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We predict the existence of a universal class of ultralong-range Rydberg molecular states whose
vibrational spectra form trimmed Rydberg series. A dressed ion-pair model captures the physical
origin of these exotic molecules, accurately predicts their properties, and reveals features of ultralong-
range Rydberg molecules and heavy Rydberg states with a surprisingly small Rydberg constant.
The latter is determined by the small effective charge of the dressed anion, which outweighs the
contribution of the molecule’s large reduced mass. This renders these molecules the only known
few-body systems to have a Rydberg constant smaller than R∞/2.

The richness of Rydberg physics is highlighted by two
exotic molecular systems which have attracted recent in-
terest: ultralong-range Rydberg molecules (ULRM) and
heavy Rydberg states (HRS). The ULRM is a fragile
dimer with a bond length ∼100 nanometers. This gar-
gantuan molecule consists of a neutral perturber atom
(B) bound to a highly excited Rydberg atom (A∗) [1–4].
The experimental observation of ULRMs [5–7] has led to
their use in many diverse applications, e.g. as probes of
charge-neutral interactions [8–13] or as impurities embed-
ded in a many-body bath [14–24]. ULRMs exist because
the Rydberg electron accumulates an appreciable phase
shift as it scatters off of the perturber, which in turn pro-
duces an energy shift proportional to the S-wave scatter-
ing length [25, 26]. This binds the “trilobite” molecule,
A∗B, together [27–29]. If the electron-perturber (e −B)
complex possesses a P -wave shape resonance, a second,
more deeply bound, ”butterfly” ULRM forms [30–32].

HRS (also called ion pairs or heavy Bohr atoms) are
the direct molecular analogues of a Rydberg atom [33–
37]. An atomic anion replaces the Rydberg electron, cre-
ating a vibrational Rydberg state A+B−. The properties
of these molecules obey typical Rydberg formulae, but
with the electron’s mass replaced by the dimer’s heavy
reduced mass. Typically the excitation of pairs of ground
state atoms to HRS is difficult due to weak Franck-
Condon factors and electronic transition-dipole moments
[36, 38]. Recent proposals exploit ULRMs, with similar
bond lengths as HRS, to avoid these challenges [39, 40].
In the vicinity of the perturber, the electronic wavefunc-
tion of the butterfly molecule and the metastable ex-
cited P anion have the same symmetry [9]. The elec-
tron can thus be transferred from the Rydberg state into
the bound S anion state via a dipole-allowed transition,
which also supplies the required energy to match the elec-
tron affinity and allow the reaction A∗B → A+B− to oc-
cur.

However, the exotic systems of ULRMs and HRS exist
typically in well separated energy intervals. In this Let-
ter, we predict a class of highly excited molecular states
which realize properties of HRS on the electronic energy

scale of ULRMs, thus combining both concepts. The
inclusion of higher partial waves (L ≥ 2) in the e − B
interaction yields a hierarchy of “truncated Coulomb”
potential energy curves (PECs) governing the vibrational
motion associated with every degenerate electronic Ry-
dberg manifold, labeled by n. Each level in the infi-
nite electronic Rydberg series becomes the dissociation
threshold for a set of trimmed heavy Rydberg series,
or tHRS (see Fig. 1(c)). The tHRS possess only a fi-
nite number of vibrational states since the “truncated
Coulomb” PECs vanish once the perturber resides out-
side the Rydberg electron’s orbit. The tHRS preserve the
basic attributes of ULRMs; in particular, the perturbed
electronic wavefunction fills the entire Rydberg volume,
while in HRS the electron binds to the perturber. To ad-
dress the physical origin of the tHRS, we map the ULRM
system, A∗B, (upper panel of Fig. 1(d)) onto an effective
ion-pair, A+BQ, (lower panel of Fig. 1(d)) where the per-
turber is dressed by a fractional charge Q.

The dressed ion-pair model reveals that the perturber-
induced localization of the electron yields to an effec-
tive negative charge which is virtually independent of
the internuclear distance R, leading thus to Coulomb-like
molecular PECs. This property arises due to the linear
energy dependence of the electron-perturber phase shifts
for L ≥ 2 which is universally satisfied for any type of
polarizable perturber at low energies. Additionally, the
magnitude of the fractional charge counterbalances the
heavy mass of the tHRS and leads to a Rydberg constant
which is significantly smaller than R∞/2, the Rydberg
constant of positronium, the lightest ion pair.

We compute the ULRM PECs including L ≥ 2 phase
shifts by employing the generalized local frame transfor-
mation (GLFT) approach [41]. This framework requires
as input only a set of atomic quantum defects µl and scat-
tering phase shifts δL with l (L) indicating the electron’s
angular momentum relative to A+ (B). The generic scope
of the GLFT approach permits us to include the effect
of higher partial wave e-B scattering, avoiding the limi-
tations of the Fermi/Omont pseudopotential or Green’s
function methods [3, 25, 26, 42–46]. The triplet e−B scat-
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Figure 1. (color online) (a) ΣRb2 Rydberg molecule PECs (blue) relative to the n = 30 manifold. The smooth orange
curves overlaid are the results of the model, Eq. (2), and the ion-atom polarization potential is shown in gray. (b) Electronic

wavefunctions ΨΣ(z, ρ) in cylindrical coordinates are depicted for the family of L ≥ 2 states. The left column shows ρ
√

∣ΨΣ(z, ρ)∣
for z ∈ [−2000,2000] and ρ ∈ [−2000,2000]. The right column shows

√
∣ΨΣ(z, ρ)∣ for z ∈ [−250,300] and ρ ∈ [−250,250]. The

blue (orange) dot indicates the position of the Rydberg core (perturber). (c) A schematic of the vibrational Rydberg series.
The electron-ion potential (gray) supports the bound states of the Rydberg atom (I). Each electronic Rydberg manifold labeled
n, n+1 . . . (blue dashed lines) is the threshold for the M = 2 D-wave PEC (black). This PEC supports a nuclear Rydberg series
(orange dotted lines) of dressed ion-pair states (II) labeled v−1, v . . . . (d) Two pictures of a ULRM: On top, the typical picture,
where the Rydberg electron (red) scatters from the perturber (orange) and forms a trilobite-like wave function (black contour).
On the bottom, the dressed ion-pair picture, wherein the Rydberg wavefunction is neglected and the relevant quantity is the
electron’s charge distribution (red) around the perturber, forming a dressed anion.

tering phase shifts are obtained from a non-relativistic
two-electron R-matrix code [47, 48]. We consider as a
paradigm spinless Rb atoms and use atomic units unless
otherwise specified. Thus, M , the projection of L onto
the internuclear axis R, is a good quantum number and
defines the molecular symmetry. Focusing on the uni-
versal aspects of the tHRS, realizable in spin-stretched
experiments, we neglect relativistic effects and singlet
states.

Fig. 1(a) shows the Σ (M = 0) Rb2 ULRM PECs rel-
ative to the n = 30 Rydberg manifold including L ≤ 3
partial waves. The blue curves depict the trilobite PEC
(S-wave scattering), the butterfly PEC (P -wave), as well
as a new series of L ≥ 2 PECs which complete the ULRM
“family”: the “dragonfly” PEC (D-wave), “firefly” PEC
(F -wave), etc. As L increases the PECs condense into
the ion-atom potential − α

2R4 (gray curve), where α is
the atomic polarizability. Exemplary electronic wave-
functions with the perturber placed at R = 200 a0 are
displayed in Fig. 1(b). Near the perturber they manifest
the dominant spherical symmetry of the e−B interaction
since the Coulomb field is negligible. Thus, L is approx-
imately a good quantum number labeling these states.
These molecules exhibit dipole moments in the hundreds
of debye, similar to the trilobite/butterfly molecules [see

Supplemental material (SM)].

Unlike the trilobite and butterfly PECs, the L ≥ 2
PECs are, to a good approximation, Coulombic. This
is particularly evident for molecular states having higher
M values, since the oscillatory fringes in the PECs vanish
for increasing M . For example, Fig. 1(c) schematically
depicts in black the ∆ (M = 2) dragonfly PECs which
dissociate at each electronic Rydberg n−manifold (blue
dotted lines).

The dressed ion-pair model captures intuitively the
emergence of the Coulombic character in the L ≥ 2 PECs,
simultaneously illustrating why the S and P -wave PECs
are so different. The standard depiction of an ULRM,
for example a trilobite, is depicted in the upper panel
of Fig. 1(d). The perturber mixes the degenerate Ry-
dberg states to form the trilobite wavefunction, plotted
as a contour. The nodal pattern of this electronic wave-
function is linked to the oscillatory fringes of the S−wave
PEC [see Fig. 1(a)]. Starting out tabula rasa, in the bot-
tom panel of Fig. 1(d) the ULRM is viewed as an effec-
tive ion-pair where the perturber is dressed by a charge
distribution (red sphere in Fig. 1(d)) forming an anion
of fractional charge. This perspective ignores the total
trilobite wavefunction except for the charge distribution
localized by the e −B interaction.
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The effective charge is obtained by calculating the
difference in electronic probability accumulated in the
vicinity of the perturber with and without its presence.
The resulting integral is evaluated in terms of the phase
shift δL(k) at a given electronic scattering kinetic energy
(kn(R))

2

2
= 1
R
− 1

2n2 . The charge distribution at the per-
turber is

⟨QL(R)⟩n = −
( dν
dE

)−1

πkn(R)
dδL(κ)
dκ

∣
κ=kn(R)

, (1)

where ν is related to the electronic energy E via E =
−1/2ν2. The presence of the Rydberg electron’s density
of states dν

dE
arises from the quantization of the e − B

scattering continuum by the Coulomb field of A∗ (for de-
tails see SM). The charge in Eq. (1) is proportional to
the time-delay of the e − B subsystem, which leads to
a transparent interpretation [49]. A large and positive
time delay implies that the electron slows down near the
perturber, which consequently appears as dressed with a
negative charge. A negative time delay has the opposite
consequence: the electron spends less time near the per-
turber than elsewhere, dressing it with a positive charge.

The dressed anion and the positively charged Rydberg
core interact via a Coulomb force FL(R) = ⟨QL(R)⟩n/R2

yielding a potential energy VL(R) relative to the n−th
manifold

VL(R) = 1

2n2
− 1

2(n − δL[kn(R)]/π)2 , for R ≤ Rc, (2)

where VL(R > Rc) = 0 for a perturber located outside the
Rydberg’s electron orbit (Rc = 2n2). Note that Eq. (2)
was also obtained via different methods in Ref. [50], em-
phasizing its similar structure as the Rydberg formula.
This highlights that the phase shifts play the role of
molecular quantum defects [51]. Due to the semiclassical
nature of the dressed ion-pair model, Eq. (2) captures
only the shape of the molecular PECs, see orange lines
in Fig. 1(a).

The effective charge in Eq. (1) elucidates the emer-
gence of Coulombic molecular PECs. For a generic phase
shift δL, as for S or P partial waves, the charge fluctu-
ates dramatically as R changes, yielding non-Coulombic
PECs. However, at low-energies and for L ≥ 2 only the
centrifugal barrier and the tail of the polarization poten-
tial contribute to the phase shifts, imparting on them a
universal linear energy dependence. Namely, within the
Born approximation (BA) the L ≥ 2 phase shift is

δL ≈ παLk2; αL = α

(4L2 − 1)(2L + 3) , (3)

where we confirmed that this matches closely the cal-
culated phase shifts for the alkali atoms (see SM). The
linear energy dependence yields an effective charge vir-
tually independent of R which imprints the Coulombic

Figure 2. (color online) The L ≥ 2 PECs relative to the
n = 30 manifold for (a) Σ and (b) ∆ molecular symmetry
using the BA phase shifts. The orange (blue) lines indicate
the PECs within the ion-pair model (GLFT approach). The
green squares denote the results of the numerical perturbation
theory for a soft-core polarization potential. The polarization
potential is shown in gray. We have set µl = 0 for this com-
parison.

character onto the corresponding PECs. Indeed, substi-
tuting the BA phase shifts in Eq. (2) and expanding it in
powers of n−1 yields the corresponding Coulomb poten-
tial and additional higher order terms:

UL(R) = − α

2R4
+ αL
n5

− 2αL
n3R

− 6α2
L

n4R2
+ . . . , (4)

where in UL(R) the ion-atom polarization potential − α
2R4

is added. The prefactor of the Coulomb term matches
Eq. (1) in the large n limit where ν → n, i.e. ⟨QL(R)⟩n =
2ᾱL/n3, and for Rb the L = 2 fractional charge is
∼ 6.08/n3. Considering only the dominant Coulomb and
constant terms in Eq. (4) results in a nuclear vibrational
spectrum which obeys a Rydberg formula EnLvJ with a
redefined Rydberg constant R′

nL,

EnLvJ = αL
n5

− R′
nL

(v − ηJ)2
; R′

nL = 2mABα
2
L

n6
. (5)

mAB is the reduced mass of the molecule and J is
the nuclear angular momentum. The constant energy
shift,αL

n5 , included in this formula is consistent with the
truncation of the Rydberg series to a finite number of
states by the vanishing of UL(R) at the classical turn-
ing point. The maximum number of states is given by
vmax ≈

√
2αLmAB/n. The nuclear quantum defect ηJ

accounts for the effects of the non-Coulombic terms in
Eq. (4) as well as the complicated molecular potential
energy curves at short internuclear distances, R < 30 a0.
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The nuclear defects ηJ are system-dependent and their
evaluation is beyond the scope of this study.

Fig. 2 shows the family of L ≥ 2 PECs relative to n = 30
manifold for (a) Σ (M = 0) and (b) ∆ (M = 2) molecu-
lar symmetry, where for simplicity we use the BA phase
shifts and set µl = 0. In both panels the PECs within the
dressed ion-pair model (orange) condense to the atom-
ion potential (gray) as L →∞. As seen in butterfly UL-
RMs, the PEC oscillations disappear with increasing M
[30, 31, 52]. Panel (b) shows the smooth ∆ PECs: the
results of the GLFT method (blue) are in excellent agree-
ment with the dressed ion-pair model (orange).

In general, the calculations of GLFT theory for L ≤ 1
match those obtained by the Green’s function method
[44–46] and Omont’s pseudopotential (see SM for de-
tails). Note that, these methods share a crucial ap-
proximation: the phase shifts are fully accumulated at
the perturber, and thus the polarization potential is re-
placed with a zero-range e − B interaction. The valid-
ity of this approximation breaks down near the classi-
cal turning point where the e − B momentum vanishes
yielding divergent scattering volumes − tan δL(k)/k2L+1
for L ≥ 1 [53]. This low-energy unphysical behavior can
in principle invalidate the molecular PECs especially for
L ≥ 2. Therefore, the L ≥ 2 PECs were numerically cal-
culated by diagonalizing a divergence-free soft-core po-
larization potential Ve−B(r) = −α

2
(β4 + ∣r −R∣4)−1 avoid-

ing the use of the phase shifts altogether. In Fig. 2 the
soft-core results (green squares) match the GLFT results
(orange curves) for all R < Rc, beyond which the GLFT,
and in fact all methods using phase shifts as external
input, break down.

Fig. 3 confirms the Rydberg character of the vi-
brational spectrum of the adiabatic Born-Oppenheimer
dragonfly PECs, which we focus on as they are the deep-
est of the L ≥ 2 PECs. Here, we remove any approxima-
tions on the phase shifts and use the numerical, rather
than the BA, δL. We show results for fixed nuclear ro-
tational quantum number J = 0. The spectra, εnLvJ , are
obtained numerically using a hard wall at R = 30 a0 that
mimics the short-range physics. Here, a more detailed
theoretical description of the latter would only result in
modified quantum defects ηJ , maintaining the Rydberg
characteristics of the εnLvJ .

Across several n-manifolds, Fig. 3(a) shows the effec-

tive nuclear quantum number V =
√
R′
nL/(ᾱL/n5 − εnLvJ )

(blue dots) for the ∆ dragonfly PECs. The black dashed
lines show the V = v−ηJ , derived from Eq. (5), where we
have fitted ηJ to the numerical data. The evident linear
dependence manifests a tHRS. For high n− manifolds,
i.e. n = 70, the nuclear states for v > 50 yield a Rydberg
spectrum; deviations occur at v < 50 due to the polariza-
tion potential. At low n−manifolds, i.e. n = 20, nearly
all the nuclear states form a Rydberg series since the
Coulomb-like PEC dominates the polarization potential
due to the relatively large effective charge. In general,
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Figure 3. (color online) The effective nuclear quantum num-
ber V (blue dots) and the rescaled difference of successive
energy levels ∆ε (orange circles) for the (a) ∆ and (b) Σ
”dragonfly” molecular curves at different n−manifolds. The
dashed lines correspond to linear fits to V with unity slope.
The insets depict the nuclear wavefunction at two different
eigenenergies evaluated numerically (orange line) or the fitted
Coulomb wavefunctions (blue dots). Note that an arbitrary
offset is added to ∆ε for illustration purposes.

at large v, the quantum numbers V agree well with the
dashed black lines which correspond to Eq. (5) with a
fitted nuclear quantum defect ηJ .

Fig. 3(a) also shows the rescaled difference of succes-

sive energy levels, ∆ε = ∣2(εnLvJ − εnLv−1J)/R′
nL∣

−1/3
(orange

circles), which more sensitively probes the Rydberg char-
acter of the series. The linear dependence of ∆ε on v with
unity slope indicates that the nuclear states possess the
proper Rydberg energy scaling, i.e ∆E ∼ 1/v3.

Fig. 3(b) shows the same quantities as in panel (a) for
the Σ “dragonfly” PEC. In Fig. 2(a) the potential wells
are too shallow to support localized bound vibrational
states. Instead, they produce low-amplitude oscillations
of V around the linear fit (black dashed lines) which are
seen faintly on this scale. The ∆ε values show this modu-
lation more explicitly, highlighting the non-Rydberg na-
ture of the corresponding spectrum. The insets in Fig. 3
illustrate the numerical nuclear wavefunctions (orange
lines) at two different eigenenergies; The blue dots de-
note fits to the Coulomb wave functions. Evidently, in
panel (a) the numerical and the fitted wavefunctions are
in excellent agreement. In panel (b) deviations in the
outermost lobes are observed due to the wells in the Σ
PEC, but the overall nodal pattern of the wave func-
tions is determined by the dominant energy scale of the
Coulomb-like potential.

The laboratory excitation of tHRS will be similar to
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that of trilobite-like ULRMs, requiring three-photon ex-
citation via admixture of the nf quantum defect state
of Rb or by using other, more favorable, quantum defect
states in other atoms [6, 48, 54]. The nuclear quantum
defects can be extracted by scanning the appropriate en-
ergy range to obtain a spectrum which can be fit to the
Rydberg formula. The short-range physics at R < 30 a0,
where molecular ion formation and other ultracold chem-
istry can occur, is beyond the scope of the present work,
but it will affect the size of the nuclear quantum defects
and, more importantly, the lifetime of the Rydberg states
[16]. A firm upper limit on the lifetime is set by the elec-
tronic Rydberg lifetime, which depends on (n, l) quan-
tum numbers and for the n values considered in typical
experiments can range from 1−100µs. However, as in the
HRS, the lifetimes will likely be substantially reduced by
nuclear decay channels to ∼ 1 − 100ns. These lifetimes
increase with both v and J ; J could be increased by ap-
plying a very weak electric field to create pendular states
[55].

In summary, we have identified new vibrational states
in ultralong-range molecules which form a trimmed heavy
Rydberg series with very small Rydberg constant. A gen-
eralized GLFT method enables us to accurately deter-
mine the underlying highly excited Coulomb-like PECs
that stem from the interaction with the perturber. Al-
though we focused on these new attributes, the effects
of higher partial waves may contribute to more accurate
theoretical spectra to compare with ongoing experimen-
tal efforts [8, 9, 11, 42, 48]. Finally, because of the generic
character of the presented binding mechanism, we expect
that similar trimmed Rydberg series, as described and
analyzed here in the context of ULRMs, could occur in
any system containing a Rydberg atom and a polariz-
able perturber, e.g. atoms with more complex structure,
multiple atoms, excitons, or even large compounds like
fullerines or nano-droplets.
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R. Löw, T. Pfau, and G. Raithel, Phys. Rev. Lett. 118,
223001 (2017).

[28] D. Booth, S. T. Rittenhouse, J. Yang, H. R. Sadeghpour,
and J. P. Shaffer, Science 348, 99 (2015).

[29] W. Li, T. Pohl, J. M. Rost, S. T. Rittenhouse, H. R.
Sadeghpour, J. Nipper, B. Butscher, J. B. Balewski,
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Supplemental Material: Dressed ion-pair states of an ultralong-range Rydberg
molecule

In this supplementary material additional information
is provided on various aspects of the main manuscript. In
summary, these extra details cover the following points:

• Alkali atom-electron phase shifts for high angular
momentum L.

• The dipole moments of the dragonfly molecules and
the L ≥ 2 molecular wavefunctions for all the molec-
ular symmetries M .

• Derivations related to the Omont pseudopotential
for the dragonfly potential curve and its compar-
ison to the generalized local frame transformation
theory (GLFT).

• Details on the derivations of the dressed ion-pair
model.

PHASE SHIFTS FOR L ≥ 2

Using a model potential for the neutral atom [56] and
the R-matrix method to compute the logarithmic deriva-
tive of the scattering wave function at the surface of
the volume where electron-electron correlation and ex-
change are relevant, we computed the non-relativistic
phase shifts for D and F waves. Outside of the two-
electron region the appropriate asymptotic solutions were
obtained by numerically propagating the wave function
using a Numerov algorithm in the polarization potential.
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Figure S1. (color online) The four triplet D phase shifts for
Li, Na, K, and Rb (red, black, blue, and orange, respectively)
computed using the R-matrix code (solid) and the Born ap-
proximation (dashed lines). The polarizabilities are 164.2 a0,
162.7 a0, 290.6 a0, and 319.2 a0 for Li, Na, K, and Rb respec-
tively. The bottom panel shows the relative error between the
exact and Born approximate phase shifts.
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Figure S2. (color online) The dipole moments for the drag-
onfly ultralong-range Rydberg molecules shown for different
molecular symmetries M using Rb atoms at the n = 30 elec-
tronic Rydberg manifold. The dipole moments of the trilobite
and butterfly molecules are also shown for comparison with
the dragonfly ones.

This method was used in Ref. [48] to compute S and
P -wave phase shifts and was shown to be in excellent
agreement with existing highly accurate theoretical cal-
culations, and additionally we confirmed that our lithium
D-wave phase shift results agreed with the recent calcu-
lation of Tarana and Curik [47]. In Fig. S1(a) we show
the results of this calculation for the D-wave phase shifts
of Li, Na, K, and Rb (the relativistic effects in Cs are
too large to make a non-relativistic calculation reliable),
along with the Born approximation for the phase shifts.
The relative error between the exact calculation and the
Born approximated phase shifts in Fig. S1(b) reveals that
all phase shifts are within 15% of the k2 form of the
Born-approximation all the way to high momenta, i.e.
k ∼ 0.2 (a.u.). We note that potassium fits best to the
Born approximation at the highest energies relevant to
ultralong-range Rydberg molecules (ULRMs).

DIPOLE MOMENTS AND ULTRA-LONG
RANGE MOLECULAR WAVEFUNCTIONS

WITH DIFFERENT SYMMETRIES

As mentioned in the main text the high L ULRMs have
dipole moments on the same strength as in the case of
the butterfly molecules. Fig. S2 depicts the dipole mo-
ments for the dragonfly molecules with different molecu-
lar symmetry, namely Σ (red), Π (green) and ∆ (blue).
Fig. S2 also shows the dipole moments of the trilobite
(black line) and butterfly (light blue line) molecules for
Σ molecular symmetry. It is evident by this comparison
in Fig. S2 that the dragonfly molecules exhibit dipole
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Figure S3. (color online) The wavefunctions for the dragonfly, firefly and gadfly Rb2 molecules tabulated with respect to the
orbital angular momentum L (columns) and the corresponding projection quantum number M (rows). Panel (a) depicts the
wavefunction within entire Rydberg’s electron orbit whereas panel (b) show zoom in plots close to the perturber. The blue

(orange) dot indicates the location of the Rydberg core (perturber). Note that panel (a) shows ρ
√

∣ΨM(z, ρ)∣ for z ∈ [−2000,2000]
and ρ ∈ [−2000,2000]. Panel (b) shows

√
∣ΨM(z, ρ)∣ for z ∈ [−250,300] and ρ ∈ [−250,250].

moments that have the same qualitative features as the
butterfly ones.

In Fig.1(b) in the main text we presented the Σ
(M = 0) ULRM molecular wavefunctions for the drag-
onfly (L = 2), firefly (L = 3) and gadfly (L = 4) po-
tential curves. In Fig. S3 we provide the complete ta-
ble of the wavefunctions for all the molecular symme-
tries. Panel (a) depicts the wavefunctions over the en-
tire Rydberg’s electron orbit. Panel (b) consists of a
zoom in of the wavefunctions in panel (a) near the lo-
cation of the perturber. As mentioned in the main text
we observe in Fig. S3(b) that the molecular wavefunc-
tion exhibits around the perturber the symmetry as the
electron-perturber subsystem. In addition, we observe
that along the diagonals of the tables in Fig. S3 the
molecular wavefunctions qualitatively are the same, man-
ifesting locally at the perturber the same nodal structure.
The nodal pattern for L ≥ 1 and M > 0 obeys the rule
nodes = 1 +L −M .

OMONT’S PEUDOPOTENTIAL METHOD FOR
DRAGONFLY POTENTIAL CURVES

To confirm the accuracy of the GLFT method, and
to provide an alternative method closer to the typical
approach in the field of Rydberg molecules, we have de-
rived also the expressions for the matrix elements of the
D-wave component of the Omont pseudopotential. This
pseudopotential, although quite simple for s- and p−wave
scattering, becomes increasingly tedious to evaluate as L
increases. The D-wave operator reads

VD(r⃗) = 10πδ3(r⃗ − R⃗)(− tan δ2[k(R)]
k(R) )P2 (

⃗∇ ⋅ ∇⃗
[k(R)]2 ) ,

(S1)

where P2 is the Legendre polynomial of second order,
and ∇⃗ is a gradient operator acting on the wave function
in the direction of the arrow when determining matrix
elements. We next construct the matrix element V D

αα′ ,
where α is a collective quantum number standing in for
n (principal quantum number), l (orbital angular mo-
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mentum), and m (azimuthal quantum number). We use
the Schrödinger equation, ∇2Ψnlm(R⃗) = −k2Ψnlm(R⃗), to
factor out k(R) terms such that the D-wave scattering

“volume”, a5d[k(R)] = − tan(δ2[k(R)])

[k(R)]5
, can be defined. Un-

der these considerations, the matrix elements V D
αα′ read:

V D
αα′ = 5πa5d[k(R)] ⟨nlm∣ (3 ( ⃗∇ ⋅ ∇⃗)2 − ⃗∇2∇⃗2) ∣n′l′m′⟩ .

(S2)

The simplest pathway to evaluate these matrix ele-
ments is to evaluate the gradient operators in carte-
sian coordinates to avoid difficulties with the non-
commutivity of the spherical operators, and then to
transform back into spherical coordinates in the final
step. Due to the cylindrical symmetry, this can be done
for each value of m =m′ =M individually.

• For M = 0 we have the following expression:

V D,M=0
αα′ = − 5a5d

8R6
(fnl(R)unl(R) − 6Ru′nl(R)) (fnl′(R)unl′(R) − 6Ru′nl′(R))

√
(2l + 1)(2l′ + 1) (S3)

where

fnl(R) = 6 + 3l(l + 1) − 4R + 2(R/n)2 (S4)

and u′nl(r) =
dunl(r)
dr

. Note that this expression as-

sumes R⃗ = Rẑ and m = 0.

• For the M = 1 case we obtain the following relation:

⟨nl1∣Vdwave ∣n′l′1⟩ = −
15a5d[k(R)]

4R6

√
(2l + 1)(l + 1)l(2l′ + 1)(l′ + 1)l′ [Ru′nl(R) − 2unl(R)] [Ru′nl′(R) − 2unl′(R)] (S5)

• And finally, the matrix elements for the M = 2 case
read:

⟨nl2∣Vdwave ∣n′l′2⟩ = −
15a5d[k(R)]

16R6
glgl′unl(R)unl′(R),

(S6)

where the terms gl obey the relation gl =√
(2l + 1)(l + 2)(l + 1)l(l − 1).

Fig. S4 illustrates a comparison between the standard
Omont’s pseudopotential theory (red line) and the GLFT
approach (blue dots) only for the Σ dragonfly potential
energy curve for Rb atoms at the n = 30 electronic Ryd-
berg manifold. Note that for simplicity the atomic quan-
tum defects µl are neglected. Evidently, Fig. S4 high-
lights that the GLFT treatment is in excellent agreement
with the standard techniques used in the field of Rydberg
molecules.

DRESSED ION-PAIR MODEL: DETAILS AND
DERIVATIONS

In the following, additional details on the dressed ion-
pair model are provided. The key quantity is the excess
probability of the Rydberg electron in the near vicinity
of the perturber which is defined as the difference of the
electron’s probability with and without the presence of
the perturber. The spatial volume integral of electron’s
excess probability is interpreted as a charge distribution
that dresses the neutral atom, i.e. the perturber. Assum-
ing a sphere of radius ξ0 around the perturber, the charge
distribution around the perturber is written in terms of
the excess probability according to the following expres-
sion:

QL(ξ0,R) = −∫
ξ≤ξ0

(∣ΦL(ξ)∣2 − ∣Φ0
L(ξ)∣2) dξ, (S7)

where ΦL(ξ) and Φ0
L(ξ) are the electron-perturber scat-

tered / un-scattered wavefunctions, respectively. For
large enough radius ξ0 such that the electron’s wavefunc-
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Figure S4. (color online) Comparison between the GLFT
(blue dots) and Omont’s pseudopotential (red line) approach
for the dragonfly molecular curve for Rb atoms at n = 30
electronic Rydberg manifold. Note that the atomic quantum
defects µl are set equal to zero.

tions behaves as

ΦL(ξ0)→ A

√
2

πk
sin[kξ0−Lπ/2−δL(k)]YLM(ξ̂0), (S8)

where δL(k) is the electron-perturber scattering phase
shift and A = ν−3/2. Note that by setting δL(k) = 0
Eq. (S8) provides us with the Φ0

L(ξ) wavefunction.
The constant A is defined such that ∫ dξ∣ΦL(ξ)∣2 =

δνν′ where ν = 1/
√
−2E is the effective principal quantum

number. In essence, the constant A takes into account
that the electron-perturber scattering takes place in the
presence of the Coulomb field generated by the resid-
ual core and the Rydberg electron. Thus, the electron-
perturber collisional energy is discretized by the Coulomb

interaction. This means that A2 gives the inverse of the
Rydberg electron’s density of states, i.e. A2 ≡ ( dν

dE
)−1.

Plugging Eq. (S8) into Eq. (S7) and converting the
volume integral into a surface one we obtain a closed
form expression for the charge distribution.

QL(ξ0,R) = − ( dν
dE

)
−1

(δ
′
L(k)
πk

− cos(2kξ0 −Lπ − δL(k)) sin δL(k)
πk2

), (S9)

where δ′L(k) = dδL(k)
dk

. In the preceding equation the
charge distribution depends on the radius of the sphere
of integration ξ0 exhibiting an oscillatory behavior as ξ0
increases. However, we are interested in the charge distri-
bution only around the perturber. In the spirit of Smith
in Ref.[49], this oscillatory behavior can be eliminated
by averaging over a cycle ξ0 and take the limit ξ0 → ∞
yielding the expression:

⟨QL(R)⟩ = lim
ξ0→∞

1

ξ0
∫

ξ0

0
dxQL(x,R) = −( dν

dE
)
−1
δ′L(k)
πk
(S10)

In order to obtain the potential curves via Eq. (S10)
in a simple form we approximate the momentum as
k(R) ≡ kn(R) =

√
2/R − 1/n2 as is usually done in the

diagonalization approach for Rydberg molecules. This
implies that we define the electron-perturber momentum
relative to the n hydrogenic Rydberg manifold. Using
this approximation in Eq. (S10) we obtain the relation
used in the main text

⟨QL(R)⟩n = −
( dν
dE

)−1

πkn(R)
dδL(κ)
dκ

∣
κ=kn(R)

. (S11)

Note that the quantity 1
πκ

dδL(κ)
dκ

for κ = kn(R) is the
time-delay for half-collisions [49].
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