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Abstract: CD8+ T cells detect and kill infected or cancerous cells. When activated from their naïve
state, T cells undergo a complex transition, including major metabolic reprogramming. Detailed reso-
lution of metabolic dynamics is needed to advance the field of immunometabolism. Here, we outline
methodologies that when utilized in parallel achieve broad coverage of the metabolome. Specifically,
we used a combination of 2 flow injection analysis (FIA) and 3 liquid chromatography (LC) methods
in combination with positive and negative mode high-resolution mass spectrometry (MS) to study the
transition from naïve to effector T cells with fine-grained time resolution. Depending on the method,
between 54% and 98% of measured metabolic features change in a time-dependent manner, with the
major changes in both polar metabolites and lipids occurring in the first 48 h. The statistical analysis
highlighted the remodeling of the polyamine biosynthesis pathway, with marked differences in the
dynamics of precursors, intermediates, and cofactors. Moreover, phosphatidylcholines, the major
class of membrane lipids, underwent a drastic shift in acyl chain composition with polyunsaturated
species decreasing from 60% to 25% of the total pool and specifically depleting species containing a
20:4 fatty acid. We hope that this data set with a total of over 11,000 features recorded with multiple
MS methodologies for 9 time points will be a useful resource for future work.

Keywords: T cell; activation; metabolic reprogramming; metabolomics; lipidomics; LC-MS; FIA-MS;
time course

1. Introduction

CD8+ T cells are critical effectors of the adaptive immune defense against pathogens
and tumors. In response to an immune challenge, naïve CD8+ T cells (TN) are activated to
form cytotoxic effector T cells (TE), which undergo clonal expansion and synthesize effector
molecules to kill infected or malignant cells [1]. Rapid metabolic reprogramming during
T cell activation is required to support the increased biosynthetic demands of epigenetic
remodeling, proliferation, and cytokine production [2]. The availability of extracellular
metabolites, including glucose, amino acids, and lipids affects TE metabolic reprogram-
ming, and anti-tumor immunity is restricted by nutrient competition and metabolic byprod-
ucts in the tumor microenvironment [3–5]. Metabolites are also key mediators of early T
cell signaling events at the plasma membrane, integrating extracellular signals with signal
transduction networks that promote activation [6].

Cells contain a vast range of small molecules such as inorganic ions, water-soluble
metabolites, and lipids. In addition, the cellular concentration of these molecules can
differ by multiple orders of magnitude [7,8]. While no single analytical method can
simultaneously capture the whole range of small molecules, state-of-the-art metabolomics
methods can deliver over 1000 features and over 100 annotated metabolites. Generally,
chromatography methods differ in the spectrum of metabolites that they cover (Table 1).
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Table 1. Overview of analytical methods that were used for the broad coverage of metabolites. Abbreviations are as follows:
FIA: flow injection analysis, MS1: one-dimensional mass spectrometry, MS2: two-dimensional mass spectrometry with the
fragmentation of selected ions and measurement of fragment spectra, +: positive ionization mode, -: negative ionization
mode, LC: liquid chromatography, QTOF: quadrupole-time-of-flight mass spectrometer, HILIC: hydrophilic interaction
liquid chromatography, RP: reversed phase.

Method Name Chromatography/Stationary
Phase Coverage Elution Order Detection Polarity

FIA none All compounds that ionize
well No retention MS1 + and −

LC-QTOF HILIC HILIC/aminopropyl
Amino acids, nucleotides,
sugar phosphates, soluble

cofactors, organic acids

Hydrophilic moieties:
increase retention,

hydrophobic moieties:
little influence

MS1 and
MS2 -

LC-QTOF polar RP Reversed phase/C18

Acyl carnitines,
nucleosides, nucleobases,

some cofactors, some
amino acids

Hydrophilic moieties:
reduce retention,

hydrophobic moieties:
increase retention

MS1 and
MS2 +

LC-QTOF Lipids Reversed phase/C18
Glycerolipids,

glycerophospholipids,
sterols, sphingolipids

Hydrophilic moieties:
reduce retention,

hydrophobic moieties:
increase retention

MS1 and
MS2 + and −

Every one of the employed analytical methods has limitations that must be taken
into account during sample preparation and data analysis. The retention of metabolites
and their chromatographic separation can be negatively impacted by contamination in the
sample. For the LC-QTOF HILIC method, these are typically residual pH buffers or acids
from the culture medium or buffers that were used to wash the culture medium off the
cells. For the LC-QTOF polar RP method, residual organic solvents such as methanol that
was used to extract metabolites from cells can be problematic. For the LC-QTOF Lipids
method, strong organic solvents such as chloroform or methyl-tert-butyl ester (MTBE),
which are often used for lipid extraction, can negatively impact the chromatography.

The settings of the mass spectrometer will influence which metabolites can be detected
and how the recorded features can be annotated. In the context of this study, a feature is
defined by mass and, for LC-MS data, retention time. The signal intensities of a feature
can be compared across multiple samples and used in statistical analyses. Likewise, we
use the term “metabolites” to denote compounds with a known structure and biological
function. By matching measured information of features (such as mass, isotope pattern,
fragment spectrum, or retention time) to known properties of metabolites, the features can
be annotated with metabolite names or sum formulas. The more properties of a feature can
be matched to a metabolite, the higher the confidence in the resulting annotation.

Negative ionization polarity favors the detection of metabolites containing carboxylic
acid, phosphate, or sulfate moieties and is also useful for sugars. Positive ionization polarity
favors metabolites containing amine moieties. In our experience, a compound containing
conjugated pi-electron systems such as aromatic compounds also ionize reasonably well in
positive mode. One-dimensional mass spectrometry (MS1) on a high-resolution mass spec-
trometer allows the annotation of the feature with sum formulas using the measured exact
mass and isotope pattern. In addition, this information can be used together with known re-
tention times to annotate known metabolites among the features. In two-dimensional mass
spectrometry (MS2), ions recorded in an MS1 scan are selected, isolated by a quadrupole,
fragmented, and the mass spectrum of the fragments is recorded. This fragment spectrum
can be matched against spectral libraries to annotate metabolites and it can be used to
improve the sum formula annotation of the corresponding MS1 feature.

As the complex interplay between metabolism and T cell function is unraveled, there
is a growing interest among immunologists in measuring dynamic metabolic changes in
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specific cell states. In this manuscript, we carry out a longitudinal analysis of primary CD8+
T cell activation in vitro, taking time points every 12 h for 4 days in total (9 time points) to
capture changes in the metabolome with fine-grained time resolution. Furthermore, we
achieve broad coverage of metabolites across this time course using combined method-
ologies: positive and negative ionization modes, 2 flow injection analysis (FIA)-MS, and
3 different LC-MS/MS methodologies.

2. Results

To determine metabolic dynamics of CD8+ T cell activation, we activated CD8+ T cells
in vitro and extracted intracellular and extracellular metabolites every 12 h for 96 h in total.
Primary murine CD8+ T cells were isolated from spleens of 8-week-old C57BL/6J mice
and activated in vitro under standard conditions (see Material and Methods for details).
Before each sampling, the cell density in the culture was determined and the volume that
contained 3 × 106 cells was sampled. After extraction, metabolite extracts were split into
aliquots for all analytical methods. To enable the observation of monotonous and transient
time courses in metabolites during the activation from TN to TE, we chose to sample every
12 h for 4 days, yielding a total of 9 time points (Figure 1). In addition, a sterile well (with
the medium but without cells) control sample (blank) was taken at the initial time point.

Figure 1. Schematic representation of the experimental design. Primary CD8+ T cells were isolated
from murine spleens and cultured in vitro in the presence of activating stimuli CD3, CD28, and IL2.
After 48 h and 72 h, the culture medium was exchanged for a medium containing survival growth
factor IL2. Samples were taken every 12 h.

The medium that the cells were cultivated in contains many of the same metabolites
that can also be found inside the cells. Therefore, we washed the cells prior to extraction to
minimize medium contaminations. However, washing can impact the metabolic composi-
tion of the cells [9]; therefore, we only washed once. In our experience, additional washing
steps can further reduce contaminants at the cost of losing high-energy metabolites such as
adenosine triphosphate (ATP) and fructose bisphosphate (FBP). About half of the features
were found to be higher in cell extracts than in a sterile well control with a p-value smaller
than 0.05 in a pair-wise t-test. For all subsequent analyses, we only used features that were
above the blank for at least one time point.

2.1. Polar Metabolites

To quickly obtain an initial overview of the metabolic dynamics of CD8+ T cell
activation without chromatographic bias, we performed FIA in both positive and negative
ionization mode. Taken together, the FIA measurements yielded over 2000 metabolic
features above the blank, 60% of which showed a significant time trend in a likelihood
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ratio test (Table 2). This observation indicates that CD8+ T cell activation not only affects
a few metabolic pathways but is also accompanied by global metabolic changes. For
a more robust identification of changing features, we performed partial least squares
(PLS) analysis with sampling time as the predicted variable on the combined positive and
negative ionization mode FIA data (Figure 2). Both the 1st and the 2nd PLS dimensions
help in separating the groups of replicates along the time trajectory. Notably, the separation
is greater for earlier time points, indicating that the major metabolic differences occur in
the first 48 h of CD8+ T cell activation.

Table 2. Overview of data sets generated for this study. Three different chromatographic methods and FIA were used. Most
of the features that were detected above blank levels also exhibited a time-dependent trend in a likelihood ratio test using
spline models (see methods section for details).

Method Name Polarity # Features % Features above Blank % Features above Blank and with Time Trend

FIA - 1887 44.4 31.0

FIA + 2416 52.7 28.4

LC-QTOF HILIC - 1671 31.2 26.3

LC-QTOF Polar RP + 1549 32.8 25.8

LC-QTOF Lipids - 1745 57.9 53.4

LC-QTOF Lipids + 1819 57.6 56.6

Figure 2. Partial least squares (PLS) analysis of a combined positive and negative mode FIA data set
with time as a predicted variable. Groups of replicates are clearly separated for early time points but
less well separated for late time points.

To identify the areas of metabolism that are most affected during the activation of
CD8+ T cells, we used the sum of the absolute loading values from the PLS analysis and the
KEGG (Kyoto Encyclopedia of Genes and Genomes) definition of metabolic pathways [10]
as input for a gene set enrichment analysis (GSEA) (Figure 3). As we have used sampling
time as a predicted variable in our PLS analysis, the absolute values of the loadings
can be interpreted as a measure of how much each feature contributes to the overall
time-dependent changes. In case multiple metabolites in the database have the same
sum formula or very similar mass, one measured FIA feature can be annotated with
multiple metabolites (see methods for details). For the GSEA analysis, we then assigned
the measured data to every one of these metabolites. Notably, central carbon metabolism,
tricarboxylic acid (TCA) cycle, and amino acid metabolism are among the top-scoring
pathways. This is in line with previous findings that found similar pathways enriched in
metabolic differences by 13C tracing [11], even though the initial annotation of FIA features
is based on exact mass only.
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Figure 3. Top scoring KEGG metabolic pathways from gene set enrichment analysis (GSEA) using
the sum of PLS scores of each measured feature as input.

Two of the major metabolic effects during the activation of CD8+ T cells that have
been described previously are the increase in glycolytic lactate production and the decrease
in fatty acid oxidation (FAO) in activated cells compared to naïve CD8+ T cells [11,12].
In line with these reports, we find the concentration of lactic acid to increase and that of
carnitine to decrease (Figure 4). This confirms that our results are comparable to other
studies with in vitro activated CD8+ T cells. Interestingly, the decrease in carnitine seems
to happen earlier than the increase in lactic acid, indicating that the activity of glycolysis
and FAO are not directly coupled.

Figure 4. Time course of indicator metabolites for fatty acid oxidation ((A): carnitine) and glycolysis
((B): lactate) in LC-MS/MS data confirm previous findings that during activation, CD8+ T cells
reduce fatty acid oxidation and increase glycolysis. Each panel represents one data set but data points
have been colored by sampling time. Statistical significance was calculated by one-way ANOVA
using GraphPad Prism Software comparing 3 biological replicates at each time point with the 0 h
time point. ns = not significant, * p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001.

To obtain data with higher confidence in the annotation and quantification of features
than the ultra-high throughput FIA technology can provide, we measured aliquots of all
time points by LC-MS. To cover the metabolic pathways that were identified as relevant
based on the FIA data, we used 2 chromatographic methods that are suitable for a broad
range of polar metabolites including glycolysis, TCA cycle, and amino acids (Table 1). In
addition, we use a chromatographic method suitable for lipids to complete the picture
even though we only had FIA data from the aqueous fraction of the cell extracts because
our FIA pipeline has been developed and tested only for polar metabolites. Measurements
using a QTOF-MS enable a data-driven discovery metabolomics approach that allows for
the identification of unexpected metabolic dynamics. We provide the raw mass spec data
(www.ebi.ac.uk/metabolights/MTBLS2145) in addition to our processing of the data sets
(Supplementary Tables S1–S6) as a resource to allow the community to further explore the
data.

www.ebi.ac.uk/metabolights/MTBLS2145
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For an initial overview of the polar metabolome measured by LC-QTOF-MS, we
performed a principal component analysis on the combined HILIC and reversed-phase
data set (Figure 5). Principal component 1 (PC1) represents more than one-third of the total
variance in the data set and separates the replicate measurements in the first half of the
experiment better than those from the second half of the experiment. This indicates that
the major metabolic changes occur in the first 48 h following activation of the T cells, thus
confirming the above observation that was based on the FIA data. In a plot of PC3 vs. PC4,
groups of replicates are still reasonably well separated (Figure S1) indicating that more
subtle and complex metabolic dynamics occur in addition to the major changes.

Figure 5. Principal component analysis of combined HILIC-negative mode MS and reversed-phase-
positive mode MS data of the polar metabolome. Principal Component 1 (PC1) better separates the
earlier time points, whereas PC2 better separates the later time points.

In line with the GSEA analysis of the FIA data, there are many amino acids and related
metabolites as well as nucleotides and related metabolites among the annotated features
that contribute the most to PC1 (Table S7). Interestingly, the two polyamines spermidine
and spermine are also within the top 20 in this ranking.

Recently, the importance of polyamines was described for several immune cell types.
Polyamines were described to accumulate in NK cells and in CD4+ T cells following
activation from naïve state [13,14] and this accumulation was shown to be required for
appropriate effector function. In IL4 activated macrophages, blocking of polyamine biosyn-
thesis blunted their activation [15]. In parallel to these findings, we observe the two
polyamines spermidine and spermine to also accumulate in CD8+ T cells following acti-
vation (Figure 6). Interestingly, spermidine levels sharply increase within the first 24 h of
in vitro activation and plateau after 36 h. Spermine, which is produced from spermidine
in polyamine biosynthesis (Figure 7), follows a similar time profile as its precursor, but
with a few hours delay, reaching a plateau at around 48 h. S-adenosyl-methionine (SAM),
which is an essential cofactor in polyamine biosynthesis, parallels the sharp increase in
spermidine. Notably, the byproduct methyl-thioadenosine (MTA) increases only transiently
and coincides with the period of greatest polyamine production. Precursors further up-
stream of spermidine remain largely unchanged (arginine, ornithine) or were not detected
(putrescine).
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Figure 6. Time courses of key metabolites in polyamine biosynthesis measured by LC-MS show almost constant levels of
the precursors arginine and ornithine, a persistent increase in spermidine and spermine, and transient increase in cofactors
S-adenosyl-methionine (SAM) and methyl-thioadenosine (MTA). Each panel represents one data set but data points have
been colored by sampling time. Statistical significance was calculated by one-way ANOVA using GraphPad Prism Software
comparing 3 biological replicates at each time point with the 0 h time point. ns = not significant, * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001, **** p ≤ 0.0001.

Figure 7. Schematic representation of polyamine biosynthesis pathway including cofactors s-adenosyl
methionine (SAM), decarboxy-s-adenosyl methionine (dSAM), and methyl-thioadenosine (MTA).

2.2. Lipids

For a global view of the dynamics in the lipid fraction, we performed a principal
component analysis of the combined positive and negative mode lipid data set. Even more
pronounced than in the polar metabolome, the major changes in the lipid composition
occur in the first 48 h of the experiment (Figure 8). The dominant changes are the increasing
levels of the major membrane lipid phosphatidylcholine (PC), the major storage lipid triacyl
glycerol (TAG), and hexosylceramide (HexCer) (Figure 9). Minor membrane lipids such as
phosphatidylethanolamines (PE) and the lyso forms of PC and PE (LPC and LPE) increased
transiently between 24 and 72 h post-activation before returning to values similar to pre-
activation. Sphingomyelin (SM) decreased slightly over time. The increase observed for
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PC and other membrane lipids cause the total amount of lipids to increase over time. This
is likely to be a direct consequence of the increase in cell size after activation (Figure S2).

Figure 8. Principal component analysis of combined positive and negative mode LC-MS lipid data
set. Only replicates of data points in the first half of the experiment are well separated.

Figure 9. Summed signal intensity (not normalized for cell size effects) for major lipid classes show
highly class-specific time trends. LPC: lysophosphatidylcholine, LPE: lysophosphatidylethanolamine,
PC: phosphatidylcholine, PE: phosphatidylethanolamines, SM: sphingomyelin, TAG: triacylglycerol,
HexCer: hexosylceramide.

For PC, the major class of membrane lipids, we asked if all observed species increased
abundance or if there were differences in the time trend of the lipid species within this
class that pointed toward a change in membrane composition. Following activation, CD8+
T cells accumulated PCs with fewer double bonds (predominantly 1–2 double bonds) and
depleted polyunsaturated PCs (4 or more double bonds) (Figure 10, Figure S3). Overall, this
resulted in decreased polyunsaturated PC species during T cell activation from ~60% in TN
to ~25% in 48h activated TE. PCs generally contribute to >50% of plasma membrane lipid,
and as saturated lipids are described to promote the formation of ordered domains that
contain active signaling complexes [16], this shift in PC acyl chain composition could have
important consequences for TE signaling. A recent study showed oncogenic epidermal
growth factor signaling was dependent on membrane phospholipid remodeling to increase
the abundance of saturated PCs [17]. Membrane lipid composition could similarly impact
T cell signaling and is an interesting area for further research.
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Figure 10. Saturation of PC acyl chain length over time displays a strong decrease of species with 4
or more double bonds. Statistical significance was calculated by one-way ANOVA using GraphPad
Prism Software comparing 3 biological replicates at each time point with the 0 h time point. ns = not
significant, *** p ≤ 0.001, **** p ≤ 0.0001.

Previously, it has been reported that polyunsaturated membrane lipids can cause
ferroptosis in cancer cells that travel in the bloodstream, and this can be reduced in cancer
cells that first travel to the lymph where they accumulate monounsaturated membrane
lipids [18,19]. It is, therefore, tempting to speculate that the observed shift toward less
unsaturated PCs helps to prepare for the release of effector CD8+ T cells from the spleen
into the bloodstream. Moreover, it has been found that increased order of membrane lipids
protects cytotoxic T cells against perforin, one of the agents that they use to kill their target
cells [20]. This protection was reported to be dependent on the order of the acyl chains and
not the head group [21]. The shift toward fewer polyunsaturated membrane lipids might
contribute to this protective effect.

We next asked if the trend toward the reduced abundance of PCs with more polyun-
saturated fatty acids could be attributed to the occurrence of any particular fatty acid. To
this end, we analyzed the lipid data recorded by LC-QTOF-MS in negative ionization mode
specifically looking for features that represent formic acid adducts of PCs (Figure 11). This
revealed that, in particular, PCs containing FA 20:4 (likely arachidonic acid) decreased
sharply in abundance within the first 48 h of the experiment. Arachidonic acid is the
precursor for the synthesis of eicosanoids, an important class of signaling molecules with
effects on T cells [22]. Some eicosanoids can also be produced by T cells and they have
been attributed roles in chemotaxis and adhesion to epithelial cells [23]. For a T cell line
and for mast cells it has been shown that membrane phospholipids serve as a reservoir
for arachidonic acid that can be mobilized when this fatty acid is needed as a precursor
for eicosanoids [24,25]. These findings suggest that the shift in PC composition observed
during CD8+ T cell activation could be the result of early signaling events.
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Figure 11. Time course of selected species of PC with a single fatty acid resolution with time 0 to 96 h
on the x-axis and quantile normalized signal intensity on the y-axis. Each panel represents one data
set but data points have been colored by sampling time.

3. Discussion

Detailed resolution of metabolic dynamics is needed to advance the field of im-
munometabolism. Here, we outline methodologies that when utilized in parallel achieve
broad coverage of the metabolome. By coupling multiple LC-MS methods with fine-
grained time course measurements, we find diverse metabolic changes during CD8+ T
cell activation. Because our data was generated from aliquots of the same samples, we
can meaningfully compare the timing of metabolic changes across classes of metabolites.
For example, the timing of the depletion of phospholipids containing FA 20:4 matches
the accumulation of the polyamines spermidine and spermine, which happen in the first
36 h following activation and plateau from 48 h onwards. In addition, the fine-grained
time course allows us to detect transient metabolite changes such as the accumulation of
methyl-thioadenosine at the 36 h and 48 h time points.

In this study, we highlight selected metabolites and lipids because of their biological
relevance. Future systematic analysis of the data will likely yield additional insights and
generate novel hypotheses. Therefore, we provide processed and raw data as a resource
for immunologists to further investigate metabolic pathways of interest, and as a starting
point for future research. We expect that the development of new statistical methods that
exploit the time course relationship among the data points will support these efforts.

4. Materials and Methods
4.1. Mouse Lines

C57BL/6J mice were purchased from The Jackson Laboratory (JAX 000664). All mice
were maintained at the Max Planck Institute of Immunobiology and Epigenetics and cared
for according to the Institutional Animal Use and Care Guidelines.

4.2. Primary T Cell Cultures

Spleens harvested from 9, 8-week-old C57BL/6J mice were mashed in PBS and filtered
through a 70 µm strainer. Red blood cells were lysed and CD8+ cells were isolated using
the EasySep CD8+ T-cell isolation kit (Stem Cell Technologies, no. 19753) according to the
manufacturer’s protocol. From 9 mice in total, CD8+ T cells from 3 mice were pooled to gen-
erate 3 biological replicates with sufficient T cells for the full time course. CD8+ T cells were
activated at 1.5 × 106/mL for 48 h using plate-bound anti-CD3 (5 µg mL−1; InVivoMAb
anti-mouse CD3, BioXCell no. BE0002) and soluble anti-CD28 (0.5 µg/mL; InVivoMAb anti-



Metabolites 2021, 11, 12 11 of 18

mouse CD28, BioXcell no. BE0015) in RPMI 1640 medium (Invitrogen) supplemented with
10% fetal calf serum (Gibco), 4 mM L-glutamine, 1% penicillin–streptomycin, hrIL-2 (hu-
man recombinant interleukin 2, 100 U ml−1, Peprotech), and 55 µM beta-mercaptoethanol
at 37 ◦C in a humidified incubator containing atmospheric oxygen supplemented with 5%
CO2. Cells to be harvested at different time points were plated in separate wells of a 6-well
plate to avoid continuously disturbing cultures during activation. Every 12 h, cells in the
relevant well were suspended in their culture medium by pipetting and counted using a
Neubauer chamber. A volume equivalent to 3 × 106 cells was removed for sample prep
(see below), and the remaining cells in that well were discarded. Following 48 h activation,
every 24 h T cells were counted and plated back at 1.5 × 106 in RPMI 1640 medium as
above (minus CD3 and CD28) to prevent cell density from getting too high due to increased
proliferation.

4.3. Sample Prep

Cells density was determined immediately before sampling by counting in Neubauer
chamber. For every sample, 3 × 106 cells were harvested. Cells were separated from the
culture medium by centrifugation at 500× g for 4 min at 4 ◦C. An aliquot of the supernatant
(“medium sample”) was frozen at −80 ◦C, and the rest of the supernatant was discarded.
The cell pellet was briefly resuspended in 3% (v/v) glycerol in milliQ-water pre-cooled to
4 ◦C and centrifuged again at 500× g for 4 min at 4 ◦C. The wash solution was discarded
and the cells were extracted with a modified Bligh-Dyer protocol [26] and resuspended in
1 mL 50:50 methanol:water pre-chilled to −20 ◦C. After the addition of 500 µL chloroform,
samples were vortexed for 1 min and then centrifuged at 20,000× g for 1 min at 4 ◦C. Of
the polar phase, aliquots of 120 µL were transferred to fresh 1.5 mL Eppendorf tubes. Of
the organic phase, aliquots of 150 µL were transferred to 2 mL glass vials. All aliquots were
dried in a vacuum centrifuge (Genevac EZ2, LMS Consult GmbH, Brigachtal, Germany)
and stored at −80 ◦C until analysis.

4.4. FIA

The FIA method has been adapted from a previously published method by Fuhrer
et al. [27]. Just prior to analysis, samples were resuspended in 150 µL FIA buffer. FIA
buffer was 0.5% Agilent ESI-L Low concentration tuning mix in 80:20 acetonitrile:water.
Subsequently, samples were diluted 10-fold in FIA buffer, transferred to sample vials with
conical glass insert, capped, and placed in the autosampler. An aliquot of FIA buffer was
used as a solvent blank sample.

An Agilent 1290 Infinity II UHPLC system was used to deliver samples to the mass
spectrometer. A constant flow of 150 µL/min of carrier buffer was used to transport
samples from the autosampler to the MS. Carrier buffer was for negative mode 10 mM
NH4OH in 80:20 acetonitrile:water and for positive mode 10 mM ammonium formate in
80:20 acetonitrile:water. The injection volume was 3 µL and samples were injected twice
(technical duplicates). Autosampler temperature was 5 ◦C.

The LC was coupled to a Bruker impact II QTOF MS (resolution > 50,000 FSR)
equipped with ionBooster ESI source. The ESI source parameters were: End Plate Offset:
400 V, Capillary Voltage: 1000 V, Charging Voltage: 300 V, Nebulizer Pressure 4.1 bar,
Dry Gas 3 L/min, Dry Gas Temperature 200 ◦C, Vaporizer Temperature 350 ◦C, Sheath
Gas 240 L/h.

The mass spectrometer was operated in MS1 full scan mode with the following
parameters: scan range 20 to 1050 m/z, Funnel 1 RF 200 Vpp, Funnel 2 RF, 200 Vpp, isCID
0 eV, Hexapole RF 50 Vpp, Quadupole Ion Energy 5 eV, Quadrupole Low mass 50 m/z,
Collision Energy 2 eV, Pre Pulse Storage 5 µs, Scan rate 2 Hz. The mass axis was calibrated
at the beginning of every batch of samples.

Samples were measured in a randomized order. Data were saved in profile mode
and converted to mzML format using proteowizard/msconvert [28]. Subsequent data
processing was performed using an in-house R script. Briefly, signals of the tune mix
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components were used for a quadratic re-calibration of the mass axis and for normalizing
signal intensities. In every sample, the most intense 1000 m/z features were detected
and subsequently combined to a consensus feature list. In the case of missing values,
these gaps were filled by extracting signal intensities from the original data at the exact
m/z values. Isotope peaks were recognized as consecutive chains of features with a mass
difference of 1.00335 Da and probable intensity ratios and collapsed into one feature.
Features were annotated by matching their mass (assuming M+H or M-H ions) to the
masses of metabolites in the human metabolome database (HMDB) [29].

4.5. LC-QTOF-HILIC

The HILIC method has been adapted from a previously published method by Bajad
et al. [30]. Just prior to analysis, samples were resuspended in 20 µL 90:10 acetonitrile:water.
Samples were mixed and then centrifuged for 1 min at 20,000× g and 4 ◦C. Fifteen micro-
liters of the supernatant was transferred to a 96-well PCR plate. The plate was sealed and
then placed in the autosampler.

Chromatographic separation was performed on an Agilent 1290 Infinity II UHPLC
system using a Phenomenex Luna NH2 column (50 × 2 mm, 3 µm particles). Buffer
A was 10 mM NH4OH in water, Buffer B was 5 mM ammonium carbonate in 90:10
Acetonitrile:water. The gradient profile was: 0 min, 100% B, 0.25 mL/min; 0.5 min, 100% B,
0.25 mL/min; 0.7 min, 100% B, 1 mL/min; 1.2 min, 100% B, 1 mL/min; 5.4 min, 30% B,
0.75 mL/min; 5.7 min, 10% B, 0.75 mL/min; 7.7 min, 10% B, 0.75 mL/min, 8.3 min, 100% B,
0.75 mL/min; 8.6 min, 100% B, 1 mL/min; stop time: 9 min. The initial 0.5 min of each run
were used for calibrating the mass axis. Then 3 µL of the sample was injected 0.7 min after
the start of the run. The column temperature was 30 ◦C and the autosampler temperature
was 5 ◦C.

The LC was coupled to a Bruker impact II QTOF MS (resolution > 50,000 FSR)
equipped with ionBooster ESI source. The ESI source parameters were: End Plate Offset:
400V, Capillary Voltage: 1000 V, Charging Voltage: 300 V, Nebulizer Pressure 5 bar, Dry
Gas 4 L/min, Dry Gas Temperature 250 ◦C, Vaporizer Temperature 400 ◦C, Sheath Gas
240 L/h.

The mass spectrometer was operated in negative mode with Auto MS/MS with the
following parameters: scan range 20 to 1000 m/z, Funnel 1 RF 200 Vpp, Funnel 2 RF,
200 Vpp, isCID 0 eV, Hexapole RF 50 Vpp, Quadupole Ion Energy 5 eV, Quadrupole Low
mass 50 m/z, Collision Energy 2 eV, Pre Pulse Storage 5 µs, Scan rate 12 Hz. Fragmentation
was ramped from Collision RF 200 Vpp, Transfer Time 20 µs, Collision Energy 20 to
Collision RF 700 Vpp, Transfer Time 70 µs, Collision Energy 50. The mass axis was
calibrated at the beginning of every sample run.

Samples were measured in a randomized order. Data were acquired in Profile and
Centroid Mode using Bruker Hystar 4.1 and processed using Bruker Metaboscape 5.

4.6. LC-QTOF-polarRP

Reversed-phase liquid chromatography has been widely used in metabolomics; this
method has been adapted from previous methods [31–34]. Just prior to analysis, samples
were resuspended in 20 µL water. Samples were mixed and then centrifuged for 1 min at
20,000× g and 4 ◦C. Fifteen microliters of the supernatant was transferred to a 96-well PCR
plate. The plate was sealed and then placed in the autosampler.

Chromatographic separation was performed on an Agilent 1290 infinity II UHPLC
system using a Waters CSH C18 column (100 × 2 mm, 1.7 µm particles). Buffer A was 0.1%
formic acid in water, Buffer B was 50:50 acetonitrile:methanol. The gradient profile was:
0 min, 0% B, 0.2 mL/min; 0.5 min, 0% B, 0.2 mL/min; 0.6 min, 0% B, 0.4 mL/min; 4.7 min,
0% B, 0.4 mL/min; 19.7 min, 97% B, 0.4 mL/min; 25.2 min, 97% B, 0.4 mL/min; 25.7 min,
0% B, 0.4 mL/min, 27.2 min, 0% B, 0.45 mL/min; stop time: 28 min. The initial 0.5 min of
each run were used for calibrating the mass axis. Then, 3 µL of sample was injected 0.7 min
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after the start of the run. Column temperature was 30 ◦C and autosampler temperature
was 5 ◦C.

The LC was coupled to a Bruker impact II QTOF MS (resolution > 50,000 FSR)
equipped with ionBooster ESI source. The ESI source parameters were: End Plate Offset:
400 V, Capillary Voltage: 1000 V, Charging Voltage: 300 V, Nebulizer Pressure 4.1 bar, Dry
Gas 3 L/min, Dry Gas Temperature 200 ◦C, Vaporizer Temperature 350 ◦C, Sheath Gas
240 L/h.

The mass spectrometer was operated in positive mode with Auto MS/MS with the
following parameters: scan range 20 to 1000 m/z, Funnel 1 RF 200 Vpp, Funnel 2 RF,
200 Vpp, isCID 0 eV, Hexapole RF 50 Vpp, Quadupole Ion Energy 5 eV, Quadrupole Low
mass 50 m/z, Collision Energy 2 eV, Pre Pulse Storage 5 µs, Scan rate 12 Hz. Fragmentation
was ramped from Collision RF 200 Vpp, Transfer Time 20 µs, Collision Energy 20 to
Collision RF 700 Vpp, Transfer Time 70 µs, Collision Energy 50. The mass axis was
calibrated at the beginning of every sample run.

Samples were measured in a randomized order. Data were acquired in Profile and
Centroid Mode using Bruker Hystar 4.1 and processed using Bruker Metaboscape 5.

4.7. LC-QTOF-Lipid

This method has been adapted from previously published methods [35,36]. Just prior
to analysis, samples were resuspended in 40 µL 2:1:1 2-propanol:acetonitrile:water and
transferred to a sample vial with a conical glass insert. The vials were capped and then
placed in the autosampler.

Chromatographic separation was performed on an Agilent 1290 infinity II UHPLC
system using an Agilent Zorbax Eclipse Plus C18 column (100 × 2 mm, 1.8 µm particles).
Buffer A was 10 mM ammonium formate in 60:40 acetonitrile:water. Buffer B was 10 mM
ammonium formate in 90:10 2-propanol:acetonitrile. The gradient profile was: 0 min,
30% B, 0.2 mL/min; 0.5 min, 30% B, 0.25 mL/min; 0.6 min, 30% B, 0.4 mL/min; 1.2 min,
30% B, 0.4 mL/min; 5.2 min, 68% B, 0.4 mL/min; 21.2 min, 75% B, 0.4 mL/min; 21.7 min,
97% B, 0.4 mL/min; 26.0 min, 97% B, 0.4 mL/min; 26.5 min, 30% B, 0.4 mL/min; stop time:
28 min. The initial 0.5 min of each run were used for calibrating the mass axis. Then, 2 µL
of sample were injected 0.7 min after the start of the run. Column temperature was 35 ◦C
and autosampler temperature was 5 ◦C.

The LC was coupled to a Bruker impact II QTOF MS (resolution > 50,000 FSR)
equipped with ionBooster ESI source. The ESI source parameters were: End Plate Offset:
400 V, Capillary Voltage: 1000 V, Charging Voltage: 300 V, Nebulizer Pressure 4.1 bar, Dry
Gas 3 L/min, Dry Gas Temperature 200 ◦C, Vaporizer Temperature 350 ◦C, Sheath Gas
240 L/h.

The mass spectrometer was operated in negative or positive mode with Auto MS/MS
with the following parameters: scan range 50 to 1600 m/z, Funnel 1 RF 200 Vpp, Funnel
2 RF, 200 Vpp, isCID 0 eV, Hexapole RF 50 Vpp, Quadupole Ion Energy 5 eV, Quadrupole
Low mass 90 m/z, Collision Energy 5 eV, Pre Pulse Storage 5 µs, Scan rate 12 Hz. Fragmen-
tation was ramped from Collision RF 400 Vpp, Transfer Time 50 µs, Collision Energy 20
to Collision RF 1200 Vpp, Transfer Time 100 µs, Collision Energy 50. The mass axis was
calibrated at the beginning of every sample run.

Samples were measured in a randomized order. Data were acquired in Profile and
Centroid Mode using Bruker Hystar 4.1 and processed using Bruker Metaboscape 5.

4.8. LC-MS/MS Data Processing

All LC-MS/MS data were processed using Metaboscape 5 (Bruker) with the parame-
ters listed in Table 3:
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Table 3. Parameters for data processing including batch feature annotation in Metaboscape 5.

Filter Parameters

Minimum # Features for Extraction 1

Presence of features in minimum # of analyses 3

T-ReX 3D Processing Parameters

Intensity threshold 4000 (polar metabolites), 3000 (lipids neg), 6000 (lipids pos)

Minimum Peak Length 12

Enable Recursive Feature Extraction true

Minimum Peak Length (recursive) 7

Perform MS/MS import true

MS/MS import method average

Ion Deconvolution Parameters

EIC correlation 0.8

Primary ion (negative mode) [M-H]-

Primary ion (positive mode) [M+H]+

Seed ions (negative mode) [M+Cl]-

Seed ions (positive mode) [M+Na]+, [M+K]+, [M+NH4]+

Common ions (negative mode) [M-H-H2O]-, [M+COOH]-

Common ions (positive mode) [M-H-H2O]+

Mass Calibration Parameters

Lock Mass Calibration false

Mass Recalibration true, calibration segment 0.1-0.4 min

Expert settings

FerraWorkflow.chargeMax 1 (only for polar metabolites)

Batch annotation of features was performed in three ways using Metaboscape: predic-
tion of most likely sum formula using the SmartFormula function, annotation by matching
retention time, exact mass, and isotope pattern to a list of known compounds using the
AnalyteList function, and annotation by matching of exact mass and fragment pattern
to spectral libraries. Chosen tolerances and other settings are listed in Table 4. We have
removed stereochemical information (such as D- or L-) from annotated metabolite names
after export from Metaboscape because the applied methodology cannot discriminate
between stereoisomers.
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Table 4. Settings and parameters for feature annotation in Metaboscape.

Smart Formula Parameters

m/z tolerance 1 mDa (narrow), 3 mDa (wide)

mSigma 15 (narrow), 50 (wide)

Elements CHNOPS

Upper formula S1

Element ratio filters Common

Electron configuration Both

Analyte List Parameters

m/z tolerance 1 mDa (narrow), 3 mDa (wide)

Retention time tolerance 0.2 min (narrow), 0.4 min (wide)

mSigma 15 (narrow), 50 (wide)

Spectral Library Parameters

Libraries (polar metabolites) In house library, Bruker MetaboBASE 3.0, GNPS
export (downloaded July 2020)

Libraries (lipids) In house library, Bruker MetaboBASE 3.0, MSDIAL
LipidDB VS68 (neg and pos)

m/z tolerance 1 mDa (narrow), 3 mDa (wide)

mSigma 20 (narrow), 200 (wide)

MS/MS score 900 (narrow), 700 (wide)

4.9. Statistical Analysis

Feature tables (bucket lists) were exported from Metaboscape or generated by the FIA
data processing pipeline described above. Consequently, data sets were quantile normal-
ized (R function normalize.quantiles() from package preprocessCore [37]) to compensate
for changes in cell size during the course of the experiment.

Dimensionality reduction for plotting was achieved by principal component analysis
(PCA). To this end, quantile normalized data were square-root scaled to limit the impact of
features with high absolute intensity. PCA scores and loadings were calculated using the R
function princomp() from package core package “stats”.

Dimensionality reduction for plotting with simultaneous analysis identification of
time-dependent features was achieved by partial least squares (PLS) analysis using sam-
pling time as a predicted variable. The combined positive mode and negative mode FIA
data set was log scaled and PLS was calculated using function plsr() from package pls [38].

The number of features that show a signal intensity above blank was determined by
performing t-tests (one-tailed, equal variance) between a sterile well control (blank) and
cell extracts separately for each time point, feature, and data set. A feature was defined to
be above blank, if the quantile normalized signal intensity for at least one time point was
greater than blank with a p-value < 0.05.

The number of features that exhibit a significant time trend was determined by per-
forming a likelihood ratio test (R function lrtest() from package lmtest [39]) with a gen-
eralized additive model (R function gam() from package mgcv [40]. All features with a
p-value < 0.05 (Bonferroni corrected for the number of features in the data set) were labeled
as having a significant time trend.

4.10. Flow Cytometry

Every 24 h from 0 h to 72 h post T cell activation, cells were stained with the LIVE/DEAD
Fixable Violet Dead Cell Stain Kit (Thermo scientific, https://www.thermofisher.com) and
CD8a-PE (Biolegend, San Diego, USA, 100709) in 2% FBS/PBS on ice for 30 min. Cells were
collected on a Fortessa flow cytometer (BD Bioscience, Haryana, India) and analyzed using

https://www.thermofisher.com
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FlowJo software (Version 10.1). The mean forward scatter (FSC-A) of CD8+, live cells was
gated as a measure of cell size during T cell activation.

4.11. Graphical Abstract

The graphical abstract was prepared using elements generated with iPath3 [41].

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-1
989/11/1/12/s1, Figure S1: Principal component (PC) 3 and 4 of principal component analysis of
combined polar data sets show the separation of replicates. These PCs probably reflect more subtle
metabolic changes occurring during the activation of TN to TE. Figure S2: Size of CD8+ T-cells
measured as forward scatter by fluorescence-activated cell sorting (FACS) show an increase in cell
size following in vitro activation from TN to TE. The X-axis is time in days. Figure S3: Time courses
of phosphatidyl choline species plotted on a grid of number of carbons in acyl chains (vertically)
and number of double bonds in acyl chains (horizontally). Each sub-plot shows time on the x-axis
and signal intensity on the y-axis. Table S1: Feature table of negative mode FIA analysis. Table S2:
Feature table of positive mode FIA analysis. Table S3: Feature table of LC-MS analysis using HILIC
chromatography and negative ionization mode. Table S4: Feature table of LC-MS analysis using
reversed-phase chromatography and positive ionization mode. Table S5: Feature table of LC-MS
analysis using lipid chromatography and negative ionization mode. Table S6: Feature table of LC-MS
analysis using lipid chromatography and positive ionization mode. Table S7: Scores and loadings of
principal component analysis of combined polar data set.
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