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We present a systematic 57Fe-Mössbauer study on highly diluted Fe centers in
Li2(Li1−xFex)N single-crystals as a function of temperature and magnetic field applied trans-
verse and longitudinal with respect to the single-ion anisotropy axis. Below 30 K the Fe centers
exhibit a giant magnetic hyperfine field of B̄A = 70.25(2) T parallel to the axis of strongest
electric field gradient V̄zz = −154.0(1) V/Å2. Fluctuations of the magnetic hyperfine field are
observed between 50 K and 300 K and described by the Blume two-level relaxation model. From
the temperature dependence of the fluctuation rate an Orbach spin-lattice relaxation process is
deduced. An Arrhenius analysis yields a single thermal activation barrier of ĒA = 570(6) K and
an attempt frequency ν̄0 = 309(10) GHz. Mössbauer spectroscopy studies with applied transverse
magnetic fields up to 5 T reveal a large increase of the fluctuation rate by more than one order of
magnitude. In longitudinal magnetic fields a splitting of the fluctuation rate into two branches is
observed consistent with a Zeeman induced modification of the energy levels. The experimental
observations are qualitatively reproduced by a single-ion effective spin Hamiltonian analysis
assuming a Fe1+ d7 charge state with unquenched orbital moment and a J = 7/2 ground state. It
is demonstrated that a weak axial single-ion anisotropy D of the order of a few Kelvin can cause a
two orders of magnitude larger energy barrier for longitudinal spin fluctuations.

I. INTRODUCTION

Single-molecule magnets (SMMs) and single-atomic
magnets (SAMs) are model systems to study fundamen-
tal aspects of magnetic relaxation including quantum
tunneling of magnetization and quantum coherence in
nanoscale systems1,2. Moreover, SMMs and SAMs are
proposed for novel data storage devices in spintronics or
possible applications for quantum computing3–5.

Isolated magnetic moments with strong axial
anisotropy exhibit a bistability of magnetization with
an energy barrier to magnetization reversal resulting in
slow magnetic relaxation. Fluctuation of magnetization
is driven by spin-lattice relaxation or hyperfine coupling
processes. For thermally activated fluctuations the spin
relaxation time τ at a temperature T is described by

τ = τ0 exp

(
EA
kBT

)
, (1)

controlled by an effective energy barrier EA, an ’attempt
time’ τ0, and with the Boltzmann constant kB . The ex-
perimentally observed energy barrier EA can be very dif-
ferent from the magnetic anisotropy energy Em = DS2.
Magnetic quantum tunneling processes via degenerate
Sz states above the ±S ground state can considerably
reduce EA. External magnetic fields applied longitudi-
nal to the magnetic anisotropy axis can be used to tune
the magnetic system through the level crossing condi-

tion for specific Sz states via Zeeman interaction. How-
ever, quantum tunneling can only occur if off-diagonal
elements in the spin Hamiltonian cause a mixing of these
Sz eigenstates and an avoided level-crossing with a finite
minimum energy gap ∆m,m′ is generated. The Landau-
Zener model6 is applied to describe the magnetic quan-
tum tunneling observed via magnetization steps in low
temperature magnetization experiments, e.g. in nano-
magnets such as Mn12-ac7 or [Fe8O2(OH)12(tacn)6]8+,
briefly Fe8

8. In an external magnetic field applied trans-
verse to the anisotropy axis, the quantum tunneling can
be modulated by quantum interference9. This topolog-
ical quantum phase interference, described by a Berry
phase, is experimentally observed10.

Li2(Li1−xFex)N crystallizes in a hexagonal symmetry
(space group P6/mmm) and alternating planes of (Li2N)
and (Li1−xFex) are stacked along the crystallographic c-
axis11. Figure 1 shows the enhanced unit cell empha-
sizing the hexagonal symmetry of the Fe site and the
corresponding linear N-Fe-N geometry. In Li3N each
N3− ion is surrounded by eight Li+ ions. Six Li+ are
located in-plane in a hexagonal geometry (Li-2c sites).
Two Li+ (Li-1b sites) are located between the planes
leading to a hexagonal-bipyramidal geometry. The Fe
ions occupy only the Li-1b site in between the Li2N
planes. Studies on polycrystalline samples of concen-
trated Li2(Li1−xFex)N with x ≈ 0.16 and x ≈ 0.21 by
Mössbauer spectroscopy revealed a static hyperfine field
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below TC ≈ 65 K and long-range ferromagnetic order-
ing was proposed on the basis of magnetization stud-
ies12,13. More recently, magnetization studies on large
single crystals of Li2(Li1−xFex)N with x = 0.001-0.3 were
reported14,15. Large magnetic moments exceeding the
spin-only value with a strong axial anisotropy paral-
lel to the c-axis are found. These magnetic moments
can be associated with isolated Fe ions linearly coordi-
nated with two Nitrogen ions in covalent N-Fe-N bonds16.
From low temperature magnetization experiments on sin-
gle crystals a magnetic anisotropy field of µ0H ≈ 88 T
(x ≈ 0.0032) was estimated together with a large effective
magnetic moment µeff = 6.5(4)µB per Fe atom parallel
to the c-axis, largely independent of the Fe concentra-
tion14. For x ≈ 0.28 an even larger magnetic anisotropy
field of µ0H ≈ 220 T was reported14. The deduced value
of µeff is in agreement with the fully spin-orbit coupled
Hunds rule value of an Fe1+ configuration14,17. The ob-
servation of steps in magnetic hysteresis loops and re-
laxation phenomena with an energy barrier EB ≈ 430 K
indicate a SMM-like behavior. The relaxation time is
only weakly temperature-depended below 10 K indicat-
ing the importance of quantum tunneling in this tem-
perature range16. However, the microscopic process of
the thermally excited relaxation is not known. At low
Fe doping concentrations data suggest that the sponta-
neous magnetization and hysteresis is not caused by a
collective magnetic ordering but rather due to the strong
axial magnetic anisotropy in the linear N-Fe-N moiety14.
A recent study reports a slow paramagnetic relaxation
stressing the proposed ferromagnetic nature of nondi-
luted Li2(Li1−xFex)N (x ≈ 0.30)15.

Xu et al.18 performed electronic structure calcula-
tions for Li2(Li1−xFex)N which reveal large magnetic
anisotropy energies of 305 K for an Fe2+ d6 with J = 4
configuration and 360 K for Fe1+ d7 with J = 7/2 con-
figuration. Moreover, the authors propose that an Fe2+

state could dominate at low x � 1 whereas the Fe1+

state should play the major role at larger x. However,
it is not clear how such strong axial anisotropy energies
around 300 K can be reconciled with the observation of
electronic level crossings in the magnetic hysteresis ex-
periments at very low magnetic fields of µ0H = 0.15,
0.55 and 3 T14,16, i.e. energy scales µB/kB of several
Kelvin only.

To address these questions, in this manuscript we
report a detailed 57Fe-Mössbauer investigation on sin-
gle crystals of highly diluted Fe in Li2(Li1−xFex)N with
x = 0.0275, 0.0109, 0.0099, and 0.0013. The measure-
ments were performed at temperatures 2 K ≤ T ≤ 300 K
in magnetic fields 0 T ≤ B ≤ 5 T applied transverse
and longitudinal to the crystallographic c-axis (magnet-
ically easy-axis). Below T = 30 K the Fe centers ex-
hibit a giant magnetic hyperfine field of B̄A = 70.25(2) T
parallel to the axis of strongest electric field gradient
V̄zz = −154.0(1) V/Å2. We demonstrate that the di-
luted Fe ions in Li2(Li1−xFex)N indeed form isolated
single-ion paramagnets consistent with an Fe1+ d7 charge

FIG. 1. Crystal structure of Li2(Li1−xFex)N 11. The host
system is an α-Li3N matrix, here Li+ shown in green (2c
Wyckoff site, in-plane) and N3− in gray (1a Wyckoff site). Fe
substitution, shown in brown, takes place only between the
N3− (1b Wyckoff site). The black lines show the primitive
unit cell.

state and an unquenched orbital moment, i.e. total an-
gular momentum J = 7/2. A continuous slowing down
of the spin fluctuations is observed by Mössbauer spec-
troscopy below T = 300 K, which can be described by
a thermally activated Orbach process with an activation
barrier of ĒA = 570(6) K. The fluctuation rate is very
sensitive to magnetic fields of the order of a few Tesla
even at elevated temperatures of T ∼ 70 K. A quasistatic
magnetic hyperfine field is observed below 50 K. A clus-
tering of nearest neighbor Fe ions is ruled out by studies
on samples with four different x ≤ 0.028 proving the
single atomic magnet behavior. The experimental obser-
vations are qualitatively reproduced by a single-ion spin
Hamiltonian analysis. It is demonstrated that, for dom-
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x [%] ∆x [%] also denoted as
SC 1 2.75 0.16 Li2(Li0.9725Fe0.0275)N
SC 2 1.09 0.07 Li2(Li0.9891Fe0.0109)N
SC 3 0.99 0.06 Li2(Li0.9901Fe0.0099)N
SC 4 0.13 0.01 Li2(Li0.9987Fe0.0013)N

TABLE I. Fe concentration x and estimated error ∆x in
Li2(Li1−xFex)N determined by ICP-OES.

inant magnetic quantum tunneling relaxation processes,
a weak axial single-ion anisotropy D of the order of a few
Kelvin can cause a two orders of magnitude larger energy
barrier EB for longitudinal spin fluctuations.

II. EXPERIMENTAL

Four single crystals (SCs) were investigated by 57Fe-
Mössbauer spectroscopy in this work. The crystals were
grown out of lithium rich flux 19. The starting materi-
als Li3N powder (Alfa Aesar, 99.4 %), Li granules (Alfa
Aesar, 99 %) and Fe granules (Alfa Aesar 99.98 %) were
mixed in a molar ratio of Li:Fe:Li3N = 6− x : x : 1 with
x = 1.5, 0.5, 0.5 and 0.1 for samples SC 1, SC 2, SC 3,
and SC 4, respectively. The mixtures with a total mass of
roughly 1.5 g were packed into a three-cap Nb crucible 20

inside an argon-filled glovebox. The crucibles were sealed
in ∼ 0.6 bar Ar via arc welding and finally sealed in a sil-
ica ampule in ∼ 0.2 bar Ar. The mixtures were heated
to T = 900 ◦C within 5 h, cooled to T = 750 ◦C over
1.5 h, slowly cooled to T = 500 ◦C over 60 h and finally
decanted to separate the crystals from the excess flux.
The composition was determined by inductively-coupled-
plasma optical-emission-spectroscopy (ICP-OES) using a
Vista-MPX. To this end the samples were dissolved in a
mixture of hydrochloric acid and distilled water. Ob-
tained Fe concentrations based on the measured Li:Fe
ratio are given in Table I. Magnetization measurements
were performed using a 7 T Magnetic Property Measure-
ment System (MPMS), manufactured by Quantum De-
sign. Mössbauer measurements were carried out in Cry-
oVac and Oxford instruments helium flow cryostats in
under-pressure mode or normal mode, respectively. We
used a WissEl Mössbauer spectrometer. The detector
was a proportional counter tube or Si-PIN-detector from
KETEK and the source a Rh/Co source with an initial
activity of 1.4 GB. The superconducting coil was pow-
ered by an Oxford instruments IPS 120-10 power supply
with an applied magnetic field parallel or perpendicular
to the γ-beam with an angle error of < 5◦. The ab-
sorber SC 1 exceeded the thin absorber limit requiring
a transmission integral fit. The analysis was done using
the Moessfit analysis software21. All measurements were
performed with the γ-beam parallel parallel to the crys-
tallographic c axis. The single crystals were protected by
paraffin wax to avoid oxidation.

FIG. 2. Isothermal magnetization of Li2(Li1−xFex)N with
x = 0.0275 (crystal SC 1) for BL ‖ c at various temperatures
given in the plot.

III. RESULTS

A. Macroscopic Magnetization

Figure 2 shows the isothermal magnetization of SC 1
measured at different temperatures for magnetic field ap-
plied parallel to the crystallographic c-axis, BL ‖ c. The
effective sweep rate for the full loops was 2.9 mT/s with
10 mT/s between the measurements. Hysteresis emerges
for temperatures T < 50 K. At T = 2 K, steps appear at
µ0BL ≈ 0 and ±3.3 T as well as for µ0BL = 0.55 T,
with the latter being recognizable only in the deriva-
tive dM/dB. At lower x, additional steps appear at
µ0BL = 0.15 T and the anomalies become sharper14,16.
The M -H measurement shown in Fig. 2 was performed
after the Mössbauer experiment and is in good agreement
with results published earlier14.

B. Low temperature 57Fe-Mössbauer spectroscopy
at base temperature TB

Mössbauer spectroscopy was performed at base tem-
perature TB ≤ 4 K in zero-field (ZF) on the crystals SC
1-4. At this temperature the lifetime of the electronic
states exceeds that of the nuclear states. Therefore, the
hyperfine interactions are effectively stationary.

Fig. 3 shows the 57Fe-Mössbauer measurement at TB
in ZF of SC 1-4. For SC 1, two Fe sites A (green) and B
(red) are observed. The black line is given by the total
transmission integral fitting function

T (v) =

∫ ∞
−∞

L(E, v)e−σ(E)ta dE (2)

with the normalized Breit-Wigner resonance cross sec-



4

FIG. 3. Static Mössbauer spectra of Li2(Li1−xFex)N of the
single crystals SC 1-4 as specified in Table I at base tempera-
ture TB ≤ 4 K in ZF.

tion σ(E) depending on the energy E and an effective
thickness ta = 2.39(10) reflecting a non-thin absorption
limit. Therefore, the black line represents the transmis-
sion integral fit whereas the lines for the sites A and B
show the natural line L(E, v). T (v) is proportional to
the line intensity of the recoil-free γ-ray, a function of
the absorber thickness, and v is the Doppler velocity, for
details see appendix. A thin absorber approximation is
only valid for ta < 1 and then is the line shape described
by a Lorentzian L(E, v)22. The fit is for SC 2-4 closer
to the full thin absorption limit since the black line is
replaced and shown by the green single Fe site A. The
model used in Fig. 3 is the static crystal Hamiltonian
Ĥ = ĤM+ĤQ+ĤZ assuming the same electric monopole

ĤM and quadrupole interaction ĤQ for the two Fe sites A

and B and independent Zeeman terms ĤZ. We deduced
an isomer shift of δ = 0.100(21) mm/s with respect to
α-Fe at room temperature assuming a negligible second-
order Doppler shift δSOD ≈ 0 of the absorber at this tem-
perature. The electric monopole interaction between the
nuclear charge Ze = 26e of 57Fe with the charge number
Z and the s-electron charge density ρe(0) = −e|ψ(0)|2A/S
at the nucleus is shifted by the energy EA of the absorber
material relative to the energy shift ES of the source and
leads to an effective energy shift

δ =
2π

5
Ze2S(Z){|ψ(0)|2A − |ψ(0)|2S}

(
R2

(e) −R
2
(g)

)
. (3)

Here, R2
(g) = 〈r2

(g)〉 and R2
(e) = 〈r2

(e)〉 are the mean

square values of the radii of the 57Fe nucleus of the ex-
cited state (e) with nuclear spin 3

2 and ground state (g)

with nuclear spin 1
2 , respectively. S(Z) is the dimension-

less relativity factor which takes the spin-orbit coupling
into account, e.g. for 57Fe around S(26) ≈ 1.32 or for
neptunium S(93) ≈ 19.4. These values vary slightly de-
pending on the oxidation state. The monopole interac-
tion ĤM is given by a scalar ĤM ≡ δ + δSOD(T ) as a
function of the temperature. δSOD is the second-order
Doppler shift and a direct consequence of the time dila-
tion according to the relativity theory of the lattice dy-
namics. The γ-photon frequency ω0 is shifted according
to the transverse Doppler effect in the laboratory frame
to

ω = ω0

√
1− v2/c2

1− v cosα/c
≈ ω0

(
1 +

v

c
cosα− v2

2c2

)
(4)

where v is the velocity of the nucleus, α the angle between
the movement of the nucleus and γ-photon absorption
and c the speed of light. The last term assumes v � c.
This yields in the Debye approximation the expression

δSOD = −C

[
ΘD + 8T

(
T

ΘD

)3 ∫ ΘD/T

0

x3dx

ex − 1

]
(5)

with

C =
9kBEγ

16Meffc2
(6)
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where Meff is the effective mass. Using this expression
to analyze the temperature dependence of the central
shift in SC 1 yielded a Debye-temperature of ΘD =
315(8) K. For details see appendix. To describe the elec-

tric quadrupole interaction ĤQ, e.g. SC 1 has a principle
axis of the largest component of the EFG (electric field
gradient) of Vzz = −154.1(2) V/Å2, denoted as usual,

|Vzz| ≥ |Vxx| ≥ |Vyy| (7)

and the introduced asymmetry parameter

η =
|Vxx| − |Vyy|
|Vzz|

≤ 1. (8)

This leads to the reduced quadrupole Hamiltonian

ĤQ =
eQVzz

4I(2I − 1)
[3Î2

z − Î2 +
1

2
η(Î2

+ + Î2
−)] (9)

with the quadrupole moment Q and the raising and low-
ering spin operators Î± = Îx ± iÎy.

The pure quadrupole energy eigenvalues are given by

EQ(m) =
eQVzz

4I(2I − 1)
[3m2 − I(I + 1)]

√
1 +

η2

3
(10)

with I = 3
2 . The negative sign of Vzz < 0 corresponds

to an elongation of the EFG charge distribution and an
excess of negative charges in c-axis, the elongated case
of the EFG ellipsoid23. The asymmetry parameter η = 0
assuming axial symmetry was used due to the hexagonal
structure.

The magnetic hyperfine or Zeeman term ĤZ of the
Hamiltonian Ĥhf is given by ĤZ = −gNµN Î · B̂ with
nuclear Landé factor gN , the nuclear magneton µN =
e~/2mpc, the proton mass mp and the magnetic field

B. Taking the scalar |B| = B and expresses ĤZ by the
polar angle Θ and the azimutal angle Φ of B relative to
direction of Vzz yields

ĤZ = −gNµNB
(
Î+e
−iΦ + Î−e

+iΦ

2
sin Θ

+ Îz cos Θ

)
. (11)

The values of the magnetic hyperfine fields for the two
Fe subspecies converged to BA = 70.21(1) T and BB =
65.0(2) T. Site A is the dominant Fe site. Site B is only
observed in SC 1 containing the highest Fe concentration
with an intensity fraction of 5.9(3)%.

The two transitions

m = ±1

2
→ m = ±1

2
(12)

with ∆m = 0 are not observed in the spectra of Fig. 3.
The relative line intensities W (β) depend on the polar
texture angle β describing the direction of the incident γ-
ray with respect to the magnetic hyperfine field direction,

Vzz [V/Å2] BA [T] EA [K] ln(ν0[MHz])
SC 1 -154.1(2) 70.21(1) 552(26) 12.36(32)
SC 2 -154.2(4) 70.24(1) 563(12) 12.48(11)
SC 3 -154.0(2) 70.23(1) 581(12) 12.65(11)
SC 4 -154.0(6) 70.30(2) 552(44) 12.08(49)

Mean value -154.0(1) 70.25(2) 570(6) 12.64(7)

TABLE II. Hyperfine parameters Vzz, BA as well as the Ar-
rhenius parameters ln ν0 and EA of SC 1-4. The errors repre-
sent standard deviations obtained during linear regression.

W (β) ∝ sin2 β. For the analysis Θ = 0 was taken. The
angle β between the principle axis (largest component)
Vzz of the EFG tensor and the γ-beam was assumed to be
an identical fit parameter for the monomer site A and the
dimer site B. The resulting value β = 0 proves that the
magnetic hyperfine field and Vzz are aligned parallel to
the c-axis. The result is the observed ratio of the spectral
line intensities of 3:0:1:1:0:3.

Fig. 3 shows the measurements of SC 2-4 at TB . No
indications for Fe site B are observed in SC 2 as well as in
SC 3 and SC 4. The green line is the fit of the model of
the static crystal Hamiltonian Ĥhf with an isomer shift
δ = 0.119(20) mm/s and a principle axis of the EFG of
Vzz = −154.2(4) V/Å2. The asymmetry parameter is as-
sumed to be η = 0. The fit yielded a magnetic hyperfine
field BA = 70.24(1) T parallel to Vzz of the EFG tensor
and parallel to the γ-beam as well. Table II shows the ob-
tained hyperfine parameters of SC 1-4 and the calculated
mean values of V̄zz, B̄A, ln ν̄0 and ĒA. The hyperfine pa-
rameters are nearly concentration-independent. The ab-
solute values of the magnetic hyperfine fields BA and BB
are above typical spin-only values in solid state systems
and can be understood in terms of a strong unquenched
orbital contribution. The analysis to obtain the fluctua-
tion rate parameters ln ν̄0 and ĒA of the Arrhenius tem-
perature dependence are described in appendix VII E.

C. Zero Field 57Fe-Mössbauer Spectroscopy for
TB < T < 300 K

Above 50 K the 57Fe nucleus interacts with a fluctuat-
ing magnetic hyperfine field. Fig. 4 shows representative
spectra between 60 K and 200 K of SC 1 with x = 2.75%.
In the following we will only consider Fe site A, site B
is neglected in this analysis. The fit represents a Blume
dynamic line shape model in the presence of quadrupole
hyperfine interactions for two states, described by ab-
sorption cross section

σ = −σaΓ0

2
Im
∑
α

Sp
(
V̂α 〈W | Â−1(ω,Θ) |1〉 V̂ +

α

)
. (13)

Here, V̂α is the operator of hyperfine interactions of the
γ-beam with polarization α and the nucleus, σa the ef-
fective absorber thickness and 〈W | and |1〉 as described
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FIG. 4. Shown are the spectra of SC 1, Li2(Li1−xFex)N with x = 2.75%. The lines show a two level Blume model fluctuation
spectrum analysis21. The magnetic hyperfine field fluctuates between +BA and −BA with the frequency ν. BA in this model
is assumed to be parallel to Vzz and to the γ-beam.

by Chuev and therein24. The superoperator

Â(ω,Θ) = ω̃ + iΓ0/2− L̂(Θ) + iP̂. (14)

is defined by the Liouville operator of hyperfine interac-
tions L̂(Θ), the resonance transition energy E0 is given
by the corresponding frequency ω̃ = ω − E0/~, Γ0 the

width of the excited nuclear level and P̂ the matrix of
hyperfine transitions21,24–26.
The initial conditions for the analysis are identical to the
static case at 2 K. A two level relaxation model was used
taking into account an electronic spin reversal process.
The magnetic hyperfine field fluctuates with the fluctua-
tion frequency ν between the two values +BA and −BA.

Above 60 K the spectral lines begin to broaden due to
the fluctuations, see Fig. 4. With increasing ν at 70 K
the two internal lines collapse first yielding a singlet at
100 K. At 150 K and above, the left resonance line of the
quadrupole doublet, which is expected to appear in the
fast relaxation limit ν →∞, results from the collapse of
the external lines27. The Arrhenius parameter EA and
ln ν0 are obtained by an Arrhenius analysis

ln ν = ln ν0 −
EA
kB

(
1

T

)
(15)

of the extracted fluctuation frequencies ln ν of SC 1-4.
In this analysis, the values of ν for T < 50 K are not
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considered since these value reflect the lower bound of
the fluctuation rate which the Mössbauer spectra analysis
can resolve. This yielded a thermal activation barrier of
EA = 552(26) K and ln ν0 = 12.36(32) GHz for SC 1.
The fluctuation frequency ν of Fe site A is essentially
concentration-independent in SC 1-4. Table II shows the
Arrhenius plot fit parameter of SC 1-4, for details see
appendix.

D. 57Fe-Mössbauer Spectroscopy in transverse
magnetic Fields BT

In the following we present the results of system-
atic Mössbauer spectroscopy experiments under applied
transverse magnet field BT . These experiments were per-
formed on sample SC 1. For eight temperatures between
30 K and 247 K a magnetic field up to 5 T was applied
perpendicular to the normal vector of the sample plate
and therefore to the crystallographic c-axis and perpen-
dicular to the γ-beam, see discussion. Therefore, the
field was applied perpendicular to the quantization axis
of the Fe spins which is identical to the low tempera-
ture orientation axis of the magnetic hyperfine field at
the Fe nucleus. In this geometry, an increasing field BT
leads to an increasing mixture of the Sz-eigenstates of the
electronic spins and an increasing fluctuation rate of the
magnetic hyperfine field is expected supported by a theo-
retical treatment based on the minimal spin Hamiltonian
of a single-ion in the next subsection. Figure 5 shows four
typical Mössbauer spectra in different transverse mag-
netic fields (TF) up to 5 T. The experimental data clearly
reveal an increase of the fluctuation frequency ν with in-
creasing field strength. The temperature and field range
for these experiments was chosen such that the slowly
fluctuating magnetic hyperfine field of ≈ 70 T can be re-
garded as the dominant hyperfine interaction with the
57Fe nuclei and the Blume model of axial fluctuations of
the magnetic hyperfine field described in the former sub-
section can be used for the quantitative analysis (solid
lines in Fig. 5). For higher fields the vector sum of the
external field and the internal magnetic hyperfine field
must be considered.

At T = 70 K, ν has increased in 1 T by a factor 2 and
in 5 T by a factor 8. This documents a strong trans-
verse field sensitivity. The dependence of the fluctuation
frequency ν on the transverse magnetic field BT and tem-
perature T is investigated in detail for SC 1. Fig. 6 shows
the logarithmic frequency log10 as a function of the in-
verse temperature 1/T for different transverse external
fields and Fig. 7 shows the logarithm of ν as a function of
the transverse magnetic field for different temperatures.
The used fit function is discussed in the spin-Hamiltonian
part below and in the appendix. In Fig. 6, at low tem-
peratures 1/T > 0.01 K−1, a pronounced field-induced
non-linear deviation from the zero-field Arrhenius line is
observed. For high temperatures 1/T < 0.01 K−1 the
data converge to the zero-field Arrhenius line, i.e. the

FIG. 5. Mössbauer spectra of SC 1 in various transverse mag-
netic fields BT at 70 K. The corresponding ZF measurements
are shown in Fig. 4.
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FIG. 6. Dependence of the spin fluctuation rate on temper-
ature for Li2(Li1−xFex)N with x = 2.75%, SC 1, in transverse
magnetic fields BT . The solid line fitting function is described
in the text.

FIG. 7. Dependence of the spin fluctuation rate on the trans-
verse magnetic field for Li2(Li1−xFex)N with x = 2.75%, SC
1, for various temperatures. The solid line fitting function is
described in the text.

temperature-induced fluctuations are dominant. This is
also seen in Fig. 7: the change of ν with increasing BT
is enhanced by lowering the temperature. Note that for
the lowest temperatures (30 K and 40 K) the determined
fluctuations rates are close to the lower bound of the
frequency window of the Mössbauer method due to the
effective time window.

To describe the change of the spin fluctuation rates
induced by the applied transverse magnetic field we con-
sidered a simplified perturbation proportional toBT Jx ≡
BT (J+ + J−)/2 . Such a term can mix the states with
different Jz, however with one difference from the O6

6 pro-
cesses discussed in section III F below, namely ∆Jz = 1.
We have described our experimentally observed fluctua-
tion rate data by a function linear in BT . The data can

be described with the phenomenological model function

ν(T,BT ) = ν0e
−∆1

T + ξBT e
−∆2

T . (16)

The first term describes the field-independent
temperature-activated Arrhenius-contribution observed
in the ZF experiments using ν̄0 and ∆1 = ĒA/kB (see
Fig. 14 and black line in Fig. 6). The second term de-
scribes the increase of ν due to the transverse field scaling
linear with BT . In a global fit ν̄0, ξ and ∆i are constant
parameters. The result is ξ = 2332(995) MHz/T and
∆2 = 251(20) K. We associate this relaxation process
with a second Orbach process which is observed by ac
susceptibility below 30K (see Fig. 13). The applied
transverse field increases the attempt frequency so that
it becomes detectable within the Mössbauer frequency
window.

E. 57Fe-Mössbauer Spectroscopy in longitudinal
magnetic Fields BL

57Fe-Mössbauer spectroscopy measurements were per-
formed with applied longitudinal magnetic fields (LF) at
100 K up to 3 T with the γ-beam parallel to the applied
field parallel to the c-axis of the crystal.

Fig. 8 shows the 57Fe-Mössbauer measurements at
100 K up to 2 T longitudinal magnetic field (LF). The
measurements at 0.5 T and 1 T show an increase of the
linewidth of the central absorption line compared to the
ZF spectrum. The spectra at 2 T clearly reveals a split-
ting into two lines corresponding to two different fluctua-
tion rates. The analysis model to describe the LF spectra
is the Blume two-state spin reversal fluctuation model be-
tween the states with hyperfine fields Bh = BA+BL and
Bh = −BA + BL. Since the Zeeman interaction will lift
the degeneracy between the ”spin up” and ”spin down”
transitions two different fluctuation frequencies νup de-
scribing the frequency to flip the spin into longitudinal
magnetic field direction and νdown to flip it against the
applied field direction are considered. The population
of the two states are assumed to be the same as shown
by the equal central line intensities at 2 T in Fig. 8.
Note that a small static external field at the 57Co-source
caused by the Helmholtz magnet leads to a slight increase
of the linewidth (0.24(2) mm/s at 2 T). Fig. 9 shows the
deduced frequencies log10 νup and log10 νdown as a func-
tion of the longitudinal magnetic field BL. The observed
change of the fluctuation rate is one order of magni-
tude smaller than in the case of applied transverse fields.
The data show a linear dependence of log10 νup and
log10 νdown as a function of BL up to 3 T. We clearly ob-
serve an asymmetry of the observed positive and negative
frequency changes, i.e. a stronger increase of νup(BL)
than decrease of νdown(BL). This cannot be explained
by the Zeeman-induced decrease of the energy differences
for the transition Jz = −7/2 → Jz = 5/2 and increase
of the energy difference for Jz = 7/2→ Jz = −5/2 since
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FIG. 8. Comparison of the Mössbauer measurements of SC
1 at 100 K in ZF and in applied longitudinal magnetic fields
BL of 0.5 T, 1 T and 2 T.

FIG. 9. The fluctuation frequencies νup and νdown as a
function of the applied longitudinal magnetic field BL. The
dashed orange lines describe the expected values of νup(BL)
and νdown(BL) for Zeeman contributions to the energy lev-
els of the J = 7/2 Fe ions and ∆Jz = ±6, for details see
subsection III. G.

these changes are of equal absolute value. The experi-
mental slopes are given by 0.084(5) log10[MHz]/T for νup

and −0.015(3) log10[MHz]/T for νup, respectively. The
theory curves (orange lines) shown in Fig. 9 will be dis-
cussed in the section III G.

F. Effective single-ion Jeff = 7/2-Hamiltonian
calculation of spin dynamics

A striking result of the temperature and transverse
magnetic field dependent Mössbauer spectroscopy is that
the activation energy scale for thermal fluctuations of the
individual electronic Fe spins EA ≈ 570 K is two orders of
magnitude larger than the Zeeman energy gtµBBxSx ∼
5 K which is needed to induce similar changes of the fluc-
tuation rate. Moreover it is important to note, that the
low temperature longitudinal magnetic field magnetiza-
tion data on this system presented in Fig. 2 also reveal
an energy scale for longitudinal magnetic field induced
system changes of the order of 1 to 5 K from the ap-
pearance of level crossing induced magnetization steps
at µ0Hz = 0.15, 0.55, and 3 T.

For a qualitative understanding of the transverse mag-
netic field and temperature dependence of the spin fluc-
tuation frequency ν we present a calculation of the spin
dynamics using a single-ion spin Hamiltonian model. We
demonstrate that an axial anisotropy of energy scale
D � 570 K, consistent with the Zeeman response of the
system, can indeed give rise to an effectively two orders
of magnitude larger energy barrier for thermal fluctua-
tions. Moreover, qualitatively, the obtained results can
be extended to a broad class of SAM and SMM by the
introduced effective mixing term.
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We consider the single-ion properties of Fe ions in
Li2(Li1−xFex)N. Considering spin-orbit interaction and
the hexagonal point symmetry of the Fe site (1b Wyck-
off site, point symmetry 6/mmm 11), the crystalline elec-
tric field yields the single-ion magnetic anisotropy Han =
B0

2O
0
2 + B0

4O
0
4 + B0

6O
0
6 + B6

6O
6
6, where Omn are Stevens’

operators, and Bmn are the parameters of the magnetic
anisotropy 28–30. The Fe ions in Li3N can be either Fe+

(which, according to Hund’s rules have the lowest multi-
plet with S = 3/2, L = 3 and J = 9/2), or Fe2+ (with
S = 2, L = 2, and J = 4). For diluted Fe in α-Li3N,
however, we can apply the arguments used in Refs. 17
and 31, where a ground state of |ML = −2,MS = −3/2〉
was proposed. The oxidation state Fe1+ d7 is consistent
with our obtained hyperfine parameters, see discussion.
The arguments, namely, the strong uniaxial anisotropy of
the hexagonal lattice (due to O0

2, O0
4 and O0

6 operators,
which distinguish only z ‖ c axis) lifts the degeneracy,
and only L = 2 states are coupled with S = 3/2 for Fe+

in α-Li3N. It yields the effective total moment Jeff = 7/2.
The splitting of the Mössbauer lines (see Fig. 8) also con-
firms that assumption: The splitting is too large for pure
spin states S = 3/2 or S = 2. In what follows we call
J a pseudo-spin and drop the index “eff” for simplicity.
However, qualitatively, the calculated results below are
independent of the detailed value of J .

The most important part of the Hamiltonian Han can
be written as Han ≈ −DJ2

z , where D is the parameter
of the magnetic anisotropy. We can conclude from the
magnetization experiments and the spin-reversal Blume
model with axis c ||BA||Vzz, that we deal with “easy-axis”
magnetic anisotropy, D > 0. Consider the Hamiltonian
of the Fe ion in the external magnetic field Bz = BL,
directed along the “easy” axis, namely H0 = −DJ2

z −
glµBBzJz, where µB is the Bohr magneton, and gl is
the (longitudinal) z-component of the effective g-tensor.
The levels of that Hamiltonian cross each other at several
values of Bz, depending on the value. The only Stevens’
operator from Han, which does not commute with Jz,
and, hence, which can mix states with different values
of Jz and lift the degeneracies at the crossover points, is
O6

6 ≡ (J6
+ + J6

−), where J± = Jx ± iJy. Such a mixing
is the crucial point for the quantum tunneling32. Notice
that according to standard quantum mechanics in the
basis with diagonal action of the operator Jz the eigen-
states of O6

6 for J = 3/2 and J = 2 are zero. The op-
erator O6

6 corresponds to the processes with ∆Jz = 6,
hence connecting the states Jz = −7/2 with Jz = 5/2,
and Jz = −5/2 with Jz = 7/2.

Unfortunately, the explicit results for the relaxation
rate due to quantum tunneling cannot be realized for O6

6

because of the numerical effort. Therefore, to mimic the
action of the operator O6

6 we consider a more simplified
perturbation related to the transverse magnetic field, for
example, Jx ≡ (J+ + J−)/2. Such a term also can mix
the states with different Jz, however with one difference
from the O6

6 processes, namely ∆Jz = 1. This substitu-
tion of O6

6 by Jx, while giving the opportunity to obtain

a qualitative agreement with the results of our experi-
ments, still cannot give a full quantitative description of
Li2(Li1−xFex)N.

Summarizing, we consider, an effective Hamiltonian,
which permits quantum tunneling in Li2(Li1−xFex)N. It
has the form

H = −DJ2
z − gttµBBxJx − glµBBzJz, (17)

where gt is the value of the effective g-tensor in the plane,
transverse to the easy axis. Note that Bx can include not
only the effective field, introduced to mimic the action of
the O6

6, but also internal (dipole) or external magnetic
fields applied transverse to the z axis, i.e. perpendicular
to the crystallographic c axis. According to32,33 the low-
est (2J+1) eigenvalues and eigenfunctions of that Hamil-
tonian coincide with those of the discrete spectrum of a
quantum particle in the effective potential

U =
DB2

4

[
sinh(x)− C

B

]2

− DB

2
(2J + 1) cosh(x), (18)

where B = gtµBBx/D and C = glµBBz/D. The spin
quantum tunneling in that approach is totally equiva-
lent to the tunneling of that quantum particle between
the minima of the potential U . The tunneling rate can
be calculated using the Euclidean version of dynamical
equations, using dynamics of instantons of the Eulcidean
action, i.e., solitons, connecting two minima of the poten-
tial U with each other34. Consider the range of the field
values, limited by the region [B2/3 +C2/3]3/2 < 2J+1, in
which the potential U has two minima (the lowest min-
imum is related to the stable state, and the highest one
to the metastable state). The energy barrier between the
minima is finite, hence there exists a probability for the
metastable state to decay due to the quantum tunneling.
It is possible to calculate the values of the relaxation rate
due to the quantum tunneling32,33, expanding the expres-
sion for U near the position of the metastable minimum.
The decay rate is determined by the analytic continuation
of the energy value to the complex plane. Analyzing the
results obtained this way, we conclude that two regimes,
T0 ≤ T ≤ T1, and T ≥ T1, where T0 = D

√
a/πkB , and

T1 = 2D
√
a/πkB can be related to the conditions of our

experiments with Li2(Li1−xFex)N. Here and below we use
the notations

a =
31/2

23/2
BC1/3(2J + 1)2/3δ1/2 ,

b =
1

12
B4/3C1/3(2J + 1)1/3 ,

δ = 1−
(
B2/3 + C2/3

)3/2
2J + 1

. (19)

For T0 ≤ T ≤ T1, i.e., at low temperatures for our ex-
periment, the relaxation rate can be approximated as,
according to32,

~γ1 = D

√
a sinh(D

√
a/kBT )

π sin(D
√
a/kBT )

×

× exp
[
−4Da3/27b2kBT

]
. (20)
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On the other hand, for higher temperatures T ≥ T1 the
relaxation rate is

~γ2 = D

√
a

π
exp

[
−4Da3/27b2kBT

]
. (21)

This higher temperature behavior of the relaxation rate
caused by the quantum spin tunneling is similar to the
Orbach relaxation35, i.e., it has the Arrhenius form. No-
tice that the “true” quantum spin tunneling-induced re-
laxation rate exists only at T = 032,33.

Given that the pre-expontial factor, ν0, obtained from
Mössbauer spectroscopy is temperature-independent (as
the pre-exponential factor in equation 21), the most es-
sential regime for our experiments with Li2(Li1−xFex)N
is the region with T ≥ T1. We see that the relaxation
rate γ2 follows an Arrhenius law in the temperature de-
pendence, γ2 = ν0 exp(−EA/kBT ) with the prefactor ν0

and the activation energy EA determined as

ν0 =
D
√
a

π~
∼ B1/2

x B1/6
z δ1/4 ,

EA =
4Da3

27b2
∼ (BxBz)

1/3δ3/2 . (22)

In detail,

EA ≈ 4.89B1/3C1/3(2J + 1)4/3δ3/2 (23)

where the factor (2J+1)4/3 is the dominant scaling factor
for J > 3/2.

Note that we cannot use the limits Bx → 0, and
Bz → 0 in the expression for the relaxation rate caused
by the spin tunneling, because the latter is absent there:
Without Bz there is no crossover, and without Bx there
is no lifting of the degeneracy of crossover points). How-
ever, we can evaluate the field dependence of the acti-
vation energy, not taking into account the limiting cases
Bx → 0 and Bz → 0. A weak effective tilted magnetic
field can originate, e.g., from the long-range magnetic
dipole-dipole interaction in the mean field approxima-
tion. We also suppose that the region of applicability
of the results can be expanded to all δ < 1, which im-
plies the difference between the potential U and its ex-
pansion near the position of the metastable state being
small (this difference produces higher-order quantum cor-
rections). The result is shown in Fig. 10 for J = 7/2. We
see that for very small but finite values of the compo-
nents of the external magnetic field the activation energy
is much larger than the value of the magnetic anisotropy
D. It explains the observation of the giant activation
energy for the relaxation rate in our Mössbauer studies
of Li2(Li1−xFex)N. Furthermore, we see that the applica-
tion of the external field of the order of (2J+1)D reduces
drastically the value of the activation energy.

Now we can compare the transverse field dependence
of the relaxation rate, extracted from Mössbauer exper-
iments in Li2(Li1−xFex)N with the calculated one. In
Fig. 11 a) the logarithm of the relaxation rate γ2 is plot-
ted as a function of the applied transverse field Bx at

FIG. 10. The dependence of the activation energy EA for the
relaxation rate γ2 on the longitudinal Bz and transverse Bx.

glµBBz = 0.001 for J = 7/2 and several values of the
temperature. To have better agreement with experi-
ment we have to add the constant g = 3.5 to log10(γ2),
which implies additional sources of relaxation that are
temperature- and magnetic field-independent. Fig. 11 b)
shows the logarithm of the relaxation rate γ2 as a func-
tion of the inverse temperature, 1/T , for several values
of the transverse external magnetic field Bx. We see that
the general tendency is well described by our simplified
theory, while there is no quantitative agreement.

We conclude that this single-ion theory, based on the
spin properties of Fe impurities, which at low ener-
gies produce quantum spin tunneling, well reproduces
the most dramatic feature of dynamical experiments in
Li2(Li1−xFex)N: the giant value of the activation energy
in the Arrhenius law for the temperature dependence of
the relaxation rate, and much smaller values of the ex-
ternal magnetic field, which drastically change that re-
laxation rate.

G. Zeeman Analysis of Spin Dynamics in
longitudinal Fields BL

The splitting of the resonance line in longitudinal fields
(Fig. 8) can be understood as a consequence of the Zee-
man term in the effective spin Hamiltonian. For Bz = 0
the relevant relaxation processes with ∆Jz = ±6 intro-
duced in the last section are equivalent. However, a finite
longitudinal field Bz = BL removes the degeneracy of the
±Jz energy levels via Zeeman interaction. The values
of the energy differences between the states Jz = −7/2
and Jz = 5/2, and between the states Jz = −5/2 and
Jz = 7/2 become non-equal (see Fig. 12).

To calculate these energy differences we need to specify
the longitudinal g-factor gl. Here, we model the complex
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FIG. 11. a) The dependence of the logarithm of the relaxation
rate γ2 on the transverse field Bx for several values of T . From
top to bottom: T = 247 K, T = 134 K, T = 92 K, T = 60 K,
T = 50 K and T = 40 K. b) The dependence of the logarithm
of the relaxation rate γ2 on the inverse temperature 1/T for
several values of the transverse field Bx. From bottom to top:
Bx = 1 T, Bx = 2 T, Bx = 3 T, Bx = 4 T Bx = 5 T.

many electron state of the Fe ions including strong spin-
orbit interaction by a simplified J = 7/2 system with a
fixed Landé-g-factor value of gl = 1.55 (based on L = 2
and S = 3/2, see appendix) for both, the ground state
(assumed to be Jz = ±7/2) and the excited state (as-
sumed to be Jz = ±5/2). This choice of gl leads to an

effective paramagnetic moment µeff = gl µB
√
J(J + 1) ≈

6.15µB which is consistent with the experimental value.

According to the Arrhenius law the change of the spin
fluctuation rate with respect to its ZF value can be cal-
culated according to

ν(BL)/ν(BL = 0) = exp

(
EZ
kT

)
. (24)

Here, EZ = ±glµB∆JzBL is the Zeeman term with the
transition rule ±∆Jz. The ±-sign corresponds to the
positive and negative branches in Fig. 9. To calculate
the Zeeman induced change of the spin fluctuation rate
ν(BL), we use ∆Jz = 6 according to the hexagonal sym-

FIG. 12. Illustration of the transitions between Jz = −7/2
and Jz = 5/2 and −7/2 to +5/2. The energy levels Jz are
shifted in LF (red points) leading to different transition ener-
gies according to the Zeeman energy EZ ∼ Jz BZ .

metry. The resulting slope of ν vs. BL is

∆ log10 ν

∆BL
≈ ±0.027/T. (25)

The results of this calculation are included in Fig. 9 as
orange lines. The calculated values for ν(BL) are below
the experimental results for the branch νup(BL) as well as
the branch νdown(BL). This is expected since a second
contribution stemming from the BL dependence of the
B6

6O
6
6 term in the crystal field spin Hamiltonian is not

included in this model. Such a term is always positive,
linear in BL and identical for both branches. Therefore,
the Zeeman contributions to νup and νdown must be lo-
cated below the experimental values, ideally shifted by
identical values with respect to the experimental values.
The latter is not fulfilled (crf. Fig. 9), however increas-
ing the absolute value of both slopes (equation 25) by ≈
80% would lead to such a situation. Note that a correc-
tion of this size is feasible since from all experiment per-
formed on Li2(Li1−xFex)N so far we cannot determine the
ground state and excited state values of Jz exactly. More-
over, also the longitudinal g-factors gl for both states in
this effective spin Hamiltonian approach can be modified
strongly due to the subtle interplay of the crystal elec-
tric field with the spin-orbit coupling in this 3d7 state. A
more realistic many-body electronic structure calculation
is needed to calculate the effective crystal field energies
as well as the longitudinal and transverse g-factors of the
ground and excited states seperately.
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IV. DISCUSSION

A. Mössbauer Sites and Sample Homogeneity

Two Fe sites A and B are observed in the low tem-
perature Mössbauer spectroscopy on sample SC 1. The
main site A is associated with monomer Fe sites without
relevant magnetic exchange with other Fe ions since it is
observed also in samples SC 2-4 which contain an up to
one order of magnitude lower Fe concentration x. Site
B is not observed in SC 2-4. We associate site B with a
nearest neighbor in-plane or out-of-plane Fe-dimer site.
The magnetic hyperfine field for the two Fe subspecies is
determined to BA = 70.21(1) T and BB = 65.0(2) T at
2 K. These values are in agreement with Refs.13,15,17, in
which Klatyk et al., Ksenofontov et al. have performed
a powder study of x > 0.15 proposing ferromagnetic or-
dering for T < 65 K.

The temperature-dependence of the Mössbauer spec-
trum shown in Fig. 4 is consistent with the expected
behavior of SAM. The observed spin fluctuations are
consistently described by a thermal activation crossover
rather than by a cooperative long-range ordering tran-
sition. However, this does not exclude by itself that Fe
site A arises from small cluster-like SMM units like Fei
clusters in the Li3N matrix with ferromagnetic interac-
tion between the Fe ions with various size numbers i of Fe
depending on x. The deduced hyperfine parameters are
within error bars identical for samples SC 1-4. The spin
dynamics described by the fluctuation frequency ν(T ),
ν0 and EA are concentration-independent for Fe site A
of SC 1-4. The invariant parameters as a function of x
proves well isolated Fe sites like in a SAM.

A combinatorial expression to calculate the probability
for n Li ions among six neighbors in the [001] plane for
the Fe concentration x yields

Wn = 6![n!(6− n)!]−1(1− x)nx6−n ≈ 14% (26)

for x = 0.027 and n = 5, i.e. an in-plane Fe-dimer17.
This value is twice as large as the observed value. The
area contribution of site B is overestimated in this statis-
tical treatment in which every kind of Coulomb repulsion
is neglected. Either due to Coulomb repulsion a more
homogeneous mononuclear SAM is preferred or an out-
of-plane Fe-N-Fe dimer configuration is the observed site
B. Interestingly, the total contribution of the Fe-N-Fe in
a binomial distribution is supposed to be ≈ 5.3% which is
closer to the experimentally determined value of 5.9(3)%
of Fe site B. A systematic Mössbauer study on a series of
Li2(Li1−xFex)N with larger x on single-crystals is needed
to identify nearest neighbor Fe-cluster configurations in
this system. However, this is beyond the scope of this
work.

Compound δ [mm/s] ∆EQ [mm/s] B [T]
[Fe(C(SiMe3)3)2]1− 0.402(1) -2.555(2) 63.68(2)
[Fe(C(SiMe3)3)2] 0.460(3) -1.275(5) 150.7(1)

Li2(Li1−xFex)N (x� 1) 0.100(2) -2.572(2) 70.25(2)

TABLE III. Characteristic Mössbauer parameters obtained at
T ∼ 4 K assuming η = 0 compared with Zadrozny et al.36.

B. Oxidation and Spin State of Fe Ions in
Li2(Li1−xFex)N

The observed isomer shift value around 0.10 mm/s
is unconventional for a Fe oxidation states of Fe1+ or
Fe2+. It can possibly arise from the linear N-Fe-N low-
coordinated electronic structure of Fe in Li2(Li1−xFex)N .
Because of the paramagnetic behavior a Fe2+ low spin
state S = 0 can be excluded.

A 57Fe-Mössbauer study was performed on the
linear complexes [K(crypt-222)][Fe(C(SiMe3)3)2] and
[Fe(C(SiMe3)3)2] with a similar Fe linear coordina-
tion by carbon36. [Fe(C(SiMe3)3)2]1− in [K(crypt-
222)][Fe(C(SiMe3)3)2] is proposed to contain Fe+1,
whereas Fe2+ is present in [Fe(C(SiMe3)3)2]. The as-
sumed asymmetry parameter η = 0 is according to the
axial symmetric EFG tensor discussed by Lewis et al. 37

(and references therein). Table III shows the values of
the isomer shift δ, the quadrupole splitting ∆EQ and the
magnetic hyperfine field B. The smaller δ-value of Fe site
A can be explained by the increase of s-electron density
at the nucleus and the 4s-mixing. The EFG value Vzz,
here given by ∆EQ of Fe-diluted Li2(Li1−xFex)N (site A)
and the Fe1+-SMM, [Fe(C(SiMe3)3)2]1−, are very close
to each other whereas the Fe2+-SMM shows only half of
this value. Moreover, also the magnetic hyperfine fields
of [Fe(C(SiMe3)3)2]1− and Fe-diluted Li2(Li1−xFex)N are
comparable. Therefore, we conclude a strong similarity
of the Fe electronic systems in these two systems with
oxidation state Fe+1 for Li2(Li1−xFex)N . An oxidation
state of Fe1+ is also consistent with calculated electronic
band structure 17,31.

C. Energy Barrier and Spin Dynamics

Fig. 13 shows the temperature-dependence of the spin
fluctuation rate of SC 1, determined from Mössbauer
spectroscopy, ac-susceptibility and direct magnetiza-
tion relaxation measurements, respectively. At three
Mössbauer data points at 1/T � 0.05 K−1 essentially
static Mössbauer spectra are measured, i.e. the fluctu-
ation rate becomes smaller than the lower bound of the
frequency window of the method and these data points
are not shown in Fig. 13.

The relaxation rates, ν, obtained by Mössbauer and
ac susceptibility measurements can be well described
by a single effective energy barrier of ĒA = 515(20) K.
Note that there is another, larger peak observable in
the temperature-dependent ac susceptibility that corre-
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Compound magn. unit EA [K] Reference
[Dy(bbpen)X] Dy3+ 1025 38

TbBis(phthalocyaninate) Tb3+ 940 39
Li2(Li1−xFex)N Fe1+ 570(6) this work

[Fe(C(SiMe3)3)2]1− Fe1+ 354 36 and 40
[Sr10(PO4)6(CuxOH1−x−y)2] Cu3+ 69 41

TABLE IV. Selected SAMs with a large energy barrier EA

and the corresponding paramagnetic ion.

FIG. 13. Fluctuation frequencies of SC 1 determined by
Mössbauer spectroscopy, ac susceptibility and magnetization
relaxation measurements (direct time dependence), shown in
form of an Arrhenius plot. The red line shows a fit to the
high temperature region and yields an effective energy bar-
rier of ĒA = 515(20) K. The gray points describe a second
low frequency activated relaxation process with an activation
energy of ĒA = 270(12) K , observed in the ac-susceptibility
at low temperatures.

sponds to a faster relaxation with an effective energy bar-
rier of ĒA = 270(12) K (grey stars in Fig. 13). The pre-
exponential factor of the Arrhenius behavior amounts to
ν0 = 150(10) GHz. We conclude that this relaxation pro-
cess is enhanced by the application of transverse mag-
netic fields and becomes visible in the Mössbauer fre-
quency window (see section III D above). The deduced
activation energies are consistent within error bars. For
T < 10 K the relaxation rates were determined by fitting
the time-dependent magnetization to stretched exponen-
tial M(t) = M0 exp[−(t ν)β ].

At zero external field the two allowed phonon-assisted
relaxation processes Jz = −7/2 → Jz = 5/2 and Jz =
7/2 → Jz = −5/2 have equal energy differences. They
become non-equal under applied longitudinal magnetic
field as presented above. The direct quantum tunneling
regime is reached below 10 K (see Fig. 13).

In table IV we compare the thermal activation energy
barriers for several SAM systems with large energy bar-
riers EA compared to Fe-diluted Li2(Li1−xFex)N. The

thermal activation barrier EA is often associated with a
two-phonon Orbach process23. Above 50 K the dominant
character of this process is plausible: the direct spin tran-
sition process in the Debye model accompanied by the
creation or annihilation of a single phonon is dominant
only for lower temperature T < 50 K with τ−1

S ∝ T .
In the literature the energy barrier is often identified

with the zero-field splitting value D rather than consid-
ered as an effective experimental quantity, which depends
on different microscopic parameters as discussed above.
However, as demonstrated by our spin Hamiltonian ap-
proach, the energy barrier is a function of the (internal or
applied) transverse magnetic field and a general scaling
proportional to (2J + 1)4/3 (crf. eqn. (23)). The effec-
tive spin Hamiltonian calculation presented in this work
can qualitatively account for the temperature and trans-
verse field dependencies of the experimentally observed
spin fluctuation rates.

The spin dynamics in applied longitudinal magnetic
fields can be understood considerung the Zeeman shift of
the Jz states which induces a splitting of the spin fluctu-
ation rate into two branches. The observed experimen-
tal asymmetry is expected theoretically and is caused
by higher-order Stevens’ operator terms produced by the
hexagonal symmetry of the lattice.

V. CONCLUSIONS

In this work, we present 57Fe-Mössbauer studies on
diluted Fe centers in a linear N-Fe-N configuration along
the crystallographic c-axis in single crystalline specimen
of hexagonal Li2(Li1−xFex)N . The homogeneity of the
nanoscale distributed isolated Fe centers is shown and the
single-atomic magnet nature confirmed. Below 30 K the
magnetically isolated single-ion Fe centers exhibit a large
quasistatic magnetic hyperfine field of B̄A = 70.25(2) T
parallel to the c-axis which is the strongest principle axis
of the electric field gradient V̄zz = −154.0(1) V/Å2.

Fluctuations of the magnetic hyperfine field clearly ob-
served in the Mössbauer spectra between 50 K and 300 K
are described by a Blume two-level relaxation model.
The spin dynamics in Li2(Li1−xFex)N is concentration-
independent for x ≤ 0.028. From the temperature de-
pendence an Orbach process is deduced as the domi-
nant spin-lattice relaxation process. An Arrhenius anal-
ysis ν = ν0e

−EA/kBT yields a thermal activation bar-
rier of ĒA = 515(20) K and an attempt frequency ν̄0 =
150(10) GHz. Mössbauer spectroscopy studies with ap-
plied transverse magnetic fields up to 5 T reveal a huge
increase of the fluctuation rate by two orders of mag-
nitude. In applied longitudinal magnetic fields a char-
acteristic splitting of the spin fluctuation frequency is
observed. These experimental observations are qualita-
tively reproduced by a single-ion spin Hamiltonian anal-
ysis. It demonstrates that for dominant magnetic quan-
tum tunneling a weak axial single-ion anisotropy D of the
order of a few Kelvin can cause a two orders of magni-
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Element Atomic mass [u] absorption coefficient [cm2/g]
Li 3 0.277
N 7 1.4
Fe 26 64
Os 76 165

TABLE V. Mass absorption coefficients µa according to Chen
et al. and therein22.

tude larger energy barrier for temperature-induced lon-
gitudinal spin fluctuations. We think that this is one of
the most spectacular manifestations of the macroscopic
quantum spin tunneling observed in the solid-state based
single-atomic magnet Li2(Li1−xFex)N. The experiments
suggest Li2(Li1−xFex)N as a candidate for novel func-
tional magnetic materials, e.g. for quantum computing
or spintronic devices.
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VII. APPENDIX

A. Mass absorption coefficients

The Fe concentration of sample SC 4 is with be-
low 0.2% rather small, even for a 57Fe-Mössbauer ex-
periment of a non-57Fe-enriched sample. Fortunately,
Li2(Li1−xFex)N contains only light elements with small
absorption coefficients of the 14.41 keV radiation energy,
see table V. The mass absorption coefficient µa describes
the exponential Intensity reduction of the initial γ-ray
intensity I0,

I(d) = I0(1− fs)eµad, (27)

where d is the absorber thickness and fs the recoil-free
fraction of transitions. µa describes the non-resonance
atomic absorption, mainly by the photoelectric effect.
For a comparison, the value of Osmium represents a
heavy element in table V showing the rather small mass
absorption coefficient µa of Li and N since Fe is highly-
diluted. We have used for this reason large crystals of a
thickness of a few millimeter and the effective thickness
ta = 2.39(10) of SC 1 reflects still absorption far away
from the saturation limit. The Fe concentration of SC 4 is
even below the concentration of Ho in LiY0.998Ho0.002F4

or at least in the same order which is a prominent exam-
ple for a SAM in a solid crystal42,43.

B. Magnetic Hyperfine field

The results of the calculations are discussed assuming
the Fe+ oxidation state31. In general, the total magnetic
hyperfine field B is the sum of different contributions

Bh = Bc +Borb +Bdip +Blat. (28)

The sign of the Fermi contact contribution Bc is negative
and arises from the spin-polarization of the s-electrons by
unpaired valence electrons. Borb is the orbital contribu-
tion scaling with the orbital quantum number L which is
expected to be important because of the exceeded spin
only value of the magnetic moment. Bdip is the dipolar
contribution arising from nonsperical electron spin den-
sity contribution which is approximately proportional to
Vzz. Blat is the lattice contribution, i.e., the magnetic
field generated by neighbor electronic moments in the
lattice. This contribution can be neglected in the di-
luted system. The detailed values vary strongly on the
used computational method and estimations31, however,
a tendency is given by

Borb > Bdip ≈ |Bc| > Blat ≈ 0 (29)

or even Borb � Bdip, |Bc| which is based the Fe1+ (S =
3/2, L = 2) assumption31.

C. Magnetization hysteresis loops

The presented hysteresis loops of magnetization were
measured at different temperatures for magnetic fields
applied parallel to the crystallographic c-axis, B ‖ c. The
obtained data were corrected for the diamagnetic sam-
ple holder (sample sandwiched between two torlon discs
and fixed inside a straw) for which the magnetization
was determined separately using a similar setup. The
diamagnetic contribution of the α-Li3N host was sub-
sequently subtracted from the sample holder corrected
data using ρ(Li1+) = −8.8 · 10−12 m3mol−1 ref.44 and
ρ(N3−) = 1.63 · 10−10 m3mol−1 ref.45.

D. Breit-Wigner formula

The cross-section

σ(E) =
σa(E)

σ0
(30)

of the transmission integral is given by the Breit-Wigner
formula

σ0(E) =
σ0Γ2

a/4

(E − E0)2 + Γ2
a/4

(31)

where

σ0 =

(
λ2

2π

)
1 + 2I(e)

1 + 2I(g)

1

1 + α
(32)
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FIG. 14. Logarithmic frequency log10 ν of Fe site A of SC 1-4
as a function of temperature.

is the maximum cross section, e.g see Chen22. Here, α
is the internal conversion coefficient, I(e),I(g) are the nu-
clear spin numbers of the ground state and excited state,
respectively, and λ the energy of the γ-ray. σ(E) and
σ0(E) are given as a function of the photon energy E, E0

is the energy of the γ-ray corresponding to the Mössbauer
transition. The excited state is not strict monochromatic
and has a natural distribution given by a Lorentzian line

L(E)dE =
Γs
2π

1

(E − E0)2 + Γ2
s/4

dE (33)

with ∫
L(E)dE = 1. (34)

Γs is the natural linewidth of the Mössbauer nuclei and
Γa is the natural linewidth of the absorber. Here,

L(E, v) = L
(
E − v

c
E0

)
(35)

is the relation to our notation with the speed of light c.

E. Arrhenius plot

Fig. 14 shows the Arrhenius plot (reciprocal T -scaling)

ln ν = ln ν0 −
EA
kB

(
1

T

)
(36)

of the extracted fluctuation frequencies ln ν of SC 1-4 in
MHz. The fluctuation frequency is concentration inde-
pendent as reflected by the parameter EB and ln ν0 of
table II.

F. Landé factor

To estimate the Zeeman splitting, it is important to re-
call the large effective magnetic moment µeff = 6.5(4)µB
per Fe atom parallel to the c-axis14 which is close to the
full Hunds’ rule value of Fe+. This indicates the validity
of the Hunds’ rules in this system. Using Russel-Saunders
coupling and the proposed spin quantum number L = 2
and S = 3/2, we get the Landé factor for J = 7/2,

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
≈ 1.55. (37)

Here, gL = 1 and gS = 2 are used.

G. Comparison with ferrous halides

Axtmann et al. have found a linear relationship be-
tween the Pauling electronegativity and the isomer shift
δ in ferrous halides is discussed46. The difference of the
ligand electronegativity is related to the isomer shift.
This is treated as direct evidence for the participation
of 4s electrons in the formation of the chemical bonds22.
Fig. 15 shows the presented ferrous halides by Axtmann
et al. and the isomer shift of SC 1. The observed iso-
mer shift deviates strongly. In the ferrous halides the
electronic configuration is 3d4sx where x measures the
ionicity. The ionicity increased with x22. The electric
monopole hyperfine interaction in Li2(Li1−xFex)N is far
away from the values of the Fe2+ ferrous halides. The
quadrupole splitting in the ferrous halides behaves linear
as a function of the isomer shift as well46. The values
are between 1.4 mm/s (FeI2) and 2.6 mm/s (FeF2). For
conversion21 one can use

∆vQS =
ceQ

2Eγ
Vzz

√
1 +

η2

3
(38)

with

ceQ

2Eγ
≈ 0.0167

mm/s

V/Å2
. (39)

The value of Fe-diluted Li2(Li1−xFex)N is -2.572(2) mm/s
which shows a comparable electric quadrupole hyperfine
interaction with respect to the amount of Vzz.

H. Determination of the Debye-temperature ΘD

Fig. 16 shows the center shift as a function of temper-
ature obtained in ZF of SC 1. The center shift is here
δ+δSOD without α-Iron correction and therefore relative
to the 57Co-source. The temperature dependence of SC
1 yielded a Debye-temperature of ΘD = 315(8) K which
is a measure of the collective motion of the surround-
ing atoms of the Mössbauer nucleus. One should keep
in mind the special geometry with the γ-beam parallel
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FIG. 15. Isomer shift relative to α-iron as a function of the
Pauling electronegativity of the ferrous halides compared with
SC 146.

FIG. 16. Center shift as a function of the temperature and
fit to determine the Debye temperature ΘD.

to the crystallographic c-axis and therefore the phonic
excitations in c-direction are considered according to the
Debye-Waller factor. In table VI we compare this value
with the aforementioned linear C-Fe-C compounds. The
values for [Fe(C(SiMe3)3)2]1− and Li2(Li1−xFex)N are
similar. This fact further supports the conclusion of a
similar electronic configuration of the Fe ion drawn from
the values of the quadrupole splitting ∆EQ and the mag-
netic hyperfine field BA in Li2(Li1−xFex)N compared to
those of [Fe(C(SiMe3)3)2]1−.

Compound ΘD [K]
[Fe(C(SiMe3)3)2]1− 313(16)
[Fe(C(SiMe3)3)2] 125(1)
Li2(Li1−xFex)N 315(8)

TABLE VI. Comparison of the Debye-temperature ΘD for
Li2(Li1−xFex)N with results for similar linear Fe1+ and Fe2+

complexes 36.

FIG. 17. Comparison of the Mössbauer measurements at 80 K
in ZF and in an applied longitudinal field of 2 T. The fit model
is described in the main text.

I. 57Fe-Mössbauer measurement at 80 K in 2 T LF
of Li2(Li1−xFex)N

Fig. 17 shows a comparison of the 57Fe-Mössbauer
measurements at 80 K in ZF and in an applied longi-
tudinal field of 2 T of SC 1. The analysis is done in the
same way as discussed in the main text. The interme-
diate relaxation line splits at 80 K in a magnetic field of
2 T LF. The doublet is weakly adumbrated because of
the scattering of the data (lower magnitude of absorp-
tion) and not so well pronounced like in the presented
100 K measurement at 2 T. However, a splitting is con-
firmed. The grey fit is the result of free convergence of
the mentioned two-frequency spin reversal model. The
relaxation frequencies are log10 νup = 2.63(8) log10[MHz]
and log10 νdown = 2.36(6) log10[MHz], therefore νup ≈
427 MHz and νdown ≈ 229 MHz.
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