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a b s t r a c t

The LALSuite data analysis libraries, written in C, implement key routines critical to the successful
detection of gravitational waves, such as the template waveforms describing the merger of two black
holes or two neutron stars. SWIGLAL is a component of LALSuite which provides interfaces for Python
and Octave, making LALSuite routines accessible directly from scripts written in those languages. It has
enabled modern gravitational-wave data analysis software, used in the first detection of gravitational
waves, to be written in Python, thereby benefiting from its ease of development and rich feature set,
while still having access to the computational speed and scientific trustworthiness of the routines
provided by LALSuite.
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1. Motivation and significance

The choice of programming language is a critical decision in
he design of scientific software. Languages such as C provide
low level of abstraction between the programmer and the
achine architecture, and are compiled to machine code for best
erformance. The lack of abstraction, however, places a higher
urden on the developer to manually handle low-level tasks,
uch as memory management, which detracts from the scien-
ific problem at hand. High-level scripting languages, of which
ython [1] and Octave [2] are two examples, provide a higher
evel of abstraction from the machine architecture, freeing the
eveloper to focus on the algorithm, reducing development time,
nd facilitating the rapid prototyping of new ideas. They also

∗ Correspondence to: ARC Centre of Excellence for Gravitational Wave Dis-
overy (OzGrav) and Centre for Gravitational Astrophysics, Australian National
niversity, Canberra, ACT 2600 Australia.

E-mail address: karl.wette@anu.edu.au.

provide a richer set of features, either built into the language or
else available through easy-to-install packages downloaded from
a central repository. They are generally not compiled to machine
code, however, and therefore performance may not match that
provided by low-level machine code.

Often, a new software package will want to make use of
existing libraries which provide routines which are particularly
efficient, well-tested and trusted by the wider scientific commu-
nity, and/or difficult to re-implement. In such cases, the developer
may be constrained to use a particular language – the same lan-
guage as the existing library – and therefore be forced to accept
the costs and benefits of that particular language. A solution to
this problem is to write a software wrapper around the existing
library, which then exposes its routines so that it can be used
from the programming language of choice. For example, software
wrappers can enable the developer to make use of libraries writ-
ten in C, while also benefiting from the ease of development and

rich feature set provided by high-level languages such as Python.
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able 1
umber of constants, variables, functions, and classes exported by the SWIGLAL
nterfaces to the libraries of LALSuite, version 6.67, and an estimate of the
otal (non-blank, non-comment) lines of C code (LOC) of each library. Note that
WIGLAL provides a single interface to the LAL and LALSupport libraries, which
re therefore counted together.

Constants Variables Functions Classes LOC

LAL(Support) 712 64 1745 182 38k
LALBurst 9 4 23 2 2k
LALFrame 54 4 254 12 7k
LALInference 45 41 416 22 28k
LALInspiral 204 5 358 58 33k
LALMetaio 55 4 51 18 3k
LALPulsar 156 9 623 148 32k
LALSimulation 209 42 714 12 92k

Total 1444 173 4184 454 236k

The first detections of gravitational waves, from the merger
f two black holes [3] and from two neutron stars [4], were
ade possible through, amid many other advances, the careful

mplementation and rigorous testing of data analysis software.
ALSuite (LSC Algorithm Library Suite; [5]) is a collection of
oftware routines for gravitational-wave data analysis, written in
, and developed since 2000. As of version 6.67 [6], LALSuite pro-
ides, along with ∼ 230 executables, 9 libraries which collectively
xport a large number of symbols, and represents a significant
ode base of hundreds of thousands of lines of C code (Table 1).
t provides atomic data types for fixed-width integer, floating-
oint, and complex numbers; and compound data types called
‘structs’’, accompanied by functions which create, destroy, and
anipulate them. (Structs in C are conceptually equivalent to
lasses in Python and other high-level languages; this paper will
ereafter use the term ‘‘class’’ to refer to both low-level structs
nd high-level classes.)
The LALSuite libraries provide extensive, well-tested routines

or gravitational-wave data analysis, in particular for searches for
inary black holes and binary neutron stars, which have been
arefully vetted by members of the LIGO Scientific Collabora-
ion and Virgo Collaboration. These include the template signal
aveforms for such events, as predicted by general relativity,
hich tend to be complicated mathematical expressions [e.g.
] which are time-consuming to implement and verify. More
ecent gravitational-wave data analysis software has sought to
ake advantage of the ease of development and extensive package
ibrary of Python; without access to LALSuite routines, however,
evelopers would have faced a significant additional burden in
e-implementing and re-verifying the routines in Python.

This paper describes SWIGLAL, which provides Python and
ctave interfaces to the libraries provided by LALSuite. These
nterfaces have enabled modern gravitational-wave data analysis
oftware to benefit from the advantages of programming in high-
evel languages, while retaining access to the trusted code base
nd computational efficiency of the LALSuite code base.

. Software description and illustrative examples

Generation of the SWIGLAL interface uses SWIG (Simplified
rapper and Interface Generator; [8]), a software development

ool. SWIG parses the header files of a C/C++ library and identifies
he symbols the library exports. It then generates the wrapper
ode required to interface the library with a variety of high-level
anguages, including Python and Octave. Because it takes C/C++
eader files directly as input, SWIG does not require additional
ode to be written specifically for each exported symbol. Given
he large number of symbols exported by LALSuite (Table 1), the
utomation provided by SWIG relieves LALSuite developers of

further customised by adding directives which modify the SWIG-
generated wrapper code. For example, specific directives can be
applied to every class in order to add constructors and destruc-
tors. SWIG does not, however, provide a general framework for
automating the application of many directives to arbitrary classes
of symbols. To fully automate interface generation, SWIGLAL runs
SWIG twice: first as a simple C/C++ header parser, then as an
wrapper code generator. The workflow is as follows:

1. For each LALSuite library, SWIGLAL generates a basic SWIG
interface which simply incorporates all the C header files
provided by that library.

2. The basic SWIG interface is input to SWIG with its -xml op-
tion, which generates an XML file containing a syntax tree
of all symbols exported by the LALSuite library headers.

3. The XML syntax tree is input to a custom Python script,
generate_swig_iface.py. It parses the XML syntax
tree, gathers information about the exported symbols, and
generates the full SWIG interface, which augments the ba-
sic interface with additional SWIG directives to implement
desired functionalities.

4. The full SWIG interface is input to SWIG with its -python
or -octave options to generate wrapper code for Python
or Octave respectively, which are then compiled into dy-
namically loadable modules. Python modules are loaded
using the import directive; Octave modules are loaded by
simply calling the name of the library, e.g. ‘‘ lal ; ’’ for the
LAL library.

The workflow is implemented as a collection of macros and
build rules in the GNU Autoconf/Automake build system used
by LALSuite. Autoconf macros perform configuration tasks, e.g.
finding a compatible version of the swig binary, and determin-
ing the C/C++ preprocessor/compiler/linker flags needed to build
the Python/Octave modules. Automake macros implement the
workflow to build the basic and full SWIG interfaces, and the
Python/Octave modules, as described above.

A key design objective of SWIGLAL is that the interfaces should
resemble and behave, in the supported high-level language, as
close to native code written in that language as possible. To
that end, SWIGLAL provides a library of custom SWIG directives
which modify the wrapper code to mediate between the expected
behaviour of native Python/Octave code and the semantics of the
C-language LALSuite libraries. The interface file SWIGCommon.i
provides common directives used in all languages, while SWIG-
Python.i and SWIGOctave.i provide directives specific to the
Python and Octave interfaces respectively. Each LALSuite library
may also provide library-specific directives.

It is also sometimes necessary to add SWIG directives directly
to the C header files, in order to further modify the wrapper code
for particular functions or classes. SWIGLAL provides numerous
macros, defined in SWIGCommon.i which are then added to the
C header files within #ifdef SWIG . . . #endif blocks and wrapped
in a common macro, SWIGLAL(); Fig. 1 shows an example us-
age. This approach keeps SWIG-related code added to the C
header files as succinct as possible. Fig. 1 provides an exam-
ple: the extensive code required to expose the LAL REAL4Vector
class as a native scripting-language array is hidden within the
ARRAY_STRUCT_1D() macro.

The remainder of this section describes some of the issues
encountered in fulfilling the objective of the SWIGLAL interface
to closely resemble native Python/Octave code, and how those
issues are addressed.
significant maintenance burden. SWIG wrapper code can be
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Fig. 1. Example usage of the SWIGLAL() macro in the wrapping of the LAL class
EAL4Vector. The ARRAY_STRUCT_1D() macro exposes the ‘‘data’’ field of the
EAL4Vector class as a native scripting-language array of length ‘‘length’’.

Fig. 2a. Example expansion of the %swiglal_struct_extend() macro for the LAL
lass LIGOTimeGPS. This class contains only static fields, and so SWIGLAL
rovides a constructor, copy constructor, and destructor for this class. The
WIG %extend directive adds methods to an existing class; methods named
fter the class are interpreted as constructors, while methods named af-
er the class with the prefix ‘‘∼’’ are interpreted as destructors. The
swiglal_new_instance() macro allocates a new LIGOTimeGPS instance using
LALCalloc(); the %swiglal_new_copy() macro creates a copy of an existing LIGO-

TimeGPS instance; and the %swiglal_struct_call_dtor() macro calls the destructor
function XLALFree().

Fig. 2b. Example expansion of the %swiglal_struct_extend() macro for the LAL
EAL4Vector class. Since this class points in dynamically-allocated memory in its
‘data’’ field (Fig. 1), only the destructor is provided, which calls the destructor
unction XLALDestroyREAL4Vector().

.1. Class constructors and destructors

LALSuite classes can be separated into two groups, based on
heir memory requirements. Classes which contain only static
ields, and do not point to dynamically-allocated memory, can be
traightforwardly allocated and freed with
LALMalloc()/XLALCalloc() and XLALFree().1 For classes which

point to dynamically-allocated memory, custom constructor and
destructor functions are provided; they are generally named after
the class prefixed with ‘‘XLALCreate. . . ’’ and ‘‘XLALDestroy. . . ’’.
The SWIGLAL generate_swig_iface.py script determines to
which group each LALSuite class belongs, by using the XML

1 These are LALSuite’s equivalents to the C functions malloc()/calloc() and
free(), but which also provide optional memory debugging features.

parse tree to determine if a destructor ‘‘XLALDestroy. . . ’’ exists
for a particular class. The script then outputs calls to the macro
%swiglal_struct_extend() Figs. 2a and 2b show two examples
of the expansion of %swiglal_struct_extend() for a class with
only static fields (LIGOTimeGPS) and a class with dynamically-
allocated memory (REAL4Vector). The provision of correct de-
structors is necessary to free the user from manual memory
management, which high-level languages are expected to handle.
The provision of constructors for classes with static fields pro-
vides methods for creating new classes from high-level languages
without access to low-level memory functions like XLALMalloc().

2.2. Memory ownership paradigms

LALSuite assumes that all class instances are referred to ex-
actly once. When a class instance is destroyed, all dynamically-
allocated memory associated with the instance is freed, including
any instances of other classes that are pointed to by the parent in-
stance; put another way, the parent instance ‘‘owns’’ the memory
of the child instances it points to. High-level languages, how-
ever, allow multiple references to be taken to a particular class
instance, and memory is only freed once no references to that
instance remain. Class instances are responsible for freeing their
own memory, but do not ‘‘own’’ the memory of any instances of
other classes they point to.

Figs. 3a and 3b illustrate how the tension between these dif-
ferent paradigms of memory ownership could potentially cause
problems. The LAL REAL4TimeSeries class contains a pointer to
an instance of the REAL4Vector class,2 and its constructor and de-
structor functions create and destroy all dynamic memory associ-
ated with a REAL4TimeSeries instance, including the REAL4Vector
pointer (Fig. 3a). In Python, however, the REAL4TimeSeries and
REAL4Vector instances have no parent–child relationship; the
user is free to create a REAL4TimeSeries instance (Fig. 3b, line 2),
store a reference to the REAL4Vector instance it points to [line 6],
then delete the REAL4TimeSeries instance [line 7] and assume
the REAL4Vector instance will continue to be valid [line 8]. This
is incompatible with the LALSuite memory ownership model,
which would destroy the REAL4Vector instance along with the
REAL4TimeSeries that pointed to it, corrupting the reference
stored to the REAL4Vector by the user.

To resolve this tension, the SWIGLAL interface implements
a system which tracks the memory ownership relationship be-
tween instances. In Fig. 3b, line 6, SWIGLAL modifies the wrapper
code for the ‘‘data’’ field of ‘‘ts’’ to record that the REAL4Vector in-
stance ‘‘ts.data’’, assigned to ‘‘ts_data’’, is owned by the
REAL4TimeSeries instance. This record is stored in an associa-
tive array called the parent map. The parent map also records
a reference count of the number of times ‘‘ts.data’’ has been
accessed. Then, in line 7, the Python del operator is called on ‘‘ts’’,
which would normally immediately call the REAL4TimeSeries
destructor; here SWIGLAL intervenes to check whether ‘‘ts’’ exists
in the parent map, i.e. whether it owns the memory of another
class instance. Since ‘‘ts’’ owns the memory of ‘‘ts.data’’, the
destructor function XLALDestroyREAL4TimeSeries() is not called,
and so the memory allocated for the REAL4Vector instance stored
by ‘‘ts_data’’ is not destroyed. Finally, in line 10, the Python
del operator is called on ‘‘ts_data’’; here SWIGLAL checks who
owns the memory of ‘‘ts_data’’ (i.e. the original ‘‘ts’’ object) and
whether there are any outstanding references to that memory.
Since both ‘‘ts’’ and ‘‘ts_data’’ have been destroyed, it is safe for
SWIGLAL to call the now call the destructor function XLALDe-
stroyREAL4TimeSeries() for the REAL4TimeSeries instance cre-
ated in line 2.

2 Strictly speaking, REAL4TimeSeries is defined with a pointer to
REAL4Sequence, a synonym for REAL4Vector.
3
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Fig. 3a. Illustration of memory ownership tracking in SWIGLAL: Definition
of the LAL REAL4TimeSeries class. The ‘‘data’’ field of this class points to
n instance of the REAL4Vector class. The XLALCreateREAL4TimeSeries() func-
ion allocates memory for a new REAL4TimeSeries instance, and for a new
EAL4Vector instance which is pointed to by the ‘‘data’’ field. The XLALDe-
troyREAL4TimeSeries() function destroys both the REAL4TimeSeries instance
nd the pointed-to REAL4Vector instance.

Fig. 3b. Illustration of memory ownership tracking in SWIGLAL: Example usage
in Python. The user creates a new REAL4TimeSeries instance at line 2, and
ssigns values to the data array pointed to by the REAL4Vector instance in lines 3
nd 4. The user stores a reference to the ‘‘data’’ member of the REAL4TimeSeries
nstance in line 5, and attempts to delete the REAL4TimeSeries instance in line 6
sing the Python del operator. This does not, however, trigger an immediate call
o XLALDestroyREAL4TimeSeries(), since SWIGLAL knows that the user retains
reference to the REAL4Vector instance in the variable ‘‘ts_data’’. The data

ontained in the REAL4Vector instance therefore remains accessible (line 8),
nd XLALDestroyREAL4TimeSeries() is called only when ‘‘ts_data’’ is destroyed
line 9).

The SWIGLAL memory ownership tracking system, combined
ith the native reference counting of objects in Python and
ctave, completely frees the user from any manual memory
anagement, as is appropriate for a high-level language, while

especting the LALSuite memory management paradigm. Memory
llocated by LALSuite functions is only freed once it is no longer
sed, and conversely is retained only as long as needed, thus
inimising memory usage.

.3. Fixed-length and dynamically-sized arrays

Gravitational-wave data analysis frequently involves opera-
ions on large time- and/or frequency-domain data series, and
ALSuite provides many functions and classes to represent such
ata, such the REAL4Vector (Fig. 1) and REAL4TimeSeries (Fig. 3a)
lasses. Such data should be accessible from within the SWIGLAL
nterface as native array objects, and in an efficient manner
ithout copying of data between the C class instance and its
igh-level language representation.

Fig. 4. Whitened, band-pass-filtered strain data from the LIGO Hanford detector
at the time of the gravitational-wave event GW 150914, as output by the
example Python script listed in Appendix.

SWIGLAL provides several typemaps for converting numerical
arrays to/from native array objects; for Python, NumPy [16]
arrays are used, while for Octave the native matrix type (or
subclasses thereof) are used. For fixed-length C arrays, SWIGLAL
supports both one- and two-dimensional arrays; typemaps are
provided for both function arguments and C structure fields.
Dynamically-allocated arrays are typically implemented as spe-
cific classes in LALSuite; SWIGLAL provides directives which are
added to those classes to provide the type conversion. For the
REAL4Vector class, for example (Fig. 1), the ARRAY_STRUCT_1D()
macro modifies the wrapper code for the ‘‘data’’ field, so that e.g.
in Python it accepts any valid sequence of floating-point numbers
on assignment, and exposes the ‘‘data’’ field as a NumPy array [17]
view which directly accesses the underlying C memory.

Some LALSuite array classes store only array data, and nothing
else: REAL4Vector (Fig. 1) is such a class, while REAL4TimeSeries
(Fig. 3a) contains additional fields. SWIGLAL provides additional
typemaps for pure-array classes such as REAL4Vector so that
functions can accept both class instances and native array objects
as arguments. For example, the Python interface to a function
which takes a REAL4Vector instance as an argument will also
accept a NumPy array of the appropriate type.

2.4. Example: extract strain data at time of GW 150914

Fig. 4 shows the output of an example Python script, listed in
the Appendix, which extracts the strain data at the time of the
first detected gravitational wave event GW 150914 [cf. Figure 1
of 3]. The script reads in strain data from the LIGO Hanford de-
tector [18] at the time of the event, available from [19]; whitens
and band-pass-filters the data so that the event is clearly visible;
and plots the processed strain data in the vicinity of the event.
The script is not intended as an example of best-practise signal
processing for gravitational-wave data analysis, but as an illustra-
tion of what may be accomplished in 35 lines of Python code, by
harnessing the power of LALSuite routines through the SWIGLAL
interface.

3. Impact

Table 2 show the usage of the SWIGLAL interfaces by Python
code within LALSuite itself, and by seven other gravitational-

wave data analysis packages. The table gives, for each LALSuite

4
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Table 2
Usage of the SWIGLAL interfaces by LALSuite itself, and by the PyCBC, GstLAL, Bilby, GWpy, PyFstat, CWInPy, and OctApps
packages. The header for each table section gives the package name and version, and the percentage of (non-blank, non-
comment) lines of code (LOC) written in C, Python, and/or Octave. The columns give the number of source files (out of the
total in each package) which reference the SWIGLAL interfaces of each LALSuite library, as well as the number of distinct
constants, variables, functions, and classes exported by the SWIGLAL interfaces that are referenced by each package. For
functions, an estimate of the total (non-blank, non-comment) lines of C code (LOC) represented, including nested calls, is
given in parentheses. Note that SWIGLAL provides a single interface to the LAL and LALSupport libraries, which are therefore
counted together.

Sources Constants Variables Functions (LOC) Classes

LALSuite, version 6.67 [5]. LOC: C ∼ 95%, Python ∼ 5%.

LAL(Support) 71/222 25 3 32 (3k) 18
LALBurst 39/222 0 0 1 (0.5k) 0
LALFrame 8/222 0 0 20 (4k) 4
LALInference 27/222 7 3 24 (93k) 4
LALInspiral 7/222 0 0 5 (1k) 1
LALMetaio 8/222 0 0 0 (0) 2
LALPulsar 10/222 9 0 43 (16k) 21
LALSimulation 20/222 0 0 40 (60k) 0

PyCBC, version 1.15.4 [9]. LOC: Python ∼ 100%.

LAL(Support) 41/309 16 0 32 (3k) 20
LALFrame 2/309 2 0 25 (6k) 1
LALPulsar 1/309 1 0 5 (2k) 2
LALSimulation 14/309 4 1 50 (61k) 1

GstLAL, version 1.5.1a . LOC: C ∼ 52%, Python ∼ 48%.

LAL(Support) 41/117 6 1 16 (2k) 11
LALSimulation 9/117 0 0 7 (59k) 0

Bilby, version 0.6.5 [10]. LOC: Python ∼ 100%.

LAL(Support) 8/83 3 0 5 (1k) 8
LALSimulation 5/83 0 0 18 (59k) 0

GWpy, version 1.0.1 [11]. LOC: Python ∼ 100%.

LAL(Support) 10/267 10 8 3 (1k) 4
LALFrame 2/267 0 0 9 (3k) 2

PyFstat, version 1.3 [12]. LOC: Python ∼ 100%.

LAL(Support) 6/28 8 1 5 (1k) 6
LALPulsar 6/28 10 1 22 (14k) 21

CWInPy, version 0.2.1 [13]. LOC: Python ∼ 100%.

LAL(Support) 3/42 2 0 4 (1k) 4
LALInference 14/42 0 1 0 (0) 0
LALPulsar 2/42 0 0 1 (1k) 0
LALSimulation 1/42 0 0 9 (1k) 0

OctApps, version 0.2 [14]. LOC: Octave ∼ 100%.

LAL(Support) 9/243 7 0 9 (1k) 5
LALPulsar 7/243 29 1 22 (13k) 20

aIncludes the packages: GstLAL Ugly, version 1.6.6; GstLAL Inspiral, version 1.6.9; GstLAL Calibration, version 1.2.11; GstLAL
Burst, version 0.2.0 [15].

library: the number of source files (out of the package total)
which reference the SWIGLAL interface for that library (e.g. by
importing the interface in Python using ‘‘import’’), and the num-
er of distinct symbols referred to by the package. The table also
ists an estimate of the total lines of C code represented by the
ALSuite functions referenced from each package; the estimates
nclude any nested calls to other LALSuite functions. Python code
ithin LALSuite is a substantial user of SWIGLAL, in terms of
ource files (∼ 3–30%), and lines of C code utilised (∼ 180k).
The PyCBC [20–23] and GstLAL [24,25] data analysis packages

were used in the first detections of gravitational waves [3,4].
PyCBC makes use of the LAL library in over 10% of its source
files, mostly for manipulating time- and frequency-domain data
series. It uses 25 functions from LALFrame to read and write
gravitational wave data in the standard Frame format [26] pro-
duced by gravitational-wave observatories. It uses 50 functions
from LALSimulation to generate template waveforms for matched
filtering of the gravitational-wave data. It uses a few functions
from LALPulsar for template bank generation [27]. The total lines
of LALSuite code utilised by PyCBC is ∼ 72k. While primarily

written in C, GstLAL uses 16 functions from the LAL library
to manipulate time- and frequency-domain data, and compute
the geocentric time delay to the gravitational-wave observato-
ries, from Python scripts. It uses 7 functions from LALSimulation
to generate template waveforms in Python. The total lines of
LALSuite code utilised by GstLAL from Python is ∼ 61k.

Bilby [28] aims to be a user-friendly package for Bayesian in-
ference for use in gravitational-wave data analysis [e.g. 29]. It ac-
cesses LALSuite through the SWIGLAL interfaces in ∼ 5–10% of its
source files. The LAL library is used to handle time- and-frequency
domain gravitational-wave data, and LALSimulation is used to
generate template waveforms for computing the Bayesian likeli-
hood function. A total of ∼ 60k lines of LALSuite code are utilised.

GWpy [30] is a general package for easily accessing, visualis-
ing, and studying gravitational-wave data. It makes use of the LAL
and LALFrame libraries, primarily for manipulating gravitational-
wave data in the Frame format, in about ∼ 5% of its source files.
It uses ∼ 4k lines of LALSuite code in total.
5
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PyFstat [31], CWInPy [32], and OctApps [33] are data analysis
ackages focused on the search for continuous gravitational waves
rom rapidly rotating neutron stars; this class of gravitational
ave signals has not yet been detected. PyFstat uses LAL and
ALPulsar (in ∼ 20% of its source files) to compute the F-statistic
34], a standard data analysis routine for continuous gravitational
ave searches. CWInPy uses a few LALSuite routines to e.g.
andle frequency-domain data, convert between time standards,
nd access properties of the gravitational-wave observatories. Oc-
Apps uses routines, predominately from LALPulsar, to compute
he F-statistic and its associated parameter space metric [35] for
esigning continuous gravitational wave searches. Both PyFstat
nd OctApps use ∼ 14–15k lines of LALSuite code, which CWInPy
ses ∼ 3k.

. Conclusions

LALSuite is an important, well-tested component of the
ravitational-wave data analysis software stack. SWIGLAL makes
nnovative use of SWIG to provide automatically-generated in-
erfaces to LALSuite for Python and Octave, with an empha-
is on modelling native code behaviour in those languages.
he interfaces have facilitated the development of modern
ravitational-wave data analysis software written in Python,

in particular PyCBC which was used in the first discovery of
gravitational waves. The extensive use of the interfaces by a
wide variety of Python and Octave packages for gravitational-
wave data analysis demonstrates the impact and usefulness of
SWIGLAL.
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ppendix. Example Python script to extract strain data at time of GW 150914

import l a l
import l a l f r am e as l a l f r
import numpy as np
import ma t p l o t l i b . p yp l o t as p l t

r ead s t r a i n data at t ime o f GW 150914
− f rame f i l e downloaded from h t t p s : //www. gw−open s c i e n c e . org /

f r ame_ f i l e = l a l f r . FrFi leOpenURL ( " . /H−H1_GWOSC_4KHZ_R1−1126259447−32. gwf" )
gw_stra in = l a l f r . FrF i l eReadREAL8TimeSer ies ( f r ame_f i l e , "H1 :GWOSC−4KHZ_R1_STRAIN" , 0)

compute ave r age power s p e c t r a l d e n s i t y o f s t r a i n data
psd_segment_len = i n t ( 4 . 0 / gw_stra in . de l t aT )
psd_window = l a l . CreateTukeyREAL8Window ( psd_segment_len , 0 . 5 )
f f t_p l a n = l a l . CreateForwardREAL8FFTPlan ( psd_segment_len , 0)
gw_psd_length = psd_segment_len // 2 + 1
gw_psd = l a l . CreateREAL8FrequencySer i e s ( " psd" , gw_stra in . epoch , 0 , 0 , l a l . D imen s i on l e s sUn i t ,

↪→ gw_psd_length )
l a l . REAL8AverageSpectrumWelch (gw_psd , gw_stra in , psd_segment_len , psd_segment_len , psd_window ,

↪→ f f t_p l a n )
gw_psd_f = gw_psd . f 0 + np . a range (gw_psd . data . l e n g t h ) ∗ gw_psd . d e l t aF ;

t r an s f o rm s t r a i n data to F o u r i e r domain
gw_four i e r_ length = gw_stra in . data . l e n g t h // 2 + 1
gw_four i e r_de l taF = 0 .5 / gw_stra in . de l t aT / ( gw_four i e r_ length − 1)
f f t_p l a n = l a l . CreateForwardREAL8FFTPlan ( gw_stra in . data . l eng th , 0)
gw_four i e r = l a l . CreateCOMPLEX16FrequencySeries ( " f o u r i e r " , gw_stra in . epoch , 0 , gw_four ie r_de l taF ,

↪→ l a l . D imen s i on l e s sUn i t , gw_four i e r_length )
gw_four ie r_f = gw_four i e r . f 0 + np . a range ( gw_four i e r . data . l e n g t h ) ∗ gw_four i e r . d e l t aF ;
l a l . REAL8ForwardFFT ( gw_four i e r . data , gw_stra in . data , f f t_p l a n )

whi ten s t r a i n data i n F o u r i e r domain
gw_psd_at_fourier_f = np . i n t e r p ( gw_four ier_f , gw_psd_f , gw_psd . data . data )
gw_four i e r . data . data = gw_four i e r . data . data / np . s q r t ( gw_psd_at_fourier_f )

t r an s f o rm whi tened s t r a i n data back to t ime domain
f f t_p l a n = l a l . CreateReverseREAL8FFTPlan ( gw_stra in . data . l eng th , 0)
l a l . REAL8ReverseFFT ( gw_stra in . data , gw_four i e r . data , f f t_p l a n )
6
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#

#

#

band−pas s f i l t e r wh i tened t ime s e r i e s between 50 and 300 Hz
l a l . HighPassREAL8TimeSer ies ( gw_stra in , 50 , 0 . 1 , 6)
l a l . LowPassREAL8TimeSeries ( gw_stra in , 300 , 0 . 1 , 6)

e x t r a c t s t r a i n data [ −0 .15 ,0 .10 ] s econds around GW 150914
time_of_GW150914 = l a l . LIGOTimeGPS( " 1126259462.4 " )
f i r s t_ s amp l e = i n t ( ( ( time_of_GW150914 − 0 . 15 ) − gw_stra in . epoch ) / gw_stra in . de l t aT )
num_samples = i n t ( 0 . 25 / gw_stra in . de l t aT )
gw_stra in = l a l . CutREAL8TimeSeries ( gw_stra in , f i r s t_samp l e , num_samples )
gw_strain_t = f l o a t ( gw_stra in . epoch − time_of_GW150914 ) + np . a range ( gw_stra in . data . l e n g t h ) ∗

↪→ gw_stra in . de l t aT

p l o t s t r a i n data
p l t . p l o t ( gw_strain_t , gw_stra in . data . data / max( gw_stra in . data . data ) , "k−" )
p l t . t i t l e ( "Demonst rat ion ␣ o f ␣SWIGLAL : ␣ s t r a i n ␣ data ␣ at ␣GW␣150914" )
p l t . x l a b e l ( f "Time␣ r e l a t i v e ␣ to ␣GPS␣{time_of_GW150914}" )
p l t . y l a b e l ( "Ampl i tude ␣/␣maximum␣ amp l i tude " )
p l t . show ( )
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