper-

iments, entorhinal grid cells maintain (generalize) their covari-

ance structure across environments (i.e., they do not remap,

in contrast to hippocampal place cells [Bostock et al., 1991]).

Such generalization was also observed in Macaque OFC neu-

rons, across different sensory examples of an economic deci-

sion-making task (Xie and Padoa-Schioppa, 2016). The hori-

zontal arms in Figure 1B (same stimuli, different task

structure) can be viewed as ‘‘task remapping’’ experiments.

In the spatial case of such experiments, where animals are

required to perform different tasks in the same sensory environ-

ment, recent evidence suggests the grid code changes (re-

maps) across tasks (Boccara et al., 2019; Butler et al., 2019).

Our EC effect (Figure 3) mirrors these results in a non-spatial

RL task in humans. Future work might address whether the

exact same neuronal population underlies generalization in

both spatial and non-spatial tasks.

We believe the comparison to spatial EC cells that generalize

over sensory particularities (e.g., object-vector, boundary-vec-

tor, boundary, and border cells), and in particular grid cells as

their most studied example, is essential to understand our re-

sults: first, grid cells abstract and generalize the relational struc-

ture of 2D environments. This is demonstrated in remapping

tasks (Barry et al., 2012; Fyhn et al., 2007; Whittington et al.,

2020), which inspired the design of our task. Second, an impor-

tant property of the relational structure that they generalize is the

correlation structure of observations, that is shared between all

2D environments, even when the observations themselves differ.

Theoretical work suggests the hexagonal grid representation

(Banino et al., 2018; Dordek et al., 2016; Mathis et al., 2015; Sta-

chenfeld et al., 2017), and other EC spatial representation such

as boundary, boundary-vector, and object-vector cells (Whit-

tington et al., 2020), are obtained from low dimensional projec-

tions of correlation structures that are subject to the constraints

of 2D. Here, we similarly manipulate the correlation structure of

observations, only these observations are rewards in an abstract

RL task rather than locations in a spatial task. Third, grid cells

reside predominantly in EC, but also in human mPFC (Jacobs

et al., 2013) (and other areas)—the areas where we find our ef-

fects. However (and crucially), we do not claim that hexagonal

grid-like patterns (Bao et al., 2019; Constantinescu et al., 2016;

Doeller et al., 2010) underlie our effects, nor that it is possible

to measure these here. A hexagonal representation, while being

the most efficient representation for generalizing the relational

properties of 2D Euclidean space (Banino et al., 2018; Dordek

et al., 2016; Mathis et al., 2015; Stachenfeld et al., 2017), would

not be useful for generalization in our task. Rather, we test—in a

non-Euclidean RL state-space—for the underlying computa-

tional functions (reviewed in Behrens et al. [Behrens et al.,

2018; Dordek et al., 2016; Stachenfeld et al., 2017; Whittington

et al., 2020]) that lead to the hexagonal pattern in 2D space.

A unified framework for the representation of task structure

might also afford a new way to interpret standard RL neural sig-

nals like prediction error. While the dependence of prediction

error signals on prior, unobservable information has been re-

ported previously (Nakahara et al., 2004), here we report a

novel relational aspect to this context dependency. Prediction

error representations that were used in different ways (opposite

update signs of the related stimulus for �/+Corr blocks)

differed anatomically on a fine-grained level. Our vmPFC pre-

diction error 3 structure interaction effect (Figure 4) brings

together observations about vmPFC function from several

seemingly disparate fields, including RL (Rushworth et al.,

2011). Patients with vmPFC lesions show a selective valuation

deficit when value comparison should be based on attribute

configuration, i.e., when relationships between object elements

are important for the valuation (Pelletier and Fellows, 2019). In

the memory literature, vmPFC has been strongly implicated in

the representation of schemas—abstract structures of previous

knowledge, which bear many parallels to the relational struc-

tures discussed here (Baldassano et al., 2018; Gilboa and Mar-

latte, 2017). vmPFC is particularly important when new informa-

tion is assimilated into an existing schema (Sommer, 2017; Tse

et al., 2011), analogous to a prediction error update of the inter-

nal model of the task within the current structure. Finally, some

of the strongest effects of spatial and nonspatial grid-like cod-

ing in fMRI were recorded in the medial PFC (Constantinescu

et al., 2016; Doeller et al., 2010; Jacobs et al., 2013). Notably

PCC, where we found the strongest prediction error 3 structure

interaction effect in our exploratory analysis (Figure S4C), also

exhibits grid-like coding (Constantinescu et al., 2016; Doeller

et al., 2010) and has also been strongly implicated in the repre-

sentations of schemas (Baldassano et al., 2018; Som-

mer, 2017).

Though ourmanuscript focuses on novel data regarding struc-

tural representations of task elements (Figure 3) and learning sig-

nals (Figure 4), we also report a key replication (Figure 2D). This is

notable, as the effect that is replicated is subtle—the unique

contribution of model-based (over model-free) value in a rela-

tional RL task. However, in the original paper (Hampton et al.,

2006), only a mPFC effect was reported in a GLM that included

chosen action values from (the equivalents of) both STRUCT

and NAÏVE models. The other brain regions (amygdala, anterior

hippocampus, EC) where we found a positive STRUCT chosen

action value effect in such a GLM were reported by Hampton

et al. in a weaker analysis—in a GLM including only estimates

from (the equivalent of) the STRUCT model. We also report the

negative effects of the contrast from the more stringent GLM

(in angular gyrus, ACC and OFC, where negative correlates of

value are often observed). It is plausible that the effects we report
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here also existed in Hampton et al.’s data and were not reported

due to the focus of their manuscript on mPFC and the tendency

at the time not to report negative effects.

Learning can be dramatically improved by a useful representa-

tion of the world you are learning about. Here, we show that the

brain can ‘‘recycle’’ (generalize) these representations, enabling

fast and flexible inferences. We believe the comparison of

generalizable representations in our abstract RL task to their par-

allels in spatial cognition is a useful one and can suggest a path

for a more precise understanding of the nature of these

representations.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alon B.

Baram (alon.baram@ndcn.ox.ac.uk).

Materials availability
This study neither used any reagent nor generated new materials.

Data and code availability
All code is available at https://github.com/alonbaram2/relationalStructure. Unthresholded statistical maps can be obtained at

https://neurovault.org/collections/7150.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
We trained 49 volunteers over 4 days on an online version of the task. 17 subjects did not proceed to be scanned as they either did not

comply with task demands (e.g., failed to complete training on time) or did not reach a behavioral criterion for knowledge of the

outcome probabilities correlation structure (a difference of more than 0.3 between the fitted cross-term of the related stimuli and

the mean of the fitted cross-terms of the unrelated stimuli, see below). 32 volunteers (aged 21-32 years, mean age 23.4, 18 females)

with normal or corrected-to-normal vision and no history of neurological or psychiatric disorders participated in the fMRI experiment.

4 subjects were excluded from the analyses: 3 due to technical difficulties during the scanning, and one due to excessive motion.

Hence, all analyses presented are based on data from 28 subjects. All subjects gave written informed consent and the study was

approved by the University of Oxford ethics committee (reference: R51215/RE001).

METHOD DETAILS

Training and task
Subjects trained online for 4 days prior to the scan day, and were scanned on day 5. In each training session, subjects performed a

task where three 1-armed bandits were interleaved pseudo-randomly. The bandits were cued by three different visual stimuli,

randomly sampled without replacement for each session from a bank of 35 images. Two of the bandits (bandits A & B) had correlated

outcome probabilities, while the third (C) was independent. There were two possible correlation structures for the outcome proba-

bilities of bandits A & B: positive correlation (+Corr blocks) or negative correlation (-Corr blocks). Each online training session

comprised of 8 blocks with 60 trials each (3 stimuli X 20 trials per stimulus).

In each trial, subjects viewed one of the three stimuli and had to indicate their prediction for its associated binary outcome (a

‘‘good’’ or a ‘‘bad’’ outcome, demarked by a King of Hearts or Two of Spades card, respectively) by either accepting or rejecting

the stimulus. Thus, there was always one correct answer in each trial: subjects should accept a stimulus if they predict the outcome

to be the ‘‘good’’ outcome, and should reject if they predict the outcome to be the ‘‘bad’’ outcome (Figure 1A). Only in accepted trials,

the subject would either win or lose a point, depending on the outcome (i.e., accepting incorrectly resulted in a loss of a point).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB v2016a Mathworks https://www.mathworks.com

FSL v6.0 Jenkinson et al., 2012 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

SPM12 Penny et al., 2007 https://www.fil.ion.ucl.ac.uk/spm/software/

Psychtoolbox3 Kleiner et al., 2007 http://psychtoolbox.org/

RSA toolbox Nili et al., 2014 https://git.fmrib.ox.ac.uk/hnili/rsa

Freesurfer Fischl, 2012 https://surfer.nmr.mgh.harvard.edu/

DABEST Ho et al., 2019 https://acclab.github.io/DABEST-python-docs/index.html
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Outcome identity was revealed in all trials, including rejection trails (except on training days 3 and 4, see below), even though the

subject’s score did not change in these trials (Figure 1A). Predictions of the outcomes could be formed based on the recent history

of outcomes. The outcome probabilities switched pseudo-randomly between 0.9 and 0.1 with an average switch probability of 0.05 in

each trial of the training sessions. As the two correlated bandits switched together, subjects could use their knowledge of the cor-

relation structure to learn from the outcome on stimulus A about stimulus B and vice versa (Figure 1C). Subjects were informed and

reminded at the beginning of each training block that two of the bandits had correlated outcome probabilities, and that this correlation

might be positive or negative. However, subjects had to infer which two bandits were correlated and what the sign of the correla-

tion was.

The training schedule for an example subject is shown in Table S1. On day 1 subjects completed two sessions with a different

triplet of stimuli used as the ABC cues in each session. In both sessions, two of the stimuli had a particular correlation structure,

counterbalanced across subjects. That is, half of the subjects performed two sessions of 8 -Corr blocks each, while the other half

performed two sessions of 8 +Corr blocks. Day 2 was identical to day 1, except that the two stimuli sets used were novel and the

correlation structure was the one that the subject did not experienced on day 1. On day 3 subjects again completed 2 sessions

with a novel stimuli set per session, where the correlation structure between two of the stimuli alternated between blocks. The

correlation structure was indexed by the background color of stimuli (e.g., Figures 1B and 1C), and subjects were informed

that the combination of stimuli set, background color and correlation structure in day 3 will be the same in days 4 and 5, including

in the scanning task. Thus, subjects could already learn the background color-correlation structure mapping prior to entering the

scanner. On day 4 subjects completed one session with all the 4 possible block-types (2 stimuli sets 3 2 correlation structures,

e.g., Figures 1B and 1C). To reduce available information and facilitate subjects’ need to use the extra information afforded by the

correlation structure, no counterfactual feedback was given on rejection trials in any of the last 15 trials of a block in training days 3

and 4.

Prior to scanning on day 5, subjects completed a pre-scanning reminder session with all 4 block-types, again with the same stimuli

set - background color - correlation structure combinations as in days 3 and 4. In both the pre-scanning session and during scanning,

full outcome feedback was given, including in all rejection trials. During scanning, subjects completed 8 blocks of 30 trials each (10

trials per stimulus), with a break after 4 blocks for structural and field-maps scans. The two groups (runs) of 4 blocks included one of

each of the 4 experimental block-types in a pseudo-random order, counterbalanced across subjects. Outcome probabilities

switched faster in the scanner than during training due to the shorter blocks, with a switch probability of 0.15.

Before the first trial of each block, all three stimuli and the background color of that block were presented. A trial was on average

11.5 s long, progressing in the following order (Figure S1A): 1) A stimulus would appear in the middle of the screen, together with the

available choices, e.g., left for accept (corresponding to an index finger button press) and right to reject (middle finger button press).

The left/right mapping to choices was counterbalanced across subjects but stable within-subject. 2) After 1.5 s, the frame of the stim-

ulus and the accept/reject text turned white, indicating that choice can now bemade. Subjects who indicated their choice prior to the

appearance of the white frame lost half a point. 3) Subjects indicated their choice by pressing either the index or middle finger but-

tons. Next, a red rectangle appeared around the chosen option for 0.5 s. 4) A white fixation cross appeared for a variable period,

drawn from an exponential distribution with a mean of 4.5 s and truncated between 3.5-5.5 s. The purpose of this long delay between

choice and outcome was to enable the independent analysis of both periods, due to the sluggish nature of the hemodynamic

response function. 5) The outcome of the trial appeared for 1 s in themiddle of the screen - either the ‘‘good’’ outcome (King of Hearts

card) or the ‘‘bad’’ outcome (Two of Spades card). If the subject has accepted the trial earlier, they will either win or lose a point: if they

accepted correctly (outcome was ‘‘good’’), a ‘‘sack of gold’’ image would appear in the left side of the screen to indicate that a point

was gained; if they accepted incorrectly (outcome was ‘‘bad’’), a ‘‘no sack of gold’’ image would appear to indicate that a point was

lost. If the subject rejected the trial, no points would be won or lost (and hence no ‘‘sack of gold’’ or ‘‘no sack of gold’’ image would

appear), but the outcome card image would still appear (Figure 1A). Hence subjects received full counterfactual feedback. Note that

subjects should reject trials if they predict the outcome to be the ‘‘bad’’ outcome, as they will lose a point for incorrectly accepting a

trial. 6) A white fixation cross appeared for a variable inter trial interval, drawn from an exponential distribution with a mean of 3 s and

truncated between 2.5-4 s.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavior modeling
We modeled the behavior of the subjects using an adapted delta-rule model (Rescorla and Wagner, 1972). The original delta-rule

model estimates the outcome probabilities for a given stimulus using the following equation:

bgS
t +1 = bgS

t + aεSt ; ε
S
t = yt � bgS

t , where S˛fA;B;Cg; fA;B;Cg are the three stimuli presented in a block, bgS
t is the value estimation of

stimulusS before trial t (which can be thought of as the ‘‘good’’ outcome probability estimation for stimulusS before trial t, mapped to

the [-1,1] interval instead of [0,1]), a is the learning rate, ε is the outcome prediction error, and yt is the outcome at trial t: yt = 1 for the

‘‘good’’ outcome and yt = � 1 for the ‘‘bad’’ outcome. Note that themodel estimates the stimulus value, based on the outcome iden-

tity (which card was obtained - not the reward actually obtained by the subject), and is agnostic to the choice the subject made. The

stimulus value should be distinguished from the ‘‘chosen action value’’ used in GLM1 (see below), which has the same magnitude as
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the stimulus value, but has an opposite sign on rejection trials: in a trial where the subject’s hypothetical estimate of the stimulus value

is very low (close to � 1), theywill be confident in rejecting the trial, making the value of the chosen ‘‘reject’’ action high (close to + 1).

Similarly, ε should not to be confused with the ‘‘correctness’’ prediction error used in GLM3 and Figure 4, which has the samemagni-

tude as ε but with a sign determined by the congruence between the subject’s choice and the outcome. The stimulus value estimation

can then be used by a ‘‘selector model’’ to make a choice in the next trial, by using a simple sigmoidal function:

Pðchoice on stimulus S on trial t + 1 = acceptÞ = ð1+ e�bðbgS

t ÞÞ
�1

, where b is the inverse temperature, controlling the randomness

of the choice. In this model, a and b are free parameters fit to subjects’ behavior.

However, this model does not use any knowledge about the correlations between the outcome probabilities of different stimuli. To

allow for this, we added three free parameters to the model, which we refer to as cross-terms. These parameters determine how in-

formation on one stimulus affects the outcome estimate on another stimulus.

Following an outcome on stimulus A, we update the outcome estimates of all three stimuli:

bgA

t + 1 = ð1�aÞbgA

t +ayt

bgB

t + 1 = ð1�ajHABjÞbgB

t +aHAByt

bgC

t + 1 = ð1�ajHACjÞbgC

t +aHACyt

Where �1%HXY%1 is the cross-term for stimuli X and Y. Note that the first equation (update of the estimate for stimulus A following

an outcome on stimulus A) is identical to the update in the original delta-rule model. HXY = 1 means stimuli X and Y are treated as the

same: the outcome estimates for both stimuli will be updated in exactly the same way following feedback on one of them. HXY = � 1

means stimuli X and Y are treated as having opposite (anti-correlated) outcome probabilities. HXY = 0 means the two outcome prob-

abilities are treated as uncorrelated: the outcome estimates for stimulus X will not change following feedback on stimulus Y , and vice

versa. Analogous updates occur when feedback is given on stimuli B or C.

To establish the robustness of the STRUCT model in explaining subjects’ choices, we first performed a cross-validation analysis.

We fitted both STRUCT (5 free parameters per training data: learning rate, inverse temperature and 3 cross-terms) and NAÏVE

(2 free parameters per training data: learning rate and inverse temperature) models to training data from the four block-types (2 struc-

tures 3 2 stimuli sets) separately, concatenating data from the pre-scanning (1 block of 42 trials per block type) and scanning

(2 blocks of 30 trials per block type) sessions. Hence, we fitted 4 STRUCT models and 4 NAÏVE models. We then tested the trained

models on data of subjects’ choices from either the same (diagonals in Figure 2A) or different (off-diagonals in Figure 2A) block-type,

resulting in 434matrices of the negative log likelihood of the test data given the fittedmodel (Figure 2A). The outcome estimates for all

stimuli were reset to 0 at the beginning of each block. We fit the parameters by maximizing the negative log likelihood of the data with

respect to the parameters using the MATLAB function fmincon. The learning rate was constrained to be between 0 and 1, the cross-

terms between �1 and 1, and the inverse temperature between 0 and 8.

To further demonstrate the robustness of the STRUCT model, we isolated trials where the NAÏVE model, when trained and tested

on the same data (gray elements in Figure 2A, right), predicted different choices than the cross-validated STRUCTmodel (trained and

tested on different data but from the same relational structure, pink elements in Figure 2A, left). We plotted histograms of the models’

outcome probability estimation, separately for accept/reject choices of subjects.

For the rest of the paper, we used STRUCT and NAÏVE models fitted on data pooled across all blocks of the same structure

(collapsing over stimuli sets). That is, we collapsed data from the subject’s scanning session (30 trials per block3 4 blocks per struc-

ture) and the pre-scanning session (42 trials per block 3 2 blocks per structure), and fitted the parameters separately for +Corr and

-Corr blocks. This resulted in a total of 202 trials for each of the structures (+/�Corr). The final STRUCT and NAIVE models had 10

(5 parameters 3 2 structures) and 4 (2 parameters 3 2 structures) free parameters per subject, respectively. We confirmed that the

STRUCTmodel provided a better fit to the data even when accounting for the extra degrees of freedom through a formal model com-

parison (Table S2). Finally, we tested whether subjects indeed used the relational structure correctly by performing a one-tailed

paired t test across subjects between the STRUCT model AB cross-term and the mean of AC and BC cross-terms (Figure 2C).

We note that we do not suggest that this model reflects how the brain solves the task. The model is only used as a way to analyze

the behavioral and neural data. Specifically, the model allows us to 1) Establish that the relational structure influenced subjects’

behavior. 2) Compute a proxy to value and prediction error signals, to use in the fMRI analysis.

fMRI data acquisition
Data were acquired on a 3T Siemens Prisma scanner, using a 32-channel head coil. Functional scans were collected using a T2*-

weighted echo-planar imaging (EPI) sequence with a multi-band acceleration factor of 3, within-plane acceleration factor (iPAT) of

2, TR = 1.235 s, TE = 20 ms, flip angle = 65 degrees, voxel resolution of 23232 mm and a tilt of 30 degrees relative to axial axis.

A field map with dual echo-time images (TE1 = 4.92ms, TE2 = 7.38ms, whole-brain coverage, voxel size 33333 mm) was acquired
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to correct for geometric distortions. Structural scans were acquired using a T1-weighted MP-RAGE sequence with 13131 mm

voxels.

Pre-processing
Pre-processing was performed using tools from the fMRI Expert Analysis Tool (FEAT), part of FMRIB’s Software Library (FSL (Jen-

kinson et al., 2012)). Data for each of the 8 blocks were pre-processed separately. Each block was aligned to the first, pre-saturated

image using the motion-correction tool MCFLIRT (Jenkinson et al., 2002). Brain extraction was preformed using automated brain

extraction tool BET (Smith, 2002). All data were high-pass temporally filtered with a cut-off of 100 s. Registration of EPI images to

high-resolution structural images and to standard (MNI) space was performed using FMRIB’s Linear and Non-Linear Registration

Tool (FLIRT and FNIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001)), respectively. The registration transformations were

then used to move each blocks’ EPI data to the native structural space, downsampled to 23232 resolution. No spatial smoothing

was performed during pre-processing (see below for different smoothing protocols for univariate and multivariate analyses).

Univariate analyses
Due to incompatibility of FSLwith theMATLAB RSA toolbox (Nili et al., 2014) used in subsequent analyses, we estimated all first-level

GLMs and univariate group-level analyses using SPM12 (Wellcome Trust Centre for Neuroimaging, https://www.fil.ion.ucl.ac.

uk/spm).

For univariate analyses, contrasts of parameter estimates were smoothed with a kernel of 5mm FWHM before performing group

level statistics.

In the following descriptions, [A, B, C] refer to the three stimuli presented in a particular block, where the outcome probabilities

associated with A & Bwere correlated (either positively or negatively, depending on the block). Regressors in all GLMs weremodeled

as delta functions (stick), convolved with the default SPM HRF (hemodynamic delay of 6 s).

To test whether known RL signals in the reward network were consistent with a model that used the relational structure, we con-

structed a GLMwhere chosen action value estimates from both STRUCT and NAÏVE models were pitted against each other (without

being orthogonolised, Figures 2D and S2). GLM1 included the following regressors per each block: two main effect regressors of all

related stimuli trials ([AB]): onemodeling the times of stimulus presentation andmodeling outcome times. Two parametric regressors

were locked to stimulus presentation times of [AB]: the value of the chosen option from the STRUCT and the NAÏVE models. In addi-

tion, the GLM included several other regressors: C trials at stimulus presentation; C trials at outcome; 2 regressors modeling button

presses across all stimuli: one modeling all ‘‘accept’’ trials and one modeling all ‘‘reject’’ trials; 6 motion parameters as nuisance re-

gressors; bias term modeling the mean activity in each block. Figure 1E shows the results of the contrast [STRUCT chosen option

value] > [baseline]. Figure S2B shows the results of the contrast [STRUCT chosen option value] > [NAIVE chosen option value]. Fig-

ure S2A shows the results of the [STRUCT chosen option value] > [baseline] contrast in a separate GLM where we added [AB trials

reaction times] as a parametric regressor locked to the time of stimulus presentation.

See below for a description of the univariate STRUCTmodel prediction error analysis, the results of which are shown in the insets of

Figures 4B and 4C.

RSA analyses
In this section, we first outline the steps common to all RSA (Kriegeskorte et al., 2008) analyses, and then describe details which were

specific to each analysis. All RSA analyses were conducted as follows: 1) A searchlight (Kriegeskorte et al., 2006) was constructed

around each cortical voxel, including the 100 cortical voxels with the smallest surface-wise geodesic distance from the central voxel.

This was performed using adapted scripts from the RSA toolbox (Nili et al., 2014 original surface-based searchlight scripts written by

Joern Diedrichsen & Naveed Ejaz, code available at https://github.com/rsagroup/rsatoolbox) . The searchlight definition depends on

cortical reconstruction and alignment performed via Freesurfer’s recon-all command (Dale et al., 1999; Desikan et al., 2006; Fischl

et al., 1999, 2002, 2001; Reuter et al., 2010; Ségonne et al., 2004). Defining cortical searchlights on the 2D surface (rather than in 3D) is

useful as it is sensitive to the subject-specific anatomy of the cortical folding. 2) For each searchlight, first-level univariate GLMs on

unsmoothed data were conducted for all voxels in the searchlight using the RSA toolbox, based on SPM12. Regression coefficients

were then spatially pre-whitened within the searchlight using the RSA toolbox. 3) A distance metric was defined to summarize the

representational geometry between conditions. Themetrics usedwere either the cross-run correlation distance or awithin-block cor-

relation distance (See below). This resulted in data RDMs of size [number of conditions] 3 [number of conditions]. 4) A hypothesis

about the representational geometry was formalised as a contrast between the mean of RDM elements that should ‘‘dissimilar’’

to each other and themean of RDMelements that should be ‘‘similar’’ to each other. This contrast was calculated in each searchlight,

resulting in a single contrast map per subject. 5) The contrast maps of the different subjects were aligned on the common cortical

surface (consisting of vertices, rather than voxels) using Freesurfer-based scripts adapted from the RSA toolbox. 6) Group-level sta-

tistical significance of the contrast was performed either in an a-priori ROI or in a whole-cortexmanner. For the former (Figures 3E and

3F), for each subject we first averaged the RDMs within the ROI and then performed a one-tail t test on the contrasts values across

participants). For the latter (all other RSA results) we performed statistical inference (equivalent to a one-tailed t test) and family-wise

error (FWE) correction using permutation tests (Nichols and Holmes, 2002) using PALM (Winkler et al., 2014). In this procedure, the

contrast values from each subject were randomly multiplied by either 1 or �1, following the null hypothesis that the contrasts are
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symmetric around 0. The test’s statistic was then defined as the cross-subject average of contrast values. This was repeated 10000

times, creating a null distribution of the means. The true value of this mean was then compared to this null distribution. The resulting

(uncorrected) p value map is displayed in Figures 3D, 4A, S3, and S4C as a heatmap, at a threshold of p < 0.01. The paired mean

difference across subjects between the two groups of RDM elements at particular vertices of interest is visualized in the Gardner-

Altman estimation plots in Figures 3C, 4B, and 4C. The figures were generated using an adaptation of the openly available MATLAB

package DABEST (Ho et al., 2019). We make an important distinction between estimation plots containing data from peaks of FWE-

surviving clusters, which are subject to selection bias (and are shown for visualization purposes only; Figure 3C), and estimation plots

with data from unbiased ROIs, which are not subject to selection bias (Figures 4B and 4C). In these ROIs an uncorrected statistical

test can be performed.

To search for a representation of the relational structure between stimuli in the task (Figures 3 and S3), we conducted a GLM

(GLM2) which included the following regressors per each block: 3 main effect regressors ([A],[B],[C]) modeling the times of stimulus

presentation; 3 main effect regressors ([A], [B], [C]) modeling the times of outcome presentation; 2 regressors modeling button

presses across all stimuli: one modeling all ‘‘accept’’ trials and one modeling all ‘‘reject’’ trials; 6 motion parameters as nuisance re-

gressors; bias termmodeling themean activity in each block. Only the 2 regressorsmodeling the presentation of the two related stim-

uli (A&B) in each block were used in the ‘‘relational structure representation’’ analysis (as stimulus C was not part of a relational struc-

ture, Figure 3 top and Figure S3), while all stimulus presentation regressors (A, B & C) were used in the ‘‘visual stimulus identity

representation’’ analysis (Figure 3, bottom). Each condition (a particular stimulus under a particular structure) had two patterns

(100-long vectors of spatially pre-whitened regression coefficients) – one from each independent run. We defined the cross-run cor-

relation distance between each pair of conditions by averaging the following quantities: [correlation distance between condition i

pattern from run 1 and condition j pattern from run 2] and [correlation distance between condition i pattern from run 2 and condition

j pattern from run 1]. This resulted in [number of conditions] 3 [number of conditions] data RDM for each searchlight (838 for the

‘‘relational structure representation’’ analysis; 12312 for the ‘‘visual stimulus identity representation’’ analysis). We then defined a

hypothesis-driven contrast between RDM elements: In the main ‘‘relational structure representation’’ analysis, ‘‘different structure’’

elements should be more dissimilar to each other than ‘‘same structure’’ elements. For the control analyses in Figure S3, we ignored

elements of the same visual stimulus (Figure S3C) or the same stimuli set (Figure S3D). In the ‘‘visual stimulus identity representation’’

analysis, ‘‘different visual stimulus’’ elements should be more dissimilar than ‘‘same visual stimulus’’ elements. Using the maximum

cluster mass statistic (Nichols and Holmes, 2002) for multiple comparisons correction, we report clusters that survived FWE correc-

tion at a cluster-forming threshold of p < 0.001 (green clusters in Figures 3 and S3).

In addition, to test for a relational structure representation we conducted a similar GLM (GLM2a) where we collapsed the two

related stimuli onto the same regressor (Figures 3F and S3B). GLM2a included the following regressors: 2 main effect regressors

([AB],[C]) modeling stimulus presentation times; 2 main effect regressors ([AB],[C]) modeling outcome times; 2 regressors modeling

button presses across all stimuli: one modeling all ‘‘accept’’ trials and one modeling all ‘‘reject’’ trials; 6 motion parameters as

nuisance regressors; bias term modeling the mean activity in each block. We followed the same protocol as above to construct

data RDMs (using the [AB] > baseline contrast, resulting in 434 data RDMs) and for statistical inference.

To test whether standard prediction error signals depended on the relational structure (prediction error3 structure interaction anal-

ysis, Figures 4 and S4), we first wanted to replicate the previously described ventral striatum (vStr) and vmPFC univariate prediction

error signals (Delgado et al., 2000; Hampton et al., 2006; O’Doherty et al., 2003; Ramnani et al., 2004). We conducted a GLM (GLM3)

which included the following regressors per each block: 2 main effect regressors ([AB],[C]) modeling outcome times; one parametric

regressor of the ‘‘correctness’’ prediction error from the STRUCT model, locked to the time of [AB] outcome presentation; 2 main

effect regressors ([AB],[C]) modeling stimulus presentation times; 2 regressors modeling button presses across all stimuli: one

modeling all ‘‘accept’’ trials and one modeling all ‘‘reject’’ trials; 6 motion parameters as nuisance regressors; bias term modeling

the mean activity in each block. For each subject, we calculated the contrast [AB STRUCT ‘‘correctness’’ prediction error] > [base-

line], smoothed the contrast image using a 5mm FWHM kernel, and obtained group-level results using SPM (Figures 4B and 4C, in-

sets). As expected, the two strongest peaks were in vStr and vmPFC. We then used these peaks as (unbiased) ROIs for the multi-

variate prediction error X structure interaction analysis. To this end, in addition to the surface-based cortical searchlight procedure

described above, we also defined 100 voxels long volumetric searchlights within an anatomical mask of the vStr (Harvard-Oxford

Subcortical Structure Atlas). Unlike the surface-based searchlight, the analyses for the volumetric searchlight were all performed

in MNI152 space. Only the regressor modeling the [AB] ‘‘correctness’’ prediction error in each block was used in the RSA analyses

for Figures 4 and S4, resulting in 8 patterns – one pattern per block. We again used the cross-run correlation distance to collapse

patterns of the same conditions (a particular stimuli set under a particular structure) across runs, this time to construct 434 data

RDMs – one condition per block type. Again, we defined a hypothesis-driven contrast between RDM elements, where ‘‘different

structure’’ elements should be more dissimilar to each than ‘‘same structure’’ elements. We report the (uncorrected) p values ob-

tained by permutation tests in the searchlights centered on the vStr and vmPFC peaks of the univariate prediction error effect (Fig-

ure 4). We also present the exploratory, uncorrected results across cortex of this effect (Figure S4C).

Multiple comparisons correction
Multiple comparisons correction was performed using the permutation tests machinery (Nichols and Holmes, 2002) in PALM (Winkler

et al., 2014): we first thresholded the (uncorrected) P-map at p < 0.001, and measured the mass of all surviving clusters. We then
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repeated this procedure for each of the 10000 random sign-flip iterations described above, and created a null distribution of cluster

masses by saving only the mass of the largest cluster in each iteration. Comparing the true cluster masses to the resulting null dis-

tributions results in FWE-corrected P values.

Leave-one-out analysis - EC effect
To demonstrate the robustness of the EC effect, we ran the pipeline described above for the relational structure effect 28 times, each

time leaving out the data from one subject. This resulted in 28 cluster mass FWE-corrected P valueswithin a hemisphere. A histogram

of these P values is shown in Figure S3A.

ADDITIONAL RESOURCES

The univariate ‘‘correctness’’ prediction error signal
In Figure 2D, we showed that at stimulus presentation time activity in several brain regions covaries with the value of the chosen op-

tion as predicted by the STRUCTmodel. Importantly, this survives the inclusion of NAÏVE chosen value as a co-regressor. This means

the portion of STRUCT value that is orthogonal to the NAÏVE value is reflected in fMRI signal even though the two values are correlated

(r = 0.77). It would have made sense to explore a prediction error-equivalent of this analysis at outcome time. However, this test is a

much harder test than the one we performed for value at stimulus presentation time. This can be superficially explained by the

fact that STRUCT and NAÏVE prediction errors aremuchmore correlated (r = 0.93) than the STRUCT and NAIVE chosen action values

(r = 0.77), and are hence more difficult to tease apart. In this section we explain in detail the reasons why this test does not work.

Prediction error (PE) is defined as [reward] – [expected value]. In our case, the ‘‘correctness’’ PE is defined as [correctness] – [ex-

pected value of the chosen action]. This is exactly the same as the classic reward prediction error (RPE), if an assumption ismade that

avoiding punishment (correct reject trial) and gaining reward (correct accept trial) are equivalent. For consistencywith the classic RPE

literature, in the rest of this section we refer to the ‘‘correct’’ signal as ‘‘reward,’’ to ‘‘correctness PE’’ as just ‘‘PE,’’ and to the ‘‘ex-

pected value of the chosen action’’ as just ‘‘value.’’

The definition above implies that a brain region signaling PE should have a positive effect of reward and a negative effect of value at

outcome time. If using BOLD signals, these effects should be delayed�6 s after outcome time – the hemodynamic lag. This is indeed

the case in both vStr and vmPFC:

In vStr, these effects can clearly be seen both when STRUCT value and reward are used as co-regressors (Figure S2C, top right)

andwhenNAÏVE value and reward are used as co-regressors (Figure S2C,middle right). The negative effect of value is stronger for

STRUCT value than NAÏVE value, perhaps reflecting the existence of structural information in value signals used by vStr.

In vmPFC, while a positive effect of reward at outcome time can be clearly seen (Figure S2C, left plots; see below for a discussion

of the seemingly long hemodynamic lag in vmPFC), the effects of value are more complex: both STRUCT value (Figure S2C, top

left) and NAÏVE value (Figure S2C, middle left) show a sustained value effect during the period between stimulus presentation

(�6.5-8.5 s before outcome) and outcome time (or rather HRF-lag after this period). It is likely that the tail of the HRF of these sus-

tained positive effects interacts with negative effects from outcome time expected from a PE signal, resulting in a response that

looks less negative than is vStr.

So far in this section we saw that the predicted PE signal exists in both vStr and vmPFC in GLMs where estimates from STRUCT

and NAÏVEmodels do not competewith each other as co-regressors, with stronger effects observed for STRUCT than NAÏVE values.

However, we are interested in a stronger test for the PE estimates: a test where both STRUCT and NAÏVE value estimates (as well as

reward) are entered as co-regressors in the same GLM. A reasonable prediction in such a GLM would be that if brain regions that

encode PE like vmPFC and vStr use structural information to calculate PE, they will still show the PE-signatures of positive reward

and negative value effects, but only for STRUCT value. For this to be true, the brain activity at outcome time should reflect the portion

of STRUCT value that is orthogonal to NAÏVE value, but critically also to reward. A similar test for value estimates at stimulus presen-

tation time in a GLM that included both STRUCT and NAÏVE values yielded strong effects in a variety of brain regions (main text and

Figure 2D), including vmPFC (Figure S2C, bottom left, period before outcome). Crucially, at stimulus presentation time there is no

reward signal, and so the relevant portion of STRUCT value needs only to be orthogonal to NAÏVE value.

This additional constraint turns out to be critical. The component of STRUCT value that is orthogonal to NAÏVE value is itself corre-

lated with reward (r = 0.38). This is not true the other way around: The component of NAÏVE value that is orthogonal to STRUCT value

is not correlated with reward (r =�0.05). This is to be expected because STRUCT is a better model of the world than NAIVE, so better

predicts reward. Hence, any comparison between the STRUCT andNAÏVE value effects in the presence of a reward regressor is not a

fair one. The strong reward effect observed in both vStr (Figure S2C bottom right) and vmPFC (Figure S2c bottom left) implies that

brain activity in these areas covaried with the component of reward that was orthogonal to both STRUCT and NAÏVE value

regressors.

In summary, a large portion of the fMRI signal in vStr and vmPFC is correlated with reward. The remaining portion is correlated

negatively with value (as expected from a PE signal), but to determine which value we need to project the variance into a space

that is itself correlated with reward.
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Characteristics of the HRF in vmPFC
The peri-stimulus plots in Figure S2C reveal an interesting phenomenon: the vmPFC prediction error signal (positive effect of reward

and negative effect of value) peaks 8.5 s after outcome presentation. This is in contrast to the PE signal in the vStr, which peaks after

6 s – the default value widely used in fMRI processing software. This suggests that the delay of the hemodynamic response function

(HRF) in the vmPFC is longer than in the HRF it is usually modeled with. To our knowledge this has never been systematically inves-

tigated and reported, but anecdotal observations from our lab are consistent with this finding.

We repeated the prediction error3 structure interaction analysis from Figure 4 using the SPM HRF with the delay period changed

from 6 to 8.5 s. The univariate PE effect in the vmPFC was indeed much stronger when using the delayed HRF (peaks: 8.5 s HRF

t(27) = 16.63, MNI [-4,52,-6]; 6 s HRF t(27) = 9.3, MNI [-2,48,-18]). Importantly, the PE3 relational structure effects at these univariate

vmPFC peaks were significant also when conducting the entire analysis with the delayed HRF (left hemisphere univariate peak (MNI

[-4,52,-6]): p = 0.02; right hemisphere univariate peak (MNI [2,46,-10]): p = 0.04).
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