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Pandemic Vibrio cholerae shuts down site-specific
recombination to retain an interbacterial defence
mechanism

Francis J. Santoriello® "2, Lina Michel®, Daniel Unterweger3'4 & Stefan Pukatzki® 2%

Vibrio cholerae is an aquatic microbe that can be divided into three subtypes: harmless
environmental strains, localised pathogenic strains, and pandemic strains causing global
cholera outbreaks. Each type has a contact-dependent type VI secretion system (T6SS) that
kills neighbouring competitors by translocating unique toxic effector proteins. Pandemic
isolates possess identical effectors, indicating that T6SS effectors may affect pandemicity.
Here, we show that one of the T6SS gene clusters (Aux3) exists in two states: a mobile,
prophage-like element in a small subset of environmental strains, and a truncated Aux3
unique to and conserved in pandemic isolates. Environmental Aux3 can be readily excised
from and integrated into the genome via site-specific recombination, whereas pandemic
Aux3 recombination is reduced. Our data suggest that environmental Aux3 acquisition
conferred increased competitive fitness to pre-pandemic V. cholerae, leading to grounding of
the element in the chromosome and propagation throughout the pandemic clade.
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ibrio cholerae, the causative agent of the diarrheal disease

cholera, causes natural pandemics. Strains of the Ol

Classical biotype caused the first six pandemics, and the
O1 El Tor biotype currently causes the 7th pandemic!-3. Pan-
demic strains cause diarrheal disease with the virulence factors
cholera toxin (CT) and toxin co-regulated pilus (TCP)*-7. Several
non-O1 strains, however, carry these main virulence factors and
cause isolated cases of cholera-like illness without causing pan-
demic outbreaks3-10. The full set of factors driving V. cholerae
pandemicity is unknown.

In its aquatic reservoir and the human small intestine,
V. cholerae competes with other bacteria and predatory eukar-
yotic cells via the type VI secretion system (T6SS), a contractile
nanomachine resembling a T4 bacteriophage that kills compe-
titors through the contact-dependent translocation of toxic
effectors!1-1°, The components of the T6SS are encoded in three
clusters (the large cluster, auxiliary cluster 1 (Aux1) and auxiliary
cluster 2 (Aux2)), each terminating in an effector/immunity (E/I)
pairl®-18, While T6 effectors are toxic to distinct bacteria, kin
cells are protected by cognate immunity proteins!8-20. Tt is
hypothesised that this allows a strain to propagate clonally?l.
Comparative genomic studies of V. cholerae T6SS clusters show
that all pandemic strains carry an identical set of effector
genes (A-type), but environmental strains encode variable E/I
subtypes?223. Pan-genome phylogeny of V. cholerae does not
reflect the dispersion of these effector subtypes?3, suggesting E/I
evolution by horizontal gene transfer (HGT). V. cholerae in both
the estuarine environment and its human host is exposed
to exogenous DNA, bacteriophage and conjugative elements.
Further, when in contact with chitin, V. cholerae upregulates the
T6SS and natural competence machinery?4-26, driving rapid
evolution via inter- and intra-species competition and the uptake
of prey DNA. Recently, chitin-induced horizontal transfer of
V. cholerae T6SS effectors was demonstrated in vitro?’. These
studies indicate the aquatic environment as a reservoir for the
acquisition of new E/I subtypes.

Some T6SS components are bacteriophage structural homo-
logues!2-14, suggesting that the T6SS is the repurposing of one or
more prophages. V. cholerae T6SS clusters do not, however,
reflect typical prophage genomic organisation or encode func-
tional recombinases. Seventh pandemic El Tor biotype strains
encode several genomic islands that do encode phage-like
recombination machinery and catalyse site-specific recombina-
tion: CTX phage, the SXT element, VPI-1, VPI-2, VSP-I and
VSP-1128-33 For three of these elements (VPI-1, VPI-2 and VSP-
II), integration into and excision from the host chromosome is
catalysed by the tyrosine recombinases IntV1, IntV2 and IntV3,
respectively303134, Tyrosine recombinases do not effectively
catalyse excision from the chromosome on their own and require
assistance from small DNA-binding proteins called recombina-
tion directionality factors (RDFs)3>~38, Pandemic Ol El Tor
V. cholerae strains encode three RDFs (vefA and vefB on VPI-2 as
well as vefC on VSP-II), all three of which can promote the
excision of both VPI-1 and VPI-23%40, These data support the
idea that PAIs encoding bacteriophage-like recombination
machinery play an integral role in the development of pandemic
V. cholerae strains.

Recently, Altindis et al.#! identified a fourth T6SS cluster in
V. cholerae. This cluster, designated auxiliary cluster 3 (Aux3),
encodes a proline-alanine-alanine-arginine motif adaptor pro-
tein (PAAR?2) that serves to sharpen the tail-spike of the T6SS, a
hydrolase (TseH), and its cognate immunity protein (TsiH). TseH
is loaded onto the tip of the T6SS with the assistance of the PAAR
adaptor and translocated into the target cell, where it catalyses
peptidoglycan degradation*2. Periplasmic localisation of TsiH
neutralises this degradation*!. Unlike the three core T6SS

clusters, Aux3 is not conserved in all sequenced V. cholerae
straing?343,

Here, we demonstrate that Aux3 extends upstream to include
an integrase and a transposase, and that phage-like att sites flank
the region from the integrase to tsiH. By analysing 749 V. cholerae
genomes, we find that the Aux3 element is encoded in 572 strains
of which 566 (99%) encode CT, TCP and a pandemic A-type
T6SS effector set?>23. Based on phylogenetic analysis of a subset
of strains, we show that Aux3 appears to have expanded within
the entire pandemic lineage. We further determine that Aux3 is
present in nine non-pandemic environmental isolates. The
environmental Aux3, however, encodes 42-47 extra bacterioph-
age homologues and appears to move by HGT, indicating that the
pandemic Aux3 is likely the evolutionary remnant of a prophage-
like element circulating in the aquatic reservoir. We show that the
environmental Aux3 module is excised from and integrated into
the host genome by Aux3 integrase-catalysed site-specific
recombination. Finally, we show that Aux3 excision in pandemic
V. cholerae strains is significantly reduced due to both the loss of
an RDF gene and decreased functionality of the pandemic Aux3
integrase. These findings highlight Aux3 as a mobile genetic
element (MGE) that was locked into the pandemic V. cholerae
lineage making the pandemic form of Aux3 the only T6SS cluster
unique to pandemic strains.

Results

Phage-like att sites flank T6SS cluster Aux3. Analysis of Aux3
in O1 El Tor strain N16961 revealed that the genes encoding
PAAR2, TseH and TsiH (VCA0284-VCA0286) are immediately
downstream from two genes annotated as “phage integrase”
(VCAO0281, int) and “IS5 transposase” (VCA0282, insH; Fig. 1a).
Sliding-window analysis of the region from VCA0280-VCA0287
reveals blocks of variable GC content within Aux3 compared to
the surrounding genomic flanks (Fig. 1a). Based on this proxi-
mity to putative recombinases and the differential GC content of
this region, we hypothesised that this cluster constitutes a
potential MGE. Recombinase-encoding MGEs are often flanked
by repeat elements (attachment (att) sites) that serve as the locus
of enzyme binding and DNA recombination. Alignment of
Aux3-encoding and Aux3-naive V. cholerae strains reveals a
single recombinant site on either side of Aux3 indicative of site-
specific recombination (Supplementary Fig. 1a). We thus probed
the intergenic sequences between gcvT (VCA0280) and int as
well as tsiH and thrS (VCA0287) for repetitive sequences and
identified two long, direct repeats (referred to as repeat 1 and
repeat 2) separated by ~40 bp on either side of Aux3 (Fig. 1b and
Supplementary Fig. 1b). Alignment of the Aux3 upstream and
downstream intergenic sequences from O1 El Tor strain N16961
with the intergenic region between gcvT and thrS from the naive
chromosome (encoding single copies of repeat 1 and repeat 2)
from environmental strain DL4215 shows strong homology
upstream and downstream of repeat 2 (Supplementary Fig. 1c).
These results indicate that the sequence between the Aux3-
flanking repeat 2 sequences is Aux3-derived, while the sequence
outside these sites is derived from the Aux3-naive genome. We
propose that repeat 2 is the relevant att site for Aux3 recom-
bination and have renamed the upstream and downstream
repeat 2 sequences attL_Aux3 and attR_Aux3, respectively.
Importantly, attL_Aux3 and attR_Aux3 are found flanking
Aux3 in all analysed Aux3-encoding V. cholerae strains, and
attB_Aux3 exists in a single copy between gevT and thrS in
all Aux3-naive strains (Fig. 1c). These findings demonstrate
that Aux3 extends from VCA0281-VCAO0286 and potentially
constitutes an MGE capable of excising from the genome by
site-specific recombination.
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Fig. 1 T6SS Aux3 module is flanked by conserved phage-like att sites.
a Local GC content of the N16961 Aux3 cluster and the flanking regions.
Aux3 genes are shown in green and the genomic flanks in blue. GC content
(blue line) and AT content (green line) are shown. b Intergenic regions
flanking Aux3 contain repeated sequences. Direct repeat sequences are
boxed and shown in grey (repeat 1) and orange (repeat 2 or attl_Aux3/
attR_Aux3). ¢ Alignment of phage-like att sites from Aux3-encoding strains
(N16961, C6706, A1552, AM-19226 and 1154-74) and Aux3-naive
environmental strains (DL4215 and DL4211). Both attl_Aux3 (top) and
attR_Aux3 (bottom) are represented for Aux3-encoding strains, and
attB_Aux3 is shown for each naive strain. The average GC content is shown,
as att sites are typically AT-rich regions.

Aux3 is conserved and enriched in Ol pandemic strains.
A BLASTN search of the El Tor N16961 Aux3 module in 14
pandemic and 11 environmental V. cholerae genomes revealed
complete conservation of the Aux3 module across pandemic
O1 strains of both the Classical and El Tor biotypes, while all
analysed environmental strains lacked Aux3 (Supplementary
Fig. 1a). To determine the scale of Aux3 enrichment in pandemic
V. cholerae strains, we probed the coincidence of tseH with the
pandemic A-type T6SS effectors tseL, vasX and vgrG32223, as well
as ctxAB and tcpA. We performed a MegaBlast search for these
six loci across 749 V. cholerae genomes from the PATRIC data-
base** to determine the grade (a weighted score accounting for
query coverage as well as pairwise identity) for each locus in each
genome. Strains were grouped based on having >99% grade to
tseH as well as >99% grade to the A-type effectors. Of a total
547 strains with hits for tseH, 461 strains had a grade of >99% for
tseH, tseL, vasX and vgrG3, corresponding to an enrichment of
tseH in pandemic strains of p = 2.2 x 10716 by Fisher’s Exact Test
(Supplementary Table 4 and Supplementary Data 1). Due to the
fragmented nature of available V. cholerae genomes in the
PATRIC database, this enrichment is likely an underestimation.
We expanded our analysis to include all strains with tseH
regardless of grade and found that 566 of 572 tseH-encoding

strains also encoded tseL, vasX, vgrG3, ctxAB and tcpA (Supple-
mentary Fig. 2a). It is important to note that the Aux3 element is
absent from non-O1/0139 pathogenic strains that do not cause
pandemics but carry the major virulence factors CT and TCP
(Supplementary Fig. 3). These data demonstrate that Aux3 is
enriched in the subset of V. cholerae strains with the largest
impact on global health.

Pandemic Aux3 is related to a prophage-like element. Our
MegaBlast search for tseH, tseL, vasX and vgrG3 in the V. cholerae
genomes in the PATRIC database revealed six tseH-encoding
strains that lack tseL and ctxAB (Supplementary Fig. 2a, b). Three
of these strains are environmental O1 strains (2012Env-9, Env390
and 2479-86), two of which encode the toxin co-regulated pilus
(2012Env-9 and Env390). The remaining three strains (AM-
19226, 1154-74 and P-18748) are non-O1/0139 isolates. Inves-
tigation of the region between gcvT and thrS in these strains
revealed an Aux3 cluster ~40 kb in length compared to the 6-kb-
long module found in pandemic strains (Fig. 2a). A MegaBlast
search for this region in NCBI returned three more strains
with this elongated Aux3 element (V. cholerae str. 20000, Vibrio
sp. 2015V-1076, and Vibrio sp. 2017V-1038). Importantly,
attL_Aux3 and attR_Aux3 flank the Aux3 region in each of these
strains (Fig. 1c).

Alignment of the Aux3 region in these nine environmental
strains reveals variability in the additional sequence between
VCAO0281 and VCA0284, with most of the variability in the 5
half of the region (Supplementary Fig. 4a). Further, all
environmental strains lack VCA0282 (Supplementary Fig. 4a).
Analysis of these nine environmental strains by PHASTER*
predicts that the Aux3 region in non-pandemic strains resembles
an intact prophage of the Mpyoviridae family (Fig. 2b and
Supplementary Fig. 5). Closer examination of the annotated
coding regions in the environmental Aux3 elements reveals that
the 5" half of each element is composed primarily of phage
regulatory genes like cro and cII, toxins, methylases, holins and
other non-structural genes, but these cassettes vary between
strains (Fig. 2c and Supplementary Data 2). The 3’ half of each
environmental Aux3 element is more highly conserved and is
composed of tailed phage structural genes including capsid, tail,
sheath, tube and baseplate (Fig. 2c and Supplementary Data 2).
To assess whether this region produces a phage particle, we
collected and precipitated supernatants from V. cholerae 1154-74
and 0395. V. cholerae 0395 produces the filamentous CTX
phage, while 1154-74 encodes a predicted Inovirus (filamentous
phage) and the predicted Aux3 Myovirus (tailed phage). We were
able to isolate filamentous phage from both 0395 and 1154-74,
but were not able to detect any tailed phage particles in the 1154-
74 supernatant (Supplementary Fig. 4b). Despite its genetic
resemblance to an intact prophage sequence, we cannot state that
Aux3E encodes an intact prophage.

We performed a core genome alignment of 69 pandemic and
environmental V. cholerae strains as well as 8 Vibrio sp. and one
V. mimicus isolate (outgroup), which shows that the incidence of
Aux3 in environmental strains is not reflective of phylogeny
(Fig. 3). This scenario leads us to conclude that while Aux3® likely
expanded clonally in pandemic strains, Aux3F may circulate
environmentally by HGT. We hypothesise that the evolution of
Aux3P in the pandemic lineage began with the integration of a
horizontally transferred phage-like element which then under-
went a large deletion event to generate the smaller module
(Fig. 2d). The inverse event, in which Aux3P gained excess
prophage-related genes in a large insertion event to form Aux3E,
is also a possible scenario. All Aux3E strains lack insH (VCA0282)
(Supplementary Fig. 4a), leading us to assume that the insertion
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Fig. 2 Environmental tseH-encoding V. cholerae strains carry an alternative prophage-like Aux3 element. a MAUVE alignment of Aux3 from pandemic
strain N16961 and environmental strain AM-19226. Flanking genes are shown in blue. Pandemic Aux3 genes are shown in green. Black bars indicate
nucleotide agreements and grey bars indicate differences. b PHASTER genome diagram showing predicted Aux3 prophage region from the leading
integrase (VCA0281) through the superintegron integrase (VCA0291) in AM-19226. Coding regions are coloured according to homology to broad
categories of known phage genes. Light grey box indicates region not called by PHASTER but verified manually. ¢ Maximum-likelihood tree of Aux3E
modules based on core gene SNPs with associated Aux3E gene content. Each filled box indicates a gene in the Aux3 module of the associated strain.
Conserved genes (>70% amino acid identity) are aligned vertically. Conserved domain hits are indicated. Bootstrapping support values are indicated next
to their respective branches. d Schematic of proposed Aux3 module evolution from Aux3-naive environmental to Aux3P strains. Conserved regions
between steps are highlighted in light blue (environmental to pandemic Aux3P) or grey (Aux3E to Aux3P). Asterisk indicates a putative unseen
intermediate stage in Aux3 evolution. Dashed arrow indicates alternate hypothesis of a large insertion to form Aux3E.

of this element occurred in an evolutionary intermediate (Fig. 2d).
We have not yet identified a strain encoding this intermediate
Aux3P that lacks the IS5 element. These data support the idea that
Aux3 exists in two basic states, environmental Aux3 (Aux3E) and
pandemic Aux3 (Aux3P), that share a common origin.

Aux3 is excised from the host chromosome at a defined site. A
BLASTP search for the Aux3 integrase amino acid sequence
returned a conserved domain hit for “integrase P4”, a common
integrase in temperate phages and PAIs known to catalyse inte-
gration and excision30-31:4047 During excision, recombination
occurs between attL and attR to reform attB at the chromosomal
excision junction and attP on the excised circular DNA
element484° (Fig. 4a). Thus, we aimed to determine if Aux3
excises from the genome to form a circular element. We tested
this hypothesis by inverted PCR with primers outside of the att
sites (P1/P4) and primers inside the att sites facing outward (P2/
P3 or P2.2/P3.2; Fig. 4a). With this design, P1/P4 will only be
brought into proximity for amplification upon excision and P2/
P3 will only be in the right orientation upon circularisation. We
tested two Aux3E strains (AM-19226 and 1154-74), three Aux3F
strains (N16961, C6706 and A1552), and two Aux3-naive strains
(DL4215 and DL4211)%9 for excision/circularisation. After 4 h of
logarithmic growth, excision of the element is detectable in all

4

Aux3-encoding strains (Fig. 4b). A band indicative of excision
is also evident in the tested environmental strains due to
the identical nature of the Aux3-naive and Aux3-excised
states. Further, the circular Aux3 module was present in all
Aux3-encoding strains and absent from Aux3-naive strains
(Fig. 4b). PCR products were validated by Sanger sequencing
against the expected chromosomal and plasmid excision junc-
tions (Supplementary Fig. 6a).

To assess the likelihood of Aux3 module transfer to a naive
strain, we measured the incidence of Aux3 excision in each strain
by quantitative PCR (qPCR). Primers were designed against the
Aux3-naive repeats to amplify either repeat 1 or attB_Aux3 as
well as the circular Aux3 junction attP_Aux3. This experimental
setup allows us to quantify excision (reversion to the naive state)
at each chromosomal site and the presence of circular Aux3
modules (Supplementary Fig. 6b). With two repeat sites in the
intergenic flanks, there are two potential integration states of
Aux3. Measuring the reversion to a naive site at both repeat 1 and
attB_Aux3 allows us to confirm the site of recombination. Our
results show that when normalised to total genomic DNA,
repeat 1 is present at a ratio of ~1 in all tested strains (Fig. 4c),
indicating that repeat 1 is constant. The incidence of attB_Aux3 is
~1/50 genomes for Aux3E strains and ~1/200 genomes
for Aux3P strains (Fig. 4c), supporting attB_Aux3 as the site of
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Fig. 3 The Aux3 element is enriched in pandemic V. cholerae and sporadically distributed in environmental strains. A phylogenetic tree was constructed
using the GTR Gamma Maximum likelihood model in RAXML based on core genome SNP alignment of 69 V. cholerae, 8 Vibrio sp. and 1 V. mimicus genome
sequences. Bootstrapping support values are indicated next to their respective branches. Nodes with support values <70 were collapsed. Presence (black
square) or absence (white square) of CT, TCP, O1/0139 antigen and the Aux3E or Aux3P module is indicated. Environmental (yellow), O1 Classical (green),
Pre-7th Pandemic O1 El Tor (light blue), 7th Pandemic O1 El Tor (dark blue) and O139 (red) strains are highlighted.

recombination. Time course analysis was performed to assess
changes in excision and circularisation in Aux3F strain AM-
19226 during the progression to stationary phase. The portion of
genomes with a reformed attB_Aux3 remains constant over the

AM-19226 growth curve, while the normalised quantity of
circular Aux3F module increases over the AM-19226 growth
curve (Fig. 4d). We find that by 4 h of logarithmic growth there is
significantly more Aux3E attP_Aux3 junctions than there are
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attB_Aux3 junctions. This may indicate that the Aux3E module
carries an origin of replication, further supporting the idea that
Aux3E is of prophage origin. Finally, while we can detect both the
recombined, circular Aux3 module and the chromosomal
excision scar in A1552 and AM-19226, we are unable to isolate
colonies that have lost the Aux3 module (Supplementary Fig. 6d),
leading us to hypothesise that Aux3 is likely excised from the
genomes of dying cells.

Aux3E and Aux3P strains catalyse excision differentially. To
investigate the role of the Aux3P-encoded int and insH recom-
binases in modular excision, each recombinase was deleted from
the A1552 chromosome. Aux3? circularisation was assessed by
inverted PCR with primers over the circular junction. New

circularisation primers (P2.2/P3.2) were designed because the
original P2 primer binds within the deleted integrase sequence
(Fig. 4a). Neither single recombinase deletion nor a double
knockout abolished circularisation of the Aux3® module in
A1552 (Fig. 4e). This could indicate the involvement of an
unidentified Aux3-extrinsic recombinase in A1552, as integrase
cross-talk between V. cholerae PAIs has been previously
reported?’. Deletion of the corresponding int gene in the Aux3E
strain AM-19226 largely suppressed modular circularisation,
and trans-complementation of the Aux3E int gene restored
circularisation to wild-type levels (Fig. 4f).

These data, along with the excision qPCR (Fig. 4c), suggest that
there are disparities in the mechanism of site-specific recombina-
tion between Aux3P and Aux3E strains. One potential explanation
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Fig. 4 Integrase truncation and the loss of vefD leads to reduced excision of Aux3P. a Inverse PCR schematic showing integrated and excised Aux3P.
Aux3 genes are green, genomic flanks are blue and att sites are orange triangles. Primers are represented by arrows with expected band sizes below. b PCR
amplification of excision junctions, attP_Aux3 (P2/P3) and attB_Aux3 (P1/P4), on Aux3E (AM-19226, 1154-74), Aux3P (N16961, C6706 and A1552) and
Aux3-naive (DL4215, DL4211) strains. ¢ Quantification of Aux3 excision by gPCR with primers designed against the naive repeat 1 (grey) and attB_Aux3
(orange) (Supplementary Fig. 6b) on gDNA from Aux3E and Aux3F strains. Significance was determined by a one-way ANOVA with Tukey's multiple
comparisons test (ns non-significant; **p = 0.0018, 0.0033 and 0.0020; ***p = 0.0002, 0.0003 and 0.0002). d Quantification of attP_Aux3 and
attB_Aux3 in AM-19226 by gPCR in comparison to AM-19226 growth. Growth curve values are shown on the left-axis. Relative incidence of excision values
are shown on the right-axis. Schematic of primers designed against the attP_Aux3 are shown (dark orange) (Supplementary Fig. 6b). Significance was
determined by two-way ANOVA with Sidak’s multiple comparisons test (ns non-significant; **p = 0.0042; ****p < 0.0001). e Circular excision junction
PCR on A1552 wildtype, A1552 single and double recombinase null mutants, and DL4215. f Circular excision junction PCR on A1552 and AM-19226 wild-
type strains, associated int-null mutants, and DL4215. Null mutants from each strain were trans-complemented with an empty mTn7 (Tn), Tn with the
native integrase, or Tn with the opposing Aux3-type integrase. g Circular excision junction PCR on A1552 and A1552 Aint with trans-complementation of
both integrase types, each with and without over-expression of the putative Aux3E RDF VefD. E.V. = pBAD24, VefD = pBAD24-vefD, Ara=0.1%
arabinose, and Dex = 0.1% dextrose. b, e-g White arrows indicate ladder band sizes. Gels are representative of at least three distinct experiments (n = 3).
¢, d Quantitative results are from three distinct experiments (n = 3). Horizontal bars (¢) or points (d) represent the mean and error bars indicate +SD.

b-g Source data are provided as a Source Data file.

for this difference is the presence of the IS5 module in Aux3P. A
BLASTP search for the int amino acid sequence predicts this
protein as a P4-like integrase and tyrosine recombinase. Pairwise
alignment of the amino acid sequences of pandemic and
environmental int proteins with other known tyrosine recombi-
nases shows that both have all appropriate catalytic residues
intact and strong homology to each other (Supplementary
Fig. 7). At the C-terminus, however, the Aux3E integrase protein
is significantly longer than the Aux3® homologue. Closer
investigation revealed that the IS5 element in Aux3P inserted
immediately downstream of the catalytic Y375 residue, blunting
the C-terminal tail of the protein and adding seven nonsense
residues encoded by the 5’ end of the IS5 element (Supplementary
Fig. 7b). We generated a predictive model of both the full-length
and truncated integrase (Supplementary Fig. 7c, d). While the
orientation of the catalytic residues is unaffected, IS5 blunting
results in a short, disordered C-terminal tail compared to two
tyrosine-rich a-helices in the full-length protein (Supplementary
Fig. 7c, d), which could explain the decreased incidence of
excision seen in Aux3P strains. To test this hypothesis, we trans-
complemented the Aux3’ integrase into AM-19226 Aint and
found that it was unable to rescue Aux3 excision, supporting the
conclusion that the Aux3® integrase has lost some functionality
(Fig. 4f). In the reverse experiment, trans-complementation of the
Aux3E integrase into A1552 Aint does not appear to raise Aux3?
excision to environmental levels (Fig. 4f). This suggests that the
incidence of excision is reliant on both integrase structure and
integrase-extrinsic factors that differ between environmental and
pandemic strains.

Loss of an RDF gene contributes to differential excision. We
next aimed to identify the integrase-extrinsic factors that play a
role in the reduction of excision between Aux3F and Aux3P.
Aux3E is much longer than Aux3® and carries many phage-like
genes, and so we hypothesised that Aux3E may encode a func-
tional RDF gene that was lost in the transition to Aux3®. Loss of
the RDF would shift the Aux3 integrase activity towards inte-
gration and favour maintenance of the Aux3 module in the
chromosome. We first sought to identify a putative RDF gene in
the Aux3E modules. We found that one gene conserved in all 9
Aux3F modules was predicted to be a helix-turn-helix MerR
superfamily protein (Fig. 2c and Supplementary Data 2). The
lambda phage RDF (Xis) has been shown to bind DNA via a
winged-helix motif of the MerR superfamily3>38, We extracted
and translated this coding region from all 9 Aux3E elements and
submitted the amino acid sequence to HHpred®! for further
functional prediction. This highly conserved Aux3E protein

returned three >97% confidence hits for “Regulatory phage pro-
tein Cox”, “Putative excisionase”, and “Phage_AlpA”, indicating
that this gene may encode an RDF (Supplementary Fig. 7e). We
have renamed this gene as Vibrio excision factor D (vefD) in
agreement with the nomenclature established by the Boyd group.
To test our in silico findings, we expressed vefD in wild-type
A1552 and A1552 Aint with trans-complementation of either an
empty mTn7, intA1592, or intAM-19226 each expressed from their
endogenous promoter (Fig. 4g). We find that co-expression of
vefD and intAM-19226 Jeads to a strong increase in Aux3 excision
and circularisation, while all other conditions show wild-type
levels of excision for a pandemic V. cholerae strain. These results
confirm VefD as a functional RDF and further support the
reduced functionality of the truncated intA15%2, as co-expression
of intA1°52 and VefD did not lead to an increase in excision.
These results also show that loss of vefD from Aux3E to Aux3P
was an important step for maintaining Aux3 in the pandemic V.
cholerae chromosome.

Aux3 is integrated into an Aux3-naive chromosome at attB. To
assess the ability of Aux3 to integrate into the chromosome of an
Aux3-naive V. cholerae strain, we performed conjugative
transfer experiments with an Aux3-null V. cholerae recipient
strain and a donor E. coli S17 Apir carrying a suicide vector with
or without an intact attP_Aux3 site (Supplementary Fig. 8a, b).
By conjugating a kanamycin-resistant, circular Aux3 surrogate
donor with an Aux3-null recipient, we are able to test the
functionality of each integrase type (environmental or pan-
demic), such that kanamycin-resistant V. cholerae clones will
only be seen if a trans-complemented integrase can catalyse site-
specific, Aux3 integration. To generate a recipient strain, we first
replaced Aux3 in V. cholerae A1552 with a naive attB_Aux3 site
from environmental strain DL4211 (A1552 AAux3). Next, we
introduced a FLAG-tagged copy of either the Aux3P (A1552) or
Aux3E (AM-19226) integrase back into the chromosome under
the control of the Pgap promoter on the mini Tn7 transposon
(Tnzint? or TnzintF), allowing us to induce integrase expression
with the addition of arabinose to the culture media. Integrase
expression was confirmed in these strains by western blot
(Supplementary Fig. 8c, d). It is important to note that the
Aux3P integrase construct is expressed at much lower levels than
the Aux3E integrase despite robust expression from the parental
plasmid in E. coli (Supplementary Fig. 8d). It is possible that the
truncated int? is being targeted for degradation in V. cholerae.
Aux3 donor constructs were generated in pKNOCK-Kan to
either carry a stretch of circular Aux3 with attP_Aux3 intact
(PKNOCK-attPWT) or a deletion of the attP_Aux3 site
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Fig. 5 The Aux3E integrase catalyses integration of circular Aux3 into the naive attB_Aux3 site. a Quantification of viable counts of total recipient
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ladder band sizes. Gel is representative of three distinct experiments (n = 3). a-¢ Arabinose-induced experiments are shown in red and dextrose control
experiments are shown in black. Horizontal dashed line indicates the limit of detection. Quantitative results are from three distinct experiments (n = 3).
Horizontal bars represent the mean and error bars indicate +SD. Significance was determined by a two-way ANOVA with Sidak’s multiple comparisons test
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(pPKNOCK-attPKO; Supplementary Fig. 8b). This experimental
design allowed us to determine which integrase can catalyse
integration of the Aux3 element into the naive chromosome and
if the recombination happens in a site-specific manner.

After 24 h of co-culture of donor and recipient under inducing
or repressing conditions, no significant difference was seen in the
recipient or donor counts (Fig. 5a and Supplementary Table 5).
While all other conditions resulted in cointegrate formation
frequencies at or slightly above the limit of detection, transfer of
pKNOCK-attPWVT to the induced Tn::intf recipient resulted in a
3-log increase of cointegrate formation frequency over baseline
(Fig. 5b, ¢, Supplementary Fig. 8e and Supplementary Table 5).
The locus of integration was confirmed by PCR with P1/P4
(Fig. 5d), as an integrated pKNOCK-attPWVT results in a 3-kb
fragment compared to the 220-bp Aux3-naive fragment. These
results demonstrate that the Aux3E integrase is capable of
catalysing recombination between attP_Aux3 on circular Aux3
and attB_Aux3 on the naive chromosome and further indicate
that Aux3E is an MGE circulating in the aquatic V. cholerae
reservoir.

Discussion

Here, we demonstrate that the T6SS Aux3 module is largely spe-
cific to pandemic strains of V. cholerae. We further reveal that this
cluster is the evolutionary remnant of a prophage-like element

circulating in the environmental reservoir of non-pandemic
V. cholerae strains. The Aux3E element uses its encoded inte-
grase and RDF to catalyse site-specific recombination at the
flanking att_Aux3 sites, forming a circular Aux3 element that is
likely primed for horizontal gene transfer to an Aux3-naive strain
of V. cholerae (Fig. 6). We show that this cluster is partially con-
served and expanded within the pandemic lineage of V. cholerae.
Despite the lack of the majority of its prophage structural and
regulatory genes in the pandemic Aux3P, this cluster maintains a
truncated version of its P4-like integrase and flanking atf sites. Site-
specific recombination of this cluster is conserved at lower levels in
pandemic strains, although the Aux3 integrase is not necessary for
this process (Fig. 6). Finally, we show that the Aux3E integrase is
capable of integrating a circular Aux3 element into an Aux3-naive
chromosome at the attB_Aux3 site.

The T6SS is a vital defence mechanism for V. cholerae and
other pathogenic Gram-negative species in both colonisation of
the host and interbacterial competition. It is hypothesised that the
T6SS is an evolutionary repurposing of a bacteriophage
infection!®14, but the system is conserved so far back in the
Vibrio lineage that we have not seen evidence of the initial
prophage infections that evolved into the system as it exists today.
We believe that our findings offer a snapshot of early T6SS
evolution, in which a lysogenic phage infection was degraded to
solely the components necessary to increase host fitness. Our
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Fig. 6 IntE/VefD-mediated excision of Aux3E is shut down in pandemic V. cholerae to maintain Aux3P. Working model of Aux3E site-specific
recombination (left) and degradation of the recombination machinery in the transition to pandemic V. cholerae (right). Genes conserved in Aux3P are
shown in green. Aux3E specific genes are shown in grey. Attachment sites (att) are shown in orange. Vertical arrow weight indicates relative quantities of
integration and excision. Black protein indicates unknown compensatory recombinases.

results indicate that pandemic Aux3 in V. cholerae is related to an
environmentally circulating phage-like element that possibly
degraded to form the six-gene pandemic-specific module. The
route of transfer in the environmental reservoir is currently
unknown, as we have no experimental data to support Aux3E
producing its own phage particle. Two potential mechanisms by
which Aux3E could be transferred between strains without
making its own phage particle are generalised transduction by
environmental lytic phages or chitin-induced natural competence.
For the latter mechanism, Aux3E would be transferred as a linear
fragment of genomic DNA and incorporated by homologous
recombination in the flanking regions outside of the attL and attR
sites. The V. cholerae natural competence machinery can foster
the acquisition of linear genome fragments significantly larger
than the Aux3E module®2. Several V. cholerae modules capable of
site-specific recombination are transferred by lytic phage
transduction34°3>4, and it is possible that the circular inter-
mediate is more readily packaged into the transducing phage
particle.

In V. cholerae, a major role for the T6SS is inter-/intraspecies
competition and intra-host survival, and the acquisition of new
effector proteins could be a key factor in a strain’s success or
failure in these processes. The phenomenon of T6 effector
exchange in V. cholerae has been highlighted?%23-27, but the
mechanism has remained elusive. Here we describe a site-specific
recombination mechanism of T6SS effector acquisition for Aux3.
The acquisition of genomic islands by this mechanism is not
uncommon in V. cholerae*®-33. For instance, the GIVchS12 ele-
ment encodes its own integrase, excises from the chromosome to
form a circular element, and carries a cluster of T6SS genes, Aux4,
including an hcp gene and an E/I pair323343, Aux3, however, can
be differentiated from GIVchS12 by its distribution. Like Aux3E,
GIVchS12 circulates in the environmental reservoir of V. cholerae
by apparent HGT?23, but Aux3 expands into the pandemic lineage.
This indicates that the acquisition of Aux3E and the eventual
reduction to Aux3P may have been an important step in the
transition from an environmental to a pandemic organism.

Further supporting the potential fitness advantage of Aux3, our
results show a disparity in the quantity of excision between Aux3E
and Aux3P. Truncation of intf appears to have occurred by
insertional sequence (IS5 element) interruption to form intf. 1S5
elements have been shown to drive rapid adaptation in response
to environmental stress through either transcriptional regulation
of nearby genes or through insertional inactivation>>->8. Here we

show that the IS5-truncated int? is expressed at much lower levels
than the full-length intE, despite having the same promoter and
induction conditions. We speculate that truncation of the int gene
by IS5 leads to degradation of the Int protein and reduced exci-
sion or integration of Aux3. Whether this degradation occurs
non-specifically due to truncation and improper folding or as a
specific consequence of the short C-terminal tail added by the IS5
element remains to be shown. Integrase-extrinsic factors also
appear to be at play in the quantity of excision in pandemic
strains. Trans-complementation of int£ into pandemic V. cholerae
did not increase excision to Aux3E levels. Over-expression of intE
in pandemic V. cholerae did, however, catalyse increased inte-
gration of our Aux3 surrogate vector. The Aux3 integrase is a
tyrosine recombinase, and thus our observation of intf only
catalysing integration in a pandemic strain background indicates
the loss of an RDF35-40, We identify the RDF vefD in all Aux3E
modules and show that this gene is lost from Aux3P. By co-
expressing VefD and IntE we show that loss of this gene was
an important step for shutting down excision in pandemic
V. cholerae. Our results also indicate that int has reduced
functionality, and thus we conclude that Aux3P excision has been
shut down by multiple mechanisms (integrase blunting and loss
of vefD). We cannot state from the data which of the two events,
the loss of Aux3F genes including VefD or integrase truncation by
IS5, occurred first as we have not identified any Aux3E-Aux3P
intermediate modules.

It is likely, based on the two-fold mechanism of Aux3 excision
reduction, that genes encoded by the Aux3 element may have
conferred a competitive edge to a common ancestor of the pan-
demic clade. This advantage was locked into the chromosome by
IS5 insertion and loss of the RDF wvefD. This biological phe-
nomenon is referred to as “phage grounding”, in which a host cell
mutates portions of a lysogen to immobilise advantageous traits
on the chromosome®. This is one potential route by which the
T6SS itself was first acquired. In the case of Aux3, this advantage
would likely be conferred by encoding an extra T6SS effector
module, as the Aux3 effector TseH was recently shown to effec-
tively kill aquatic competitors from the Aeromonas and
Edwardsiella genus*2. A new edge against aquatic competitors
may have increased abundance or transmission of this pre-
pandemic ancestor in the aquatic reservoir. Whether TseH also
confers an advantage in human pathogenesis is unknown, but we
believe that our findings yield several indications that Aux3
integration was selected for during the evolution of pandemic

| (2020)11:6246 | https://doi.org/10.1038/s41467-020-20012-7 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

V. cholerae and that our implementation of further mechanistic
studies of the role of TseH in V. cholerae transmission and
pathogenesis is warranted.

Methods

Bacterial strains, plasmids, and growth conditions. V. cholerae strains, E. coli
strains, plasmids, and primers used in this study are listed in Supplementary
Tables 1 and 2. E. coli strains DH5a Apir®), SM10 Apir®! and S17 Apir®! were used
for cloning and as donor strains in conjugative transfer experiments. All strains
were routinely cultured at 37 °C in Lysogeny Broth (LB) with shaking at 250 rpm.
Culture on agar plates was done on LB agar at 37 °C or 30 °C. When required,
arabinose/dextrose (for the expression or repression, respectively, of int under the
control of the Pgop promoter) or antibiotics were added to both liquid or agar
culture medium at the following concentrations: 0.1% arabinose, 0.1% dextrose,
100 pg mL~! ampicillin, 100 ug mL~! streptomycin, 100 ugmL~! spectinomycin,
50 ug mL~! rifampicin, 50 pg mL~! kanamycin and 10 pg mL~! gentamycin.
Instant Ocean (7 gL~!) and chitin flakes (8 g per 150 mL, MP Biomedicals) were
used for MuGENT cloning experiments.

Bacterial strain and plasmid construction. All DNA manipulations were per-
formed according to standard molecular biology protocols. The following enzymes/
kits were used according to manufacturer specifications: Phusion High-Fidelity
DNA Polymerase (Thermo Fisher), restriction enzymes (New England Biolabs),
NEBuilder HiFi DNA Assembly Cloning Kit (New England Biolabs) and Taq PCR
Master Mix (Qiagen). Engineered plasmids and bacterial strains were verified by
colony PCR and Sanger sequencing (Quintara Biosciences).

Genetic deletions in V. cholerae were generated by either allelic exchange and
sucrose counter selection with the suicide vector pCVD44262 or the natural
transformation-based MuGENT method®. The plasmid pKD13%* served as
template for the amplification of the flippable antibiotic cassette FRT-Kan-FRT.
For allelic exchange, the flippable Kan cassette was inserted between 1 kb homology
arms in pCVD442 by Gibson cloning®, and clones were selected by sucrose
counterselection and kanamycin resistance. The MuGENT technique was used to
generate A1552 AIS5 and A1552 AAux3. Unmarked AIS5 construct was generated
by Gibson cloning of 3 kb fragments upstream and downstream of the Aux3 IS5
element into pUC19 and amplification of a 6-kb fragment with pUC19 specific
primers. Unmarked AAux3 construct was generated by amplifying a 6-kb fragment
containing naive attB_Aux3 site from the DL4211 chromosome. Selective
fragments were generated by Gibson cloning a spectinomycin resistance cassette
from SADO033 in between 3 kb homology arms encompassing the V. cholerae lacZ
gene and the surrounding sequence into pUC19. The 5.8-kb selective lacZ::Spec
fragment was amplified using primers ABD334/ABD335%. Unmarked and
selective fragments were co-transformed into V. cholerae cells on chitin. White/
spectinomycin resistant cells were screened for the unmarked mutation. The
spectinomycin resistance cassette was cured from lacZ with pCVD442 carrying a
wild-type copy of V. cholerae lacZ.

All trans-complementation vectors were generated by Gibson cloning.
Expression constructs with either endogenous or Pysp promoters were inserted
into the mini Tn7 transposon (mTn7/Tn) in pGP704-mTn7. Constructs were
moved onto the V. cholerae chromosome by tri-parental mating®-68. In the case of
VefD, the vefD gene from AM-19226 was inserted into pBAD24, and this vector
was moved into V. cholerae by electroporation.

Donor pKNOCK-attP vectors were generated by Gibson cloning. The circular
Aux3 attP region was also generated by Gibson cloning. Primers overlapping the
att site were modified to remove the attP_Aux3 site. Regions containing either
attPVT or attPKO sites were amplified off the Gibson assembled fragments and
assembled into the Smal-cut pKNOCK-Kan vector.

Identification of att sites and bacteriophage elements. To identify potential att
sites, intergenic sequences from VCA0280 to VCA0281 and VCA0286 to VCA0287
were concatenated and input into REPFIND® with a minimum repeat size of 10
and a P-value cutoff of 0.0001. To identify putative prophages, GenBank files for
Aux3E strains were submitted to PHASTER*,

Nucleotide/amino acid sequence alignment. All genomes used for alignments
can be found in Supplementary Table 3. All nucleotide alignments outside of
phylogenetic analyses were performed in Geneious Prime (v2019.0.4). Nucleotide
sequences encompassing more than one open reading frame were aligned using the
Progressive MAUVE algorithm”? to account for insertions, deletions and rear-
rangements. Single gene, intergenic region or single protein sequence pairwise
alignments were performed using MUSCLE (v3.8.425)71.

Aux3 enrichment analysis. MegaBlast queries were performed in Geneious Prime
(v2019.0.4). Downstream manipulations and plots were done in RStudio (R version
3.3.2 (2016-10-31) -- “Sincere Pumpkin Patch”). V. cholerae genomic FASTA files
were downloaded from the PATRIC database**. Nucleotide sequences for tseH

(VCAO0285), tseL (VC1418), vasX (VCA0020), vgrG3 (VCA0123), tcpA (VCA0828),
and ctxAB (VC1456-VC1457) from O1 El Tor type strain N16961 were queried by

MegaBlast against a custom database of PATRIC FASTA sequences to generate a
grade (a weighted metric combining query coverage (0.50), e-value (0.25) and
pairwise identity (0.25)) for each gene locus in each strain. Strains were grouped
based on a 99% grade cutoff for tseH and the three A-type effectors tseL, vasX and
vgrG3 to create 4 groups (Supplementary Table 4) and assess occurrence of tseH in
AAA pandemic strains by Fisher’s exact test. PATRIC strains were k-means
clustered by Partitioning Around Medoids (pam, R package cluster v2.1.0) based
on grades for tseH, tseL, vasX, vgrG3, ctxAB and tcpA. Mean grade was determined
at each locus for each cluster and plotted as a heat map (pheatmap, R package
pheatmap v1.0.12).

Phylogenetic analysis and tree building. Genomic FASTA files for tree building
were obtained from the PATRIC database** or NCBI and annotated using Prokka
(v1.12)72. A core genome was extracted from Prokka-output GFF3 files and aligned
using Roary (v3.11.2)73. The core genome alignment was reduced to loci har-
bouring polymorphisms using SNP-sites (v2.4.1)74. Phylogenetic tree was built
using the RAXML (v 7.0.4) GTR Gamma Maximum Likelihood model. Statistical
branch support was obtained from 100 bootstrap repeats. Phylogenetic trees were
visualised from RAxML-generated newick files using TreeGraph 2 (v2.15.0-887
beta)7>. Branches with bootstrapping support values <70 were collapsed. Presence
of TCP and CTX were determined by MegaBlast for fcpA (VC0828) and ctxAB
(VC1456-VC1457). Ol antigen status was determined from the literature. Presence
of tseH was determined as described above.

Functional prediction of phage genes in Aux3E modules. Aux3F genomic
regions were extracted from gcvT to thrS and regions were re-annotated by
Prokka (v1.12)72. All annotated genes (from both original Genbank files and re-
annotated files) were extracted and translated. Amino acid sequences for all
extracted annotations were submitted to NCBI Conserved Domain Search
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to identify putative
functional domain hits. Further functional prediction of select genes was per-
formed by submission to HHpred>! (MPI Bioinformatics Toolkit, https://toolkit.
tuebingen.mpg.de/tools/hhpred).

Excision/circularisation PCR and quantitative PCR. Bacterial strains analysed by
excision/circularisation PCR or qPCR were grown overnight as described above.
Approximately equivalent growth for all analysed strains was verified (Supple-
mentary Fig. 6¢). For Fig. 4b, e, f, g overnight cultures were subcultured 1:50 in
5mL of fresh LB and grown for 4 h. For Fig. 4g, 0.1% arabinose or 0.1% dextrose
was added at the 1-h time point. Cultures were normalised to ODggo and pelleted
(4300 x g, 10 min) and resuspended at 10X concentration in nuclease free H,O.
Cell suspensions were boiled for 5 min to release nucleic acids. PCR was performed
on 3 pL of each lysate with the indicated primers. In all, 3% DMSO was added for
reactions using P2.2/P3.2 due to lower primer efficiency. For excision/circularisa-
tion qQPCR, overnight cultures were subcultured 1:50 in 5 mL of fresh LB and grown
for 6h. In all, 1 mL of culture was collected (at 1, 2, 3, 4 and 6 h) and pelleted
(14,000 rpm, 2 min). DNA was extracted by phenol/chloroform extraction. All
DNA samples were normalised to 20 ng uL~! and 50 nguL~!. qPCR was per-
formed on 250 ng (Fig. 4c) or 100 ng (Fig. 4d) of each sample in a 20-pL reaction
volume with Bio-Rad SYBR Green Master Mix according to the product manual.
Primers targeted repeat 1, attB_Aux3, and ompW or attP_Aux3 and ompW. Data
was collected in Bio-Rad CFX Manager 3.1. All targets were measured by absolute
quantification against the following standard curves: A1552 AAux3 genomic DNA
(Aux3-naive) for repeat 1, attB_Aux3, and ompW and pUC19-attP plasmid DNA
for attP_Aux3. Repeat 1, attB_Aux3, and attP_Aux3 signal was normalised to
ompW to control for variability in input DNA. Averages of at least three inde-
pendent experiments (+standard deviation) are provided.

Aux3 excision tracking by colony-forming unit counts. Strains with an Aux3
internal kanamycin resistance cassette with struck out for isolated colonies on LB
agar plates with the addition of rifampicin and kanamycin (A1552) or strepto-
mycin and kanamycin (AM-19226). Three individual clones were selected for each
tested strain. Clones were inoculated in 5 mL of LB media with rifampicin (A1552)
or streptomycin (AM-19226) and grown shaking at 37 °C. At 24 hr each culture
was subcultured at a ratio of 1:100 into 5 mL of fresh LB with the above indicated
antibiotics. Remaining culture was serially diluted at a 1:10 ratio to 107 Dilution
series were spotted (5 uL) on LB agar plates both with (Aux3-maintained colony-
forming unit (CFU)) and without (total CFU) the addition of kanamycin. This
process was repeated at the 48-h time point. Colonies were counted from the
highest countable dilution spot to determine viable CFU.

Aux3 module transfer experiments. Overnight cultures of recipient strains
(A1552 AAux3 with variable mTn7 constructs) and donor strains (S17 Apir with
variable pKNOCK vectors) were pelleted (4300 x g, 10 min) and resuspended at
10X concentration in LB media. In total, 10 uL of each concentrated cell suspension
was resuspended in 1 mL LB (1:100), from which serial dilutions were prepared and
plated as spots on LB agar to determine input CFU. Donor and recipient strains
were mixed in all combinations at a ratio of 10:1 donor to recipient. Mixtures
were plated as 25 uL spots on Durapore 0.22 um PVDF filters (Millipore Sigma) on
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pre-dried, pre-warmed LB agar plates with either arabinose or dextrose. Spots were
dried and incubated at 37 °C for 24 h. After 24-h incubation, filters were collected
and resuspended by vortexing in 1 mL LB media. Serial dilutions were prepared
from each suspension, and dilution spots were plated on LB agar with kanamycin
(donors), rifampicin + gentamycin (recipients), or rifampicin + gentamycin +
kanamycin (cointegrates) to determine CFU for each subset of cells. Colonies were
counted from the lowest countable dilution. Cointegrate formation frequency was
determined by dividing cointegrate CFU/mL by total recipient CFU/mL. Averages
of at least three independent experiments (+standard deviation) are provided
(Supplementary Table 5).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The authors declare that all the data supporting the findings of this study are available
within the paper and its supplementary information files. All genomes analysed in this
study are publicly available from the PATRIC (https://www.patricbrc.org/) and NCBI
RefSeq (https://www.ncbi.nlm.nih.gov/refseq/) databases. Source data are provided with
this paper.
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