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SUMMARY

Fatty acids (FAs) provide cellular energy under starva-
tion, yet how they mobilize and move into mitochon-
dria in starved cells, driving oxidative respiration, is
unclear. Here, we clarify this process by visualizing
FA traffickingwitha fluorescent FAprobe. The labeled
FAaccumulated in lipid droplets (LDs) inwell-fed cells
but moved from LDs into mitochondria when cells
were starved. Autophagy in starved cells replenished
LDs with FAs, increasing LD number over time. Cyto-
plasmic lipases removedFAs fromLDs, enabling their
transfer into mitochondria. This required mitochon-
dria to be highly fused and localized near LDs. When
mitochondrial fusion was prevented in starved cells,
FAs neither homogeneously distributed within mito-
chondria norbecameefficientlymetabolized. Instead,
FAs reassociated with LDs and fluxed into neigh-
boring cells. Thus, FAs engage in complex trafficking
itineraries regulated by cytoplasmic lipases, auto-
phagy, and mitochondrial fusion dynamics, ensuring
maximum oxidative metabolism and avoidance of
FA toxicity in starved cells.

INTRODUCTION

Cells adapt to nutrient starvation by shifting their metabolism

from reliance on glucose metabolism to dependence on mito-

chondrial fatty acid (FA) oxidation. The biochemical basis for

this metabolic reprogramming under starvation is well estab-

lished (Eaton, 2002; Finn and Dice, 2006; Kerner and Hoppel,

2000; O’Neill et al., 2013). However, how FAs become mobilized

and delivered into mitochondria for driving FA oxidation under

starvation is far from clear.

FAs are stored within cells as energy-rich triacylglycerols in

lipid droplets (LDs) in addition to being found on cellular mem-

branes. Excess free FAs in the cytoplasm are harmful to cells:

they can generate damaging bioactive lipids or disrupt mito-

chondrial membrane integrity (Unger et al., 2010). When mobi-

lizing FAs from stores under starvation conditions, therefore,

cells need to adjust FA trafficking pathways to avoid FA toxicity
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caused by overabundance of free FAs in the cytoplasm or within

mitochondria.

Cells use two primary mechanisms for mobilizing FAs during

nutrient stress. One is through autophagic digestion of mem-

brane-bound organelles (i.e., the ER) or LDs (Axe et al., 2008;

Hayashi-Nishino et al., 2009; Kristensen et al., 2008; Singh

et al., 2009a; Ylä-Anttila et al., 2009). This involves autophagoso-

mal engulfment of the organelle/LD and fusion with the lyso-

some, where hydrolytic enzymes digest the organelle/LD,

releasing free FAs that quickly move into the cytoplasm (Singh

et al., 2009a). When LDs are the substrate, this process is called

lipophagy. While effective for bulk release of FAs into the cyto-

plasm in starved cells, FA mobilization by autophagy requires

ways to avoid FA toxicity because of its potential to cause

overabundance of free FAs in the cytoplasm. This could entail

FAs either being immediately taken up into mitochondria or first

moved to some storage compartment. Clearly, other FA traf-

ficking pathways must function in conjunction with autophagy

to manage released FAs in this mode of FA mobilization.

The second mechanism for mobilizing FAs during starvation

is by lipolytic consumption of LDs. Here, cytoplasmic neutral

lipases directly hydrolyze triacylglycerols on the LD surface.

An advantage of this mechanism is that it can be regulated

at the level of lipase activity, fine-tuned by the cell (Wang

et al., 2008; Zechner et al., 2012). However, the fate of FAs

released by this mechanism remains an issue. Do the FAs

move directly from LDs into mitochondria (which is possible

if LDs and mitochondria are in close proximity), or do the

FAs first mix with cytoplasmic pools? If the former is true,

how do cells ensure that all mitochondria obtain adequate

levels of FAs to drive b-oxidation-based metabolism? If the

latter is true, how do cells avoid FA toxicity? Given these

unanswered questions, it is not surprising that the respective

roles of autophagy and lipolysis (i.e., lipase digestion of LDs)

in mobilizing FAs are ambiguous (Kim et al., 2013; Smirnova

et al., 2006; Wang et al., 2008).

Mitochondria represent the primary site for b-oxidation where

FAs are enzymatically broken down to sustain cellular energy

levels during nutrient stress. This requiresmitochondria to import

FAs to yield the metabolic intermediates driving respiration (Ea-

ton, 2002; Kerner and Hoppel, 2000; O’Neill et al., 2013). Upon

starvation, cells upregulate enzymes required for mitochondrial

FA import and b-oxidation (Eaton, 2002; Kerner and Hoppel,

2000). It is interesting that cells also remodel mitochondria into
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highly connected networks (Gomes et al., 2011; Rambold et al.,

2011) by modulating mitochondrial fission/fusion dynamics,

regulated by proteins including fusion proteins, mitofusins 1

and 2 (Mfn1 and Mfn2) (on the outer mitochondrial membrane),

optic atrophy protein 1 (Opa1) (on the inner mitochondrial mem-

brane), and the fission protein dynamin-related protein 1 (Drp1)

(Hoppins et al., 2007; Hoppins and Nunnari, 2009). It remains

to be tested, however, whether mitochondrial fusion occurring

during starvation facilitates FA trafficking and oxidation during

nutrient stress.

Here, we investigate how cells coordinate FA mobilization,

trafficking, and mitochondrial b-oxidation. Using a pulse-chase

labeling method to visualize movement of FAs in live cells, we

demonstrate that starved cells use primarily LDs as a conduit

for supplying mitochondria with FAs for b-oxidation. This in-

volves cytoplasmic, neutral lipase-mediated FA mobilization

rather than lipophagy. Autophagy promoted lipid buildup in

LDs, replenishing LDs with new FAs that then fluxed into mito-

chondria. Surprisingly, FA flux into mitochondria required LDs

to be in close proximity with mitochondria and mitochondria to

be highly tubulated/fused. This enabled FAs to distribute homo-

geneously inside mitochondria after import from LDs, ensuring

FA oxidation, and downstream oxidative phosphorylation reac-

tions were optimized. Defects in mitochondrial fusion caused

massive alterations in cellular FA routing. Not only were nonme-

tabolized FAs redirected to and stored in LDs, but they also

became excessively expulsed from cells. Given the role of FAs

as signaling molecules, FA rerouting under these conditions

could alter the function of entire cell populations, relevant to

studies on obesity, diabetes, and mitochondrial disorders.

RESULTS

Nutrient Stress Increases FA Transfer from LDs to
Mitochondria
Under starvation, cells shift to mitochondrial FA-driven oxidative

phosphorylation for ATP production. This requires the transfer of

FAs, including those stored in LDs, into mitochondria (Finn and

Dice, 2006; Kerner and Hoppel, 2000). To understand how this

process is regulated, we developed a pulse-chase assay to track

FAs in relation to LDs andmitochondria in starvedmouse embry-

onic fibroblasts (MEFs) (Figure 1A). For this assay, we utilized

BODIPY 558/568 C12 (Red C12), a saturated FA analog with a

tail composed of 12 carbons and a BODIPY 558/568 fluorophore

covalently bound at the hydrophobic end, with an overall length

approximately equivalent to that of an 18-carbon FA. BODIPY

FAs have been used in studies of lipid trafficking and have

been shown to incorporate into LD-specific neutral lipids (Herms

et al., 2013; Kassan et al., 2013; Thumser and Storch, 2007;

Wang et al., 2010). In our pulse-chase assay, cells were first

labeled overnight with trace amounts (1 mM) of Red C12, which

accumulated in neutral lipids within LDs (Figure 1B, 0h). They

were then placed in complete or nutrient-depleted medium in

the absence of Red C12 for 6 hr or 24 hr before labeling LDs

or mitochondria and visualizing fluorescence in the cells with

spinning-disk confocal microscopy.

Cells chased in nutrient-rich medium (i.e., complete medium,

CM) showed nearly all Red C12 signal localized to LDs

throughout the pulse-chase labeling period (Figure 1B, CM). Lit-
Develo
tle, if any, RedC12 signal was transported intomitochondria (Fig-

ure 1C, CM). By contrast, cells in nutrient-depleted medium (i.e.,

Hank’s balanced salt solution, HBSS) showed a dramatic loss of

RedC12signal fromLDsbetween6and24hr of chase (Figure1B,

HBSS),with thesignal redistributing intomitochondria (Figure1C,

HBSS). LD-to-mitochondria transfer of FAs in starved cells was

already detectable within 6 hr (Figure 1C, HBSS; Figures S2A

and S2B) and was most prominent after 24 hr (Figures 1C and

1D), with overall reduction of cellular RedC12 levels (Figure S1A).

Near-complete overlap of Red C12 with MitoTracker-positive

structures occurred after 24 hr of starvation, with no apparent

labeling of other organelles (Figure 1C, HBSS).

Thin-layer chromatography (TLC) revealed that the amount of

esterified Red C12 in cells decreased with time after nutrient

deprivation, while the amount of free Red C12 increased (Fig-

ure 1E), consistent with our imaging results mentioned earlier.

In addition, we observed slower migrating breakdown products

of Red C12 with time after starvation. Inhibition of the mitochon-

drial FA importer CPT-I with etomoxir inhibited the translocation

of Red C12 into mitochondria and the appearance of Red C12

breakdown products (Figures 1E, S1B, and S6E), indicating

Red C12 as a substrate for b-oxidation. Thus, starvation initiates

a process whereby cells selectively and efficiently transfer FAs

from LDs to mitochondria for oxidation.

Cytoplasmic Lipase Activity Liberates FAs from LDs for
Transfer to and Metabolism within Mitochondria
FAs can be released from LDs by two distinct mechanisms: lipol-

ysis and lipophagy (Singh et al., 2009a; Zechner et al., 2012). To

determine which of these two mechanisms is responsible for FA

delivery to mitochondria under starvation, we used the Red C12

pulse-chase labeling protocol, examining the effect of inhibiting

either lipase activity or autophagy.

To test the role of lipases in FA transfer to mitochondria, we

depleted cells of adipose triglyceride lipase (ATGL) (Figure S2C),

a ubiquitously expressed neutral lipase that can digest LDs

(Smirnova et al., 2006), and then followed the fate of Red C12

during pulse-chase labeling. Unlike MEFs treated with noncod-

ing control small interfering RNA (siRNA), which showed a

dramatic increase in colocalization between Red C12 and Mito-

Tracker after 24 hr starvation, ATGL-silencedMEFs showed only

minimal redistribution of Red C12 from LDs into mitochondria

(Figures 2A and 2B). Instead, the Red C12 signal remained local-

ized to LDs (Figure 2A). Pharmacological inhibition of lipase func-

tion with diethylumbelliferyl phosphate (DEUP) also significantly

reduced starvation-induced mitochondrial accumulation of Red

C12 in the pulse-chase assay (Figures S2A and S2B, DEUP).

Therefore, lipase activity is necessary for FA delivery from LDs

into mitochondria in starved MEFs.

We next tested the role of autophagic activity in FA trafficking

to mitochondria. Cells were pulse-chase labeled with Red C12

under starvation conditions in the presence of the autophagy in-

hibitor 3-methyladenine (3-MA). Notably, RedC12 trafficking into

mitochondria was not significantly altered, compared to vehicle-

treated cells (Figures S2A and S2B, 3-MA). To further test au-

tophagy’s role in FA delivery to mitochondria, we examined

whether Red C12 transfer to mitochondria was affected in

starved Atg5 knockout (Atg5KO) MEFs, in which autophago-

some biogenesis is blocked (Mizushima et al., 2001). No
pmental Cell 32, 678–692, March 23, 2015 ª2015 Elsevier Inc. 679
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Figure 1. FA Trafficking Can Be Visualized using a Fluorescent FA Pulse-Chase Assay

(A) Schematic representation of the fluorescent FA pulse-chase assay: cells were pulsedwith Red C12 overnight, washed, and incubated with CM for 1 hr in order

to allow the Red C12 to accumulate in LDs. Cells were then chased in CM or HBSS for the indicated periods of time and imaged to determine the subcellular

localization of the FA. h, hours; Mito, mitochondria.

(B–D) WT MEFs were assayed as described in (A) and chased in CM or HBSS for 0 hr, 6 hr, or 24 hr. (B) LDs were labeled using BODIPY 493/503, and (C)

mitochondria were labeled using MitoTracker Green. Scale bar, 10 mm. (D) Relative cellular localization of Red C12 was quantified by Pearson’s coefficient

analysis. Data are expressed as means ± SEM. *p < 0.05; ***p < 0.0001.

(E) TLC resolving Red C12 isolated from WT MEFs assayed as described earlier and chased for 6 hr or 24 hr with HBSS in the absence or presence of etomoxir.

See also Figure S1.
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impairment in Red C12 transfer to mitochondria was observed

(Figures 2C and 2D). TLC data corroborated the imaging results,

with levels of esterified Red C12 decreasing in response to star-

vation in wild-type (WT) and Atg5KO, but not ATGL-depleted,

MEFs (Figures 2G and 2H). It is interesting that, in ATGL-

depletedMEFs, levels of free Red C12 still increased in response

to starvation, indicating that compensatory mechanisms such as

upregulation of phospholipase activity may exist (Cabodevilla

et al., 2013).

The necessity of lipolysis (i.e., lipase digestion of LDs) for mito-

chondrial respiration under starvation was demonstrated by

measuring mitochondrial oxygen consumption rate (mtOCR).

Using DEUP treatment to inactivate lipases, we found that, in

6-hr-starved cells—but not fed cells—mtOCR levels were signif-

icantly reduced relative to those in untreated cells (Figure 2E;

Figure S2G). By contrast, in similarly starved cells treated with

3-MA to inhibit autophagy, no reduction in mtOCR levels was

observed (Figure 2F). However, autophagy inhibition at times

of prolonged starvation significantly reduced mitochondrial

respiration (Figure S2H), as reported previously (Singh et al.,

2009a). Therefore, FA substrates used for mitochondrial respira-

tion in acutely nutrient-stressed cells are primarily derived from

lipolysis of LDs rather than through autophagy.

To address directly whether lipophagy is active in HBSS-

starved MEFs, we performed colocalization studies between

the autophagosomal marker LC3 and LDs. Although we de-

tected lipophagy in individual MEFs (Figure S2E), autophagic

LD degradation did not increase in 6-hr- or 24-hr-starved cells

in HBSS relative to fed cells (Figures S2D–S2F). In contrast to

HBSS, under milder starvation conditions, where only serum,

but not amino acids and glucose, was limited, lipophagy was

significantly induced (Figure S2E, 6h and 24h), as reported pre-

viously (Ouimet et al., 2011; Schulze et al., 2013; Singh et al.,

2009a). Together, these data suggest that, under HBSS starva-

tion conditions, MEFs are not reliant on lipophagy to supplymito-

chondria with LD-derived FAs. Rather, cytoplasmic neutral

lipase activity, which releases FAs from LDs, appears to be the

primary mechanism.

Autophagy Drives LD Growth during Starvation
Given that lipophagy is not induced in HBBS-starved MEFs, we

next explored whether other autophagic pathways that are

distinct from lipophagy play roles in regulating FA flux into mito-

chondria and sustaining mitochondrial metabolism in starved

cells. Bulk autophagosomal degradation dramatically increases

during starvation (Mizushima, 2007), so we investigated whether

this type of autophagic activity helps recycle FAs to maintain LD

stores for continual delivery of FAs to mitochondria. Supporting

this possibility, we observed that BODIPY 493/503-labeled LDs

grew continually in starved cells (Figure 3A), despite efficient

transfer of pulsed Red C12 pools into mitochondria (Figure 1B).

LD number almost doubled upon 6 hr of starvation and reached

its maximum after 24 hr of starvation, with five times more LDs

per cell (Figure 3B). The average LD size per cell increased by

2-fold after 24 hr of starvation (Figure 3B), shifting toward larger

LDs in the heterogeneously sized LD population (Figure S3A).

Finally, total LD volume per cell showed a significant increase

(Figure S3B), and triglyceride storage, measured enzymatically,

was boosted (Figure S3C).
Develo
As a further test of the hypothesis that autophagic activity

during starvation helps maintain LD stores, we examined the

effect of inhibiting autophagy on LD growth during star-

vation. No upregulation of LD abundance occurred in Atg5KO

cells, compared to WT cells under starvation conditions

(Figures 3C and 3D). LD number increase during star-

vation was also prevented by pharmacological inhibition of

autophagy initiation using 3-MA (Figure S3D) or blocking lyso-

somal degradation of autophagosomes using bafilomycin A1

(Figure S3E).

To further confirm that autophagy-derived FAs drive LD

growth in starved cells, we performed an FA pulse-chase assay

using phosphatidylcholine that was fluorescent-tagged at its FA

tail (FL HPC) (Figure 4A). Cells were first labeled overnight with

trace amounts of FL HPC, which integrated into various cellular

membranes, including the ER, mitochondria, and Golgi appa-

ratus under fed conditions (Figure 4B, 0h CM; Figure S4A). Cells

chased in CM retained the FL HPC signal in cellular membrane

structures (Figure 4B, 6h CM). In contrast, in starved MEFs, the

FLHPC signal onmembraneswas decreased due to its redistrib-

uting into LDs (Figure 4B, 6h HBSS; Figure S4B). Inhibition of

autophagy using 3-MA, bafilomycin A1, or Atg5-deficient MEFs

reduced this transfer (Figures 4B and 4C).

The active involvement of autophagy in FL HPC recycling from

cellular membranes was further confirmed by colocalization

studies in MEFs transfected with the autophagosomal marker

mCherry-LC3 or lysosomal marker LAMP1-mCherry. Upon star-

vation, FL HPC could be partially found in autophagosomes/

lysosomes (Figures 4D and 4E) in addition to LDs (Figure 4B).

Autophagosome/lysosome localization could be prevented

by 3-MA (Figures 4D and 4E, 3-MA). When autophagosome-

lysosome fusion was reduced with high concentrations of

bafilomycin A1 (Bjørkøy et al., 2005), significant trapping of

FL HPC in autophagosomes occurred (Figures 4D and 4F). In

addition, there was less localization of FL HPC with lysosomes

labeled with LAMP1 (Figure 4E, BafA1) and with late endosomes

labeled with Rab5 (Figure S4C). Together, these data suggest

that autophagy is involved in shuttling FL HPC from cellular

membranes into lysosomes. FAs hydrolyzed from the phospho-

lipids would then be released into the cytoplasm and associate

with LDs.

Fused Mitochondria Ensure that FAs Are Distributed
throughout Mitochondria for Maximal b-Oxidation
When starved MEFs were imaged after expression of the mito-

chondrial marker mito-RFP (red fluorescent protein) and labeling

with the LD marker BODIPY 493/503, we found that virtually all

LDs were closely associated with mitochondria (Figure 5A).

Monitoring mitochondria and the distribution of FAs delivered

into them in starved cells further revealed that mitochondria

were highly fused and that FAs were homogenously distributed

throughout the mitochondria (Figures 5A and 5D) (Gomes

et al., 2011; Rambold et al., 2011). One interpretation of these

results is that close association between LDs and mitochondria

allows FAs to traffic directly from LDs into mitochondria. The

fused state of mitochondria, in turn, would ensure that FAs are

equilibrated throughout the mitochondrial system (assuming

limited numbers of LDs per cell), maximizing FA availability for

b-oxidation reactions.
pmental Cell 32, 678–692, March 23, 2015 ª2015 Elsevier Inc. 681



A B

C D E F

G H

Figure 2. Cytoplasmic Lipase Activity, but Not Lipophagy, Is Essential to Liberate FAs from LDs for Transfer to Mitochondria
(A) WT MEFs were assayed as described in Figure 1A after RNAi using noncoding or ATGL siRNA. Scale bar, 10 mm. h, hours.

(B) Quantification of the correlation between Red C12 signal and LDs (upper graph) or mitochondria (lower graph) in the experiment shown in (A). NC, noncoding.

(C) Atg5-WT and Atg5-deficient cells were assayed as described in Figure 1A. Scale bar, 10 mm.

(legend continued on next page)
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Figure 3. Autophagy Drives LD Growth during Starvation

(A–D) WT or Atg5KO MEFs were incubated in CM or HBSS for the time periods indicated, BODIPY 493/503 was added to visualize LDs, and images of live cells

were captured and presented as inverted grayscale micrographs (A and C). To determine LD growth during starvation LD size and number were measured

(B and D). Scale bars, 50 mm. Data are expressed as means ± SEM. *p < 0.05; n.s., not significant.

See also Figure S3.
To test this hypothesis, we first examined whether the fused

state of mitochondria was necessary for the homogenous

dissemination of FAs within mitochondria. Red C12 pulse-chase

labeling was performed in MEFs deficient in the major mitochon-

drial fusion proteinsMfn1 orOpa1. In theMfn1 knockout (MfnKO)

or Opa1 knockout (Opa1KO) cells, mitochondria did not form

networks and were fragmented (Figure 5A) (Chen et al., 2005;

Gomes et al., 2011; Rambold et al., 2011). Despite this, LDs

were still in close proximity with mitochondria, and there was

transfer of Red C12 into mitochondrial elements (Figures 5A,

5B, and 5D). However, many mitochondrial elements were not

in close proximity to LDs (Figure 5C), and Red C12 did not

become homogenously distributed across the mitochondrial

population (Figure 5D), resulting in either very low or exceedingly

high Red C12 signals relative to those detected in WT cells (Fig-

ure 5D). In contrast to Red C12, MitoTracker signal was uniform

throughout the mitochondria of WT, Mfn1KO, and Opa1KO cells

(data not shown). Therefore, mitochondrial fusion is required to

homogenously distribute LD-derived FAs throughout the mito-

chondrial network in starved cells.
(D) Quantification of the correlation between Red C12 signal and mitochondria in

(E and F) Mitochondrial respiration is dependent on cytoplasmic lipase activity. M

presence of (E) the lipase inhibitor DEUP and (F) 3-MA to inhibit autophagy.

(G) TLC resolving Red C12 isolated from cells assayed as described in (A) (left p

(H) Relative amounts of esterified and free Red C12 were quantified from images

Data are expressed as means ± SEM. *p < 0.05; ***p < 0.0001; n.s., not significa

Develo
We next investigated whether a homogenous distribution of

FAs throughout mitochondria is necessary for optimal b-oxida-

tion within mitochondria in starved cells. To address this, we

measured FA-driven mtOCR and its contribution to total mtOCR

in control or Mfn1KO cells under starvation. Mfn1KO cells were

used as a primary model since, unlike Opa1KO and Mfn1/2KO

MEFs (Chen et al., 2005; Cogliati et al., 2013; Frezza et al.,

2006) (Figure S5A), their respiration levels under fed conditions

(Figures 5E and 5F) and mitophagy levels under starvation

conditions (Figure S5B) were comparable to those of WT cells.

In starved WT cells, there was an expected rapid increase in

FA oxidation over 6 hr, followed by sustained oxidation for at

least 24 hr (Figures 5E and 5G). The boosted b-oxidation enabled

these cells to nearly maintain equivalent total mitochondrial

respiration levels over the entire starvation period (Figures

5F and 5H). Mfn1-deficient cells upregulated initial levels of

b-oxidation comparable to control cells; however, the levels

were not maintained over 24 hr, with FA oxidation becoming

significantly reduced (Figures 5E and 5G). Consequently, total

mitochondrial respiration levels in Mfn1KO cells dropped
the experiment described in (C).

itochondrial respiratory activity of 6-hr-starved WT MEFs was measured in the

anel) or (C) (right panel).

of TLC plates, normalized to Red C12 levels of WT cells at the 0-hr time point.

nt. See also Figure S2.
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Figure 4. Autophagy Mobilizes Phospholipids from Cellular Membranes during Starvation

(A and B) FL-HPC-loadedWTMEFs were chased in HBSS for 6 hr in the absence or presence of 3-MA or bafilomycin A1 (Baf A1), and the subcellular localization

of FL HPC was determined. LDs were stained with BODIPY665/676. h, hours.

(C) Atg5KO MEFs were assayed as described in Figure 4A.

(D and E) WT MEFs expressing mCherry-LC3 or LAMP1-mCherry were assayed as described in Figure 2A.

(F) Quantification of the correlation between FL HPC signal and autophagosomes in the experiment described in Figure 2D. Data are expressed asmeans ± SEM.

**p < 0.001.

Scale bars, 10 mm. See also Figure S4.
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significantly over time (Figure 5H), accompanied by excessive

accumulation of mitochondrial FA breakdown intermediates

(Figure S6E).

We next determined whether the requirement of having fused

mitochondria was specific for FA metabolism and not for meta-

bolism of other metabolic substrates, such as glutamine. Unlike

FAs, which are concentrated in LDs, glutamine is diffusely

distributed in the cytoplasm and is taken up into mitochondria

via transporters distributed throughout the organelle. The fused

state of mitochondria may, therefore, be irrelevant for glutamine

to be effectively metabolized. To address this possibility, we

measured mtOCR levels in starved cells cultured for 24 hr

with and without glutamine addition in WT and Mfn1KO cells.

A 1.3-fold induction of mitochondrial respiration in response

to glutamine addition occurred for both control and Mfn1KO

cells (Figure 5I). This revealed that mitochondrial fragmentation

does not affect glutamine oxidation, unlike its effect on oxida-

tion of FAs. Therefore, b-oxidation requires mitochondria to

be highly fused, in contrast to other mitochondrial reactions

such as glutamine oxidation, which are unaffected by mito-

chondrial morphology. This could be explained if delivery of

FAs to mitochondria occurs primarily at limited sites (i.e., LDs

in close proximity to mitochondria), thereby requiring the

mitochondrial system to be highly fused to equilibrate newly

arriving FAs.

Defects in Mitochondrial Fusion Lead to Lipid
Accumulation in LDs
Previous work has shown that FA buildup can be toxic to mito-

chondria (Unger et al., 2010) and that cells from patients with

inherited b-oxidation defects can re-export FAs out of mito-

chondria (Nada et al., 1995; Schaefer et al., 1995). Given the

observed heterogeneous buildup ofmitochondrial FAs in starved

Mfn1KO or Opa1KO cells, we explored how mitochondria cope

with an excessive load of nonmetabolized FAs. One possibility is

that the cells redirect FAs back to LDs to be esterified to inert tri-

acylglycerols. This predicts a buildup of LDs in these cells.

Consistent with this, live-cell imaging of BODIPY 493/503 in

Mfn1KO and Opa1KO cells in CM showed slightly higher cellular

LD load than WT cells as measured by increased LD size, num-

ber, and volume (Figure 6A). The increase in LD number and size

wasmore pronouncedwhenmitochondrial-fusion-deficient cells

were starved, with three times higher LD volume per cell occur-

ring compared to that in fusion-competent control cells (Figures

6B and 6C). Pulse-chase Red C12 labeling experiments further

revealed that, although net transfer of Red C12 intomitochondria

in starved cells deficient in mitochondrial fusion was not signifi-

cantly affected (Figures S6A and S6D), there was greater buildup

of the Red C12 in LDs (Figures S6A–S6C). Greater accumulation

of Red C12 in LDs was also seen in nonstarved cells deficient in

mitochondrial fusion compared to WT cells, with Opa1KO cells

showing a more extreme phenotype than Mfn1KO cells, most

likely because of their increased bioenergetic deficiency (Figures

S6A–S6C). Despite this, lack of Mfn1 or Opa1 did not affect over-

all FA release from LDs or the abundance of themitochondrial FA

importer CPT-I under starvation conditions (Figures S6C and

S6F). Together, these results suggest that, to compensate for

their inability to effectively metabolize FAs, mitochondrial

fusion-deficient cells reroute FAs to reassociate with LDs.
Develo
Defects in Mitochondrial Fusion Lead to Increased FA
Expulsion from Cells
Given that LD storage capacity is thought to be limited in cells of

nonadipose origin, we wondered if cells deficient in mitochon-

drial fusion used further coping mechanisms to limit free FA

levels in their cytoplasm. One mechanism would be to transfer

FAs into the extracellular space (Herms et al., 2013). To test

this possibility, we combined Red C12 labeling of FAs with a

cellular coculture system to serve as optical readout for FA

release (Figure 7A). WT MEFs were pulsed with Red C12, and

the resulting ‘‘donor’’ cells were then cocultured for 24 hr in

nutrient-depleted medium with ‘‘acceptor’’ WT MEFs labeled

with a green cellular dye. A small amount of Red C12 was trans-

ferred fromWT donor cells to acceptor cells (Figures 7B and 7C).

These results demonstrate that FAs are exported at low levels in

MEFs during starvation. Inhibiting FA release from LDs by ATGL

depletion drastically reduced FA transfer into acceptor cells (Fig-

ure S7A), thus verifying LD stores as a major source for the FA

expulsion. Performing coculture experiments with Mfn1KO

donor cells revealed both higher levels of donor cell labeling

and significant transfer of Red C12 into the WT acceptor cells,

as shown both by fluorescence imaging and quantitative flow

cytometry (Figures 7B and 7C). Similar high levels of starva-

tion-induced Red C12 release were also observed in fusion-defi-

cient Opa1KO cells (Figures 7B and 7C). Since cell survival rates

in Mfn1KO and Opa1KO cells were comparable to those in WT

cells (Figure S7B), we can exclude the possibility that transferred

FAs were released from dying cells. Together, these data sug-

gest that reduction in b-oxidation rates, induced bymitochondria

fusion deficiency, increases rates of FA efflux out of cells. This

could be an important compensatory mechanism to avoid toxic

FA buildup in the cytoplasm.

DISCUSSION

In this study, we define the pathways regulating FA flux intomito-

chondria during nutrient stress, crucial for enabling cells to shift

their metabolism to FA oxidation and, thereby, survive starva-

tion. Using pulse-chase labeling assays, we found that FA flux

into mitochondria was codependent on LD lipolysis, autophagy,

and mitochondrial fusion dynamics (Figure 7D). Unless all three

systems contributed, FAs did not successfully redistribute into

and throughout mitochondria to maximize oxidative phos-

phorylation and, instead, accumulated within LDs and/or were

released from cells. As discussed in the following text, our find-

ings are relevant to the broader question of how cells and organ-

isms adapt cellular FA flow and storage to changing nutrient

availability and metabolic need.

In exploring how FAs move into mitochondria in starved cells,

we found that rather than being delivered from a free cyto-

plasmic pool (as occurs for other metabolites), FAs used LDs

as their conduit. This may explain why LDs and mitochondria

are so closely associated; it would enable FAs to move effi-

ciently between these two organelles. Close spatial positioning

of LDs and mitochondria has been reported before in various

cell types (Shaw et al., 2008; Sturmey et al., 2006; Tarnopolsky

et al., 2007; Vock et al., 1996). Indeed, electron microscopic

studies of skeletal muscle showed chains of alternating

mitochondria-LD structures (Tarnopolsky et al., 2007), with
pmental Cell 32, 678–692, March 23, 2015 ª2015 Elsevier Inc. 685
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Figure 5. Mitochondrial Fusion Is Required for Mitochondrial FA Distribution and Oxidation

(A–C) WT, Mfn1KO, or Opa1KO MEFs were transfected with the mitochondrial marker mito-RFP and labeled with BODIPY 493/503 to visualize LDs. (A) Live

images were acquired, (B) the ability of LDs to gain states of high proximity to mitochondria (mito.) was measured using the overlap coefficient, and (C) overall

mitochondrial content with direct contact to LDs was measured. h, hours; Coloc., colocalized.

(D) Red C12 localization in WT, Mfn1KO, or Opa1KO MEFs was assayed as described in Figure 1A (24 hr HBSS). Red C12 intensities in individual mito-

chondria were plotted as histograms, with blue and green bars representing higher and lower ranges of intensities, respectively. Red lines: WT trendline.

Representative images of mitochondrial Red C12 in each cell line were presented as heatmaps: blue indicates lowest and red indicates highest mitochondrial

Red C12 levels.

(E and F) Mitochondrial respiratory activity was measured in WT and Mfn1KO MEFs, incubated in CM or HBSS for the time points indicated. (E) Lipid-driven

mtOCR and (F) total mtOCR were determined. Lipid-specific respiration was analyzed by acute CPT-I inhibition with etomoxir.

(legend continued on next page)
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Figure 6. Mitochondrial Fusion Deficiencies

Result in Increased FA Storage

(A–C) WT, Mfn1KO, and Opa1KO cells were grown

in (A) complete or (B and C) starvation medium for

24 hr, BODIPY 493/503 was added to visualize

LDs, and LD size, number, and volume were

determined.

Scale bar, 50 mm. Data are expressed as means ±

SEM. **p < 0.001. See also Figure S6.
increased interactions in response to energy-intensive exercise

(Shaw et al., 2008). It remains to be established what mecha-

nisms underlie the close positioning of LDs and mitochondria,

but roles for microtubules (Valetti et al., 1999; Welte et al.,

2005), SNAP23 (Jägerström et al., 2009), and perilipin 5

(Wang et al., 2011) have been proposed.
(G and H) Respiratory induction levels for lipid-driven mtOCR and total mtOCR levels were determined,

each cell line.

(I) Glutamine (Gln)-driven respiration was determined by acute injection of glutamine to 24-hr-starved cells,

Scale bar, 10 mm. Data are expressed as means ± SEM. *p < 0.05; ***p < 0.0001; n.s., not significant. See a

Developmental Cell 32, 678–69
FA release from LDs has been linked to

cytoplasmic lipases and lipophagy (i.e.,

autophagic digestion of LDs), with their

relative contributions still unclear. Recent

studies identified pleiotropic roles for

autophagy in lipid metabolism that may

be tissue or condition specific (Dupont

et al., 2014; Kim et al., 2013; Shibata

et al., 2009, 2010; Singh et al., 2009a,

2009b). Here, we demonstrated that,

during acute starvation in mammalian

cells, autophagy is dispensable for sup-

plying mitochondria with FAs to sustain

oxidative respiration. This is because

inhibiting lipase activity (by silencing

ATGL or treating with DEUP), which

blocked FA flux into mitochondria,

reduced mitochondrial oxidative meta-

bolism and resulted in enlarged LDs in

starved cells. By contrast, we found

that conditions of serum depletion in

the presence of amino acids and glucose

led to upregulation of lipophagy, con-

sistent with previous studies (Ouimet

et al., 2011; Schulze et al., 2013; Singh

et al., 2009a). How the availability of

different nutrients dictates autophagoso-

mal specificity remains to be addressed.

One possibility is that the signaling path-

ways that control autophagy are sensi-

tive to different nutrient stress, and this

determines what substrate is targeted.

For example, the major autophagy regu-

lator mammalian target of rapamycin

(mTOR) is rapidly inactivated during

HBSS starvation but not during serum

starvation alone (Peterson et al., 2011).
Additionally, specialized cell types might differentially utilize

lipases versus lipophagy for their response to starvation; for

example, release of FAs from LDs by autophagy might be of

particular importance in cell types with low lipase activity,

such as hepatocytes (Singh et al., 2009a; Walther and Farese,

2012).
using mtOCR levels in CM as baseline levels for

and induction levels were determined.

lso Figure S5.
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Figure 7. Mitochondrial Fusion Deficiencies Result in Increased Cellular Export of FAs

(A) Schematic representation of the coculture assay to visualize cellular FA export. RedC12 prelabeled donor cells (WT,Mfn1KO, or Opa1KOMEFs) were washed

excessively and then cocultured for 24 hr in HBSS with CellTracker-green-labeled acceptor cells (WT MEFs).

(B and C) In (B), live cell images of donor and acceptor cells were acquired, and (C) levels of Red C12 transfer into acceptor cells measured by flow cytometry

analysis. Data are expressed as means ± SEM. *p < 0.05; ***p < 0.0001.

(D) Model of FA trafficking in starved cells. In WT cells, autophagy releases FAs from phospholipids within organelle membranes; these FAs flux through LDs into

tubulated mitochondria, where they become homogenously distributed throughout the mitochondrial network and are efficiently metabolized to produce ATP. In

fusion-deficient Mfn1KO cells, fragmentedmitochondria receive highly variable amounts of FA. These FAs are not efficiently metabolized, leading to redirection of

FA flow, which results in increased FA storage within LDs and efflux of FAs from the cell. b-oxid., b-oxidation; oxphos, oxidative phosphorylation.

See also Figure S7.
Why do starved mammalian cells prefer lipolysis to lipophagy

in trafficking FAs into mitochondria? We speculate that this

arises from several factors. One factor relates to avoidance of

FA overload and toxicity. When FA levels become too high in

the cytoplasm, FA toxicity occurs, leading to membrane perme-

ability and mitochondrial dysfunction (Unger et al., 2010). Diges-

tion of LDs by autophagy would likely release the stored FAs in

large quantities from lysosomes into the cytoplasm, requiring co-

ordination of FA flux into mitochondria with storage of excess

FAs in LDs. By contrast, FA flux into mitochondria via lipolysis

would only require regulation of lipases and LD-associated pro-

teins, such as perilipin 5 (Dalen et al., 2007; Granneman et al.,
688 Developmental Cell 32, 678–692, March 23, 2015 ª2015 Elsevier
2011; Wolins et al., 2006; Yamaguchi et al., 2006). Close posi-

tioning of LDs with mitochondria, which we observed, could pro-

vide a further mechanism whereby high concentrations of FAs

flow directly from LDs into mitochondria, avoiding buildup in

the cytoplasm. This transfer of FAs is likely to occur in associa-

tion with FA-binding proteins (FABPs), a family of small cyto-

plasmic proteins capable of reversibly binding FAs with high

affinity. The ubiquitously expressed heart FABP (H-FABP),

in particular, has been implicated in the transfer of FAs to

mitochondria (Furuhashi and Hotamisligil, 2008). Once locally

delivered into mitochondria, the FAs could then readily distribute

throughout the mitochondrial system, given the highly fused
Inc.



state of mitochondria in starved cells (Gomes et al., 2011; Ram-

bold et al., 2011).

A second factor for why starved mammalian cells might prefer

lipolysis to lipophagy for trafficking of FAs into mitochondria

could be related to the FA species released by lipolysis versus

lipophagy. The FA forms generated by lipolysis may be more

readily imported into mitochondria (or metabolized there),

compared to FAs released during lipophagy. In line with this, a

recent report demonstrated that lipid-dependent peroxisome

proliferator-activated receptor (PPAR) signaling specifically re-

quires cytoplasmic lipase-catalyzed hydrolysis of intracellular

triglyceride stores, but not FAs from other sources, to build a

functional signaling complex (Haemmerle et al., 2011). Given

that lipase-activated PPAR signaling drives mitochondrial

biogenesis and oxidative phosphorylation, FA release from LDs

could contribute to the coordination between FA transfer to

mitochondria and regulation of mitochondrial activity. Finally,

it is even conceivable that components of LDs, such as LD-

associated proteins, dissociate during lipolysis and regulate FA

trafficking or import.

Given that FAs flux into mitochondria from LDs via lipolysis in

starved cells, what supplies LDs with FAs so they can be contin-

uously delivered into mitochondria? We found that this func-

tion is mediated by autophagy. Autophagic digestion of cellular

membranes released FAs into the cytoplasm from where they

were at least partially incorporated into LDs. Therefore, inhibiting

autophagy did not prevent FAs from moving into mitochondria

and driving b-oxidation as long as LDs were abundant.

Notably, we found that effective FA delivery into mitochondria

in starved cells involved a role for mitochondrial fusion dy-

namics. Unless mitochondria were highly fused, FAs did not

distribute homogenously throughout the mitochondrial system,

and energy production within mitochondria by oxidative

phosphorylation was reduced. In cells with fragmented mito-

chondria, FAs excessively accumulated in some mitochondrial

elements and diminished in others, presumably due to only

some mitochondrial elements being associated close to a LD.

The consequence of these effects on FA trafficking and meta-

bolism were major, with levels of FA metabolism reduced,

more FAs built up in LDs, and more FAs fluxed out of the cell

to neighboring cells.

Changes in mitochondrial shape and ultrastructure are

known to accompany lipid-associated diseases and cellular lipid

excess (Galloway and Yoon, 2012, 2013; Yoon et al., 2011). Our

results showing the functional interrelation of mitochondrial

fusion with cellular FA trafficking inside and between cells

provide conclusive evidence that alterations in mitochondrial

structural integrity can actively contribute to changes in cellular

lipid homeostasis. Our data are consistent with a model in

which mitochondrial-fusion-deficient cells respond to reduced

b-oxidation levels by rerouting FAs from mitochondria into LDs

and the extracellular medium, similar to studies showing that

mitochondrial import enzymes reverse FA transport when

b-oxidation is impaired (Eaton et al., 1996; Nada et al., 1995;

Schaefer et al., 1995; Watmough et al., 1988). The level of FA re-

routing was dosage dependent, with higher FA flux occurring in

respiratory defective Opa1KO than inMfn1KO cells. The correla-

tion between respiratory deficiency and FA export might make

FA rerouting also relevant for metabolic defects resulting from
Develo
mechanisms other than altered mitochondrial fission/fusion

dynamics.

The system we have described for mobilizing FAs during star-

vation may play a role in other cellular contexts. For example, FA

oxidation is critical in highly oxidative cells, like skeletal muscle

specifically during exercise or the heart (Fritz et al., 1958; Gryn-

berg and Demaison, 1996). Emerging evidence is also corre-

lating the presence of fused mitochondria with many cellular

states of high-energy demand, including G1/S cell-cycle transi-

tion (Mitra et al., 2009) and chemical stress (Tondera et al.,

2009). Moreover, recent studies showed that fusion is required

to sustain mitochondrial activity during excitation-contraction

coupling in skeletal muscle and the activity of Agrp neurons in

lipid-fed mice (Dietrich et al., 2013; Eisner et al., 2014). In addi-

tion, because FAs and their derivatives play important roles in

regulating cellular signaling cascades and contribute to FA-

driven modulations in metabolism, inflammatory responses,

and cell death programs (Calder, 2013; Wahli and Michalik,

2012; Zechner et al., 2012), alterations in their levels likely have

huge health risks (Currie et al., 2013; Krahmer et al., 2013).

Therefore, future work studying the FA flux system described

here (involving autophagosomes, LDs, and mitochondria) has

great potential for contributing to our understanding of the

pathophysiology of lipid-associated diseases, such as obesity,

diabetes, cancer, and inflammatory disorders.

EXPERIMENTAL PROCEDURES

Fluorescent FA Pulse-Chase and Coculture Experiments

MEFs were incubated with CM (DMEMwith 10% fetal bovine serum and 4mM

glutamine) containing 1 mMBODIPY 558/568 C12 (Red C12, Life Technologies)

or 2 mM b-BODIPY FL C12-HPC (FL HPC, Life Technologies) for 16 hr. Cells

were then washed three times with CM, incubated for 1 hr in order to allow

the fluorescent lipids to incorporate into LDs or cellular membranes, and

then chased for the time indicated in CM or HBSS in the absence or presence

of various drugs. Mitochondria were labeled with 100 nM MitoTracker Green

FM (Life Technologies) for 30 min prior to imaging. To label LDs, BODIPY

493/503 (Life Technologies) or BODIPY 665/676 (Life Technologies) was

added to cells at 200 ng/ml immediately prior to imaging and was present dur-

ing imaging.

For FA transfer coculture assays, donor cells were incubated with 2 mMRed

C12 for 16 hr in CM. Cells were then washed three times with CM followed by

1 hr incubation. In parallel, acceptor cells were labeled for 30 min at 37�C with

5 mM CellTracker Green (Life Technologies), according to the manufacturer’s

instructions. Acceptor cells were trypsinized and coplated with donor cells.

After 24 hr in HBSS, either cells were imaged, or BODIPY 558/568 C12 fluores-

cence was determined in CellTracker-Green-positive acceptor cells using a

FACSCalibur cell analyzer (BD Biosciences).

Image Processing, Analysis, and Statistics

Images were analyzed using Slidebook Imaging Software (3i) and ImageJ

(NIH). Image brightness and contrast were adjusted in Adobe Photoshop CS.

For fluorescent FA pulse-chase assays, z stacks were analyzed using Slide-

book to determine Pearson’s coefficients and mean fluorescence intensity. To

quantify the fluorescence intensity of Red C12 in mitochondria, we made a

mask using theMitoTracker channel, and then themean fluorescence intensity

in the Red C12 channel was calculated either across the entire mask or for

individual objects larger than ten pixels.

For LD-mitochondria proximity, binary z stack images were analyzed using

ImageJ ‘‘JACoP’’ software to determine the overlap coefficient. For connec-

tivity between mitochondria and LDs, a mask was created from segmented

mitochondrial images, and the percentage of mitochondrial signal connected

to a site of LD-mitochondria proximity versus total mitochondrial signal was

calculated.
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LD size and number were quantified with the ImageJ ‘‘analyze particles’’

function in thresholded images, with size (square pixel) settings from 0.1 to

100 and circularity from 0 to 1. To determine LD volume per cell, thresholded

z stacks were subjected to the Volume function of the Slidebook (3i) software.

Data were expressed as means ± SEM. Statistical analysis among groups

was performed using Student’s t test.

Lipid Extraction and TLC

Fluorescent pulse-chase assays were performed as described earlier, except

that 13 107 cells were grown in 10-cm dishes and harvested by trypsinization.

Lipids were extracted by homogenizing cell pellets in chloroform at 3 3 107

cells per milliliter and then spotted onto silica gel preparative TLC plates

(Sigma-Aldrich). Separation of lipids was performed by developing the

plates in a solvent system of cyclohexane/ethyl acetate, 1:2 (vol/vol), and

fluorescent lipids were visualized using a Typhoon 9410 Molecular Imager

(GE Amersham).

Mitochondrial Activity Measurements

Mitochondrial activity was determined using the Seahorse Flux Analyzer XF96,

according to the manufacturer’s instructions. Briefly, 2 3 104 cells were

seeded on 10 mg/ml fibronectin-coated Seahorse 96-well plates. After 24 hr,

cells were incubated in CM or HBSS for the time points indicated. Sixteen

replicates were performed per cell line, and the average value was taken per

experiment. To determine mtOCR, rotenone and antimycin were injected

to acutely inhibit mitochondrial-driven oxygen consumption. mtOCR was

determined by subtracting nonmitochondrial OCR from total OCR levels.

Lipid-oxidation-driven mtOCR was determined by inhibition of the mitochon-

drial FA importer CPT-I using etomoxir. OCR data were normalized by cell

number.
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