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Metavinculin modulates force transduction in cell
adhesion sites
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Vinculin is a ubiquitously expressed protein, crucial for the regulation of force transduction in

cells. Muscle cells express a vinculin splice-isoform called metavinculin, which has been

associated with cardiomyopathies. However, the molecular function of metavinculin has

remained unclear and its role for heart muscle disorders undefined. Here, we have employed

a set of piconewton-sensitive tension sensors to probe metavinculin mechanics in cells. Our

experiments reveal that metavinculin bears higher molecular forces but is less frequently

engaged as compared to vinculin, leading to altered force propagation in cell adhesions. In

addition, we have generated knockout mice to investigate the consequences of metavinculin

loss in vivo. Unexpectedly, these animals display an unaltered tissue response in a cardiac

hypertrophy model. Together, the data reveal that the transduction of cell adhesion forces is

modulated by expression of metavinculin, yet its role for heart muscle function seems more

subtle than previously thought.
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The ability of cells to sense and respond to mechanical stress
is crucial for many developmental and postnatal homeo-
static processes, and especially critical in tissues naturally

exposed to significant mechanical loads1,2. Mechanical signals
between cells and the extracellular matrix (ECM) are processed in
macromolecular structures called focal adhesions (FAs), which
assemble around integrin receptors and mediate the connection
to the actin cytoskeleton1–3. Central to the mechanosensitivity of
FAs is vinculin, a ubiquitously expressed actin-binding protein
that is recruited to FAs upon force-induced association with the
integrin activator talin. As a connector between talin and the
actin cytoskeleton, vinculin strengthens FAs and modulates force
transmission4–6. Vinculin is thought to play a similar role in
adherens junctions (AJs), to which it is recruited upon force-
sensitive binding to α-catenin7,8.

Intriguingly, some mammalian tissues, in particular muscle
cells, express a vinculin splice variant called metavinculin9–11.
This isoform differs from vinculin by a 68-amino-acid (aa)-long
insert in the C-terminal region of the molecule12,13 leading to
distinct actin filament organization14–16. As the interaction with
actomyosin is essential for the ability of vinculin to transduce
mechanical signals5, it has been speculated that intracellular force
propagation may be vinculin isoform-specific15,17. However, the
mechanical role of metavinculin remained obscure because suf-
ficiently sensitive technologies to evaluate the molecular
mechanics of metavinculin in living cells were still missing. In this
study, we have applied a set of piconewton (pN)-sensitive tension
sensors (TSs)5,18,19 to explore the mechanics of vinculin and
metavinculin in cell adhesions using live-cell fluorescence lifetime
imaging microscopy (FLIM).

The loss of the metavinculin isoform20 and mutations in
metavinculin21,22 were identified in patients suffering from dila-
ted and hypertrophic cardiomyopathies, thus the role of meta-
vinculin is often discussed in the context of heart muscle
disorders. However, family linkage analyses23 to establish genetic
causality between metavinculin-mutations and cardiomyopathies
are missing, and conclusive experimental evidence for meta-
vinculin dysfunction causing heart muscle disorders is absent.
Therefore, we have also generated metavinculin-deficient mice to
evaluate the relevance of metavinculin loss for heart muscle
pathophysiology in vivo.

Together, our cell culture experiments show that metavinculin
expression modulates how molecular forces are transduced in cell
adhesion sites, while the evaluation of knockout mice reveals that
the role of metavinculin for heart muscle function is not as critical
as previously thought.

Results
Enhanced talin association leads to immobilization of meta-
vinculin in FAs. To systematically investigate the role of meta-
vinculin, we generated venus-tagged vinculin (V-V) and
metavinculin (M-V) constructs (Supplementary Fig. 1a) and
expressed them in vinculin-deficient mouse embryonic fibroblasts
(vinc(−/−))18,24. Both proteins independently localized to FAs and
rescued the spreading defect of vinc(−/−) cells, which display a
significantly reduced cellular eccentricity 2 h after seeding, com-
pared to the control cell line (Fig. 1a, b). The cell and FA mor-
phology, but also the organization of the actin cytoskeleton and
the expression of central FA proteins, were indistinguishable
between vinc(−/−) cells reconstituted with either V-V or M-V
(Supplementary Fig. 1b, c). Moreover, co-expression of both
isoforms revealed a virtually complete overlap of both proteins in
cell adhesion sites (Fig. 1c).

We next seeded V-V- and M-V-expressing cells on micro-
patterned surfaces, upon which cells form FAs of uniform size

and intensity, to investigate the subcellular dynamics by
fluorescence recovery after photobleaching (FRAP) experiments
(Supplementary Fig. 2a, b). Again, the FA morphologies of both
cell lines were indistinguishable, and fluorescence recovery rates
of co-expressed TagBFP-HA-tagged talin-1 (T1-B-HA; Supple-
mentary Fig. 1a) were similar indicating that the overall FA
dynamics are comparable (Fig. 1d). Consistent with a previous
report25, however, the mobile fraction of metavinculin was
significantly lower when compared with vinculin (Fig. 1e). As the
primary binding partner of vinculin in FAs is talin, we tested
whether an altered talin association may underlie the reduced
mobility of metavinculin and, indeed, talin was enriched in M-V
immunoprecipitates (Fig. 1f). To validate this finding, we co-
expressed T1-B-HA in V-V- and M-V-expressing cells and
performed HA-mediated immunoprecipitations. As expected, M-
V was significantly enriched in the talin-1 pulldown (Fig. 1g).
Together, these experiments demonstrate that metavinculin can
compensate for the loss of vinculin with regard to FA formation
and cell spreading, but a larger fraction of metavinculin is
immobilized in FAs presumably because of enhanced talin-
binding.

Force transduction in FAs is vinculin isoform-dependent. We
previously showed that vinculin is exposed to pN-scale forces in
FAs, where it modulates force transduction across the
integrin–talin linkage5,18,19. To investigate whether vinculin and
metavinculin propagate mechanical forces differently, we generated
vinculin- (V-TS) and metavinculin-based (M-TS) TSs using four
single-molecule-calibrated modules sensitive to 1–6 pN (F40)5, 3–5
pN (FL)19, 6–8 pN (HP35)18, and 9–11 pN (HP35st)18 that were
inserted between the (meta)vinculin head and tail domain, after aa
883. In parallel, we generated control constructs to determine the
fluorescence lifetime of the donor fluorophore as well as the FRET
efficiency of the no-force control (Con-TS), which comprises the
vinculin head domain (aa 1–883) and a TS module but lacks the
vinculin tail domain (Supplementary Fig. 3a–c). V-TS and M-TS
localized to FAs in vinc(−/−) cells (Fig. 2a and Supplementary
Fig. 3d) and rescued their spreading phenotype equally (Fig. 2b and
Supplementary Fig. 4), confirming the initial observation that
metavinculin can compensate for vinculin loss in this cell type. The
Con-TS also localized to adhesion sites but induced slightly
hypertrophic FAs, as reported earlier4,5 (Fig. 2a). Furthermore,
actin co-sedimentation assays5,26 with lysates from HEK293 cells
expressing V-V, V-TS, M-V, and M-TS in the presence or absence
of the vinculin activator IpaA confirmed that TS module insertion
does not lead to constitutive activation of the vinculin isoforms
(Supplementary Fig. 5).

Since our previous studies on talin mechanics revealed
molecular forces as high as 11 pN18, we started our tension
measurements using HP35st-based constructs that respond to
such force magnitudes. Using our previously published data
analysis workflow18,19, illustrated in Supplementary Fig. 6, we
detected a marked decrease in FRET efficiency in V-TS- and M-
TS-expressing cells, indicating that mechanical forces of at least
9–11 pN occur across (meta)vinculin junctions in FAs (Supple-
mentary Fig. 7a). We note that these data are consistent with a
recently published single-molecule force spectroscopy study
providing in vitro evidence for the presence of comparably high
forces across talin and vinculin linkages8.

Intriguingly, the FRET efficiency decrease was consistently
less pronounced in M-TS expressing cells (Supplementary
Fig. 7a). To control for the specificity of this observation, we
inserted a previously reported I997A mutation into vinculin
(V-TS-I997A)24,27 and—at the corresponding residue—into
metavinculin (M-TS-I1065A), reducing actin engagement and
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thus molecular forces experienced by both vinculin isoforms.
Indeed, these mutations increased the FRET efficiencies to
almost no-force control levels and eliminated vinculin isoform-
specific differences (Supplementary Fig. 7a, e). We confirmed
both effects with an independent set of measurements using
analogous FL-based (meta)vinculin force sensors (Fig. 2c) and
excluded unspecific effects through intermolecular FRET28,29,
which was comparably small and even slightly lower in
metavinculin-expressing FAs (Supplementary Fig. 7b, c). To
further validate that the FRET difference between vinculin and
metavinculin is force-dependent, we expressed FL-based V-TS,
M-TS, and Con-TS in talin-deficient cells (tln1−/−tln2−/−),
which do not form FAs and in which all constructs are localized
in the cytoplasm30. We seeded these cells onto poly-L-Lysine
(pLL)-coated dishes and treated them with Y-27632 inhibitor to
ensure the absence of mechanical forces. As expected,
FRET–FLIM measurements of these cells did not reveal any
difference between V-TS, M-TS, and Con-TS FRET efficiencies
(Fig. 2d). Finally, we replaced the mechanosensitive linker in
the TS module with a flexible 7-aa-long peptide (F7) that
cannot be significantly elongated under force. The resulting
force-insensitive vinculin and metavinculin controls, V-F7-TS
and M-F7-TS, expressed in vinc(−/−) cells displayed highly
similar FRET efficiencies showing that the isoform-specific
effect is not caused by different conformations of the vinculin
isoforms (Fig. 2e). Together, the experiments demonstrate that
the observed effects are specific, and force transduction in FAs
is vinculin isoform-dependent.

Metavinculin expression modulates force transduction across
the integrin–talin linkage. To investigate whether the differences

in molecular forces across vinculin and metavinculin affect force
transduction across the integrin-talin linkage, we reconstituted
vinculin-deficient cells with TagBFP-tagged vinculin (V-B) or
metavinculin (M-B) and co-expressed a talin-2 TS (T2-TS)18,
which harbors the HP35 TS module between the head and rod
domain, after aa 450 (Supplementary Fig. 7d); the no-force
control comprises the TS module at the C-terminus of talin-2
(T2-Con). We focused our experiments on this particular talin-
isoform, as the expression of metavinculin and talin-2 correlate in
muscle tissues31. Consistent with our earlier study18, forces acting
across talin-2 were small in the absence of vinculin expression,
whereas the presence of vinculin strongly elevated talin-2 forces.
By contrast, expression of metavinculin only slightly increased
talin-2 tension (Fig. 2f) showing that force propagation across the
integrin–talin junction is vinculin isoform-dependent.

Remarkably, the data indicated that metavinculin transduces
mechanical forces ostensibly less efficiently than vinculin, even
though it displayed an enhanced interaction with talin (Fig. 1f, g).
This suggested that the association of (meta)vinculin with talin
and force transduction are separate events that do not necessarily
correlate. To test this hypothesis, we inserted an A50I mutation—
which reduces vinculin binding to talin32,33—into the FL-based
TSs (V-TS-A50I and M-TS-A50I) (Supplementary Fig. 7e) and
expressed these constructs in vinc(−/−) cells. FLIM–FRET
analysis revealed that the A50I mutation lowered metavinculin
FRET efficiencies to levels observed in V-TS cells, while even
further reducing them in vinculin samples (Fig. 2g). Since a
previous study reported a shift towards slightly increased FRET
values in A50I mutants34, we repeated these experiments with
analogous F40-based TS constructs. However, consistent with the
FL-based measurements, we observed again a FRET efficiency
decrease in all A50I mutants (Fig. 2h). Our data, therefore,
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(vinc(−/−)) cells expressing vinculin–venus (V-V) or metavinculin–venus (M-V). Co-staining with a paxillin antibody indicates the independent localization
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shows the mean values ± SD. c V-V and metavinculin–mCherry (M–C) co-localize in FAs when co-expressed in vinc(−/−) cells. d Talin turnover rates are
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f Co-immunoprecipitation (IP) experiments using the venus-tag as bait demonstrate an increased association of talin with metavinculin (IB: immunoblot).
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suggest that a decrease (or increase) in talin association does not
directly translate into a decrease (or increase) of (meta)vinculin
force transduction. We note that this result is not only consistent
with single-molecule force spectroscopy studies showing that
vinculin binding to talin requires talin tension but no mechanical
forces across vinculin35,36; it is also in line with a recent study
demonstrating that a force-independent relief of talin/vinculin

autoinhibition is sufficient to mediate a tight interaction between
both proteins37.

Metavinculin displays a lower engagement ratio but higher
force per molecule and also modulates force transduction in
cell–cell junctions. The results above seemed to suggest that

d

0

10

20

30

40

50

F
R

E
T

 e
ffi

ci
en

cy
 (

%
) n.s.

n.s.

n.s.

Y-27632

Con V
TS

M
TS

b

C
el

lu
la

r 
ec

ce
nt

ric
ity

 0.0

0.2

0.4

0.6

0.8

1.0

f/f −/−

n.s.
n.s.

V
TS

M
TS

a

Vinc(−/−) + V-TS

YPet

Paxillin

Vinc(−/−) + M-TS

YPet

Paxillin

Vinc(−/−) + Con-TS

YPet

Paxillin

i j

V
TS

M
TS

1–6 pN

6–8 pN

9–11 pN

0

30

10

20

E
ng

ag
ed

 li
nk

ag
es

 (
%

)

e f

0

10

20

30

40

50

F
R

E
T

 e
ffi

ci
en

cy
 (

%
)

*
***

*
***

T2-TS

M-B

T2-Con

V-B
0

10

20

30

40

50
F

R
E

T
 e

ffi
ci

en
cy

 (
%

)

V
TS

M
TS

g

0

10

20

30

40

50

FL
C

TS
V

TS
M
TS

V-TS
A50I

M-TS
A50I

n.s. *** **

F
R

E
T

 e
ffi

ci
en

cy
 (

%
)

pN

E
ng

ag
ed

 li
nk

ag
es

 (
%

)

80

0

20

40

60

V-TS

1–6 3–5 6–8 9–11

k

9–11pN 1–6 3–5 6–8

M-TS

0

20

40

60

80

E
ng

ag
ed

 li
nk

ag
es

 (
%

)

c

FL

F7

h

0

10

20

30

40

50

F40
C
TS

V
TS

M
TS

*** ***

F
R

E
T

 e
ffi

ci
en

cy
 (

%
)

0

10

20

30

40

50

F
R

E
T

 e
ffi

ci
en

cy
 (

%
)

***
***

***
*

*

Con
TS

V
TS

M
TS

M-TS
I1065A

V-TS
I997AFL

V-TS
A50I

M-TS
A50I

Fig. 2 Force transduction in FAs is vinculin isoform-dependent. a Representative images of vinculin-deficient (vinc(−/−)) cells expressing vinculin tension
sensor (V-TS), metavinculin tension sensor (M-TS), and the no-force control (Con-TS) 4 h after spreading on FN-coated glass coverslips show localization
of all constructs to FAs (YPet), which are visualized by paxillin staining. Scale bar: 20 µm, in zoom: 5 µm. b Expression of V-TS or M-TS rescues the
spreading defect of vinc(−/−) cells; data of the parental (vinc(f/f)) and vinc(−/−) cells are the same as in Fig. 1b. (n= 23, 32, 21, 14 cells). The bar chart
shows the mean values ± SD. c Live-cell FLIM measurements of vinc(−/−) cells expressing FL-based tension sensors demonstrate FRET efficiency
differences between V-TS and M-TS. Impairing actin binding by inserting the I997A mutation into vinculin (V-TS-I997A) and I1065A into metavinculin (M-
TS-I1065A) strongly reduces tension and eliminates vinculin isoform-specific differences. (n= 73, 73, 74, 72, 73 cells). d Live-cell FLIM measurements of
FL-based Con-TS, V-TS, and M-TS expressed in talin-deficient cells (tln1−/−tln2−/−), seeded on pLL-coated dishes and treated with Y-27632, confirmed
that FRET differences are force-specific. (n= 80, 80, 82 cells). e Highly similar FRET efficiencies of force-insensitive vinculin (V-F7-TS) and metavinculin
(M-F7-TS) tension sensor controls expressed in vinc(−/−) cells demonstrate that vinculin isoform-specific effects are conformation-independent (n= 86,
85 cells). f Talin-2 tension sensor (T2-TS) measurements in vinc(−/−) cells expressing TagBFP-tagged vinculin (V-B) and metavinculin (M-B) show that
vinculin isoform-specific force transduction propagates across talin-2. T2-Con: talin-2 no-force control. (n= 30, 36, 31, 31 cells). g, h The A50I point
mutation, which reduces the binding affinity of (meta)vinculin to talin, caused a FRET efficiency decrease in FL- and F40-based vinculin (V-TS-A50I) and
metavinculin (M-TS-A50I) samples. (g: n= 84, 83, 78, 85, 86 cells; h: n= 60, 59, 77, 57, 78 cells). i Examination of stretched sensor molecules in V-TS-
expressing cells, using four different TS modules, shows that vinculin is exposed to a wide range of forces; in average, 20–30% of molecules experience
mechanical tension (n= 77, 73, 81, 77 cells). j Analogous analysis of M-TS-expressing cells indicates that the fraction of mechanically engaged
metavinculin molecules is <20%. Note the equal amounts of stretched molecules in samples containing sensors sensitive to 1–6 pN, 3–5 pN, and 6–8 pN
indicating comparably high force per molecule across metavinculin. (n= 80, 74, 80, 77 cells). k Analyzing the differences of medians shown in (i) and (j)
indicates that cells expressing M-TS instead of V-TS have less mechanically-engaged linkages that experience higher tension per molecule. Boxplots show
median, 25th and 75th percentile with whiskers reaching to the last data point within 1.5× interquartile range. Two-sided Kolmogorov–Smirnov test:
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metavinculin experiences, at least on average, lower forces per
molecule than vinculin. Alternatively, a smaller FRET efficiency
reduction could be caused by a lower fraction of mechanically
engaged molecules19,38. To distinguish these two scenarios, we
generated and analyzed cell lines expressing F40-, FL-, HP35-,
and HP35st-based vinculin and metavinculin TSs and determined
the fraction of stretched molecules at different force levels using
our previously published bi-exponential fitting algorithm19

(Supplementary Fig. 6c). For vinculin-expressing cells, the frac-
tion of engaged molecules decreased with increasing sensor
stiffness indicating that vinculin is exposed to a range of forces
between 1 and 11 pN (Fig. 2i and Supplementary Fig. 8a, b). By
contrast, engagement ratios in metavinculin-expressing cells were
lower but remained rather constant over a wider force range and
only decreased at forces larger than 8 pN (Fig. 2j). In conclusion,
these data reveal that a smaller fraction of metavinculin junctions
bear mechanical forces; the linkages that are engaged, however,
carry higher mechanical loads (Fig. 2k).

Metavinculin is typically expressed in smooth-muscle and
striated-muscle cells as well as cardiomyocytes; but not in
fibroblasts10,11,39,40. Because of the proposed function of
metavinculin in the heart muscle, we investigated whether the
isoform-specific effects are also observed in HL-1 cells, a model
cell line derived from mouse atrial cardiomyocytes41 that
naturally expresses metavinculin (Supplementary Fig. 9). Expres-
sion of FL-based V-TS and M-TS as well as the no-force control
(Con-TS) in HL-1 cells revealed the expected localization to FAs
but also to cell–cell junctions when cells were cultured at
sufficiently high densities (Fig. 3a, c). Again, we did not observe
differences in subcellular localization between the vinculin
isoforms, and FRET efficiencies indicated mechanical tension
across them both, albeit forces in FAs seemed smaller in this cell
type. Consistent with our data in fibroblasts, FRET efficiencies
were lower and spread over a wider range in vinculin-expressing

cells (Fig. 3b). Intriguingly, we observed this effect also in cell–cell
junctions of HL-1 cells suggesting that metavinculin is able to
tune force transduction in AJs as well (Fig. 3d). Thus, vinculin
isoform-specific force transduction is a conserved phenomenon,
found in different cell types and cell adhesion complexes.

Metavinculin-deficient mice display an unaltered tissue archi-
tecture and a normal hypertrophic response. The absence or
mutation of metavinculin were observed in cardiomyopathy
patients, thus metavinculin is widely considered a cardiomyo-
pathy gene20–22,42,43. Yet the number of identified patients is still
comparably small and direct evidence for the causative role of
metavinculin dysfunction for cardiomyopathies, for example in
form of family linkage analysis, is missing. We, therefore, decided
to evaluate the importance of metavinculin expression for heart
muscle function in mice by generating metavinculin knockout
animals (M(−/−)) (Supplementary Fig. 10a). PCR analysis con-
firmed the excision of the targeted exon (Supplementary
Fig. 10b), while Western blot analysis established a reduction of
metavinculin expression in heterozygous animals and a complete
loss of metavinculin in homozygotes (Fig. 4a). In control animals,
as shown before44, metavinculin was expressed at high levels in
the uterus and moderate levels in heart and skeletal muscle tis-
sues. M(−/−) mice are born at the expected mendelian ratio
(Supplementary Fig. 10c), they do not display an overt phenotype,
age normally, and are fertile. Histological analysis of heart muscle
sections revealed an intact tissue architecture (Fig. 4b), while
costamere, intercalated disc (ICD), and gap junction (GJ) proteins
were normally expressed and localized in 6- and 13-month-old
animals (Fig. 4c, d and Supplementary Figs. 11 and 12).

To explore the importance of metavinculin expression under
pathological conditions, we exposed 8-week-old M(−/−) and wild-
type (M(+/+)) mice to a transverse aortic constriction (TAC)
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protocol (Supplementary Fig. 13a), an experimental model for
pressure overload-induced cardiac hypertrophy45. As expected,
control M(+/+) animals exposed to TAC showed an increase in
ventricle weight 4 weeks after TAC, when compared to sham-
operated animals (Fig. 4e and Supplementary Fig. 13b). Echo-
cardiography revealed a decreased fractional shortening (Fig. 4f
and Supplementary Table 1), histology of the myocardium
indicated tissue fibrosis upon pressure overload (Fig. 4g, h), and
RT-qPCR analysis confirmed the expected changes in marker
gene expression (Supplementary Fig. 13c). Remarkably, M(−/−)

animals displayed a hypertrophic response upon TAC that was
indistinguishable from the control group (Fig. 4e‒h). The overall
structures of costameres, ICDs, and GJs were also comparable
between both cohorts as indicated by the localization of respective
marker proteins such as β1 integrin, β-catenin, and connexin-43
(Fig. 4i‒l and Supplementary Fig. 14). We, therefore, conclude
that the loss of metavinculin does not impair development and

homeostasis of the analyzed muscle tissues and does not cause,
under conditions applied in this study, an aberrant hypertrophic
response in mice.

Discussion
For a long time, since the discovery of metavinculin almost 40
years ago9, the function of this vinculin splice-isoform remained
elusive. A number of excellent biochemical14,46 and
structural13,16 analyses revealed that the presence of the meta-
vinculin insert in the C-terminal domain of vinculin leads to a
distinct association with and bundling of actin filaments. Given
the established role of vinculin as a force transducer4,5,18,47,48, it
seemed intuitively obvious that metavinculin expression may
somehow modulate force propagation in cells, and cell culture
studies indeed indicated that a range of cellular processes can be
differentially regulated in a vinculin isoform-dependent
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fashion17,25. Yet, direct evidence for metavinculin regulating
molecular force transduction in cells was missing.

In this study, we show that metavinculin expression leads to an
alternate mode of force propagation in cell adhesion sites.
Metavinculin displays an increased association with talin, which
is consistent with the recently published observation of meta-
vinculin being partially activated49, leading to a decreased turn-
over rate in FAs25. Intriguingly, the increased talin association
does not translate into an increased force propagation across
metavinculin, because the fraction of metavinculin molecules
experiencing mechanical tension is smaller as compared to vin-
culin. Those metavinculin junctions that are under tension,
however, bear higher mechanical loads. Together, this indicates
that metavinculin acts as a modulator of cell adhesion mechanics,
even though the functional consequences of metavinculin-
mediated force transduction remain to be defined in more
detail. A possible role, consistent with our data, is that meta-
vinculin serves as a mechanical buffer protein: If mechanical
forces are born by a smaller fraction of linkages, the increased
number of unloaded molecules may allow resisting a sudden force
increase across the cell adhesion structure.

Besides these biological implications, our results emphasize two
important technical aspects: First, it appears to be critical to apply
a range of TS modules in parallel rather than relying on indivi-
dual probes with inherently limited force sensitivity. Second, it is
crucial to determine, in addition to the average force value, the
amount of mechanically engaged molecules19,38. Both parameters
together—the average force per molecule (increased for meta-
vinculin) and the fraction of mechanically engaged proteins
(decreased for metavinculin)—define how molecular linkages
transduce mechanical signals.

The obvious question, however, is how the distinct mechanical
properties of metavinculin could be linked to a potential role as a
cardiomyopathy gene. It has been demonstrated in mice that
reducing the expression levels of both vinculin isoforms predis-
poses rodents to developing cardiomyopathies50, while specifi-
cally removing vinculin, and thus metavinculin, from cardiac
muscle cells induces cardiomyopathy within 6 months51. How-
ever, conclusions on isoform-specific effects are difficult to draw
from these studies because metavinculin was reduced or deleted
together with vinculin. To overcome this limitation, we estab-
lished metavinculin knockout mice to clarify its relevance for
heart muscle pathophysiology in vivo. Our experiments revealed
that the loss of metavinculin alone does not impair heart muscle
development and function under physiological and the here tes-
ted pathological conditions. Even though the power of mouse
models to study cardiac diseases is limited52, these results show
that metavinculin plays, if at all, a modest role in heart muscle
diseases, when compared to established cardiomyopathy genes
like titin53 or desmoplakin54. This observation agrees with our
in vitro experiments, in which we observed very clear and con-
sistent differences in force transduction that, however, do not
coincide with any obvious morphological changes of cells under
steady state conditions. We, therefore, propose that future studies
focus on a more subtle function of metavinculin as a modulator of
cell adhesion mechanics. The set of metavinculin TSs and the
mouse model generated in this study will greatly facilitate such
experiments.

Methods
Antibodies and reagents. The following primary antibodies were used at the
indicated dilutions for immunofluorescence staining (IF) and Western blotting
(WB): mouse anti-actin (sarcomeric) (Sigma, A2172; WB 1:1000), rabbit anti-α-
catenin (Sigma, C2081; IF: 1:200–400; WB: 1:4000), rabbit anti-β-catenin (Sigma,
C2206; IF: 1:400; WB: 1:4000), rabbit anti-connexin 43 (Cell Signaling Technolo-
gies, 3512; IF: 1:400, WB: 1:4000), rabbit anti-dystrophin (Abcam, ab15277; IF:
1:200, WB: 1:500), rat anti-integrin β1 (MB1.2, Millipore, MAB1997; IF: 1:400),

mouse anti-integrin β1d (2B1, Abcam, ab8991; WB: 1:1000), rabbit anti-FAK
(Millipore, 06-543; WB: 1:1000), rabbit anti-ILK (Cell Signaling Technologies,
3862; WB: 1:1000), mouse anti-GFP (Sigma, G1546; WB:1:1000), mouse anti-N-
cadherin (3B9, Thermo Fisher Scientific, 33-3900; IF: 1:500, WB: 1:2000), mouse
anti-paxillin (BD Transduction Laboratories, 610051; IF: 1:200–400; WB: 1:1000),
mouse anti-talin-1 (97H6, Bio-Rad, MCA4770; WB: 1:1000), mouse anti-talin-2
(68E7, Abcam, ab105458; WB: 1:2000), mouse anti-tubulin (DM1A, Sigma, T6199;
WB: 1:3000), and mouse anti-vinculin (hVIN-1, Sigma, V9131; IF: 1:400, WB:
1:4000). The following secondary antibodies were used at the indicated dilutions:
anti-mouse IgG Alexa Fluor-405 (Invitrogen, A31553; IF: 1:500), anti-rabbit IgG
Alexa Fluor-405 (Invitrogen, A31556; IF: 1:500), anti-rabbit IgG Alexa Fluor-488
(Invitrogen, A21441; IF: 1:500), anti-rat IgG Alexa Fluor-488 (Invitrogen, A11006;
IF: 1:500), anti-mouse IgG Alexa Fluor-568 (Invitrogen, A11004; IF: 1:500), anti-
rabbit IgG Alexa Fluor-568 (Invitrogen, A11036; IF: 1:500), anti-mouse IgG Alexa
Fluor-647 (Invitrogen, A21235; IF: 1:500), anti-mouse IgG HRP (BioRad, 170-
6516; WB: 1:10,000), and anti-rabbit IgG HRP (BioRad, 170-6515; WB: 1:10000).
Alexa Fluor-647 phalloidin (Invitrogen, A22287; 1:200) was used to visualize f-
actin.

Construct generation. TS constructs were based on the human vinculin cDNA
sequence NM_003373 (https://www.ncbi.nlm.nih.gov/nuccore/NM_003373). The
metavinculin insert was based on sequence NM_014000 (https://www.ncbi.nlm.
nih.gov/nuccore/NM_014000). Our published TS modules5,18,19—YPet-F40-
mCherry (Addgene, 101252), YPet-FL-mCherry (Addgene, 101170), YPet-HP35-
mCherry (Addgene, 101250), YPet-HP35st-mCherry (Addgene, 101251)—were
inserted into the proline-rich region after aa 883 of (meta)vinculin and flanked by
LE and AAA amino acid linkers. No-force control constructs were terminated
directly after the TS modules, therefore lacking aa 884–1066(1134). Single-
fluorophore fusion proteins were generated by incorporating YPet, mCherry, venus
(A206K) or TagBFP cDNA, internally or C-terminally, as shown schematically in
Supplementary Figs. 1, 3, and 7. The force-insensitive (meta)vinculin TS controls
were based on a TS module with GPGGAGP (F7) linker. Mutations in (meta)
vinculin cDNA were introduced using NEBuilder® HiFi DNA Assembly Master
Mix (New England Biolabs, E2621L). All constructs were assembled into a mod-
ified retroviral expression plasmid pLPCX (Clontech, 631511). The correct
sequence was confirmed by DNA sequencing (Eurofins Genomics). The talin-2 TS
construct was described before and contains the YPet-HP35-mCherry TS module
inserted after aa 450 (between the head and tail domain) and flanked by E and AA
amino acid linkers. The no-force and donor-only lifetime controls contain the TS
module or YPet at the C-terminus, respectively, separated by a GAAAG amino acid
linker18.

Cell culture and construct expression. Vinculin-deficient mouse embryonic
fibroblasts (vinc(−/−)) and its parental cell line (vinc(f/f))18,24, as well as talin-
deficient mouse kidney fibroblasts (tln1−/−tln2−/−)18,30 and HEK293 cells
(AmphoPack 293 cell line, Clontech—Takara Bio Europe, 631505), were cultured
in high glucose DMEM-GlutaMAX™ medium (Thermo Fisher Scientific, 31966047)
supplemented with 10% fetal bovine serum (FBS, Thermo Fisher Scientific, 10270-
106) and 1% penicillin/streptomycin (P/S; Thermo Fisher Scientific, 15140122).
HL-1 cells (Merck, SCC065) were cultured in Claycomb medium (Merck, 51800C)
supplemented with 2 mM glutamine (Merck, G7513), 10% FBS (Merck, TMS-016-
B), 0.1 mM norepinephrine (Merck, A0937-1G) and 100 µg/ml P/S (Thermo Fisher
Scientific, 15140122). Constructs were expressed by transient transfection using 3
µg DNA and Lipofectamine 2000 (Thermo Fisher Scientific, 11668019) or 2–3 µg
DNA and Lipofectamine 3000 (Thermo Fisher Scientific, L3000015) in a P/S-free
medium. Stable cell lines were generated using the Phoenix cell transfection sys-
tem28 and selected using 2 µg/ml puromycin.

Actin co-sedimentation assay. This assay was performed with slight modifica-
tions according to a previously established protocol26. In brief, a confluent 10 cm
dish of HEK293 cells was transfected with either V-V, M-V, V-TS, or M-TS using
calcium phosphate precipitation28. The next day, cells were mechanically detached
in phosphate-buffered saline (PBS), pelleted and resuspended in 1 ml of ice-cold
hypotonic lysis buffer (20 mM Tris, pH 7.5, 2 mM MgCl2, 0.2 mM EGTA, 0.5 mM
ATP, 0.5 mM DTT) containing a protease inhibitor cocktail (cOmplete ULTRA,
mini, EDTA-free EASYpack, Roche, 5892791001). After 20 min incubation on ice,
cells were lysed with a Dounce homogenizer, and lysates were cleared by cen-
trifugation at 16,000g for 10 min. The total supernatant (T) was supplemented with
100 mM KCl and 5 µM actin (Sigma, A2522) and incubated in the presence or
absence of 1 µM recombinantly expressed GST-IpaA55 for 20 min on ice; GST-
IpaA was expressed in Escherichia coli and purified from inclusion bodies by
dialysis according to a previously published protocol26. Samples were then ultra-
centrifuged at 135,000g for 30 min (TLA-110 rotor, Beckman-Coulter). The soluble
fraction (S) was collected, while the pellet fraction (P) was once washed in hypo-
tonic lysis buffer and then resuspended in SDS-loading buffer. Two percent of the
total (T) and soluble (S) fractions, and 10% of the pellet (P) fraction were subjected
to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and
Western blotting. Note that the processing of mCherry-containing TS constructs
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(V-TS and M-TS) for SDS-PAGE analysis leads to a partial fragmentation of the
protein, as described before for DsRed-derived fluorophores56.

Immunostaining and immunohistochemistry. For immunostainings, cells were
seeded on fibronectin (FN)-coated glass slides (Menzel, #1.5) and allowed to spread
for the indicated time. After fixation in 4% paraformaldehyde (PFA) for 10 min,
cells were incubated in blocking buffer (2% bovine serum albumin (BSA) and 0.1%
Triton X-100 in PBS). Primary and secondary antibodies were diluted in blocking
buffer at the indicated concentrations (see above). Stained cells were mounted with
Prolong Gold (Thermo Fisher Scientific, P36934) and images were acquired with
confocal laser scanning microscopes (Leica TCS SP5 X with Leica Application Suite
Advanced Fluorescence, version 2.7.3.9723, or Zeiss LSM 880 with ZEN Software,
black edition) using 63× objectives (oil, NA 1.4). Cellular eccentricity was analyzed
after treating live cells with a cell-permeant dye (CellMask Deep Red Plasma
Membrane Stains, Invitrogen Cat. No. C10046). HL-1 cells were allowed to spread
overnight, and images were acquired on a Zeiss LSM780 confocal scanning
microscope (ZEN 2.1 software, version 11.0) using a 40× objective (oil, NA 1.4).
For immunohistochemistry, tissue samples were isolated and fixed for at least 2 h
in 4% PFA in PBS, incubated overnight in PBS with 30% sucrose (cryoprotection),
and embedded in Shandon Cryomatrix (Thermo Fisher Scientific, 6769006). To
unmask antigens, 5 µm sections were treated with citrate buffer (1.8 mM citric acid,
8.2 mM sodium citrate, 0.05% Tween20) for 6–12 min in a microwave. After
permeabilization in 0.2% Triton X-100 for 20 min, samples were blocked with 5%
BSA in PBS for 1 h and incubated with primary (overnight at 4 °C) and then
secondary (2 h at room temperature) antibodies diluted in 1.5% BSA in PBS.
Finally, sections were stained with DAPI and mounted with fluorescence mounting
medium (Elvanol). Images were acquired using a Zeiss LSM780 confocal scanning
microscope equipped with 20× objective (air, NA 0.8) for ICD and GJ markers, and
40× objective (oil, NA 1.4) for costamere markers. Images were processed using Fiji
software57.

Fluorescence recovery after photobleaching. To characterize FA dynamics,
FRAP experiments were performed as described before18,19. In brief, cells were
seeded on Y-shaped FN-coated micropatterns (CYTOO, 10-011-10-18) and
imaged 4–6 h after seeding using a Leica SP8 confocal laser scanning microscope
(LAS X Software; version 3.5.5.19976) equipped with a 63× objective (HCX PL
APO, water, NA 1.2) and a 37 °C heating chamber. Two pre-bleached images were
recorded at 514 nm for venus-tagged proteins and 405 nm for TagBFP-tagged
proteins, followed by bleaching of a selected FA with 100% laser power for 1 s.
Depending on the analyzed protein, fluorescence recovery was recorded for 300–
500 s at 20 s intervals. For data analysis, the bleached region was compared with a
control FA to correct for gradual bleaching during image acquisition. The FRAP
profiler java plug-in for Fiji software was used to extract raw fluorescence recovery
curves (http://worms.zoology.wisc.edu/research/4d/4d.html); normalized FRAP
curves were plotted and fit with a single exponential in MATLAB assuming a
reaction-dominated model58.

Immunoprecipitation, tissue lysis, and Western blot analysis. Immunopreci-
pitation was performed using the μMACS GFP and HA Isolation Kit (MACS
Miltenyi Biotec, 130-091-125, and 130-091-122). Cells were allowed to adhere for
2 h, washed with PBS, and lysed in 10 mM Tris/HCl (pH 7.6), 150 mM NaCl,
0.5 mM EDTA, and 0.5% NP-40 containing a protease inhibitor cocktail (cOmplete
ULTRA, mini, EDTA-free EASYpack, Roche, 5892791001). Lysates were cen-
trifuged for 10 min at 4 °C and the supernatant was incubated for 45 min with
μMACS microbeads. The sample was then processed according to the instructions
of the manufacturer. To analyze protein expression in tissues, samples were
homogenized with an ULTRA-TURRAX T8 disperser (IKA) and lysed in 50 mM
Tris/HCl (pH 7.5), 150 mM NaCl, 1% Triton X-100, 0.2% SDS, and protease
inhibitor cocktail; the protein concentration was determined with BCA Protein
Assay Kit (Merck, 71288). SDS-PAGE and Western blotting were performed
according to standard procedures.

Fluorescence lifetime imaging microscopy. For live-cell FLIM analysis, cells were
seeded on FN-coated (10 µg/ml, Merck, 341631-5MG) glass bottom imaging dishes
(Ibidi, 81158) and allowed to spread for 4–7 h. Before imaging, the medium was
changed to DMEM without phenol red (Thermo Fisher, 21063045) supplemented
with 10% FBS. For FLIM of cells stably expressing T2-Con or T2-TS and tran-
siently expressing TagBFP-tagged vinculin or metavinculin, cells were allowed to
spread for 20–30 h. Transfected tln1−/−tln2−/− cells were seeded on glass bottom
dishes coated with poly-L-Lysine (pLL, 0.1% (w/v), Sigma, P4707) for 15–240 min
and treated with 10 µM Y-27632 inhibitor for 30 min before imaging. HL-1 cells
transiently expressing sensor constructs were allowed to spread overnight, fixed in
4% PFA for 10 min to avoid artifacts caused by twitching and imaged in PBS. FLIM
experiments were performed as described before18,19,59 using two confocal laser
scanning microscopes. The first system (Leica TCS SP5 X with Leica Application
Suite Advanced Fluorescence, Version 2.7.3.9723, and Imspector Pro, LaVision)
was equipped with a pulsed white light laser (80 MHz repetition rate, NKT Pho-
tonics), a band-pass filter for YPet (545/30 nm, Chroma), a FLIM X16 time-
correlated single-photon counting (TCSPC) detector (LaVision Biotech), a 63×

objective (HCX PL APO CS, water, NA 1.2), and a heating chamber (37 °C, 5%
CO2; Ibidi). FA images were acquired with a scanning velocity of 400 Hz over
123.02 µm × 123.02 µm area (512 × 512 pixels); AJs were imaged over 61.51 μm×
61.51 μm area. The second confocal scanning microscope (Zeiss LSM 880 with
ZEN Software, black edition, and SymPhoTime 64 software, PicoQuant) was
equipped with a pulsed laser for excitation at 510 nm (LDH-D-C-510, 40MHz
repetition rate), a FLIM module from PicoQuant (MultiHarp 150 4N), a 63×
objective (glycerin, NA 1.2), and a 37 °C heating chamber. FA images were
acquired over 122.68 µm × 122.68 µm area (512 × 512 pixels). For each experi-
mental condition, 30–80 images were recorded on 2–6 days.

FLIM–FRET analysis. Analysis of TCSPC-FLIM data were performed using
custom-written MATLAB routines18,19,59. In brief, a multi-Otsu thresholding
algorithm was applied to isolate FA specific signals using the donor intensity image;
regions smaller than ~0.5 µm2 were excluded from the analysis. The AJ signal was
extracted by blurring the intensity image (Gaussian, σ= 3 pixels) and isolating
connected bright regions. Images with inefficient signal masking were excluded
manually from the analysis. The fluorescence lifetime was determined by fitting an
exponential decay to the photon count time trace of each masked cell using
MATLAB’s ‘fmincon’ with a maximum-likelihood cost function based on Poisson
statistics. To minimize the contribution of the instrument response function and
auto-fluorescence and to ensure comparability of the resulting lifetimes, fitting was
started 0.56 ns after the maximum photon count, the fit length was fixed to 9.6 ns,
and lifetimes were required to have a relative fit error of <10%. The FRET efficiency
(E) was calculated from the lifetime of the donor in presence of an acceptor (τDA)
and the average donor-only lifetime (τD) according to Eq. (1):

E ¼ 1� τDA
τD

: ð1Þ

The average donor-only lifetime was determined independently for each data
set as the median of donor-only lifetimes from 4 to 6 experimental days.

To determine molecular engagement ratios, we adapted an amplitude-weighted
bi-exponential fitting algorithm included in the SymPhoTime 64 analysis software
(PicoQuant) and processed the data with our previously published engagement
ratio analysis19. In short, we assume that the signal is comprised predominantly of
two lifetimes: the lifetime of the TS with FRET (τFRET) and without FRET (τnoFRET).
These lifetimes can be approximated independently by control FLIM experiments:
τnoFRET corresponds to the donor lifetime and τFRET is determined as the short
lifetime in a bi-exponential fit of the no-force control. The ratio of engaged vs non-
engaged molecules was then estimated from the relative number of photons
emitted by the open and closed sensor molecules. To this end, FLIM data were bi-
exponentially fitted with the fixed lifetimes τnoFRET and τFRET and the ratio was
then rescaled to the no-force control to correct for non-fluorescent acceptor
fluorophores as described previously60.

Generation of the metavinculin knockout mouse strain. A homologous
recombination approach was used to facilitate the deletion of the metavinculin
exon from the murine Vcl gene. The targeting construct was based on clone
WTSIB741I19227Q of the BAC library generated from AB2.2 ES cell DNA (129S7/
SvEvBrd-Hprtb-m2)61. The metavinculin-specific exon was flanked by loxP sites
and a neomycin resistance cassette was included in the construct to enable selection
of the successfully targeted R1 ES cell clones, which were then identified by
Southern blot screening. Modified ES cells were injected into C57BL/6N host
blastocysts to obtain chimera males, which were bred with Cre transgenic females
(Tg(Nes-cre)1Wme)62 to remove the metavinculin exon and the selection cassette
in the F1 generation (Supplementary Fig. 5a). Cre transgene was subsequently bred
out by crossing heterozygous males (M(+/−, cre)) with C57BL/6N wild-type females.
Genotyping of offspring was performed by three-primer PCR using the following
oligonucleotides: CCGAGGTGTAGGGTTTTCACTGC (green), AATGG-
CATGCTCTCCAGGAGC (yellow), and GGAGCCAAGCAAAGCTCAGTGG
(purple) (Supplementary Fig. 10a, b).

Mice were generated and housed under SPF barrier conditions at the animal
facility of the Max Planck Institute of Biochemistry in Martinsried, Germany
(room temperature: 22 ± 1.5 °C, relative humidity: 55 ± 5%, lighting: artificial with a
light:dark cycle of 14:10 hours). All experiments involving animals were performed
in accordance with animal welfare laws and were approved by the Government of
Upper Bavaria (55.2-1-54-2532-77-2015).

Transverse aortic constriction. TAC was performed as described previously45,
with small adaptations, using 8-week-old male mice. In brief, 1 h before intubation
mice received buprenorphine and metamizole intraperitoneally and were anes-
thetized with isoflurane. Thoracotomy was performed between the second and
third rib and the diameter of the aortic arch was reduced by 65–70% by a ligature
over a 27 G cannula. Mice remained in a warmed cage for 2–4 h under supervision
until complete recovery from anesthesia. Sham-operated mice were treated like-
wise, excluding ligation of the aorta during the surgical procedure. To assess car-
diac dimensions and function, pulse-wave Doppler echocardiography using a Vevo
Imaging System (Fujifilm VisualSonics, VevoLab Software) was carried out before
TAC/sham surgery and 4 weeks after the operation, directly before organ harvest.
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Tissue isolation and histopathology. Tissues for histology were fixed in 4% PFA
overnight and embedded in paraffin. To visualize tissue morphology, 6 μm sections
were treated with hematoxylin and eosin (following standard protocol) and imaged
on an Axioskop (Zeiss; SPOT v5.1). Collagen deposition was stained with Sirius
Red and Fast Green. Sections of the left ventricle were imaged on a Zeiss Observer
Z1 (Zeiss) with a 10× objective and interstitial fibrosis was determined with
MetaMorph 7.7.1.0 as the percentage of Sirius Red positive area excluding vessels,
endo- and epicardium.

RT-qPCR. RNA was extracted from snap-frozen left ventricular tissue samples with
PureLink RNA Mini Kit (Ambion Life Technologies, 12183025) and 500 ng were
reverse-transcribed with the iScript cDNA Synthesis Kit (Bio-Rad Laboratories,
1708890). The qPCR analysis was performed on 0.5 µl cDNA (in triplicates) using
iQ SYBR Green Supermix (BioRad, 170-8880) and a Light Cycler 480 (Roche;
LightCycler 480 Software, version 1.5). Primer sequences are listed in Supple-
mentary Table 2. Gene expression was quantified using the 2-δδ-CT method63 and
normalized to the constitutively expressed housekeeping gene RPL32.

Statistical analysis and reproducibility. FLIM data are plotted in boxplots gen-
erated using MATLAB’s ‘boxplot’; the data show the median, the 25th and 75th
percentile, and whiskers reaching the last data point within 1.5× interquartile range
corresponding to 2.7 standard deviations for normally distributed data. The sta-
tistical significances of FLIM and cellular eccentricity data were compared by a
two-sided Kolmogorov–Smirnov test with a default significance level of α= 0.05.
Data in bar graphs are presented as mean ± standard deviation. Multiple group
comparisons for mouse data were performed using GraphPad Prism software
package (version 6) by two-way analysis of variance followed by Sidak’s multiple
comparison test. Statistical significances are indicated by the p value: ***p < 0.001;
**p < 0.01; *p < 0.05; n.s. (not significant): p ≥ 0.05. The chi-square test was used to
determine if heterozygote mice breed at Mendelian ratio. Shown immunostainings
and live cell images are representative of at least 2–3 independent experiments. In
the case of FLIM experiments, at least 30–80 individual cells were recorded and,
to ensure reproducibility, experiments were repeated on 2–6 independent days.
TAC was performed on ten mice per operation- and genotype. All IF and histo-
logical analysis on heart tissue sections was performed on at least three different
regions of at least three different mice per condition. Formal sample size calcula-
tion was not performed but the sample size was kept similar between experimental
conditions.

Computational codes. TCSPC-FLIM analysis was performed with a modified
version of the previously published custom-written MATLAB routine18,19,59;
available on request.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this paper are available from the corresponding author
upon reasonable request. A reporting summary for this Article is available as a
Supplementary Information file. Source data are provided with this paper.
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