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ABSTRACT

We discuss a computer implementation of a recursive formula to calculate correlation
functions of descendant states in two-dimensional CFT. This allows us to obtain any N -
point function of vacuum descendants, or to express the correlator as a differential operator
acting on the respective primary correlator in case of non-vacuum descendants. With this
tool at hand, we then study some entanglement and distinguishability measures between
descendant states, namely the Rényi entropy, trace square distance and sandwiched Rényi
divergence. Our results provide a test of the conjectured Rényi QNEC and new challenges
for the holographic description of descendant states at large c.
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1 Introduction

The space of states lies at the heart of the kinematic information about a quantum system.
Even in the finite dimensional case we are far from fully understanding its mathematical
structures and their connections to the physics of the system. More so in infinite dimen-
sions, i.e. in the case of quantum field theories.

One essential feature of quantum states is entanglement. It plays a crucial role in
quantum information theory and beyond that provides ways to characterise quantum
fluctuations. For example, the entanglement of the ground state alone can help classifying
quantum phases and tell us about possible topological structure [1–3] or whether a system
is close to criticality [4]. Therefore measures of entanglement of quantum states play a
crucial role in describing the structure of state spaces.

Another standard way to understand these structures is the development of methods
to compare different states. Quickly one comes to realize that even if the microscopic
realization of two states is quite different their meso- or macroscopic features might be
very similar. An immediate example are different energy eigenstates. One can also go the
opposite way. Imagine two states with macroscopically very similar features, they e.g.
share the same energy. How deep do we have to dig to see the difference in these states,
or in other words how distinguishable are they?

Mathematical measures of distinguishability can attach a lot of structure to the space
of states. Ideally this structure has physical significance, i.e. it helps to explain physical
phenomena. For instance, distinguishability measures help to put the Eigenstate Thermal-
ization Hypothesis [5–7] on a more quantitative footing, and, as another example, they
should govern the ‘indistinguishability’ of black hole microstates in AdS [8,9].

We here want to investigate some entanglement and distinguisability measures in the
context of two dimensional conformal field theory. The latter are among the best under-
stood and most studied quantum field theories, play a crucial role in the perturbative
description of string theory and appear as fixed points of renormalization group flow such
that they describe the dynamics of statistical and condensed matter systems at criticality.
In some cases they can even be solved exactly [10] and under certain conditions – the case
of rational theories with a finite number of primary operators – all possible CFTs have
been classified [11]. Their huge amount of symmetry allows to explicitly compute partition
and correlation functions as well as their conformal transformation rules. It is not a co-
incidence that all the measures we will use can be computed by particularly transformed
correlation functions.

We put our focus on so-called descendant states – states excited by Virasoro gener-
ators – on a circle of length L. Then we consider subsystems of size l < L onto which
we reduce the pure states of the full system. How to compute entanglement for these
kind of construction was shown in [12, 13]. We will use similar methods to also compute
distinguishability measure for these reduced density matrices.

As will become clear when we introduce the methods to compute the entanglement
and distinguishability measures, it is in principle possible to compute algebraic expres-
sions for any descendant, in particular for descendants of the vacuum. In practice, the
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algebraic expressions become cumbersome and are easier to tackle by computer algebra
programs. We use Mathematica for our computations and explicitly display important
parts of our code in the appendices. The notebooks with the remaining code are openly
accessible. The heart of the code is a function that implements a recursive algorithm to
compute generic correlators of descendants. In case of vacuum descendants it results in an
analytic expression of the insertion points and the central charge of the theory. In case of
descendants of arbitrary primary states the function returns a differential operator acting
on the respective primary correlator.

With this tool at hand, we are able to compute, for instance, the Sandwiched Rényi
Divergence (SRD) and the Trace Squared Distance (TSD) which have not been computed
for descendant states before. In case of the Rényi entropy we can expand on existing results.
The outcomes for the SRD for example allow us to test a generalisation of the quantum
null energy condition suggested in [14]. Results that we compute for vacuum descendants
are universal and, in particular, can be studied at large central charge, i.e. the regime
where two dimensional conformal field theories may have a semi-classical gravitational
dual in AdS3. We will see that in this limit all above quantities show an odd behaviour
for descendant states.

We will organise the paper as follows. In section 2 we review all the CFT techniques
that we need later. In the following section 3 we discuss the quantum measures that we
want to compute, namely the Rényi entanglement entropy as a measure of entanglement,
and the sandwiched Rényi divergence and the trace square distance as measures of distin-
guishability between states reduced to a subsystem. In section 4 we focus on results for
descendants of the vacuum. These will apply to all theories with a unique vacuum and,
hence, we call them universal. In particular these results can be computed explicitly up
to rather high excitation. In the following section 5 we show the results for descendants of
generic primary states. These results depend on the primary correlators that are theory
dependent and, hence, are non-universal. Therefore we compute results in two explicit
models, namely the critical Ising model the three-state Potts model.

2 Review of some CFT techniques

2.1 Notation and definitions

We want to introduce a notation for the states and fields appearing in our expressions.
Consider the Virasoro representation Rp, whose primary state has conformal dimension
∆ = h+ h̄, with the chiral and anti-chiral conformal weights h, h̄, and is denoted by |∆〉.
Chiral descendant states are written as |∆, {(mi, ni)}〉 =

∏
i L

ni
−mi |∆〉, with the chiral copy

of the Virasoro generators Lm. For anti-chiral descendants one simply uses the anti-chiral
copy of the Virasoro algebra. Any state in Rp can be written as a linear combination of
the latter states.

In two-dimensional CFT the operator-state correspondence holds, where the operators
are local quantum fields on the space-time of the theory. For any state |s〉 we denote the
respective field as f|s〉. The primary field that corresponds to the primary state |∆〉 is then
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f|∆〉. Descendant fields are given by

f|∆,{(mi,ni)}〉 =
∏
i

L̂ni−mif|∆〉 , (1)

where

L̂−mg(w) :=

∮
γw

dz

2πi

1

(z − w)m−1
T (z)g(w) (2)

for any field g; γw is a closed path surrounding w. L̂−mg(w) is the mth ‘expansion coeffi-
cient’ in the OPE of the energy momentum tensor T with the field g.

A field’s dual is the field that corresponds to the dual vector. We denote the field dual
to f|s〉(z, z̄) by

f〈s|(z̄, z) :=
(
f|s〉(z, z̄)

)†
. (3)

Note that it is most naturally defined on the complex plane.
The duality structure of the Hilbert space is fixed by the definitions L†−n = Ln and

〈∆|∆′〉 = δ∆,∆′ . This structure needs to be recovered from the two point function of the
respective fields when the two points coincide, i.e

〈s|s′〉 ≡ lim
z→w

〈
f〈s|(z̄, z)f|s′〉(w, w̄)

〉
. (4)

To achieve this one chooses radial quantization around the second insertion point w and
defines the dual field f〈s|(z̄, z) as the outcome of the transformation G(z) = 1

z−w + w of
the field f|s〉(z, z̄) at the unit circle surrounding w. With the help of the transformation
rules that we define in the following section 2.2 we can therefore write

f〈s|(z̄, z) = fΓG|s〉

(
1

z − w
+ w,

1

z̄ − w̄
+ w̄

)
, (5)

where the action ΓG on the local Hilber space takes the simple form

ΓG =

(
− 1

(z − w)2

)L0
(
− 1

(z̄ − w̄)2

)L̄0

exp

(
L1

w − z
+

L̄1

w̄ − z̄

)
. (6)

In what follows we will use radial quantization around the origin of the complex plane,
i.e. we will choose w = 0. Note, that (5) gives (4) up to a phase factor (−1)Sp , where Sp
is the conformal spin of the primary state |s〉 is built from.

2.2 Transformation of states and fields

The transformation rule for arbitrary chiral fields was first presented in [15]. We will,
however, use the (equivalent) method introduced in [16] (section 6.3).

There is a natural action M(G) of a conformal transformation G on any Varasoro
module and, hence, on the full space of states. For a field f|s〉(w) we need to know how
the transformation acts locally around w and transform the field accordingly. It works as
follows:
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Consider a conformal transformation G and choose local coordinates around the in-
sertion point w and the point G(w). The induced local coordinate change can be written
as g(z) =

∑∞
k=1 akz

k, where z are the local coordinates around w that are mapped to the
local coordinates g(z) around G(w). Now solve the equation

v0 exp

 ∞∑
j=1

vjt
j+1∂t

 t = g(t) (7)

for the coefficients vj order by order in t. The local action of G on the module is then

given by M(G) := exp
(
−
∑∞

j=1 vjLj

)
v−L0

0 . The inverse, that we will rather use, is then

given by

Γ := M(g)−1 = vL0
0 exp

 ∞∑
j=1

vjLj

 , (8)

such that we can write
f|s〉(G(w)) = f|s′〉=Γ|s〉(w) . (9)

Note that for a descendant at level k we only need the coefficients vj up to j = k. A
Mathematica code to obtain the relation between the coefficients vj and ak is given in
appendix A.1.

2.3 Computing correlation functions of descendant fields on the plane

We will be interested in computing correlation functions

〈
N∏
i=1

f|si〉(zi)〉 (10)

where |si〉 are some descendant states.
To get a handle on them we use Ward identities in a particular way. Therefore, consider

a meromorphic function ρ(z) that has singularities at most at z ∈ {zi}∪{0,∞}, i.e. at the
insertion points and at the singular points of the energy momentum tensor. Let us make
the particular choice

ρ(z) =

N∏
i=1

(z − zi)ai (11)

for ai ∈ Z, which is in particular regular at 0. Now, consider the integral identity

N∑
i=1

∮
γzi

dz

2πi
ρ(z)

〈
T (z)gi(zi)

∏
j 6=i

gj(zj)

〉
= −

∮
γ∞

dz

2πi
ρ(z)

〈
T (z)

N∏
j=1

gj(zj)

〉
, (12)

where gj are arbitrary fields, e.g. descendant fields. The latter identity simply follows from

deforming the integral contour accordingly. The r.h.s. vanishes for
∑N

i=1 ai ≤ 2. Next, we
consider the functions

ρi(z) :=
∏
j 6=i

(z − zj)aj =
ρ(z)

(z − zi)ai
(13)
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for which we need the expansion around zi,

ρi(z) ≡
∞∑
n=0

ρ
(n)
i (z − zi)n . (14)

Note, that the expansion coefficients ρ
(n)
i are some rational expressions that depend on all

zj 6= zi and aj .
Now, using the definition of L̂m, (2), and the latter expansion we obtain

N∑
i=1

∞∑
n=0

ρ
(n)
i

〈(
L̂ai+n−1gi(zi)

)∏
j 6=i

gj(zj)

〉
= 0 (15)

for
∑
ai ≤ 2. Note that, even if not written explicitly, the sums over n do always terminate

for descendant fields gi. Note further that these relations among correlation functions
depend on the choice of ai but the correlators that can be computed from these relations
are unique.

2.3.1 Example for particular choices and explicit recursive formula

One very immediate choice is ai = 1−m and aj 6=i = 0 which gives the relation〈(
L̂−mgi(zi)

)∏
j 6=i

gj(zj)

〉
= −

∑
j 6=i

lvl(gj)+1∑
n=0

ρ
(n)
j

〈(
L̂n−1gj(zj)

)∏
k 6=j

gk(zk)

〉
(16)

with

ρ
(n)
j = (−1)n

(
n+m− 2

n

)
(zj − zi)1−m−n . (17)

For m > 1 we see that the total level of each correlator on the r.h.s., i.e. the sum over all
levels of fields appearing in the correlation functions, is lower than the one on the l.h.s.
We, hence, can express correlation functions of higher total level by correlators of lower
total level. One way of computing correlation functions of descendants is using the above
formula recursively until there are only L−1 left. These simply act as derivative operators
on the respective primary.

The Mathematica code that uses above equation recursively and computes arbitrary
correlation functions of vacuum descendants is given in appendix B.1. It produces an
algebraic expression of the insertion points and the central charge c. The Mathematica
code to compute correlation function for descendants of generic primary fields is given
in appendix B.2. It produces a derivative operator that acts on the respective primary
correlator, which in general is theory dependent.

3 Review of some quantum measures in CFT

We want to consider an isolated quantum system living on a circle of length L whose (low-
energy) physics is governed by a (1+1)-dimensional effective field theory. At some critical
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value of its couplings the theory becomes conformal. This is what we want to assume.
Then, the system is in some pure state of a (1+1)d CFT, associated with a density matrix
ρ = |s〉〈s|.

Let us further consider a spatial bipartition into a region A of size l < L and its
complement A. Assume a situation where one has no access to the complement, i.e. all
measurements are restricted to the subregion A. Our ignorance of the complement means
that the state in the region we have access to can be reduced to the density matrix

ρA = TrAρ , (18)

where TrA is the partial trace over the degrees of freedom of the complement. In fact, a
physically realistic CFT observer can only access a restricted amount of information by
measurements which in the present case is modeled by restricting the measurement to a
spatial region A.

Our focus of interest lies in reduced density matrices that originate from descendant
states of the full system. We, in particular, want to study their entanglement and measures
of distinguishability between them.

3.1 Entanglement measure: Rényi entropy

The nth Rényi entropy [17,18] is defined as

Sn(A) =
1

1− n
log TrAρ

n
A . (19)

For n→ 1 it converges to the (von Neumann) entanglement entropy S(A) = −TrρA log ρA
which is the most common entanglement measure [18]. However, in particular in field
theories, there exist alluring analytical tools that make it much easier to compute Rényi
entropies for n > 1 than the entanglement entropy. Additionally, many key properties of
the entanglement entropy, such as the proportionality of ground state entanglement to
the central charge in critical systems and the area law of gapped states, hold for Rényi
entropies too. In principle, the knowledge of the Rényi entropy for all n ∈ N allows to fully
determine the reduced density matrix ρA.

In the present case, the full system can be described by a CFT on the Euclidean space-
time manifold of an infinite cylinder for which we choose complex coordinates u = x+ iτ
with τ ∈ R and x + L ≡ x ∈

(
−L

2 ,
L
2

]
. The variable τ is regarded as the time coordinate

and x is the spatial coordinate. As subsystem A we choose the spatial interval
(
− l

2 ,
l
2

)
.

In 2d CFT, the trace over the nth power of the reduced density matrix ρA = TrA|s〉〈s|
is equivalent to a 2n-point function on the so-called replica manifold which is given by
n copies of the cylinder glued together cyclically across branch cuts along the subsystem
A at τ = 0 [19, 20]. The exponential map z(u) = exp (2πiu/L) maps the latter manifold
to the n-sheeted plane σn, where the branch cut now extends between exp

(
±iπ l

L

)
. The

2n fields are those that correspond to the state |s〉 and its dual 〈s|, where one of each is
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inserted at the origin of each sheet:

TrAρ
n
A = Nn

〈
n∏
k=1

f〈s|(0k)f|s〉(0k)

〉
Σn

(20)

= Nn

〈
n∏
k=1

fΓ−1/z |s〉(∞k)f|s〉(0k)

〉
Σn

. (21)

The constant Nn = Z(Σn)/Z(C)n =
(
L
πa sin

(
πl
L

)) c
3(n− 1

n)
, Z being the partition function

on the respective manifold, ensures the normalization TrAρA = 1, with some UV regulator
a (for example some lattice spacing). In the second line we use the definition of the dual
state.

One way to compute the above correlation function is to use a uniformization map
from Σn to the complex plane. It is given by composing a Möbius transformation with the
nth root,

w(z) =

(
ze−iπ

l
L − 1

z − e−iπ
l
L

) 1
n

. (22)

The 2n fields are mapped to the insertion points

w(0k) = exp

(
iπl

nL
+

2πi(k − 1)

n

)
(23)

w(∞k) = exp

(
− iπl
nL

+
2πi(k − 1)

n

)
on the unite circle, and the fields have to transform as described in section 2.2. The change
of local coordinates is given in A.2. The local action is denoted by Γw(z) ≡ Γk,l and for
the dual fields we get Γw(1/z) = Γw(z)Γ1/z ≡ Γk,−l.

Putting all together we see that computing the nth Rényi entropy is basically equivalent
to computing a 2n point function of particularly transformed fields:

e(1−n)Sn(A) = TrAρ
n
A ≡ Nn

〈
n∏
k=1

fΓk,l|s〉 (w(0k)) fΓk,−l|s〉 (w(∞k))

〉
C

=: NnF (n)
|s〉 . (24)

See also [12,13] for derivations of the latter formula. Other computations of the entangle-
ment entropy of excited states (not necessarily descendants) can also be found in [21–31].

3.2 Distance measures

Distance and other similarity measures between density matrices provide quantitative
methods to evaluate how distinguishable they are, where distinguishability in particular
refers to the outcome of generic measurements in the different states. There is not a single
best measure and not even agreement upon criteria to evaluate different distance measures.
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Most of them are designed such that they provide the space of (not necessarily pure)
states with some additional structure that ideally allows to draw some physically relevant
conclusions about the system under consideration. In case of reduced density matrices
distance measures quantify how distinguishable they are by measurements confined to the
subregion A.

We want to consider two of these measurements for reduced density matrices in two
dimensional CFT. Let us denote the reduced density matrices as ρi = TrA|si〉〈si|, with
ρ0 ≡ TrA|0〉〈0| the reduce density matrix of the vacuum.

3.2.1 Relative entropy

The relative entropy between two reduced density matrices ρ1 and ρ2 is given by

S(ρ1, ρ2) = Tr(ρ1 log ρ1)− Tr(ρ1 log ρ2) . (25)

It is free from UV divergencies, positive definite and one of the most commonly used
distance measures in quantum information, in particular because several other important
quantum information quantities are special cases of it, e.g. the quantum mutual informa-
tion and quantum conditional entropy. The relative entropy also shows to be useful in high
energy application when e.g. coupling theories to (semiclassical) gravity. It allows a precise
formulation of the Bekenstein bound [32], a proof of the generalized second law [33,34] and
the quantum Bousso bound [35,36]. It also appears in the context of holography where it
can be used to formulate important bulk energy conditions (see e.g. [37–39]).

However, as in the case of the entanglement entropy there exist no direct analytical
tools to compute the relative entropy in generic two-dimensional conformal field theory.
There exist several Rényi type generalisations (see e.g. [40, 41]) that are more straight
forward to compute. We here want to focus on a quite common one called the Sandwiched
Rényi Divergence.

Sandwiched Rényi divergence

The Sandwiched Rényi Divergence (SRD) between two density matrices ρ1 and ρ2 is given
by

Sn(ρ1, ρ2) =
1

n− 1
log Tr

(
ρ

1−n
2n

1 ρ2ρ
1−n
2n

1

)n
. (26)

It is a possible one-parameter generalization of the relative entropy (25), with the param-
eter n ∈ [1

2 ,∞) and S(ρ1, ρ2) ≡ Sn→1(ρ1, ρ2) . The SRD by itself has been shown to enjoy
important properties of a measure of distinguishability of quantum states. It is, in partic-
ular, positive for all states, unitarily invariant, and decreases under tracing out degrees of
freedom [42–45].

In particular due to the negative fractional power of ρ1, there is no general method
known to compute the SRD for arbitrary states in CFT. However, if ρ1 is the reduced
density matrix of the theory’s vacuum then there is a technique introduced in [14] to
express it in terms of correlation functions. Let us remind that the reduced density matrix
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− l
2

l
2

(i)

e−
iπl
L

e
iπl
L

(ii)

2π
n

(iii)

Figure 1: Pictorial representation of the geometric setting for the SRD. (i) The reduced
density matrix is represented by the sheet with respective operator insertions (red crosses)

at 0 and ∞. (ii) A Möbius transformation maps the insertion points to e±
iπl
L and the

branch cut to the negative real line. (iii) The multiplication by negative fractional powers
of the reduced vacuum states is given cutting out respective parts of the sheet.

for a sub-system on the cylinder is represented by a sheet of the complex plane with a
brunch cut along some fraction of the unit circle with the respective operator insertions at
the origin and at infinity of that sheet. In case of the vacuum the corresponding operator
is the identity and, hence, we regard it as no operator insertion. Multiplication of reduced
density matrices is represented by gluing them along the branch cut. Now, let us consider
the Möbius transformation

w(z) =
ze−iπ

l
L − 1

z − e−iπ
l
L

, (27)

which in particular maps the two insertions points 0 and ∞ of a sheet to e±
iπl
L and the

cut to the negative real axis on every sheet. Now, the reduced density operators can be
regarded as operators acting on states defined on the negative real axis by rotating them

by 2π and exciting them by locally acting with the respective operators at e±
iπl
L . In case of

the vacuum reduced density matrix this now allows to define fractional powers by rotating
by a fractional angle and even negative powers by rotating by negative angles which
basically means removing a portion of the previous sheet. The latter is, however, only
possible if no operator insertion is removed. In the present case, the negative power 1−n

2n

corresponds to an angle −π + π
n . Hence, this construction only makes sense for l

L <
1
n ! If

this requirement holds then ρ
1−n
2n

0 ρ2ρ
1−n
2n

0 can be interpreted as a part of the complex plane
between angles ±π

n with operator insertions at angles ±πl
L . This procedure is pictorially

presented in figure 1. Finally, taking the cyclic trace of n copies of it means gluing n of
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these regions onto each other which results in a 2n point function on the complex plane:

F (n)
|s〉 := Tr

(
ρ

1−n
2n

0 ρ2ρ
1−n
2n

0

)n
=

〈
n−1∏
k=0

fΓk,l|s〉

(
e
iπl
L

+ 2πik
n

)
fΓk,−l|s〉

(
e−

iπl
L

+ 2πik
n

)〉
C

(28)

where, in contrast to the previous and following section, Γk,l is the local action of the above

Möbius transformation w(z) followed by a rotation e
2πik
n to obtain the correct gluing. As

before, for the dual field one has to consider w(1/z) which is done by replacing l→ −l .
We, here, want to take the opportunity to give an explicit example of the connection

between rather formal definitions of distinguishability measures and physical features of a
theory. The latter is the Quantum Null Energy Condition (QNEC) which follows from the
so-called Quantum Focusing Conjecture [46]. The QNEC gives a lower bound on the stress-
energy tensor in a relativistic quantum field theory that depends on the second variation of
entanglement of a subregion. The QNEC can also be formulated solely in terms of quantum
information theoretical quantities and has been shown to be equivalent to positivity of the
second variation of relative entropies [47]. After the QNEC has been proven in free and
holographic theories [48–50] it has since been shown to hold quite generally in the context
of Tomita-Takesaki modular theory [51, 52]. Recently a generalized version of QNEC has
been suggested in [14] and later proven to be true in free theories in dimensions larger than
two [53]. This generalization may be called ‘Rényi Quantum Null Energy Condition’ and
is formulated as the positivity of the second variation of sandwiched Rényi entropies. The
diagonal part of the second variation is simply given by the second derivative of the SRD
with respect to the subsystem size. Hence, the Rényi Quantum Null Energy Condition can
only be true in a theory if any SRD is a convex function of the subsystem size. We will
explicitly check if this is true in our results.

3.2.2 Trace square distance

The Trace Square Distance (TSD) between two reduced density matrices is given by

T (2)(ρ1, ρ2) :=
Tr|ρ1 − ρ2|2

Trρ2
0

=
Trρ2

1 + Trρ2
2 − 2Trρ1ρ2

Trρ2
0

, (29)

where the factor Trρ2
0 in particular removes any UV divergences and allows to directly

express the trace square distance in terms of four-point functions on the two-sheeted
surface Σ2 (see also [54]),

T (2)(ρ1, ρ2) ≡
〈
f〈1|(01)f|1〉(01)f〈1|(02)f|1〉(02)

〉
Σ2

(30)

+
〈
f〈2|(01)f|2〉(01)f〈2|(02)f|2〉(02)

〉
Σ2

−2
〈
f〈1|(01)f|1〉(01)f〈2|(02)f|2〉(02)

〉
Σ2

.

Using the uniformization map (22) with n = 2 we can express it in terms of four-point
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functions on the complex plane,

T (2)(ρ1, ρ2) ≡
〈
fΓ1,−l|1〉

(
e−

iπl
2L

)
fΓ1,l|1〉

(
e
iπl
2L

)
fΓ2,−l|1〉

(
−e−

iπl
2L

)
fΓ2,l|1〉

(
−e

iπl
2L

)〉
C

(31)

+
〈
fΓ1,−l|2〉

(
e−

iπl
2L

)
fΓ1,l|2〉

(
e
iπl
2L

)
fΓ2,−l|2〉

(
−e−

iπl
2L

)
fΓ2,l|2〉

(
−e

iπl
2L

)〉
C

−2
〈
fΓ1,−l|1〉

(
e−

iπl
2L

)
fΓ1,l|1〉

(
e
iπl
2L

)
fΓ2,−l|2〉

(
−e−

iπl
2L

)
fΓ2,l|2〉

(
−e

iπl
2L

)〉
C
.

The trace square distance is manifestly positive and has the great advantage that we can
compute it directly in terms of four-point correlators, i.e. there is no need to consider
higher sheeted replica manifolds and we do not need to take any analytic continuations.

Different trace distances between (not necessarily descendant) states in 2d CFT have
e.g. be considered in [54–56].

4 Universal results from the vacuum representation

Most physically interesting conformal field theories contain a unique vacuum that naturally
corresponds to the identity field. For the vacuum all the above correlation functions to
compute the quantum measures become basically trivial. However, the theories also contain
the whole vacuum representation which for example consists of the state L−2|0〉 that
corresponds to the holomorphic part of the energy momentum tensor, T (z). Correlation
functions of vacuum descendant fields generically depend on the central charge of the
theory and can in principle be computed explicitly using the Ward identities (15) or
(16) recursively. Since all quantities discussed in section 3 can be expressed in terms
of correlators, we can in principle compute all of them as closed form expressions, too.
However, since we use computer algebra to perform the transformations and compute
the correlation functions, computer resources are the biggest limiting factor. We, here,
present results for all descendants up to conformal weight five and in some cases for the
state L−10|0〉 . We, in particular, want to check how the measures depend on the conformal
weights of the states and if states at the same conformal weight can be regarded as similar.

4.1 Rényi entanglement entropy

Only for the first few excited states in the identity tower, the expressions (24) to compute
the second Rényi entanglement entropy are compact enough to display them explicitly. In
case of the first descendant L−2|0〉, i.e. the state that corresponds to the energy momentum
tensor, we get

F
(2)
L−2|0〉 =

c2 sin8(πx)

1024
+
c sin4(πx)(cos(2πx) + 7)2

1024
+

sin4(πx)(cos(2πx) + 7)

16c
(32)

+
16200 cos(2πx)− 228 cos(4πx) + 120 cos(6πx) + cos(8πx) + 16675

32768
,

where we defined x = l/L . The results for the states L−n|0〉 with n = 3, 4, 5 are given in
C.1.1. The results here agree with those in [13] when present.
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One important case is the limit of small subsystem size, i.e. when x � 1. In this
limit to leading order any of the above 2n-point functions (24) decouple into n 2-point
functions. This is because the operator product of a field and its conjugate includes the
identity. Then, in the limit x → 0 the respective identity block dominates and takes the
form of a product of n 2-point functions. Those two point functions are, however, given
by the transition amplitude from the state to its dual on the kth sheet that decouples in
the limit x → 0 from all other sheets. The latter is simply given by the squared norm of
the state, i.e. it gives one for normalized states. Hence, we can write

lim
x→0

F
(n)
|s〉 =

n∏
k=1

lim
x→0
〈fΓk,l|s〉 (w(0k)) fΓk,−l|s〉 (w(∞k))〉C (33)

=
n∏
k=1

〈s|s〉 = 1 . (34)

Hence, to order x0 the descendant does not play any role at all. For the next to leading order
result there are expectations from primary excitations and the change of the entanglement
entropy computed from holography. E.g. in [24] it is shown that the change should be
proportional to the excitation energy and, in particular, should be independent from c.
Expanding the explicitly shown results (32),(99), (100), and (101) we obtain

F
(2)
L−n|0〉 = 1− n

2
(πx)2 +O

(
x4
)
, for n = 2, 3, 4, 5 , (35)

which is in agreement with all above expectations.

In figure 2 we show the results for F
(2)
|s〉 for the states |s〉 = L−n|0〉, n = 2, 3, 4, 5 .

The first observation is that at large c the correlator shows an oscillating behaviour with
oscillation period proportional to 1/n. In fact, we can see this also from the explicit results
(32),(99),(101),(101) where at large central charge the term proportional to c2 dominates.
Note, that the correlator F (n) can become larger than one at large central charge and,
hence, its contribution to Rényi entropy S(n) can get negative. For example, in case of
n = 2 and |s〉 = L−2|0〉 this happens at x = 1/2 for c & 18.3745.

The vacuum module is degenerate at conformal weight h = 4 and h = 5. In addition to
the states L−4|0〉 and L−5|0〉 there are the states L2

−2|0〉 and L−3L−2|0〉, respectively. Their

correlators F
(2)
|s〉 are shown in figure 3 (a) and (b) for different values of the central charge.

Interestingly, although their small subsystem behaviour is given by (35) and, hence, it is
the same as for L−4|0〉 and L−5|0〉, respectively, their general behaviour is rather different
at large central charge! Their oscillation period is not proportional to the conformal weight
but proportional to the level of the lowest Virasoro generator appearing in it.

Already these two examples show that in particular at large central charge the be-
haviour of the Rényi entropy and, hence, also of the entanglement entropy of descendant
states does not only depend on their conformal weight, i.e. the energy of the state, but
also significantly on their building structure. In particular, theories with a (semi-)classical
gravity dual need large central charge. It is widely believed that black hole microstates
in AdS3 correspond to typical high conformal dimension states in the CFT. However, a
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Figure 2: The correlator F
(2)
|s〉 for (a) |s〉 = L−2|0〉, (b) |s〉 = L−3|0〉, (c) |s〉 = L−4|0〉, (d)

|s〉 = L−5|0〉, for several values of the central charge.

typical state at conformal dimension ∆ � 1 is a descendant at level ∆/c of a primary
with conformal dimension c−1

c ∆ (see e.g. [57]). This means that a typical state will be
a descendant at large but finite central charge c! The results we present here show that
descendants with the same conformal dimension can in fact show very different behaviour
when it comes to the entanglement structure. This is not to be expected by black hole
microstates and, in our opinion, calls for extra thoughts on their dual description in large
c two-dimensional conformal field theories.

Finally, in figure 3 (c) and (d) we show the correlator F (3) for the first two excited
states L−2|0〉 and L−3|0〉. They show qualitatively the same behaviour as the respective
correlators for n = 2 (see figure 2 (a) and (b)). However, their dependence on the central

charge is stronger and the oscillating behaviour starts at lower c. For example, F
(3)
L−2|0〉 is

larger than one at l = 1/2 for c & 14.74945.

The stronger dependence on the central charge for larger n is expected. Any F
(n)
|s〉 can

be expanded as

F
(n)
|s〉 =

n∑
k=−n+1

A
(n)
k ck , (36)

where all the dependence on the state |s〉 and the relative subsystem size x = l/L sits in

the coefficients A
(n)
k . The negative powers of c originate from the normalization of the
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Figure 3: The correlator F
(n)
|s〉 for (a) n = 2, |s〉 = L2

−2|0〉 , (b) n = 2, |s〉 = L−3L−2|0〉, (c)

n = 3 |s〉 = L−2|0〉, and (d) n = 3 |s〉 = L−3|0〉 for several values of the central charge.

state. Positive powers of c follow from the Virasoro commutation relations when using the
Ward identities. Therefore, at large central charge we get

F
(n)
|s〉

∣∣∣
c�1
≈ Ancn . (37)

4.2 Sandwiched Rényi divergence

As argued in section 3.2.1 it is possible to express the sandwiched Rényi divergence (26)
for integer parameters n in terms of a 2n point functions F (n) (28) if ρ1 is the reduced
density matrix of the vacuum. In case of the state L−2|0〉 we e.g. obtain

F (2)
L−2|0〉 =

(cos(4πx) + 7)(−512 cos(4πx) + 128 cos(8πx) + 384) sec8(πx)

16384c
(38)

+
(cos(4πx) + 7)(847 cos(4πx)− 22 cos(8πx) + cos(12πx) + 1222) sec8(πx)

16384

where x = l/L < 1/2 . Expressions for the L−n|0〉, n = 3, 4, 5 can be found in appendix
C.2.1.

Again we first want to draw attention to the small subsystem behaviour of the sand-
wiched Rényi divergence. The results for the second SRD between the reduced vacuum
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Figure 4: The Sandwiched Rényi Divergence for n = 2 between the reduced groundstate
and (a) L−2|0〉, (b) L−3|0〉, (c) L−4|0〉, (d) L−5|0〉, (e) L2

−2|0〉, (f) L−3L−2|0〉 for different
values of the central charge c.

state and all states up to conformal weight five show the small subsystem behaviour

S(2)
|s〉 =

2h2
s

c
π4x4 +

2h2
s

3c
π6x6 +O(x8) . (39)

Its small subsystem behaviour only depends on the central charge and the conformal
weight of the respective state and is independent of the specific structure of the state!

In case of n = 2, the SRD diverges at x = 1/2. We find the behaviour

F (2)
|s〉 = exp

(
S(2)
|s〉

)
=

A|s〉

π4hs
(
x− 1

2

)4hs (40)

where the coefficient A|s〉 depends on the specifics of the state. For states of the form
L−n|0〉 up to n = 10 it takes the form

AL−n|0〉 =

(
2n− 1

n− 2

)2

. (41)

In figure 4 we show the SRD for the first six excited states. All of them show a plateau at
small values of x that increases for larger c and shrinks for higher energy. This is expected
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Figure 5: The second Sandwiched Rényi Divergence for the states L−n|0〉, n = 2, 3, 4, 5, 10,
at central charge c = 1/1000 .

from the asymptotic result (39). Interestingly, although in the asymptotic regimes, i.e. at
x→ 0 and x→ 1/2, the second SRD for the states L2

−2|0〉 and L−3L−2|0〉 behave similarly
to the states L−4|0〉 and L−5|0〉 with the same conformal weight they look quite differently
for intermediate regimes of x. They, in particular, show to be more sensible to the central
charge. This shows again that descendant states at the same conformal dimension can
behave quite differently, in particular at large central charge.

In all plots so far the second SRD shows to be a convex function of the relative
subsystem size x = l/L. However, in cases of small central charge it is not! I.e. there

are regions of x with ∂2S(2)

∂x2
< 0. For example, in case of |s〉 = L−2|0〉 the second SRD

is not convex for c . 0.1098 . This shows that there are examples where the generalized
version of the QNEC is not true! However, conformal field theories with central charges
smaller than 1/2 are quite unusual. They cannot be part of the ADE classifiation of
rational, unitary, modular invariant CFTs [11] but could e.g. be logarithmic [58]. In figure
5 we show the second SRD for states L−n|0〉 with n = 2, 3, 4, 5, 10 and c = 1/1000 to
illustrate its non-convexity for all these states.

4.3 Trace squared distance

Again only the expressions for the first few excited states are compact enough to display
them explicitly. For example, the TSD between the vacuum and the state L−2|0〉 is given
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Figure 6: The Trace Squared Distance between the reduced states of (a) the vacuum and
L−2|0〉, (b) the vacuum and L−3|0〉, (c) the vacuum and L−4|0〉, and (d) the states L−3|0〉
and L−2|0〉 for different values of the central charge c.

by

T
(2)
L−2|0〉,|0〉 =

c2 sin8(πx)

1024
− 1

512
c sin6(πx)(cos(2πx) + 15) +

sin4(πx)(cos(2πx) + 7)

16c

+
−32768 cos(πx) + 8008 cos(2πx)− 228 cos(4πx)

32768
(42)

+
120 cos(6πx) + cos(8πx) + 24867

32768
,

where we use the abbreviation x = l
L again. Some other explicit expressions can be found

in appendix C.3.1.
In the limit x → 0 the reduced states have no support and, hence, must be trivial.

Consequently, the trace square distance vanishes in this limit independently of the original
states we choose. We checked the leading order in x � 1 for all states up to conformal
weight five and find the behaviour

T (2)
s1,s2 =

2 + c

16c
(h1 − h2)2π4x4 +O(x6) . (43)

We can see that to leading order, x4, the TSD depends on the central charge and the
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difference in conformal weight of the two states. We also see that for large central charge
the dependence on c is negligible.

In case of h1 − h2 = 0 the TSD starts at order x8 for small x. We e.g. obtain

T
(2)

L2
−2|0〉,L−4|0〉

=
(2c+ 1)2

(
25c3 + 420c2 + 2444c+ 4752

)
π8x8

1600c(c+ 8)2
+O(x10) (44)

T
(2)
L−3L−2|0〉,L−5|0〉 =

9c
(
25c3 + 420c2 + 2444c+ 4752

)
π8x8

1024(c+ 6)2
+O(x10) . (45)

Albeit one common factor, the latter expression do not seem to show a straightforward
dependence on the states. It also shows that the large c behaviour is more subtle because
the x8 coefficient diverges as c→∞ .

In the opposite limit x→ 1 the TSD can be computed easily because the states become
pure. One obtains

lim
x→1

T
(2)
|s1〉,|s2〉 =

Tr(|s1〉〈s1|2) + Tr(|s2〉〈s2|2)− 2Tr(|s1〉〈s1||s2〉〈s2|)
Tr(|0〉〈0|2)

(46)

= 2
(
1− |〈s1|s2〉|2

)
≡ T . (47)

We can see that 0 ≤ limx→1 T
(2)(ρ1, ρ2) ≤ 2 where we get the first equal sign iff s1 = s2

and the second one iff the two states are orthogonal to each other.
The explicit results up to conformal weight five show that the expansion around x = 1

is given by

T
(2)
|s1〉,|s2〉 = T

(
1− h1 + h2

4
π2(x− 1)2 +O

(
(x− 1)4

))
. (48)

We can see that the behaviour of the TSD close to x = 1 depends on the sum of conformal
weights h1+h2 . This is in contrast to the small x behaviour that depends on the difference.
Let us, for example, consider the second TSD between the vacuum and L−2|0〉 (see the
explicit expression in (42)) and the second TSD between the vacuum and L−3|0〉 (see the
explicit expression in (116)). From the difference of conformal weight we get

T
(2)
L−2|0〉,|0〉(x) < T

(2)
L−3|0〉,|0〉(x)

for small x. However, from the sum of conformal weights we obtain

T
(2)
L−2|0〉,|0〉(x) > T

(2)
L−3|0〉,|0〉(x)

for x close to one. We immediately can conclude that there must be an odd number of
values x ∈ (0, 1), which in particular means at least one, with

T
(2)
L−2|0〉,|0〉(x) = T

(2)
L−3|0〉,|0〉(x).

We also visualise some of the results. In figure 6 we show the second TSD between
the vacuum |0〉 and L−n|0〉 for n = 2, 3, 4, and between the first two excited states in the
vacuum module, L−2|0〉 and L−3|0〉 . In all these examples only for small enough c the
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Figure 7: The Trase Square Distance between the degenerate states at (a) hs = 4, i.e.
L−4|0〉 and L2

−2|0〉, and (b) hs = 5, i.e. L−5|0〉 and L−3L−2|0〉, for different values of the
central charge c.

TSD is a monotonic function for x ∈ [0, 1] . At larger c the function starts to meander and
can get even bigger than 2, the maximum value of the TSD between pure states. However,
the reduced density matrices are not pure and it is not a contradiction per se that the
TSD behaves like this. Still, it is hard to interpret the quantity as a meaningful measure
of distinguishability for large values of c at intermediate values of the relative subsystem
size x = l/L.

In figure 7 we show the TSD between the two degenerate states at conformal dimension
hs = 4 and hs = 5 for different values of c. As expected from the results (44) and (45) we
see a quite large flat region at small x. At x→ 1 they converge to the TSD of the respective
pure states. In the regions in between they show qualitatively the same behaviour as the
other TSDs. For larger central charge they start to meander and at very large c the term
proportional to c2 dominates, s.t. the TSD becomes very large, too.

5 Theory dependent results

For non-vacuum descendant states, using relation (16) recursively allows to express the
correlation function of chiral descendants f|si〉 as a differential operator acting on the
correlation function of the respective primary fields

〈
N∏
i=1

f|si〉(zi)〉 = D 〈
N∏
i=1

f|∆i〉(zi)〉 . (49)

In general, D depends on the central charge of the CFT, on the conformal weights of
the primary fields, and on the insertion points. As a differential operator it acts on the
holomorphic coordinates. In appendix B.2 we provide a code to compute it analytically in
Mathematica. If the correlation function of the primaries is known, then it is possible to
compute the descendant correlator through (49).
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The correlators in (24), (28), and (31) can be written as linear combinations of corre-
lation functions of descendants with coefficients that follow from the respective conformal
transformations, i.e. the uniformization map (22) in case of the Rényi entropy and the
trace square distance, and the usual Möbius transformations (27) followed by a rotation
in case of the sandwiched Rényi divergence. Combining this with (49) we can write each
of the correlators as

DD̄〈
N∏
i=1

f|∆i〉(zi)〉 , (50)

with differential operators D, D̄. Since we only consider chiral descendants D̄ is simply
given by the anti-chiral part of the transformation of primaries,

D̄ =
n∏
k=1

v̄h̄k0;(k,l)v̄
h̄k
0;(k,−l) . (51)

E.g. for the correlator of the nth Rényi entropy (24) we simply get D̄ = sin4h̄(πx) from
the uniformization map.

In the following sections we explicitly show the expressions of the differential operators
DD̄ for the simplest descendant state L−1|∆〉. We will then consider results for higher
descendants by acting with the operators on particular primary four-point functions in
two specific CFTs, the Ising model and the three-state Potts model.

The Ising model is one of the simplest CFTs [59]. It is a unitary minimal model
with central charge c = 1/2 and contains three primary operators: the identity, the energy
density ε and the spin field σ, whose chiral conformal weights are 0, 1/2, 1/16 respectively.
The 2n-point correlation functions on the plane of the ε and σ operators are known [59]
and, in particular, the four-point correlator of the energy density reads

〈ε(z1, z̄1) . . . ε(z4, z̄4)〉 =

∣∣∣∣ 1

(z12z34)2
+

1

(z13z24)2
+

1

(z23z14)2

∣∣∣∣ (52)

while the four-point correlator of the spin is given by

〈σ(z1, z̄1) . . . σ(z4, z̄4)〉 =
1√
2

1

|z14z23|1/4

√
1 + |η|+ |1− η|
|η|1/4

, (53)

where zij = zi − zj and η = z12z34/z13z24 is the cross ratio. Given these expressions, it is
possible to study the Rényi entanglement entropy and the quantum measures for various
descendants of ε and σ.

The three-state Potts model is the unitary minimal model with c = 4/5 [59]. It can
e.g. be realized as a particular class of the more general N -state clock model which enjoys
ZN symmetry. For N = 2 one recovers the Ising model, while the case N = 3 is equivalent
to the three-state Potts model [60–63]. Its operator content is richer than that of the Ising
model. In particular, it contains six primary operators with conformal weight 0, 2/5, 7/5,
3, 1/15, and 2/3. The dimensions of the thermal operator ε and the spin field σ are 2/5
and 1/15 respectively. Again, a number of correlation functions between operators of the
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three-states Potts model are known (e.g. [61, 63]) and, since we will focus on descendants
of the energy operator in the following, we provide here the four-point correlation function
of the energy density [63]:

〈ε(z1, z̄1) . . . ε(z4, z̄4)〉 =
1

|z13z24|8/5

[
1

|η(1− η)|8/5
∣∣
2F1

(
−8

5 ,−
1
5 ;−2

5 ; η
)∣∣2

−
Γ
(
−2

5

)2
Γ
(

6
5

)
Γ
(

13
5

)
Γ
(

12
5

)2
Γ
(
−1

5

)
Γ
(
−8

5

) |η(1− η)|6/5
∣∣
2F1

(
6
5 ,

13
5 ; 12

5 ; η
)∣∣2] (54)

where 2F1 is the hypergeometric function.

5.1 Rényi entanglement entropy

Let us first consider F
(2)
|s〉 with |s〉 = L−1|∆〉. As discussed above we can write

F
(2)
|s〉 = D̄F (2)

D
F (2)
L−1

〈
f|∆〉(e

− 1
2
iπx)f|∆〉(e

1
2
iπx)f|∆〉(−e−

1
2
iπx)f|∆〉(−e

1
2
iπx)

〉
C

(55)

with D̄F (2)

L−1
= sin4h̄(πx) and DF (2)

L−1
can be computed to be

D
F (2)
L−1

=
1

64
sin4h(πx)

[
4h2(3 cos(2πx) + 5)2 +

16 sin4(πx)

h2
∂1∂2∂3∂4

+ he−
7
2
iπx
(
3 + e2iπx

)2 (−2e2iπx + 3e4iπx − 1
)

(∂2 − ∂4)

+ he−
9
2
iπx
(
1 + 3e2iπx

)2 (
2e2iπx + e4iπx − 3

)
(∂3 − ∂1)

+ 8 sin2(πx)(3 cos(2πx) + 5) (∂1∂2 + ∂3∂4 − ∂2∂3 − ∂1∂4)

− e−3iπx
(
2e2iπx + e4iπx − 3

)2
∂2∂4 − e−5iπx

(
2e2iπx − 3e4iπx + 1

)2
∂1∂3

+
1

h
e−

7
2
iπx
(
−1 + e2iπx

)3 (
3 + e2iπx

)
(∂1∂2∂4 − ∂2∂3∂4)

+
1

h
e−

9
2
iπx
(
−1 + e2iπx

)3 (
1 + 3e2iπx

)
(∂1∂3∂4 − ∂1∂2∂3)

]
, (56)

where ∂n is the partial differentiation w.r.t. the n-th insertion point. Unfortunately already
at level 2, the general expression are too cumbersome to express them here explicitly.

Given the four-point correlation functions (52), (53), (54), we can compute F
(2)
L−1|∆〉

from eq. (55) for h = 1/2, 1/16 in the Ising model and h = 2/5 in the three-states Potts
model. We performed the same computations for descendants up to level 3 and show the
results in figure 8; some analytic expressions are given in appendix C.1.2 and C.1.3.

In the Ising model, there is only one physical state in the module of the energy operator

at each level up to level 3. A consequence is that F
(2)
L−2|ε〉 = F

(2)

L2
−1|ε〉

, even though DF (2)

L−2
6=

DF (2)

L2
−1

. The same happens at level 3 for the different descendant states L−3|ε〉, L3
−1|ε〉 and

L−2L−1|ε〉. As expected we see this in our result. For σ descendants, again there is only

one physical state at level 2 and F
(2)
L−2|σ〉 = F

(2)

L2
−1|σ〉

, but at level 3 there are two physical
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Figure 8: The correlator F
(2)
|s〉 for different descendants of |s〉 = |ε〉 and |s〉 = |σ〉 in the

Ising model and |s〉 = |ε〉 in the Potts model.

states and L−3|σ〉, L3
−1|σ〉 and L−2L−1|σ〉 produce different REEs as shown in figure 8.

Notice that the REEs for the different descendants of σ at level 3 have a similar behaviour
for small values of x, but are clearly distinguishable for x ∼ 1/2.

For descendants states of the energy density of the three-states Potts model there is
again only one physical state at level 2 and two physical states at level 3. Similarly to

the case of descendants of σ in Ising, we found that F
(2)
L−2|ε〉 = F

(2)

L2
−1|ε〉

but the different

descendants that we considered at level 3 produced different REEs, as plotted in figure 8.
Notice that also in Potts the behaviour for small x is given by the level and not by the
state configuration, while all the curves are distinguishable for x ∼ 1/2. In particular,

F
(2)

L3
−1|ε〉

behaves more like F
(2)
L−1|ε〉 than F

(2)
L−3|ε〉 for x ∼ 1/2, while the plot of F

(2)
L−2L−1|ε〉 is

very similar to F
(2)
L−3|ε〉.

If we expand the analytic results for energy descendants in both the Ising and Potts
model for small x, we find the behaviour

F
(2)
L−n|ε〉 = 1− n+ 2hε

2
(πx)2 +O(x4) hε =

{
1/2 Ising
2/5 Potts

, n = 1, 2, 3 . (57)

This is in general expected, since for small subsystem size z1 ∼ z2 and z3 ∼ z4 and to first
order the four-point function is (h = h̄ = ∆/2)〈

f|∆〉(z1, z̄1)f|∆〉(z2, z̄2)f|∆〉(z3, z̄3)f|∆〉(z4, z̄4)
〉
C '

1

|z12z34|4h
. (58)

Then, using this correlation function in (55) as well as in the corresponding equations for
higher descendants and taking the small x limit we reproduce precisely eq. (57), which is
the clear generalization of eq. (35) in agreement with [21]. However, the leading behaviour

of F
(2)
L−n|σ〉 is different from the one outlined in (57). This happens because in the OPE of
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two Ising spin operator there is an additional contribution, that is absent in the OPE of
two energy operators or subleading in the case of Potts. Indeed, consider in general the
OPE between two primary fields

f|∆i〉(z1, z̄1)f|∆i〉(z2, z̄2) =
1

|z12|4hi
+
Ckii f|∆k〉(z2, z̄2)

|z12|4hi−2hk
. . . (59)

where we included the contribution from the lightest primary field f|∆k〉 in the module of
f|∆i〉. Then, to this order the four-point function for z1 ∼ z2 and z3 ∼ z4 becomes

〈
f|∆i〉(z1, z̄1) . . . f|∆i〉(z4, z̄4)

〉
C '

1

|z12z34|4hi
+

(Ckii)
2

|z12z34|4hi−2hk

1

|z24|4hk
(60)

so that

F
(2)
L−n|∆i〉 = 1−n+ 2hi

2
(πx)2+

(
Ckii

)2
(
c(n− 1)2 + 4nhi + 2n2(hk − 1)hk

c(n− 1)2 + 4nhi

)2 (πx
2

)4hk
+. . .

(61)
The second term is in general a subleading contribution, e.g. in the Potts model ε×ε = I+X
with X having dimension 7/5. However, due to the fusion rule σ × σ = I + ε in Ising, in
this case hk = 1/2, and we see that the second term in (61) contributes to leading order.

Indeed, eq. (61) with Cεσσ = 1
2 correctly predicts the small x behaviour of F

(2)
L−n|σ〉 for

n = 1, 2, 3 that we computed (see appendix C.1.2).
Some results of the REE in the Ising and three-states Potts models were already

considered in [12, 13, 25]; we checked that our code produces the same analytic results
studied in these references.

5.2 Sandwiched Rényi divergence

Consider now the correlator F (2)
|s〉 related to the SRD as in eq. (28) with |s〉 = L−1|∆〉.

Then, we find

F (2)
|s〉 = D̄F(2)D

F(2)
L−1

〈
f|∆〉(e

−iπx)f|∆〉(e
iπx)f|∆〉(−e−iπx)f|∆〉(−eiπx)

〉
C . (62)

From the anti-chiral part of the conformal transformation we now obtain

D̄F(2) = 24h̄ sin4h̄(πx) (63)

and the differential operator acting on the holomorphic coordinates reads

D
F(2)
L−1

=
24h

h2
e−2iπx sin4h(πx)

[
4h4e2iπ(h+1)x

(
e−2iπx

)h
+2h3eiπx

(
1− e2iπx

)
(∂1 + ∂4 − ∂2 − ∂3)

+h2
(
e2iπx − 1

)2
(∂1∂4 + ∂2∂3 − ∂1∂2 − ∂1∂3 − ∂2∂4 − ∂3∂4)

+4ihe2iπx sin3(πx)(∂1∂2∂3 + ∂2∂3∂4 − ∂1∂3∂4 − ∂1∂2∂4)

+
1

4

(
e2iπx − 1

)4
e2iπ(h−1)x

(
e−2iπx

)h
∂1∂2∂3∂4

]
(64)
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Figure 9: The Sandwiched Rényi Divergence between the reduced groundstate and different
descendants of |ε〉 and |σ〉 in the Ising model and |ε〉 in the Potts model.

We explicitly study the results for descendants up to level 3. The general expressions for
D are, however, again too cumbersome to show them here. With the four-point functions

(52), (53), (54) we compute S(2)
|s〉 for the descendants of the energy and spin primary states

in Ising and of the energy state in Potts. The results are plotted in figure 9 and some
closed expressions are given for descendants of the energy state of Ising in appendix C.2.2.

As expected, the SRDs start from 0 and diverge at x = 1/2. We also see from the
plots that for higher level descendants the SRD grows more rapidly. In the Ising model
degenerate descendants of ε at level 2 and 3 produce the same SRDs, while for degenerate
descendants of σ at level 3 we found three different expressions. However, the differences
between the plotted results are so small that the three curves at level 3 overlap in figure 9.
The same happens for descendants of ε in the Potts model.

Now, let us check the limit of small subsystem size. Consider the OPE between two
primary fields (hi = h̄i = ∆i/2)

f∆i(z1, z̄1)f∆i(z2, z̄2) =
1

|z12|4hi
+

2hic
−1 T (z2)

z2hi−2
12 z̄2hi

12

+
2hic

−1 T̄ (z̄2)

z2hi
12 z̄

2hi−2
12

+ . . . , (65)

where for now we only included the leading contributions from the vacuum module. Then,
if we insert this OPE in the four-point function for z1 ∼ z2 and z3 ∼ z4 we obtain

〈
f|∆〉(z1, z̄1) . . . f|∆〉(z4, z̄4)

〉
C '

1

|z12z34|4h
+

2h2c−1

|z12z34|4h
z2

12z
2
34

z4
24

+
2h2c−1

|z12z34|4h
z̄2

12z̄
2
34

z̄4
24

(66)

With this expression we can study the limit x → 0 in (62) and similar expressions for
higher level descendants. We find

S(2)
L−n|∆〉 =

2

c

(
n2 + 2nh+ 2h2

)
(πx)4 + . . . (67)
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Expanding our analytic results for descendants of the energy in Ising and Potts for x→ 0
we found perfect agreement with eq. (67). For σ descendants, however, the leading order
contribution to the SRD in the limit x → 0 is different. Indeed, if we think of the OPE
as in (59) with the correlator (60), then we find the following leading contribution in the
SRD for n = 1, 2, 3

S(2)
L−n|∆i〉 =

(
Ckii

)2
(
c(n− 1)2 + 4nhi + 2n2(hk − 1)hk

c(n− 1)2 + 4nhi

)2

(πx)4hk + . . . (68)

Since hk = 1/2 for |∆i〉 = |σ〉 in the Ising model, we see that the contribution from the
ε channel dominates over the one from the energy momentum tensor in (67). We checked
that (68) with Cεσσ = 1/2 correctly reproduce the x→ 0 limit of our results.

It is interesting to consider also the opposite limit x → 1/2 and see how the SRDs
scale with the singularity. In this case, it is enough to consider the first contribution in
the OPE (65), but making the appropriate changes as with our insertion points x→ 1/2
means z1 ∼ z4 and z2 ∼ z3. Then, for n = 1, 2, 3 we find the following expression

S(2)
L−n|∆〉 = log

(
An

π−4(2h+n)
(
x− 1

2

)−4(2h+n)

)
+ . . . (69)

with

An = (−1)8h

(
(n− 1)(3n− 5)(3n− 4) c2 + 4

(
6n

3 − 1
)
h+ 2(n+ 1)2h2

c(n− 1)2 + 4nh

)2

(70)

Notice that for h→ 0 we recover the same scaling as in (40).
In all the examples that we considered, the SRD proved to be a convex function of x,

providing further evidence to the validity of the Rényi QNEC in two dimensions [53] for
large enough central charge.

5.3 Trace square distance

Consider now the trace square distance between a primary state |∆〉 and its first descen-
dants L−1|∆〉. Then

T
(2)
L−1|∆〉,|∆〉 = D̄T (2)D

T (2)
L−1

〈
f|∆〉(e

− 1
2
iπx)f|∆〉(e

1
2
iπx)f|∆〉(−e−

1
2
iπx)f|∆〉(−e

1
2
iπx)

〉
C

(71)

where again the differential operator on the anti-holomorphic coordinates is simply given
by the transformation factor

D̄T (2) = sin4h̄(πx) (72)
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while the differential operator on the holomorphic coordinates is given by:

D
T (2)
L−1

=
1

64
sin4h(πx)

[
4(3h cos(2πx) + 5h− 4)2 (73)

+2e−
5
2
iπx
(
2e2iπx − 3e4iπx + 1

)
(3h cos(2πx) + 5h− 8)∂1

+2e−
3
2
iπx
(
2e2iπx + e4iπx − 3

)
(3h cos(2πx) + 5h− 8)∂2

+he−
9
2
iπx
(
1 + 3e2iπx

)2 (
2e2iπx + e4iπx − 3

)
∂3

−he−
7
2
iπx
(
3 + e2iπx

)2 (−2e2iπx + 3e4iπx − 1
)
∂4

+8 sin2(πx)(3 cos(2πx) + 5) (∂3∂4 − ∂2∂3 − ∂1∂4)

−e−3iπx
(
2e2iπx + e4iπx − 3

)2
∂2∂4 − 4e−iπx(2i sin(2πx) + cos(2πx)− 1)2∂1∂3

+
8

h
sin2(πx)(3h cos(2πx) + 5h− 8)∂1∂2

+
16

h
e
iπx
2 sin3(πx)(sin(πx) + 2i cos(πx))∂2∂3∂4

+
16

h
e−

1
2
iπx sin4(πx)(1− 2i cot(πx)) (∂1∂3∂4 − ∂1∂2∂3)

1

h
e−

7
2
iπx
(
e2iπx − 1

)3 (
3 + e2iπx

)
∂1∂2∂4 +

16

h2
sin4(πx)∂1∂2∂3∂4

]
Again, we limit ourselves to display this result, which is the simplest, since for higher
descendants the expressions become much more involved. As in the previous cases, we

computed T
(2)
L−n|∆〉,|∆〉 as in (71) for n = 1, 2, 3 and for the degenerate states at level 2

and 3. Then, by using the four-point functions (52), (53), and (54) we obtained analytic
expressions for the TSD between the primary state and its descendants for the energy
and spin operators in the Ising model and for the energy in the three states Potts model.
Figure 10 shows the plots of the results, while in appendix C.3.2 and C.3.3 we provide
some explicit expressions.

In the Ising model we find that degenerate states of the energy density produce the same
TSD w.r.t. the primary state up to level 3. This again is as expected. For spin descendants

instead this is not true at level 3, with T
(2)
L−3|∆〉,|∆〉 6= T

(2)

L3
−1|∆〉,|∆〉

6= T
(2)
L−2L−1|∆〉,|∆〉. However,

in the small and large subsystem size limits we see that these different expressions have
the same behaviour, while they differ the most around x ∼ 1/2. In the Potts model, TSDs
between degenerate states at level 3 and the energy density are again different, but from
the plots we see that the difference is barely visible, and in particular for x→ 0 and x→ 1
it is negligible.

If we study the small subsystem size limit, we can generically predict the behaviour
of the TSD. Consider for instance the OPE between two primary states as given by (65)
and the correlator as in (66). Then, we find the following behaviour in the limit x→ 0 for
n = 1, 2, 3

T
(2)
L−n|∆〉,|∆〉 =

2 + c

16c
n2(πx)4 +O(x6) (74)

in agreement with the vacuum result in (43) and in perfect agreement with the analytic
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Figure 10: TSD between different descendants and their primary state |ε〉 and |σ〉 in the
Ising model and |ε〉 in the Potts model.

results that we found in Ising and Potts models for energy descendants. However, for σ
descendants in the Ising model the next to leading order contribution as x → 0 does not
come from the energy momentum tensor but from the energy field ε in the OPE. Indeed,
consider again the OPE as in (59) with the correlator (60), then the contribution to the
TSD as x→ 0 for n = 1, 2, 3 reads

T
(2)
L−n|∆〉,|∆〉 =

(
Chkhh

)2
(

2n2(hk − 1)hk
c(n− 1)2 + 4nh

)2 (πx
2

)4hk
+ . . . (75)

We see that this term dominates over the one one outlined in (74) for hk < 1, which is
the case for the Ising spin. We checked that (75) with Cεσσ perfectly matches the small x
behaviour of the results for σ in appendix C.3.2.

Consider now the large subsystem size limit x → 1. Then, with our coordinates we
have z1 ∼ z4 and z2 ∼ z3 and by taking the OPE similarly as in (65) but with appropriate
insertion points we find the behaviour

T
(2)
L−n|∆〉,|∆〉 = 2− (2h+

n

2
)π2(x− 1)2 + . . . (76)

that agrees with the x → 1 limit of the explicit results we found for descendants of the
energy in Ising and Potts. Again, for σ descendants we need to take into account the
contribution from the lightest field in the OPE. We then find

T
(2)
L−n|∆〉,|∆〉 = 2

(
Chkhh

)2
Cn

(π
2

)4hk
(x− 1)4hk (77)

where

Cn =
c2(n− 1)4 + 4cn(n− 1)

(
2(n− 1)h+ (1− 2n−1)hk

)
(c(n− 1)2 + 4nh)2

+
(4n)2h2 − (2n)3hhk + 2n4(hk − 1)2h2

k

(c(n− 1)2 + 4nh)2 (78)
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For σ in the Ising model hk = 1/2 and we see that the contribution from the ε channel
sums up with the leading correction in (77). Once this is taken into account, we correctly
match the large x limit of the σ expressions in appendix C.3.2.

6 Conclusion and outlook

In this work we showed how to systematically compute the Rényi entanglement entropy,
the sandwiched Rényi divergence and the trace square distance of generic descendant
states reduced to a single interval subsystem in a conformal field theory. In practice the
computations can be performed with the help of computer algebra programs and with the
implementation of a recursive function that computes any correlator of descendants as a
(differential) operator acting on the correlator of the respective primaries. We explicitly
computed the aforementioned quantum measures for rather low excitation in the vacuum
module and for excitations of primaries in the Ising model and the three-state Potts model.

In particular, from the results in the vacuum module we saw that degenerate descen-
dant states only show equal behaviour for small subsystem sizes. At large central charge
any of the above quantities behaved very different for degenerate states, as outlined al-
ready in sec. 4.1. This may be a hint that the notion of typicality, in particular in the
context of holography, is questionable.

We also checked explicitly if predictions from the generalized version of QNEC [14,53]
are true for descendant states, namely that the sandwiched Rényi divergence is a convex
function of subsystem size. In the Ising model and Potts model in all the cases we checked,
the SRD is a convex function. Nonetheless, we could show that for small but positive central
charge, the SRD of descendant states in fact becomes non-convex. However, as already
stated in section 4.3 theories with central charge smaller than 1/2 are quite unusual.

Many of the analytic expressions that we obtained are too large to show them explic-
itly. However, showing the results in the small subsystem size limit is possible and they
are always in agreement with the expectations from taking the respective limits in the
operator product expansion. We again want to state that one very particular result in
this limit is that the differences of degenerate states is not visible. Only with larger and
larger subsystem size the difference between degenerate states becomes visible (e.g. in the
numerous plots we show).

The existing code that led to our results is openly accessible and can be used to compute
the former quantities for more descendant states or in different models. One could for
example consider quasiprimary states, i.e. sl2 invariant descendant states in the module
and check if they behave special compared to generic descendant states. Other interesting
states to study might be those that correspond to currents of the KdV charges (see e.g.
[64, 65]). The code can also be modified easily to compute other (quantum information
theoretical) quantities as long as it is possible to express them in terms of correlation
functions. There is e.g. a so-called Rényi relative entropy (e.g. considered in [54]) that
could be computed with the methods presented here.

There are also various directions to exploit to improve the code, e.g. the possibility to
use symmetries in the construction that might speed up the computations significantly. A
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faster and more efficient code allows to compute higher Rényi indices or higher descendants
within reasonable time and without too much memory consumption.
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A About the action of conformal transformations

A.1 Mathematica code to obtain the v’s

Poly[m_, f_] := Sum[v[j] t^(j + 1) , {j, 1, m - 1}] D[f, t]

PolyToPowerNN[NN_, m_, f_] := If[NN == 1, Poly[m, f],

PolyToPowerNN[NN - 1, m, Poly[m, f]]]

lhs[MM_] := v[0] t + v[0] Sum[1/i! PolyToPowerNN[i, MM, t], {i, 1, MM}]

Equ[NN_] := Block[{tmp},

tmp=CoefficientList[lhs[NN]

-Sum[a[i] t^i,{i,1,NN}],t][[2;;NN+1]];

{Table[tmp[[i]] == 0, {i, NN}], Table[v[i], {i,0,NN-1}]}

]

ListOfVs[NN_] := Block[{tmp},

tmp = Equ[NN];

Table[v[n],{n,0,NN-1}]/.Solve[tmp[[1]],tmp[[2]]][[1]]]

A.1.1 Example: Coefficients up to j = 5

v0 = a1 , (79)

v1 =
a2

a1
, (80)

v2 =
a1a3 − a2

2

a2
1

, (81)

v3 =
3a3

2 − 5a1a2a3 + 2a2
1a4

2a3
1

, (82)

v4 = −16a4
2 − 37a1a

2
2a3 + 9a2

1a
2
3 + 18a2

1a2a4 − 6a3
1a5

6a4
1

, (83)

v5 =
31a5

2 − 92a1a
3
2a3 + 48a2

1a
2
2a4 − 7a2

1a2

(
−7a2

3 + 3a1a5

)
+ 3a3

1 (−7a3a4 + 2a1a6)

6a5
1

. (84)

A.2 Local action for the uniformization map

For the local action of the uniformization map

w(z) =

(
ze−iπ

l
L − 1

z − e−iπ
l
L

) 1
n

(85)

we need the transformation of local coordinates. We choose the standard local coordinates
on the kth sheet around a point zk

ϕzk(ρ) = ρ+ zk . (86)
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which are mapped to

β̃zk(ρ) =

(
(ρ+ zk) e

− iπl
L − 1

ρ+ zk − e−
iπl
L

) 1
n

. (87)

The standard local coordinates on the plane around w(zk) are simply

βw(zk)(ρ) = ρ+ w(zk) . (88)

Now, the local coordinate change ηzk should satisfy

β̃zk(ρ) = βw(zk)(ηzk(ρ)) (89)

and, hence,

ηzk(ρ) = β−1
w(zk)

(
β̃zk(ρ)

)
. (90)

Since we deal with the standard local coordinates this is straight forward to compute

ηzk(ρ) = β̃zk(ρ)− w(zk) =

(
(ρ+ zk) e

− iπl
L − 1

ρ+ zk − e−
iπl
L

) 1
n

−

(
zke
− iπl

L − 1

zk − e−
iπl
L

) 1
n

, (91)

and hence for the actual insertion points zk = 0k we get

η0k(ρ) = e
2πi(k−1)

n

(ρ e iπlL − 1

ρ− e
iπl
L

) 1
n

− e
iπl
nL

 . (92)

Expanding this around ρ allows us to solve for the coefficients vj appearing in the local
action Γw(0,k) ≡ Γk,l. Up to j = 5 they are given by

v0 =
e

2πi(k−1)
n

+
πi(1−n)l

nL

n

(
e2πi l

L − 1
)
, (93)

v1 = cos

(
πl

L

)
+ i

sin
(
πl
L

)
n

, (94)

v2 =
1− n2

3n2
sin2

(
πl

L

)
, (95)

v3 =
v2

2n

(
n cos

(
πl

L

)
− i sin

(
πl

L

))
, (96)

v4 =
v2

30n2

(
n2 − 4 + 4(n2 + 1) cos

(
2πl

L

)
− 10i n sin

(
2πl

L

))
, (97)

v5 = −
v2 sin

(
πl
L

)
18n3

(
(11n3 + 61n) sin

(
2πl

L

)
+ i(61n2 + 11) cos

(
2πl

L

)
+ i(29n2 − 11)

)
.

Note that for the dual fields we basically have to take the composition of the uniformization
map with the inversion, i.e. we have to repeat the latter arguments for w(1/z). Let us
denote the local coordinate change by θ0k(ρ). It is given by

θ0k(ρ) = η0k(ρ)|l→−l , (98)

s.t. the respective local action is given by Γw(1/z) = Γw(z)Γ1/z ≡ Γk,−l .

33



B About computing correlation functions of descendants

We use the Mathematica implementation of Virasoro by M. Headrick that can be down-
loaded from http://people.brandeis.edu/~headrick/Mathematica/.

B.1 Any N-point function of vacuum descendants

The Mathematica code to compute any correlator of descendants of the vacuum is

VacNptFct[stat_] := Module[{states, ntrivial, TMP, tmp0, tmp1, tmp2},

(*reorders the states s.t. the descendants with more Virasoro

generators are mostleft. This makes the recursion faster:*)

states = Sort[stat,

Length[GetSequence[#1[[1]]]]<Length[GetSequence[#2[[1]]]] &];

(*Checks at which position there are non-trivial descendants:*)

ntrivial = Position[Sign[level[states[[All, 1]]]], 1] // Flatten;

(*When there are no non-trivial descendants the function returns 1.

For only one descendant it returns 0 due to translation invariance.

In any other case it uses the recursion:*)

Which[Length[ntrivial] == 0, 1, Length[ntrivial] == 1, 0, True,

TMP = Table[

RecStep[states[[ntrivial[[1]], 1]], states[[ntrivial[[i]], 1]],

states[[ntrivial[[1]], 2]], states[[ntrivial[[i]], 2]]], {i, 2,

Length[ntrivial]}];

Sum[Sum[

TMP[[j - 1, nn, 1]] VacNptFct[

Table[Which[

i == ntrivial[[1]], {CutFirst[states[[i, 1]]],

states[[i, 2]]},

i == ntrivial[[j]], {TMP[[j - 1, nn, 2]], states[[i, 2]]},

True, states[[i]]], {i, Length[states]}]], {nn,

Length[TMP[[j - 1]]]}], {j, 2, Length[ntrivial]}]

]

]

where we define the functions

RecStep[ L[n1__], L[n2__], z1_, z2_] :=

Module[{tmp1, test},

tmp1 = List @@

Expand[Sum[- Coeff[-{n1}[[1]], n, z1, z2] L[n - 1] ** L[n2] **
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vac, {n, 0, -Plus[n2] + 1}]] ** vac;

tmp1 = ReArr[tmp1];

test = 1;

While[test == 1, test = 0;

For[nnn = 1, nnn < Length[tmp1], nnn++,

If[GetSequence[tmp1[[nnn, 2]]] == GetSequence[tmp1[[nnn + 1, 2]]],

test = 1; tmp1[[nnn, 1]] = tmp1[[nnn, 1]] + tmp1[[nnn + 1, 1]];

tmp1 = Delete[tmp1, nnn + 1]; Break;]]];

tmp1 = Simplify[tmp1]

]

ReArr[a_ L[m__]] := {a, L[m]}

ReArr[ L[m__]] := {1, L[m]}

ReArr[a_ ] := {a, 1}

SetAttributes[ReArr, Listable];

Coeff[m_, n_, zi_, zj_] := (-1)^n Binomial[n + m - 2, n] (zj - zi)^(

1 - m - n)

CutFirst[ L[n__]] := L[{n}[[2 ;; Length[{n}]]] /. List -> Sequence]

The function VacNptFct takes as arguments a list of descendants together with their
coordinates. The descendants are given in the form L[−n1, ...,−nk], where ni ≥ ni+1,
ni ∈ N. The coordinates can either be variables or specific values. For example

VacNptFct[{{L[-2],z},{L[-2],w}}]

gives the result for the two-point function of the energy momentum tensor, c/2
(z−w)4

.

B.2 Any N-point function of descendants of primaries

Given a correlator of descendants of primaries, we compute the differential operator acting
on the correlator of primaries with the function NPtFct:

NPtFct[stat_] :=

Which[

(* checks the input is given in the correct form :*)

And @@ Table[Length[stat[[i]]] != 2, {i, Length[stat]}],

"The number of fields and coordinates do not match!",

(* If there is only one descendant then it returns 0 due to

translational invariance *)

Length[stat] == 1, 0,

True, Module[{states, virpos, derivative, tmp, rec, noone, pr},

(*reorders the states s.t.

the descendants with more Virasoro generators are most left.
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This makes the recursion faster :*)

states =

Sort[stat,

Length[GetSequence[#1[[1]]]] <= Length[GetSequence[#2[[1]]]] &];

pr = FindPermutation[stat, states];

virpos = Position[Sign[level[states[[All, 1]]]], 1] // Flatten;

derivative =

Table[Length[GetSequence[states[[virpos[[i]], 1]]]] ==

level[states[[virpos[[i]], 1]]], {i, 1, Length[virpos]}];

(*When there are no non-

trivial descendants the function returns corrp[...].

If the descendants are only level 1 descendants,

it returns the appropriate derivatives acting on corrp[...].

In any other case it uses the recursion :*)

Which[

Length[virpos] == 0, corrp[stat[[All, 2]] /. List -> Sequence],

And @@ derivative,

Derivative[level[stat[[All, 1]]] /. List -> Sequence][corrp][

stat[[All, 2]] /. List -> Sequence],

True, noone = Position[derivative, False] // Flatten;

rec =

Drop[Table[i, {i, 1, Length[states]}], {virpos[[noone[[1]]]]}];

tmp =

Table[RecStep[states[[virpos[[noone[[1]]]], 1]], states[[i, 1]],

states[[virpos[[noone[[1]]]], 2]], states[[i, 2]]], {i, rec}];

Sum[tmp[[i, j, 1]] NPtFct[

Permute[

ReplacePart[

states, {{virpos[[noone[[1]]]], 1} ->

CutFirst[states[[virpos[[noone[[1]]]], 1]]], {rec[[i]],

1} -> tmp[[i, j, 2]]}], Ordering[PermutationList[pr]]]

], {i, 1, Length[tmp]}, {j, 1, Length[tmp[[i]]]}]]]]

where we define the functions:

RecStep[ L[n1__] ** prim[p1_], L[n2__] ** prim[p2_], z1_, z2_] :=

Module[{tmp1, test},

tmp1 = List @@

Expand[Sum[-Coeff[-{n1}[[1]],n,z1,z2] L[n-1]**L[n2]**prim[p2],

{n, 0, -Plus[n2] + 1}]];

tmp1 = ReArr[tmp1];

test = 1;

While[test == 1, test = 0;

For[nnn = 1, nnn < Length[tmp1], nnn++,
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If[GetSequence[tmp1[[nnn, 2]]] == GetSequence[tmp1[[nnn + 1, 2]]],

test = 1; tmp1[[nnn, 1]] = tmp1[[nnn, 1]] + tmp1[[nnn + 1, 1]];

tmp1 = Delete[tmp1, nnn + 1]; Break;]]];

tmp1 = Simplify[tmp1]

]

RecStep[ L[n1__] ** prim[p1_], prim[p2_], z1_, z2_] :=

Module[{tmp1, test},

tmp1 = List @@

Expand[-Sum[

Coeff[-{n1}[[1]], n, z1, z2] L[n - 1] ** prim[p2], {n, 0, 1}]];

tmp1 = ReArr[tmp1];

test = 1;

While[test == 1, test = 0;

For[nnn = 1, nnn < Length[tmp1], nnn++,

If[GetSequence[tmp1[[nnn, 2]]] == GetSequence[tmp1[[nnn + 1, 2]]],

test = 1; tmp1[[nnn, 1]] = tmp1[[nnn, 1]] + tmp1[[nnn + 1, 1]];

tmp1 = Delete[tmp1, nnn + 1]; Break;]]];

tmp1 = Simplify[tmp1]

]

ReArr[a_ L[m__] ** prim[p_]] := {a, L[m] ** prim[p]}

ReArr[L[m__] ** prim[p_]] := {1, L[m] ** prim[p]}

ReArr[a_ prim[p_]] := {a, prim[p]}

ReArr[prim[p_]] := {1, prim[p]}

SetAttributes[ReArr, Listable];

CutFirst[ L[n__] ** prim[p_]] :=

L[{n}[[2 ;; Length[{n}]]] /. List -> Sequence] ** prim[p]

GetSequence[L[m__] ** prim[p_]] := {m}

GetSequence[prim[p_]] := {}

SetAttributes[GetSequence, Listable];

The function NPtFct takes as arguments a list of N lists, where in the innermost lists the
first entry is the descendant and the second entry is the coordinate. The descendants are
given as L[−n1, ...,−nk]**prim[p], where again ni ≥ ni+1, ni ∈ N and prim[p] denotes
the primary state. For instance,

tp = NPtFct[{ {L[-2] ** prim[p], z}, {L[-1, -1] ** prim[p], w} }]

produces the output

6corrp[z, w]h[p]

(w − z)4
− 2(1 + 2h[p])corrp(0,1)[z, w]

(w − z)3
+

(2 + h[p])corrp(0,2)[z, w]

(w − z)2
+

corrp(0,3)[z, w]

−w + z
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where h[p] is the conformal dimension of prim[p] and the function corrp, which is a
function of the insertion points, denotes the correlator of primaries. The derivatives acting
on it are displayed in the Mathematica language. If we know the explicit expression of
corrp, we can further simplify the output; in our example we can for instance write:

corrp[z1_, z2_] := 1/(z1 - z2)^(2 h[p])

tp // Simplify

Clear[corrp]

to get the explicit result

6(−w + z)−2(2+h[p])h[p]
(
3 + 5h[p] + 2h[p]2

)
C Explicit results

C.1 Rényi entanglement entropy

C.1.1 Vacuum module

The second Rényi entanglement entropy for L−3|0〉, L−4|0〉, and L−5|0〉 are

F
(2)
L−3|0〉 =

sin8(πx) cos4(πx)

64
c2 (99)

+
c sin4(πx) cos2(πx)(255 cos(2πx) + 90 cos(4πx) + 17 cos(6πl) + 1686)

8192

+
sin4(πx)(8391 cos(2πx) + 1890 cos(4πx) + 361 cos(6πx) + 7790)

16384c

+
3032808 cos(2πx) + 819919 cos(4πx)− 27612 cos(6πx)

8388608

+
386 cos(8πx) + 8436 cos(10πx) + 289 cos(12πx) + 4554382

8388608
,
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F
(2)
L−4|0〉 =

c2 sin8(πx)(3 cos(2πx) + 2)4

6400
(100)

+
c sin4(πx)(3 cos(2πx) + 2)2(12760 cos(2πx) + 7396 cos(4πl) + 2152 cos(6πx))

6553600

+
c sin4(πx)(3 cos(2πx) + 2)2(1263 cos(8πx) + 140269)

6553600

+
sin4(πx)(5444642 cos(2πx) + 2684168 cos(4πx) + 913973 cos(6πx))

6553600c

+
sin4(πx)(286934 cos(8πx) + 59049 cos(10πx) + 3718434)

6553600c

+
16641312784 cos(2πx) + 4954285000 cos(4πx) + 1976400688 cos(6πx)

53687091200

+
−121298020 cos(8πx)− 5870960 cos(10πx) + 13794296 cos(12πx)

53687091200

+
18977328 cos(14πx) + 1595169 cos(16πx) + 30207894915

53687091200
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F
(2)
L−5|0〉 =

c2(−16777216 cos(2πx)− 51380224 cos(4πx)− 79691776 cos(6πx))

3435973836800
(101)

+
c2(−98566144 cos(8πx) + 121634816 cos(10πx) + 17825792 cos(12πx))

3435973836800

+
c2(8388608 cos(14πx)− 8388608 cos(16πx)− 33554432 cos(18πx))

3435973836800

+
c2(16777216 cos(20πx) + 123731968)

3435973836800

+
c(−4076806144 cos(2πx)− 9140649984 cos(4πx))

3435973836800

+
c(−14113284096 cos(6πx)− 18862759936 cos(8πx))

3435973836800

+
c(18117304320 cos(10πx)− 27205632 cos(12πx) + 101367808 cos(14πx))

3435973836800

+
c(114972672 cos(16πx)− 28581888 cos(18πx))

3435973836800

+
c(74997760 cos(20πx) + 27840645120)

3435973836800

+
−19727178304 cos(2πx)− 27011932672 cos(4πx)− 22303010688 cos(6πx)

3435973836800c

+
−10523886336 cos(8πx) + 8735760000 cos(10πx) + 2720936448 cos(12πx)

3435973836800c

+
1016710944 cos(14πx) + 879348416 cos(16πx)

3435973836800c

+
919004192 cos(18πx) + 65294248000

3435973836800c

+
967144492584 cos(2πx) + 295129895330 cos(4πx) + 135116995760 cos(6πx)

3435973836800

+
61785824936 cos(8πx)− 5774059280 cos(10πx)− 260030763 cos(12πx)

3435973836800

+
179443820 cos(14πx) + 597122990 cos(16πx) + 506168268 cos(18πx)

3435973836800

+
83814025 cos(20πx) + 1981464169130

3435973836800
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C.1.2 Ising model

Up to level 3 descendants of the energy density operator we find the following results for
the n = 2 Rényi entanglement entropy:

F
(2)
L−1|ε〉 =

(cos(2πx) + 7)(1558 + 439 cos(2πx) + 26 cos(4πx) + 25 cos(6πx))

16384
(102)

F
(2)
L−2|ε〉 =

cos(2πx) + 7

67108864
(6085442 + 1693410 cos(2πx) + 514952 cos(4πx)

+ 49813 cos(6πx) + 9270 cos(8πx) + 35721 cos(10πx)) (103)

= F
(2)

L2
−1|ε〉

F
(2)
L−3|ε〉 =

cos(2πx) + 7

17179869184
(1523423468 + 432147835 cos(2πx) + 111740030 cos(4πx)

+ 65921129 cos(6πx) + 7438836 cos(8πx) + 1584475 cos(10πx)

+ 626850 cos(12πx) + 4601025 cos(14πx)) (104)

= F
(2)

L3
−1|ε〉

= F
(2)
L−2L−1|ε〉

where the common prefactor is due to the factorization of the holomorfic and antiholo-

morfic parts of the correlator. Even though DF (2)

L2
−1
6= DF (2)

L−2
, at level 2 we find the same

entanglement entropy for the different descendants and the same happens at level 3. This
reflects the existence of only one physical state at level 2 and 3.

For σ descendants:

F
(2)
L−1|σ〉 =

435 + 60 cos(2πx) + 17 cos(4πx)

512
(105)

F
(2)
L−2|σ〉 =

1560707 + 438088 cos(2πx) + 75420 cos(4πx)

2097152

+
8312 cos(6πx) + 14625 cos(8πx)

2097152
(106)

= F
(2)

L2
−1|σ〉

F
(2)
L−3|σ〉 =

42511910 + 16535144 cos(2πx) + 2825131 cos(4πx) + 1123684 cos(6πx)

63438848

+
179114 cos(8πx) + 141364 cos(10πx) + 122501 cos(12πx)

63438848
(107)

F
(2)

L3
−1|σ〉

=
3968670881070 + 1175831066472 cos(2πx) + 306581016863 cos(4πx)

5585604968448

+
102222772068 cos(6πx) + 11235770850 cos(8πx)

5585604968448

+
5235592500 cos(10πx) + 15827868625 cos(12πx)

5585604968448
(108)
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F
(2)
L−2L−1|σ〉 =

120071187054 + 40660967528 cos(2πx) + 9353937343 cos(4πx)

173946175488

+
2427785700 cos(6πx) + 860494498 cos(8πx)

173946175488

+
152046004 cos(10πx) + 419757361 cos(12πx)

173946175488
(109)

In this case we have one physical state at level 2, while two physical states at level 3 and
we thus find different expressions for the REEs for degenerate states at level 3.

C.1.3 Three-state Potts model

For the first descendant of the energy density in the three-states Potts model we find:

F
(2)
L−1|ε〉 = 1

64 F
(
−8

5 ,−
1
5 ;−2

5 ; η
)

2(cos(2πx) + 7)2

+ 1
166400

{
F
(
−8

5 ,−
1
5 ;−2

5 ; η
)

sin4(πx)
[
9 sin(πx)

(
49F

(
12
5 ,

19
5 ; 18

5 ; η
)

sin3(πx)

+260F
(

7
5 ,

14
5 ; 13

5 ; η
)

sin(2πx)
)

+ 5200F
(
−3

5 ,
4
5 ; 3

5 ; η
)

cos(πx)

+ 520F
(

2
5 ,

9
5 ; 8

5 ; η
)

(31 cos(2πx) + 41)
]}

−
(

111411200 22/5Γ
(
−8

5

)
Γ
(

17
10

)
Γ
(

12
5

))−1

×
{

Γ
(
−2

5

)
Γ
(

3
10

)
Γ
(

13
5

)
F
(

6
5 ,

13
5 ; 12

5 ; η
)

sin
28
5 (πx)

×
[
34F

(
6
5 ,

13
5 ; 12

5 ; η
)

(14196 cos(2πx) + 15129 cos(4πx) + 7667)

+ 13 sin2(πx)
(
9016F

(
26
5 ,

33
5 ; 32

5 ; η
)

sin6(πx)

+ 17F
(

11
5 ,

18
5 ; 17

5 ; η
)

(8977 cos(πx) + 6479 cos(3πx))

+ 79488F
(

21
5 ,

28
5 ; 27

5 ; η
)

sin4(πx) cos(πx)

+ 99F
(

16
5 ,

23
5 ; 22

5 ; η
)

sin2(πx)(1373 cos(2πx) + 1003)
)]}

(110)

where F ≡ 2F1 is the hypergeometric function and η = sin2
(
πx
2

)
. For higher level de-

scendants the expressions are more involved, and we limit ourselves to show this simplest
example.

C.2 Sandwiched Rényi divergence

C.2.1 Vacuum module

Some explicit expressions for the SRD between the vaccum and light states:
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F
(2)
L−3|0〉 =

e12iπx(−202752 cos(2πx)− 3775424 cos(4πx) + 356352 cos(6πx)

2048c (1 + e2iπx)12 (111)

+
888064 cos(8πx)− 184320 cos(10πx)− 137 cos(12πx) + 27648 cos(14πx)

2048c (1 + e2iπx)12

+
14272 cos(16πx) + 3072 cos(18πx) + 288 cos(20πx) + 2874176)

2048c (1 + e2iπx)12

+
e12iπx(−86237760 cos(2πx) + 49130280 cos(4πx)− 14301120 cos(6πx))

2048 (1 + e2iπx)12

+
e12iπx(2900567 cos(8πx)− 122592 cos(10πx) + 12228 cos(12πx))

2048 (1 + e2iπx)12

+
e12iπx(−1568 cos(14πx)− 2062 cos(16πx)− 416 cos(18πx))

2048 (1 + e2iπx)12

+
e12iπx(276 cos(20πx) + 160 cos(22πl) + 25 cos(24πx) + 57010590)

2048 (1 + e2iπx)12
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F
(2)
L−4|0〉 =

e16iπx(−2183086080 cos(2πx)− 14065619072 cos(4πx))

163840c (1 + e2iπx)16 (112)

+
e16iπx(3329505280 cos(6πx) + 3373021952 cos(8πx)− 1144576000 cos(10πx))

163840c (1 + e2iπx)16

+
e16iπx(−7513472 cos(12πx)− 26378240 cos(14πx) + 22635008 cos(16πx))

163840c (1 + e2iπx)16

+
e16iπx(21217280 cos(18πx) + 10149760 cos(20πl) + 3225600 cos(22πx))

163840c (1 + e2iπx)16

+
e16iπx(693504 cos(24πx) + 92160 cos(26πx) + 5760 cos(28πx) + 10666626560)

163840c (1 + e2iπx)16

+
e16iπx(−1927558100400 cos(2πx) + 1107347224880 cos(4πx))

163840 (1 + e2iπx)16

+
e16iπx(−420523178000 cos(6πx) + 102577128040 cos(8πx))

163840 (1 + e2iπx)16

+
e16iπx(−14129186800 cos(10πx) + 1083586960 cos(12πx))

163840 (1 + e2iπx)16

+
e16iπx(−18763600 cos(14πx) + 2105260 cos(16πx)− 2374000 cos(18πl))

163840 (1 + e2iπx)16

+
e16iπx(−2296400 cos(20πx)− 722000 cos(22πx) + 205400 cos(24πx))

163840 (1 + e2iπx)16

+
e16iπx(286800 cos(26πx) + 120720 cos(28πx) + 25200 cos(30πl))

163840 (1 + e2iπx)16

+
e16iπx(2205 cos(32πx) + 1161961353975)

163840 (1 + e2iπx)16

C.2.2 Ising model

We present here some of the correlation functions related to the SRD computation. For
simplicity we show only the results for ε descendants in the Ising model:

F (2)
L−1|ε〉 =

(cos(4πx) + 7)

4096 cos8(πx)
(954− 776 cos(2πx) + 319 cos(4πx) + 4 cos(6πx)

+ 6 cos(8πx) + 4 cos(10πx) + cos(12πx)) (113)
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F (2)
L−2|ε〉 =

(cos(4πx) + 7)

1048576 cos12(πx)
(1546754− 2155216 cos(2πx) + 864034 cos(4πx)

− 139296 cos(6πx) + 13320 cos(8πx) + 224 cos(10πx)

+ 469 cos(12πx) + 456 cos(14πx) + 246 cos(16πx)

+ 72 cos(18πx) + 9 cos(20πx)) (114)

= F (2)

L2
−1|ε〉

F (2)
L−3|ε〉 =

(cos(4πx) + 7)

67108864 cos16(πx)
(938450676− 1469899184 cos(2πx) + 710758371 cos(4πx)

− 201143980 cos(6πx) + 32581122 cos(8πx)

− 2510220 cos(10πx) + 99537 cos(12πx) + 5080 cos(14πx)

+ 13484 cos(16πx) + 15448 cos(18πx) + 11059 cos(20πx)

+ 5260 cos(22πx) + 1630 cos(24πx) + 300 cos(26πx)

+ 25 cos(28πx)) (115)

= F (2)

L3
−1|ε〉

= F (2)
L−2L−1|ε〉

C.3 Trace square distance

C.3.1 Vacuum module

Some explicit expressions for the TSD between light states:

T
(2)
L−3|0〉,|0〉 =

1

64
c2 sin8(πx) cos4(πx) (116)

− c sin6(πx) cos2(πx)(124 cos(2πx) + 17 cos(4πx) + 243)

2048

+
sin4(πx)(8391 cos(2πx) + 1890 cos(4πx) + 361 cos(6πx) + 7790)

16384c

+
−7864320 cos(πx) + 1984232 cos(2πx)− 524288 cos(3πx)

8388608

+
295631 cos(4πx)− 27612 cos(6πx) + 386 cos(8πx)

8388608

+
8436 cos(10πx) + 289 cos(12πx) + 6127246

8388608
.
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T
(2)
L−3|0〉,L−2|0〉 =

c2 sin8(πx)(2 cos(2πx) + 1)2

1024
(117)

− 1

512
c sin6

(πx
2

)
cos4

(πx
2

)
(1571 cos(πx)− 194 cos(2πx)

+ 317 cos(3πx) + 252 cos(4πx)

+ 143 cos(5πx) + 34 cos(6πx)

+ 17 cos(7πx)− 604)

+
sin4(πx)(−3968 cos(πx) + 967 cos(2πx)− 128 cos(3πx))

16384c

+
sin4(πx)(738 cos(4πx) + 361 cos(6πx) + 4078)

16384c

+
sin4

(
πx
2

)
(−332488 cos(πx) + 332370 cos(2πx) + 1936 cos(3πx))

524288

+
sin4

(
πx
2

)
(−8856 cos(4πx) + 29776 cos(5πx) + 56205 cos(6πx))

524288

+
sin4

(
πx
2

)
(37476 cos(7πx) + 10814 cos(8πx) + 1156 cos(9πx))

524288

+
sin4

(
πx
2

)
(289 cos(10πx) + 395610)

524288

T
(2)
L−4|0〉,|0〉 =

c2 sin8(πx)(3 cos(2πx) + 2)4

6400
(118)

− c sin6(πx)(3 cos(2πx) + 2)2(15489 cos(2πx) + 4678 cos(4πx))

1638400

− c sin6(πx)(3 cos(2πx) + 2)2(1263 cos(6πx) + 19530)

1638400

+
sin4(πx)(5444642 cos(2πx) + 2684168 cos(4πx))

6553600c

+
sin4(πx)(913973 cos(6πx) + 286934 cos(8πx) + 59049 cos(10πx) + 3718434)

6553600c

+
−48486154240 cos(πx) + 12614780944 cos(2πx)− 4445962240 cos(3πx)

53687091200

+
2269930440 cos(4πx)− 754974720 cos(5πx) + 634223408 cos(6πx)

53687091200

+
−121298020 cos(8πx)− 5870960 cos(10πx) + 13794296 cos(12πx)

53687091200

+
18977328 cos(14πx) + 1595169 cos(16πx) + 38260958595

53687091200
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C.3.2 Ising model

Some results for ε descendants in the Ising models:

T
(2)
L−1|ε〉,|ε〉 =

(cos(2πx) + 7)

1024
sin4

(πx
2

)
(11 + 92 cos(πx) + 148 cos(2πx)

+ 100 cos(3πx) + 25 cos(4πx)) (119)

T
(2)
L−2|ε〉,|ε〉 =

(cos(2πx) + 7)

4194304
sin4

(πx
2

)
(2347723 + 2430412 cos(πx) + 1872304 cos(2πx)

+ 1393796 cos(3πx) + 1144940 cos(4πx) + 751500 cos(5πx)

+ 366480 cos(6πx) + 142884 cos(7πx) + 35721 cos(8πx))

(120)

= T
(2)

L2
−1|ε〉,|ε〉

T
(2)
L−3|ε〉,|ε〉 =

(cos(2πx) + 7)

1073741824
sin4

(πx
2

)
(912429118 + 1218353112 cos(πx)

+ 998414040 cos(2πx) + 780711528 cos(3πx)

+ 629316847 cos(4πx) + 497152212 cos(5πx)

+ 393829628 cos(6πx) + 276532300 cos(7πx)

+ 168888850 cos(8πx) + 94527900 cos(9πx)

+ 46637100 cos(10πx) + 18404100 cos(11πx)

+ 4601025 cos(12πx)) (121)

= T
(2)

L3
−1|ε〉,|ε〉

= T
(2)
L−2L−1|ε〉,|ε〉

For σ descendants:

T
(2)
L−1|σ〉,|σ〉 = −

cos2
(
πx
2

)√
csc
(
πx
2

)
32768 sin

7
2

(
πx
2

)
(cos(πx) + 1)5/4

{
66752 23/4

√
sin7

(πx
2

)
sin(πx)

+ 4
√

cos(πx) + 1
[
46488 cos(πx)− 16137 cos(2πx) + 3612 cos(3πx)

− 1006 cos(4πx) + 76 cos(5πx)− 7 cos(6πx)
]
− 33026 4

√
cos(πx) + 1

− 16
4
√

2 sin4
(πx

2

)√
cos
(πx

2

)[
− 3888 cos(πx)− 804 cos(2πx)

+ 48 cos(3πx) + 129 cos(4πx) + 7099
]}

(122)
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T
(2)
L−2|σ〉,|σ〉 =

(
33554432 23/4 sin

5
4 (πx)

√
csc
(πx

2

))−1
{

2
[
51995040 cos(πx)

+ 6726368 cos(2πx)− 50083264 cos(3πx)− 27705396 cos(4πx)

− 23115584 cos(5πx) + 3517116 cos(6πx)− 1600624 cos(7πx)

+ 688029 cos(8πx)− 18480 cos(9πx) + 36 cos(10πx) + 93860567
]

× 4

√
sin3(πx)(cos(πx) + 1) +

[
− 124036846 sin(πx)− 131438432 sin(2πx)

− 31447124 sin(3πx) + 24870528 sin(4πx) + 31182128 sin(5πx)

+ 21514960 sin(6πx)− 2930095 sin(7πx) + 1582144 sin(8πx)

− 453993 sin(9πx) + 18480 sin(10πx)− 36 sin(11πx)
]

4

√
cot
(πx

2

)}
(123)

= T
(2)

L2
−1|σ〉,|σ〉

T
(2)
L−3|σ〉,|σ〉 =

(
64961380352 23/4 sin

5
4 (πx)

√
csc
(πx

2

))−1

×

{[
− 804063279604 sin(πx)− 679262872576 sin(2πx)

− 676379752341 sin(3πx)− 151873435008 sin(4πx) + 78179526785 sin(5πx)

+ 162043727616 sin(6πx) + 203623756022 sin(7πx) + 116161263104 sin(8πx)

+ 68995216314 sin(9πx) + 27584342272 sin(10πx)− 1884177607 sin(11πx)

+ 2161088640 sin(12πx)− 1097984829 sin(13πx) + 30000(1568 sin(14πx)

+ 93 sin(15πx))
]

4

√
cot
(πx

2

)
− 2
[
− 463898496256 cos(πx)

− 339771582456 cos(2πx) + 161014585088 cos(3πx)

+ 347509883805 cos(4πx) + 308827933824 cos(5πx) + 269411694364 cos(6πx)

+ 145953734016 cos(7πx) + 65832431142 cos(8πx) + 29792470912 cos(9πx)

− 3124129172 cos(10πx) + 2208128640 cos(11πx)− 1220635853 cos(12πx)

+ 47040000 cos(13πx) + 2790000 cos(14πx)

− 619071617270
]

4

√
sin3(πx)(cos(πx) + 1)

}
(124)

For degenerate states at level 3 the expressions are different, but we report here only one
for simplicity.
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C.3.3 Three-states Potts model

In the following an example of TSD between a descendant of ε and the primary state itself
in the Potts model:

T
(2)
L−1|ε〉,|ε〉 =

1

8
F
(
−8

5 ,−
1
5 ;−2

5 ; η
)

2 sin4
(πx

2

)
(4 cos(πx) + cos(2πx) + 19)

+
1

5200

{
(F
(
−8

5 ,−
1
5 ;−2

5 ; η
)

sin10
(πx

2

)
cos8

(πx
2

)
csc6(πx)

×
[
(41600F

(
−3

5 ,
4
5 ; 3

5 ; η
)

(2 cos(πx) + cos(2πx)− 15) + 32 cos2
(πx

2

)
×
(

9 sin(πx)
(
49F

(
12
5 ,

19
5 ; 18

5 ; η
)

sin3(πx) + 260F
(

7
5 ,

14
5 ; 13

5 ; η
)

sin(2πx)
)

+ 520F
(

2
5 ,

9
5 ; 8

5 ; η
)

(31 cos(2πx) + 9)

)]}

−
(

1782579200 22/5Γ

(
−8

5

)
Γ

(
17

10

)
Γ

(
12

5

))−1

×

{
Γ

(
−2

5

)
Γ

(
3

10

)
Γ

(
13

5

)
F
(

6
5 ,

13
5 ; 12

5 ; η
)

sin
28
5 (πx)

×
[
544F

(
6
5 ,

13
5 ; 12

5 ; η
)

(9600 cos(πx)− 17164 cos(2πx) + 15129 cos(4πx)

− 1293) + 208 sin2(πx)

(
9016F

(
26
5 ,

33
5 ; 32

5 ; η
)

sin6(πx) + 17F
(

11
5 ,

18
5 ; 17

5 ; η
)

× (3697 cos(πx) + 6479 cos(3πx) + 800) + 79488F
(

21
5 ,

28
5 ; 27

5 ; η
)

sin4(πx)

× cos(πx) + 99F
(

16
5 ,

23
5 ; 22

5 ; η
)

sin2(πx)(1373 cos(2πx) + 843)

)]}
(125)

where F ≡ 2F1 is the hypergeometric function and η = sin2
(
πx
2

)
. We computed also TSDs

for higher level descendants, but the expressions are more complicated and we won’t show
them here.
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