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INTRODUCTION -

In this paper we report on experiments and theoretical predictions
relating to the spectroscopic observations of charge exchange (C/X) processes
occurring between highly ionised impurities in the core of tokamak devices and
high power beams of energetic neutral atoms. Our goals were to calibrate a
Vacuum Ultraviolet (VUV) spectrometer and to show that fibre optically trans-
mitted visible C/X radiation could be used to diagnose remotely tokamaks up to
and including the crucial active phase. The diagnostic potential of these C/X
lines has been emphasised in recent years, and has been recently reviewed
(Fonck, 1984 and Isler, 1985). Our observations.cover emission from hydro-
genic ions in both the VUV and the visible, and we have developed a computer
code to model the experimental data. This is based on calculated cross
sections for charge exchange into the [n,x] resolved quantum Tevels and the
subsequent cascade radiative decay.

VISIBLE SPECTROSCOPY

A 1m Czerny-Turner visible
spectrometer viewed the plasma via
a quartz window as indicated in
Figure 1. This line of sight
observes the interaction of one
injector beam with half the plasma
cross section - a region where the
beam attenuation is small (<20%).
For survey work it was operated
with a PARC Optical Multichannel
Analyser (OMA). For faster time
measurements a spectrometer fitted
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sources in the neutral beam switching off at slightly different times. The
line intansity falls off rapidly with the switch off of the two sources. This
drop in intensity is far faster than any changes in the ionisation balance,
which would be expected to occur on a timescale of about 1 ms. The step
change in intensity 1is a measure of the C/X contribution to the 1line
intensity, since the C/X excitation process turns off on a timescale much
shorter than 100 ps.

For the accurate calculation of C/X line intensities needed for cali-
bration of the VUV instrument, it was necessary to measure the fraction of
beam power at each energy. This was done (following Fielding, 1981) by
injecting the beams into the torus, when filled with neutral gas, and
observing the Doppler shifted components of Hx light corresponding to the
different beam neutral velocities. This yielded a power ratio of 40%:40%:20%
at energies E, E/2 and E/3 (where E is the primary beam energy component of
42keV).

VACUUM ULTRAVIOLET MEASUREMENTS )

A vacuum ultraviolet spectrometer (Fonck, 1982) covering the wavelength
range 100-1700%4 (with modest resolution ~24) viewed the plasma radially, at
the same position as the visible instrument in Figure 1. The spectrometer was
equipped with a multichannel detector consisting of a microchannelplate
intensifier coupled to an OMA of the same type as used on the visible
spectrometer above. .

The important C/X lines were identified by scanning the entire spectrum,
which could be achieved once every 16 ms. Figure 4 shows half a survey
spectrum during beam injection. This clearly illustrates the strong C/X
lines, which have negligible intensity before and after injection.

o The C/X line intensities could be
recorded once every 1-Zms by restricting
the detector to scan only specific parts
of the spectrum. However the fall off
time of the C/X line intensity at the end
of injection was still detector limited.
Previous observation of these lines in
DITE (Duval, 1985) and observations of
C/X 1lines in the visible (discussed
earlier in this paper) give us confidence
that the fall off time is actually less
than 100ps. Despite the relatively poor
temporal response of the detector, the
time behaviour of these lines is seen to
be markedly different from that of
the resonance lines 1in the spectrum.
This difference is due to the fact that
T T the resonance lines apparently take many
600 Angstrom 100 jonisation times to respond to the
neutral beam switch-off, while the C/X
line intensities change within one scan
time of the detector.
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Fig.4 Portion of VUV spectrum
showing the strong C/X lines.
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The relative sensitivity of the spectrometer as a function of wavelength
was derived using the theoretically modelled excitation cross sections of
the C/X transitions, (Isler, 1985). (To this end Olson (1985, 1981) has
calculated the C/X cross sections at 42 keV into [n,2] levels uw to n=12, and
n=14 for Carbon and Oxygen respectively.) The results obtained were
consistent with a spectrometer sensitivity calibration constructed piecemeal
from line ratios observed in JET discharges, and with that of the prototype
spectrometer, SPRED. The absolute sensitivity of the spectrometer was
established at wavelengths above 11008 by reference to a calibrated deuterium
discharge lamp.

The spectromeier, now absolutely calibrated, was used to make two
measurements of impurity concentrations. Firstly, the concentrations of
Carbon and Oxygen were calculated using a code for beam decay and impurity
excitation rates and the measured volume emissivities of the C/X transitions,
this gave typical impurity levels of 2%. A second measurement of impurity
concentration was made using a 1-D transport model (Denne, 1985) and line
emission from lower ionisation states during the ohmic part of the discharge.
The latter measurement gave a rather Tower figure for the concentrations of
the impurities (about half). It is to be expected that the impurity content of
the plasma during injection should be higher than during the ohmic phase.

CONCLUSIONS :

Our experiments in the VUV have borne out calculations of C/X line
intensities for the 42 “eV primary neutral energy of the ASDEX injectors, and
enabled us to calibrate a VUV spectrometer. The time histories of the visible
signals confirm them as being C/X in origin. Our efforts are now aimed at
correlating the observed intensities in the visible (n>8) with the VUV
measurements (n<5). From the VUV data, the impurity concentrations have been
measured, and the visible data has given ion temperatures and bulk plasma
velocities. The resuits appear encouraging regarding the use of visible
instruments to derive important plasma parameters which previcusly required
the use of close-coupled vacuum spectrometers. Our ‘experiments are continuing
in order to increase coafidence in the theoretical models.
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