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1. Introduction

This article addresses the problem of determining an upper bound of the degree d of a polynomial 
solution P of an algebraic difference equation (ADE for short) of the form

G
(
x)(P (x − τ1), . . . , P (x − τs)

) + G0(x) = 0, (1)

if such a solution P ∈ K[x] exists, where G ∈ K[x][x1, . . . , xs] and G0 ∈ K[x]. Here K denotes a field 
of characteristic zero. K will be used as such throughout this article unless another meaning for K is 
stated explicitly. Also, we assume that τi ∈K are pairwise distinct.

Overview of the content of the presented work. It is known that, contrary to linear difference equations, 
there is no general theory for algebraic ones where G has total degree greater than 1. We study in 
detail the case of difference equations with constant coefficients

G
(

P (x − τ1), . . . , P (x − τs)
) + G0(x) = 0, (2)

where G ∈K[x1, . . . , xs].
This paper extends a previous article (Shkaravska and van Eekelen, 2014) of the same authors. 

The relevant notions and facts from that article will be recapitulated in Section 2. The new results 
are obtained by involving homogeneous symmetric polynomials. Necessary statements about these 
polynomials will be given in Section 3.

It will be shown in Theorem 4 in Section 4 that given a difference equation (2) such that 
G ∈K[x1, . . . , xs] is quadratic, one can construct a countable family of univariate polynomials fl with 
the following property: if l0 ≥ 0 is the minimal index such that fl0 is a non-zero polynomial, then 
fl0 (d) = 0 or d ≤ l0, or d < deg(G0), where d is the degree of a polynomial solution P if such solution 
exists. The polynomial fl0 is then an indicial polynomial for equation (2) similarly to an indicial poly-
nomial defined for first-order linear difference systems in Abramov and Barkatou (1998). Moreover, 
in Section 4 we will show that this result does not hold for polynomials G of degree three or greater 
due to a module-rank reason.

Note that the existence of a non-zero polynomial fl in the family is not considered in Theorem 4. 
However, in Theorem 5 in Section 5 we will prove the existence of a non-zero polynomial fl0 for 
K =R where R is the field of real numbers.

In Section 6 we study difference equations of total degree D ≥ 2 with polynomial coefficients. We 
will construct a family of 3 polynomials f ∗

0 (u0), f ∗
1 (u0), and f ∗

2 (u0) such that if one of them is 
non-zero, then an upper bound of the solutions’ degrees is defined similarly to difference equations 
with constant coefficients. Furthermore, an example will be given of a quadratic equation with linear 
coefficients, such that it has a polynomial solution of any degree.

If the first-order theory of the field K is decidable, then knowing an upper bound of the degree 
of a possible polynomial solution for a given ADE makes it possible to find all of its polynomial 
solutions or to prove their absence. This is stated in Lemma 16 in Section 7 and proven by means of 
undetermined coefficients.

Appendix A contains three subsections. First of all, tables with notations and definitions are given. 
Second, full proofs are given of the auxiliary Lemmas 17 and 18. Finally, to support the reader in 
comprehending the statements for ADEs with variable coefficients, tables are given of the expres-
sions used in these statements. We have used the computer algebra system Maxima to obtain these 
expressions.

Related work. The case of quadratic difference equations with constant coefficients as considered in 
this article, is in a sense “dual” to the case considered in the article (Feng et al., 2008). In our article 
the polynomial G is of degree D = 2 and the number of the shifts τ j is arbitrary whereas in Feng et 
al. (2008) one considers equations of the form G

(
P (x), P (x − τ )

) = G0(x) where the polynomial G is 
of any degree D with 0 and τ as two shifts. In some kind of duality it is degree two and any number 
of shifts versus any degree of G with two shifts. In Feng et al. (2008) it has been proven that if G0(x) ≡ 0
and G is irreducible, then the degree of a polynomial solution is D .
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In the book (Agarwal, 2000) one can find a detailed review of the known analytic and numerical 
methods for solving difference equations. In particular, in chapter 6 there are statements about the 
asymptotic and oscillating behaviour of solutions of nonlinear equations. However, these results can-
not be used for our purpose since the related statements in the quoted book either assume rather 
strict preconditions or are about lower bounds for non-oscillating solutions (whereas our aim is to 
bound the degree from above).

For an overview of related articles about analytical methods the reader is referred to Shkar-
avska and van Eekelen (2014). To our knowledge, after the publication of that article no new results 
appeared, that can be used to limit the degree of a polynomial solution. Researchers are mainly inter-
ested in wave-form solutions of algebraic difference equations, see, e.g., Lee and Lee (2016), whereas 
the research under consideration is devoted to polynomial solutions.

Speaking about algebraic methods for difference equations, one should mention the book (van der 
Put and Singer, 2003), devoted to Galois theory for linear difference equations. The present article 
might be a step towards developing a similar argument for non-linear equations.

Motivation and applications. Besides being mathematically intriguing objects, nonlinear ADE’s have 
various applications. In particular, they appear in analyses of time consumption, memory consump-
tion and other resource consumption of computer programs with recursive calls. For instance, for 
a natural number x, equations of the form P (x) = G(x)

(
P (x − 1), . . . , P (x − s)

)
can represent the re-

source consumption in the recursive step x with P (x −1), . . . , P (x − s) representing the corresponding 
resource consumption on the previous steps. In general, resource consumption analysis often yields 
inequalities of the form G(x)

(
P (x − 1), . . . , P (x − s)

) ≤ P (x). Studying inequalities is not the subject of 
this article. It is left to future research.

From the practical point of view, the results discussed in this article improve polynomial resource 
analysis of computer programs as, for instance, studied in Shkaravska et al. (2009). There the authors 
consider the size of output as a polynomial function on the sizes of inputs (Tamalet et al., 2008; 
Shkaravska et al., 2013). In the EU Charter project, the authors developed the ResAna tool (Shkaravska 
et al., 2007; van Kesteren et al., 2008; Shkaravska et al., 2010; Kersten et al., 2014) that applies 
polynomial interpolation to generate an upper bound on Java loop iterations. The tool requires from 
the user to input the degree of a possible solution. In Shkaravska and van Eekelen (2014) a partial 
result was proved that allowed in some cases to obtain the degree automatically.

Our results in Section 7 make it possible to derive automatically the degree of the polynomial 
in all cases for quadratic ADE’s with constant coefficients and for a subclass of ADE’s with variable 
coefficients.

2. Recapitulation: polynomial solutions of difference equations with constant coefficients

In Shkaravska and van Eekelen (2014) we established the existence of a finite family of 6
polynomials-candidates for an indicial polynomial for equation (2) where D ≥ 2. If, for a given ADE, 
all the candidates from that family are zero polynomials, then the method proposed in that work 
does not give a bound for the ADE. In the present article we refine this result for quadratic equations 
showing that the family of the candidates in the quadratic case is countable, and the search can be 
continued until the first non-zero candidate is met.

To facilitate further reading, we recapitulate the machinery from Shkaravska and van Eekelen 
(2014) as far as it is necessary to prove the new results. Also, to illustrate notions and statements 
we will use the following difference equation as a running example in this article:

P (x − 1)P (x − 1) − 3P (x − 1)P (x − 2)+
5
2 P (x − 2)P (x − 2) − 1

2 P (x − 2)P (x − 4)+( − P (x)
) + 2P (x − 1) − 1

8 P (x − 2) = 0.

(3)

Let G D(x1, . . . , xs) =
∑

i1+...+is=D

ai1...is xi1
1 · · · xis

s denote the homogeneous part of degree D in the 

polynomial G . We introduce a reindexation ϕ for its coefficients in the following way.
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Definition 1. Reindexation ϕ is a map from the set of s-tuples {i = (i1, . . . , is) 
∣∣∣ s∑

j=1

i j = D} to the set 

{τ1, . . . , τs}D such that

ϕ : (i1, . . . , is) �→ (τ1, . . . , τ1︸ ︷︷ ︸
i1

, τ2, . . . , τ2︸ ︷︷ ︸
i2

, . . . , τs, . . . , τs︸ ︷︷ ︸
is

).

For instance, in equation (3) with τi = i for i = 0, . . . , 4 one has G2(x0, x1, x2, x3, x4) = x2
1 −3x1x2 +

5
2 x2

2 − 1
2 x2x4, and G2 can be considered as a polynomial in x1, . . . , x4. The reindexation ϕ is defined 

for the non-vanishing coefficients of G2 in the following way:

(i1, i2, i3, i4) ϕ(i1, i2, i3, i4)

x2
1 = x1x1 (2,0,0,0) (1,1)

x1x2 (1,1,0,0) (1,2)

x2
2 = x2x2 (0,2,0,0) (2,2)

x2x4 (0,1,0,1) (2,4)

(4)

For the sake of convenience we introduce the notation for the image of the reindexation ϕ and 
the notations for the tuples of variables and values.

Notation 1. The set T denotes the image ϕ({i = (i1, . . . , is) 
∣∣∣ s∑

j=1

i j = D}).

For instance, in the running example with D = 2, s = 4 and τi = i, one has T = {(t1, t2) | 1 ≤ t1 ≤
t2 ≤ 4}. Clearly, the reindexation ϕ is a bijection from the set of all tuples {i = (i1, . . . , is) 

∣∣∣ s∑
j=1

i j = D}

to the set T since the shifts τi -s are pairwise distinct.

Notation 2. Let y1, . . . , yn be an arbitrary ordered collection of variables or values. Then yn denotes 
the tuple (y1, . . . , yn).

In particular, the notations tD and rd abbreviate the tuple (t1, . . . , tD) ∈ T and the tuple (r1, . . . , rd) of the 
roots of P respectively.

We also rewrite the coefficients ai1 ...is by introducing αtD := ai1...is where tD = ϕ(i1, . . . , is). For 
instance, for the running example α11 = a2000 = 1, α12 = a1100 = −3, α22 = a0200 = 5

2 and α24 =
a0101 = − 1

2 .
Let a polynomial P be represented via its roots: P (x) = c(x − r1) · · · (x − rd). The D-fold product 

P (x −t1) · · · P (x −tD) is equal to the product cD
D∏

j=1

d∏
i=1

(x −ri −t j). For this product we are interested in 

the coefficients of the highest powers of x, namely xDd−l , where 0 ≤ l ≤ d − 1. This inequation appears 
due to the following reason: if a polynomial P of degree d solves equation (2) and Dd − l > (D − 1)d
and (D − 1)d ≥ deg(G0) for some l ≥ 0 then the coefficients of xDd−l on the left-hand side of equation 
(2) must vanish. The inequation l ≤ d − 1 is equivalent to Dd − l > (D − 1)d.

More precisely, now we will study in detail the coefficient εl(tD , rd) of xDd−l in the normalised 

product 
d∏

i=1

(x − ri − t j), where 0 ≤ l ≤ d − 1. The sums (t j + ri), where 1 ≤ j ≤ D , 1 ≤ i ≤ d are the 

only roots of the polynomial 
D∏

j=1

d∏
i=1

(x − ri − t j). Therefore, its coefficient εl(tD , rd) is represented via 
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the elementary symmetric polynomials el(y1, . . . , ym) :=
∑

1≤i1<i2<···<il≤m

yi1 · · · yil and e0(y1, . . . , ym) :=

1 (Macdonald, 1979) in the standard way, with m := Dd:

εl(tD , rd) = (−1)lel(t1 + r1, . . . , t j + ri, . . . , tD + rd). (5)

If the coefficients of xDd−l on the left-hand side of equation (2) must vanish then the roots rd of P (x)
must satisfy the identity 

∑
tD ∈T

αtD cDεl
(
tD , rd

) = 0 which is, due to c 	= 0, equivalent to the identity

∑
tD∈T

αtD εl
(
tD , rd

) = 0. (6)

Equation (6) does not give direct information about d since for any nonnegative integer index l
the corresponding expression εl(tD , rd) depends on d implicitly because d is the dimension of rd . To 
obtain an explicit equation for d from equation (6), we employ power-sum symmetric polynomials 
and the Newton-Girard formulæ (Macdonald, 1979):

el(y1, . . . , ym) = (1/l)
l∑

κ=1

(−1)κ−1el−κ (y1, . . . , ym)pκ (y1, . . . , ym), (7)

where the power-sum symmetric polynomial pκ (x1, . . . , xm) of degree κ is

pκ (x1, . . . , xm) = xκ
1 + · · · + xκ

m (8)

with p0(x1, . . . , xm) = m.
Now, we note that by the definition of power-sum polynomials and the binomial formula one has

pκ (. . . , t j + ri, . . .) =
D∑

j=1

d∑
i=1

(t j + ri)
κ =

κ∑
λ=0

(
κ

λ

)
pλ(rd)pκ−λ(tD). (9)

Following Notation 2, we introduce the shortcuts ul and vl which abbreviate the l-tuples of vari-
ables (u1, . . . , ul) and (v1, . . . , vl) respectively. Substituting the tuple (y1, . . . , ym) by the tuple (t1 +
r1, . . . , t j + ri, . . . , tD + rd) and using equality (9) in the Newton-Girard formulæ (7), where m = dD , 
and recalling the connection between the polynomial roots and its coefficients via equation (5) one 
may see the idea behind the following construction.

Definition 2.

E0
(

v0, (), u0, ()
) := 1,

El(v0,vl, u0,ul) := −(1/l)
l∑

κ=1

El−κ (v0,vl−κ , u0,ul−κ )

(
κ∑

λ=0

(
κ

λ

)
uλvκ−λ

)
.

Let pl(tD) and pl(rd) denote the l-tuples 
(

p1(tD), . . . , pl(tD)
)

and 
(

p1(rd), . . . , pl(rd)
)

respectively. Us-
ing Definition 2 and identities (5) and (7), by induction on l one can prove that the following identity 
holds:

εl(tD , rd) = El
(

D,pl(tD),d,pl(rd)
)
. (10)

This identity is proven as Lemma 2 in Shkaravska and van Eekelen (2014). As an instance for 
Definition 2, we consider the values of El for l = 0, 1, 21:

1 We have implemented the definition of El in Maxima. The corresponding script ConstantCoefficients is available on 
the Radboud Resource Analysis web-page http://resourceanalysis .cs .ru .nl /#Algebraic %C2 %A0Difference %C2 %A0Equations.

http://resourceanalysis.cs.ru.nl/#Algebraic%C2%A0Difference%C2%A0Equations
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E1() = 1,

E1(v0,v1, u0,u1) = −v1u0 − v0u1,

E2(v0,v2, u0,u2) = − 1
2 v2u0 + 1

2 v2
1u2

0 − 1
2 v0u2 − (v1 − v1 v0u0)u1 + 1

2 v2
0u2

1.

(11)

Identity (10) means that the value El
(

D, pl(tD), d, pl(rd)
)

is the coefficient of xDd−l in the product 
1

cD P (x − t1) · · · P (x − tD). For instance, ε1(tD , rd) = −d p1(tD) − D p1(rd) is the coefficient of xDd−1 in 
this product.

To describe the coefficients of xDd−l on the left-hand side of equation (2) after substituting a 
polynomial solution of degree d into it, we will need the following definition.

Definition 3. Sl(u0, ul) :=
∑
tD∈T

αtD El
(

D, pl(tD), u0, ul
)
.

For l = 0, we will use the notation S0(u0) since u0 = () is empty. Using equation (6) and identity (10)
one proves the next lemma.

Lemma 1. If a polynomial P of degree d solves equation (2) with constant coefficients and d > l for some l ≥ 0
and d ≥ deg(G0)/(D − 1) then Sl

(
d, pl(rd)

) = 0.

Proof. This statement is proven as Lemma 6 in Shkaravska and van Eekelen (2014). The conditions 
d > l and d ≥ deg(G0)/(D − 1) together imply that the coefficient Sl

(
d, pl(rd)

)
of xDd−l on the left-

hand side of equation (2) must vanish. �
Let l be a nonnegative integer. Applying Notation 2 we introduce shortcuts il and jl which denote the 

l-tuples (i1, . . . , il) and ( j1, . . . , jl) respectively, and 0l denotes the l-tuple (0, . . . , 0) of zeros.

Definition 4. A polynomial Ail (v0, vl)(u0) is the coefficient of ui1
1 · · · uil

l in the polynomial El(v0, vl,

u0, ul), that is El(v0, vl, u0, ul) =
∑

il

Ail (v0, vl)(u0)ui1
1 · · · uil

l .

Note that despite A0l (v0, vl)(u0) is formally a polynomial of the variable v0 as well, it can be 
proven that it does not depend on v0 (see Lemma 17 in the Appendix). So, we will use the notation 
A0l (vl)(u0) instead. For instance, as one can see from the identities in (11), the values for A0l (vl)(u0)

with l = 0, 1, 2 are

A()(u0) = 1,

A(0)(v1)(u0) = −v1u0,

A(00)(v2)(u0) = − 1
2 v2u0 + 1

2 v2
1u2

0.

(12)

Applying Definition 4 it is easy to obtain the representation of Sl(u0, ul) as a polynomial in ul:

Sl(u0,ul) =
∑

il

( ∑
tD∈T

αtD A(i1,...,il)
(

D,pl(tD)
)
(u0)

)
· ui1

1 · · · uil
l . (13)

Now, we define polynomials that play a crucial role in the presented work.

Definition 5. Bl,m(vl) is the coefficient of um
0 in A0l (vl)(u0).

For instance, B0,0() = 1, B1,1(v1) = −v1 B2,1(v2) = − 1
2 v2 and B2,2(v2) = 1

2 v2
1.

One can find more examples in Shkaravska and van Eekelen (2014). In that article it has been 
proven that for all 1 ≤ l ≤ 5, for all il 	= 0l the polynomial Ail (v0, vl)(u0) is a K[u0, v0]-linear combi-
nation of Bl′,m(vl′ ) where 0 ≤ m ≤ l′ ≤ l − 1. This makes it possible to prove the following theorem, 
which is the main result of Shkaravska and van Eekelen (2014).
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Theorem 1. Let P (x) be a polynomial solution of equation (2) and let d be its degree. If the set {l′ | Sl′ (u0, 0l′) is
a non-zero polynomial} is not empty and, moreover, l := min{l′ | Sl′(u0, 0l′) is a non-zero polynomial} ≤ 5, 
then either d ≤ l or d < deg(G0)/(D − 1)}, or d must be one of the non-negative integer roots of Sl(u0, 0l).

For instance, for equation (3) one has that S0(u0) and S1(u0, 0) are equal to the zero polynomial 
and S2(u0, 02) = 1

2 u0(3 − u0). The detailed calculations can be found in a technical report (Shkaravska 
and van Eekelen, 2018). Applying Theorem 1 one obtains that l = 2 and the degree of a polynomial 
solution is either d = 0, 1, 2 or it solves S2(u0, 02) = 0, that is d = 3.

To refine Theorem 1 for quadratic ADE we will consider the modules generated by certain sub-
families of the polynomials {Bl,m

(
p1(x1, x2), . . . , pl(x1, x2)

)}l
m=0, which are, as we will show later, 

homogeneous and, obviously, symmetric in the variables x1, x2.

3. Homogeneous symmetric polynomials

As usual, el(xn) =
∑

1≤i1<···<il≤n

xi1 · · · xil and pl(xn) =
n∑

i=1

xl
i denote the elementary symmetric poly-

nomial of degree l and the power-sum symmetric polynomial of degree l respectively, with e0(xn) = 1
and p0(xn) = n. The following statement is known as the fundamental theorem of symmetric polynomials
(van der Waerden et al., 2003).

Theorem 2. Let A be a commutative ring with multiplicative identity 1. Then every symmetric polynomial 
f (xn) from the subring of symmetric polynomials in A[xn] has a unique representation

f (xn) = q
(
e1(xn), . . . , en(xn)

)
for some polynomial q ∈A[xn].

Due to the Newton-Girard identities the elementary symmetric polynomial el is a rational linear 
combination of the products of the power-sum symmetric polynomials p1, . . . , pl . Therefore one can 
straightforwardly reformulate Theorem 2 in terms of power-sum symmetric polynomials:

Theorem 3. Let A be a commutative ring containing the field Q of rational numbers. Then every symmetric 
polynomial f from the subring of symmetric polynomials in A[xn] has a unique representation

f (xn) = q
(

p1(xn), . . . , pn(xn)
)

for some polynomial q ∈A[xn].

Definition 6. The weights |il| and |jl| of the corresponding l-tuples are defined as the sums i1 + 2i2 +
· · · + lil and j1 + 2 j2 + · · · + l jl respectively.

Notation 3. The product p j1
1 (xn) · · · p jn

n (xn) is denoted via π jn (xn).

Notation 4. Let A be a commutative ring containing Q. Then 〈π jn 〉|jl |=l denotes the A-module gen-
erated by the products π jn such that |jl| = l.

Lemma 2. The set of all homogeneous symmetric polynomials of degree l from the ring A[xn] coincides with 
the A-module 〈π jn 〉|jl |=l .2

2 This statement mimics Corollary 7.7.2 from the book (Stanley, 1999). The difference is that Stanley does not con-
sider symmetric polynomials but formal power series over infinite number of variables, i.e. constructions of the form 
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Proof. First, it is easy to see that every polynomial from the A-module 〈π jn 〉|jl |=l is homogeneous and 
symmetric since every generating polynomial p j1

1 · · · p jn
n is symmetric and homogeneous of degree 

j1 + 2 j2 + · · · + njn = l w.r.t. xn .
Second, the opposite inclusion holds as well, that is every homogeneous symmetric polynomial 

of degree l from A[xn] belongs to the A-module 〈π jn 〉|jl |=l . Indeed, it follows from Theorem 3
that for any symmetric polynomial f (xn) of degree l there is a polynomial q(y1, . . . , yn) such that 
f = q(p1, . . . , pn) that is f (xn) =

∑
|jl |≤l

bjn p j1
1 (xn) · · · p jn

n (xn) for some bjn ∈ A. For every l0 < l the 

subpolynomial 
∑

|jl |=l0

bjn p j1
1 (xn) · · · p jn

n (xn) must vanish since f is homogeneous of degree l. Therefore 

f (xn) is an A-linear combination of the products p j1
1 · · · p jn

n with j1 + · · · + njn = l and therefore it 
belongs to the A-module 〈π jn 〉|jl |=l . �
Lemma 3. Let f (x, y) be a symmetric homogeneous polynomial in R[x, y] of even degree l and let (xm, ym)

be a collection of l/2 +1 nodes, where 0 ≤ m ≤ l/2, such that ym ≥ xm > 0. Moreover, let all the lines y = ym
xm

x
be pairwise distinct.

If f (xm, ym) = 0 for all these nodes then f (x, y) is the zero polynomial.

Proof. If f (xm, ym) = 0 then f (λxm, λym) = λl f (xm, ym) = 0 due to the fact that f is homogeneous. 
The set γm = {(λxm, λym) | λ ∈ R} is a parametric definition of the line defined by the points (0, 0)

and (xm, ym).
Since f is symmetric, f (x, y) = 0 for all the points (x, y) that lie on the lines γl−m , where the 

line γl−m is symmetric to γm w.r.t. the line y = x. We also note that from the fact that the lines 
y = ym/xmx are pairwise distinct it follows that at most one point lies on the line y = x. This implies 
that all together there are at least l + 1 lines on which the polynomial f (x, y) is equal to 0. Therefore, 
the polynomial f (x, y) has at least l + 1 zeros in the projective space P (R) of dimension one and 
therefore f (x, y) is the zero polynomial. This concludes our proof. �
4. Properties of the A- and B-polynomials

In this section we consider the properties of the polynomials Ail (v0, vl)(u0) and Bl,m(vl).

4.1. General properties of the A- and B-polynomials when D is an arbitrary integer greater than 1

Notation 5. As usual, K[u0] stands for the ring of polynomials of the variable u0 with coefficients in 
the field K.

Let D ≥ 1. Following Notation 2, let pl(xD) denote the l-tuple of the power-sum symmetric polynomials(
p1(xD), . . . , pl(xD)

)
. Also let ∼= denote the natural ring isomorphism between the polynomial rings 

K[xD ][u0] and K[u0][xD ].

Lemma 4. For any l ≥ 0, and any il s.t. 0 ≤ |il| ≤ l, if the polynomial Ail

(
D, pl(xD)

)
(u0) from the ring 

K[xD ][u0] ∼= K[u0][xD ] is a non-zero polynomial then it is a homogeneous polynomial of degree l − |il|
in the variables xD , with coefficients in the ring K[u0].

Proof. We assign weights i and j to the variables ui and v j respectively. From the definition of El
by induction on l one can easily show that all the terms of El(v0, vl, u0, ul) have the same weight l. 

∑
α1+α2+···=n

xα1
1 xα2

2 . . . ∈ R[x1, x2, . . .]. For instance, p3(x1, x2, . . . , x
) for some finite 
 ≥ 3 is an element of the canonical gen-

erating set of the collection �3 of such symmetric homogeneous functions since 
 is not bounded. However p3(x2) does not 
belong to the canonical generating set of 〈π j2 〉|j2 | =3.
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From this it follows that given a tuple il , the weight of the polynomial Ail (v0, vl)(u0) · ui1
1 · · · · · uil

l is l
since it is a sum of terms of weight l. Therefore the weight of Ail (v0, vl)(u0) is l − |il|. More precisely, 
each of its terms is a product of a monomial v j1

1 · · · v jl
l with some polynomial from K[u0, v0] and has 

weight l − |il|.
Now, we assign weight 1 to each variable x j , and with this assignment the weight of pk(xD) is 

exactly its degree k. Since vk and pk(xD) have the same weight k, an arbitrary term of Ail (v0, vl)(u0)

and the result of substituting the variables vk by the polynomials pk(xD) in this term have the same 
weight l − |il|. Obviously, since the degree of any term of Ai

(
D, pl(xD)

)
(u0) coincides with its weight 

and equal to l − |il|, the degree of Ai
(

D, pl(xD)
)
(u0) is equal to l − |il| as well. Therefore it is a 

homogeneous polynomial in the variables x1, . . . , xD over the ring K[u0] as a sum of homogeneous 
terms of degree l − |il|. �

From Lemma 4, Lemma 2 and the fact that the polynomial Ail

(
D, pl(xD)

)
(u0) is symmetric in the 

variables xD by its construction one immediately obtains the following result.

Lemma 5. For any l ≥ 0 and any il , s.t. 0 ≤ |il| ≤ l, the polynomial Ail

(
D, pl(xD)

)
(u0) belongs to the 

K[u0]-module 〈π jD 〉|jD |=l−|il | .

We note that if Ail

(
D, pl(xD)

)
(u0) is the zero polynomial then it trivially belongs to the module as 

the zero linear combination of its generators.
In Appendix A the following recurrent identity for Bl,m is proven (Lemma 18):

Bl,l−k(vl) = −1/l
k+1∑
h=1

Bl−h,l−k−1(vl−h)vh. (14)

Using this identity with v
 := p
(xD), where 
 ≥ 0, and applying the induction on l ≥ 0 one immedi-
ately obtains the following statement.

Lemma 6. For any l ≥ 0 and 0 ≤ m ≤ l, the polynomial Bl,m
(
pl(xD)

) ∈K[xD ] is a homogeneous polynomial 
in the variables xD of degree l or it is the zero polynomial.

We will see later that for D = 2 the family {Bl,m
(
pl(x2)

)}l
m=1 contains an alternative generator set 

of the K[u0]-module 〈π jD 〉|jD |=l . However, for D ≥ 3, this is not any more the case.

Lemma 7. For D ≥ 3 the family {Bl,m
(
pl(xD)

)}l
m=1 does not contain a generator set of the K[u0]-module 

〈π jD 〉|jD |=l .

Proof. Since K[u0] is a commutative ring one can apply rank reasons for a K[u0]-module as one 
would apply dimension reasons for a linear space over a field because for a commutative ring A an 
isomorphism Am ∼= An implies m = n, see e.g. Dummit and Foote (2003), Exercise 2 of Section 10.3. 
This means that the size of any generator set of the K[u0]-module 〈π jD 〉|jD |=l must be exactly the 
same as the size of its “canonical” generator set, which is the collection of the products π jD where 
|jD | = l.

For l ≥ 1 the set {Bl,m
(
pl(xD)

)}l
m=0 contains l non-zero polynomials (see Lemma 18), whereas the 

rank of 〈π jD 〉|jD |=l is the number partD(l) of the partitions (1 j1 , 2 j2 , . . . , D jD ) of l such that j1 +
2 j2 + · · · + D jD = l. For D = 2 this number is part2(l) = �l/2� + 1. However, for D = 3 this is part3(l)
which is the nearest integer number to (l + 3)2/12 (Stanley, 1997). It is a routine to check (e.g. by 
induction on l ≥ 6, and direct calculations for l = 0, . . . , 5) that this number, which is an increasing 
function of l, may be less or equal to l only for l ≤ 5, and otherwise the rank of 〈π jD 〉|jD |=l exceeds 
the number of non-zero polynomials in Bl,m

(
pl(xD)

)
. In particular, for D = 3 and l = 6 one has that 

(l + 3)2/12 = 81/12 = 6, 75 with the nearest integer number equal to 7.



O. Shkaravska, M. van Eekelen / Journal of Symbolic Computation 103 (2021) 22–45 31
In general, partD(l) is bounded from below by a polynomial in l of degree D −1, see Stanley (1997)
and a similar argument holds for any D ≥ 3.3 This concludes the proof of the Lemma. �
4.2. The B-polynomials as module generators in the case of quadratic difference equations

Everywhere in this subsection it is assumed that D = 2 and the power-sum polynomials are bi-
variate.

In Lemma 8 below we will show that for any l ≥ 1 and any 0 ≤ k ≤ �l/2� the polynomial 
Bl,l−k

(
pl(x2)

)
is a rational linear combination of the products pl

1, pl−2
1 p2, pl−4

1 p2
2, . . . , p

l−2k
1 pk

2. More-

over, the coefficient of pl−2k
1 pk

2 in this combination does not vanish. This will allow us to express for 
any l ≥ 0 the generators pl−2 j

1 p j
2 of the module 〈π j2 〉|j2|=l as linear combinations of the polynomials 

from the family {Bl,l−k
(
pl(x2)

)}�l/2�
k=0 . This fact will be used to prove Lemma 10 which states that the 

family {Bl,l−k
(
pl(x2)

)}�l/2�
k=0 is a generator set of the K[u0]-module 〈π j2 〉|j2|=l .

By Lemma 6 the polynomials Bl,l−k
(
pl(x2)

)
are homogeneous polynomials of degree l in the 

variables x1 and x2. Moreover, they are symmetric by construction. Therefore, they are linear com-
binations of the products pl−2 j

1 (x2)p j
2(x2) by Lemma 2. However, to prove Lemma 8 we must know 

more about these linear combinations. For this we need the following auxiliary statement.

Lemma 8. Given D = 2 and integer numbers l and k where l ≥ 0 and 0 ≤ k ≤ �l/2�, for the corresponding 
polynomial Bl,l−k

(
pl(x2)

)
there exist rational numbers bl,k, j such that

Bl,l−k
(
pl(x2)

) =
k∑

j=0

bl,k, j pl−2 j
1 (x2)p j

2(x2), (15)

where the coefficient bl,k,k of pl−2k
1 pk

2 does not vanish and has sign (−1)l−k .

Proof. The proof is done by induction on l using identity (14). The base cases of induction are given 
by l = 0, 1, 2. Here we analyse as an example the case of l = 2, k = 1. The cases of l = 0, of l = 1 and 
of l = 2, k = 0 are considered in the same way. Their analysis can be found in the technical report 
(Shkaravska and van Eekelen, 2018).

For l = 2 and k = 1 = l/2 one has B2,1
(
p2(x2)

) = − 1
2 p2(x2), see page 27. Trivially, b2,1,1 = − 1

2 has 
sign (−1)l−k .

Now, we continue with the induction step for l ≥ 3. We prove the statement of the lemma sepa-
rately for three possible cases concerning k: either k = 0, or 0 < k < l/2, or k = l/2 for even l.

We start with the simplest case k = 0. In this case the sum on the right-hand side of identity (14)
consists only of one summand 1

l Bl−1,l−1
(
pl−1(x2)

)
p1(x2). This implies that bl,0,0 = − 1

l bl−1,0,0 and by 
the induction hypothesis for l − 1 the coefficient bl−1,0,0 has sign (−1)l−1. Therefore the sign of bl,0,0

is (−1)l . Moreover, Bl,l does not have occurrences of p j
2 with the power j greater than 0.

We continue with the case 0 < k < l/2. To elaborate details, we fix h ≥ 1 and consider 
the corresponding summand Bl−h,l−k−1

(
pl−h(x2)

)
ph(x2) from the right-hand side of identity (14). 

To be able to apply the induction hypothesis for l − h, we note that Bl−h,l−k−1
(
pl−h(x2)

) =
Bl−h,(l−h)−(k−h+1)

(
pl−h(x2)

)
and, moreover, 0 < k < l/2 implies that k − h + 1 ≤ �(l − h)/2�.4 Applying 

the induction hypothesis we obtain that

3 In item 10 under Corollary 1.4 of Stanley’s book it is shown that the number of partitions part′k(n) of n into k parts is the 
same as the number of partitions partk(n) where the largest part is at most k. In Example 4.4.2 of the book it is shown that 
part′k(n) is a quasipolynomial of degree k − 1 with the minimal period equal to the least common multiple N of 1, . . . , k, that is 
there are N polynomials f i of degree at most k − 1 such that part′k(l) = f i(l) once l ≡ i mod N .

4 Indeed, if l is odd then k < l/2 implies k ≤ (l −1)/2. From this follows that k −h +1 ≤ (l −1)/2 −h +1 = (l −1 −2h +2)/2 ≤
(l − h)/2 for h ≥ 1. This implies that k − h + 1 ≤ �(l − h)/2�, since k − h + 1 is integer. The case when l is even is analysed in 
the same way.
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Bl−h,(l−h)−(k−h+1)

(
pl−h(x2)

) =
k−h+1∑

j=0

bl−h,k−h+1, j pl−2 j
1 (x2)p j

2(x2)

where bl−h,k−h+1,k−h+1 does not vanish and has the sign (−1)l−h−(k−h+1) . This means that the 
maximal degree of p2 in the expansion of Bl−h,(l−h)−(k−h+1) is k − h + 1. Further, the high-
est possible degree of p2 in the expansion of ph is obviously �h/2�. Therefore, the product 
p(l−h)−2(k−h+1)

1 pk−h+1
2 ph−2�h/2�

1 p�h/2�
2 yields the highest possible degree gl,k(h) := k − h + 1 + �h/2�

of p2 in the expansion of the polynomial

Bl−h,l−k−1
(
pl−h(x2)

)
ph(x2). (16)

It is easy to check that gl,k(h) is a (non-strictly) decreasing function of h ≥ 1. Therefore, its 
maximum is equal to k because it is achieved at h = 1 with gl,k(1) = k. Direct calculations show 
that this maximum is achieved at h = 2 as well. Checking at h = 3 yields gl,k(3) = k − 1. From 
this follows that in order to compute bl,k,k by using identity (14), it is enough to consider the 
subsum with h = 1, 2 from the right-hand side of this identity, because only this subsum “con-
tributes” to the highest degree k of p2 in the expansion for Bl,l−k . This subsum is equal to 
− 1

l

(
Bl−1,l−k−1(pl−1)p1 + Bl−2,l−k−1(pl−1)p2

)
. We note that Bl−1,l−k−1 = Bl−1,(l−1)−k and Bl−2,l−k−1 =

Bl−2,(l−2)−(k−1) and therefore

bl,k,k = −1

l
(bl−1,k,k + bl−2,k−1,k−1). (17)

By the induction hypothesis for Bl−1,(l−1)−k one has bl−1,k,k 	= 0 with its sign equal to (−1)l−1−k , 
and by the induction hypothesis for Bl−2,(l−2)−(k−1) one has bl−2,k−1,k−1 	= 0 with its sign equal to 
(−1)(l−2)−(k−1) . Therefore, both summands have the same sign (−1)l−1−k and bl,k,k has sign (−1)l−k .

Now, let eventually k = l/2 for even l. Again, to elaborate details, we fix h ≥ 1.
Firstly, let h ≥ 2. One can show that k − h + 1 ≤ �(l − h)/2�, with the detailed proof of this inequa-

tion to be found in the technical report (Shkaravska and van Eekelen, 2018). Therefore we can repeat 
the fragment of the calculations for 0 < k < l/2 to construct the function gl,k(h) = k − h + 1 − �h/2�, 
but this time it is defined on h ≥ 2. The maximum value of this function equal to k and here it is 
achieved at h = 2.

Secondly, let h = 1. By Lemma 6 the polynomial Bl−1,l−k−1
(
p2(x2)

)
is of degree l − 1 in x1, x2 and 

the maximal possible degree of the occurrences of p2(x2) in it is �(l − 1)/2�. Therefore, the maximal 
degree of the occurrences of p2 in the product Bl−1,l−k−1

(
p2(x2)

)
p1(x2) is bounded from above by 

�(l − 1)/2�, which is less than k, since l is even and k = l/2.
From this it follows that for k = l/2 we have that bl,k,k = − 1

l bl−2,k−1,k−1 does not vanish and has 
sign (−1)1+(

l−2−(k−1)
)
= (−1)l−k .

This concludes the proof of the lemma. �
Lemma 9. Any polynomial of the form pl−2k

1 (x2)pk
2(x2), where k ranges from 0 to �l/2�, is a Q-linear combi-

nation of the polynomials

Bl,l
(
p1(x2)

)
, Bl,l−1

(
pl(x2)

)
, . . . , Bl,l−k

(
pl(x2)

)
.

Proof. Fix an arbitrary l ≥ 0 and apply the induction on k using Lemma 8. For the base case k = 0
from equality (15) one trivially obtains pl

1(x2) = Bl,l
(
pl(x2)

)
/bl,0,0, where bl,0,0 	= 0 has sign (−1)l .

For the induction step we use again equality (15) of Lemma 8:

Bl,l−k
(
pl(x2)

) = bl,k,k pl−2k
1 (x2)pk

2(x2) +
k−1∑
j=0

bl,k, j pl−2 j
1 (x2)p j

2(x2)
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From this equality and bl,k,k 	= 0 it follows that the product pl−2k
1 pk

2 is a Q-linear combination of the 
polynomials Bl,l−k

(
pl(x2)

)
and pl−2 j

1 p j
2 where j < k. By the induction hypothesis each pl−2 j

1 p j
2 is a 

Q-linear combination of polynomials

Bl,l
(
pl(x2)

)
, Bl,l−1

(
pl(x2)

)
, . . . , Bl,l− j

(
pl(x2)

)
.

The proof of the lemma follows immediately from this observation. �
Lemma 10. The collection Bl,l−k

(
pl(x2)

)
where k ranges from 0 to �l/2� is a generator set of the K[u0]-module 

〈π j2 〉|j2|=l .

Proof. The statement follows from Lemma 9 which shows that each canonical generator pl−2k
1 pk

2, 
where 0 ≤ k ≤ �l/2�, for D = 2 is a Q-linear combination of {Bl,l− j

(
pl(x2)

)}k
j=0. �

Theorem 4. Let D = 2 in equation (2) and let this equation have a polynomial solution of degree d. 
Let also l ≥ 0 be such that Sl(u0, 0l) for this equation is a non-zero polynomial and let the polynomials 
S0(u0), . . . , Sl−1(u0, 0l−1) be all equal to the zero polynomial. Then Sl(u0, ul) = Sl(u0, 0l). Moreover, one 
has that d ≤ l, or d < deg(G0) or Sl(d, 0l) = 0.

Proof. Every polynomial Ail

(
D, pl(xD)

)
(u0) belongs to the K[u0]-module 〈π jD 〉|jD |=l−|il | , by Lemma 5. 

We set k := |il|.
The fact that

Sl−k(u0,0l−k) =
∑
t2∈T

αt2 A0l−k

(
pl(t2)

)
(u0)

is the zero polynomial for l − k < l means that each of its coefficients of um
0 vanishes, that is∑

t2∈T

αt2 Bl−k,m
(
pl(t2)

) = 0 (18)

for all m = 0, . . . , l − k. Since the collection {Bl−k,m
(
pl(x2)

)}l−k
m=1 contains the generator set

{Bl−k,(l−k)− j
(
pl(x2)

)}�(l−k)/2�
j=0 of the K[u0]-module 〈π j2 〉|j2|=l−k , the polynomial Ail

(
2, pl(x2)

)
(u0) is 

a non-trivial K[u0]-linear combination of the polynomials Bl−k,m
(
pl−k(x2)

)
where k = |il|, and to-

gether with (18) this implies that for k ≥ 1 the coefficient of ui1
1 , . . . , uil

l in Sl(u0, ul), which is equal 
to 

∑
t2∈T

αt2 Ail

(
2, pl(t2)

)
(u0), vanishes. (One can find the detailed calculations in the technical report 

(Shkaravska and van Eekelen, 2018).) Therefore, Sl(u0, ul) = Sl(u0, 0l).
Now, let d > l and d ≥ deg(G0), which altogether implies that 2d − l > d ≥ deg(G0). It means that 

the equality Sl
(
d, pl(rd)

) = 0 must hold. Therefore Sl(d, 0l) = 0 and Sl(u0, 0l) is an indicial polynomial 
of the difference equation (2). This concludes the proof of the theorem. �

Note that to prove Theorem 4 we do not require that the field K is algebraically closed and/or or-
dered. However, when applying this theorem to instances of equation (2), it is convenient to consider 
the finite set of the shifts {τ1, . . . , τs} as totally-ordered which is possible since any finite set can be 
totally-ordered.

5. Completing the procedure of bounding the degree of a solution for real quadratic difference 
equations

The existence of a non-zero polynomial in the family { fl(u0) := Sl(u0, 0l)}∞l=0 is not considered in 
Theorem 4. In this section we will establish the existence of a non-zero polynomial in this family 
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for K = R where R is the field of real numbers. Therefore an upper bound of the degree d of a 
polynomial solution of equation (2) with D = 2 is defined and finite for K =R.

Everywhere in this section it is assumed that K = R, that is the polynomials G and G0 have real 
coefficients and τi are real numbers. Moreover, as in the section above, it is assumed that D = 2. 
Without loss of generality one can assume that τ1 < · · · < τs are positive. Otherwise one can consider 
a “shifted” difference equation:

G
(

P (x − τ ′
1), . . . , P (x − τ ′

s)
) + G0(x − �) = 0, (19)

where τ ′
i = τi + � and � is some element of R such that all τi + � > 0. It is easy to see that the 

original difference equation has a polynomial solution P if and only if the shifted one has the same 
solution, using the fact that equation (2) holds for all x and therefore for all x − �.

The following auxiliary lemma will be used in the proof of Lemma 13 below where we will see 
that if S0(u0), . . . , Sl(u0, 0l) are equal to the zero polynomial for a sufficiently large number l ≥ 0 then 
the quadratic part of G vanishes.

Lemma 11. Let N > 0 be an integer number and let M = {(t(m)
1 , t(m)

2 )}N
m=1 be a collection of positive real 

numbers such that all the ratios t(m)
2 /t(m)

1 ≥ 1 are pairwise distinct. Then the N × N linear system

N∑
m=1

xm B2N−2,2N−2−k
(
p2N−2(t

(m)
1 , t(m)

2 )
) = 0, (20)

where 0 ≤ k ≤ N − 1 ranges over the rows of the corresponding matrix, has only the trivial (i.e. all zero’s) 
solution.

Proof. Let us assume the opposite, that is system (20) has a nontrivial solution, which we denote via 
(x0

1, . . . , x
0
N ). Then, the rows of the matrix are linearly dependent, that is for the vector-rows(

B2N−2,2N−2−k
(
p2N−2(t

(1)
1 , t(1)

2 )
)
, . . . , B2N−2,2N−2−k

(
p2N−2(t

(N)
1 , t(N)

2 )
)
, (21)

where 0 ≤ k ≤ N − 1, there exists a nontrivial linear combination of them, equal to zero. This means 
that there exists a collection of ak ∈R such that

N−1∑
k=0

ak B2N−2,2N−2−k
(
p2N−2(t

(m)
1 , t(m)

2 )
) = 0, for all 1 ≤ m ≤ N, (22)

where m ranges over the columns of the matrix. Consider the polynomial

F (x2) :=
N−1∑
k=0

ak B2N−2,2N−2−k
(
p2N−2(x2)

)
.

It is homogeneous of degree 2N − 2 and symmetric in x1, x2 as a linear combination of homogeneous 
and symmetric polynomials. Moreover, it is given that it vanishes on the set (t(m)

1 , t(m)
2 ) of N nodes, 

see equalities (22), such that all the corresponding N lines connecting the points (0, 0) and (t(m)
1 , t(m)

2 )

are pairwise distinct. We apply Lemma 3 with l = 2N − 2 and l/2 + 1 = N for the polynomial F (x2)

to see that it vanishes everywhere. Therefore, there is a nontrivial linear combination of the poly-
nomials B2N−2,2N−2−k

(
p2N−2(x2)

)
, where k = 0, N − 1, such that it is equal to the zero polynomial, 

which contradicts the fact that the collection {B2N−2,2N−2−k
(
p2N−2(x2)

)}N−1
k=0 is a generator set for 

〈π j2 〉|jD | =2N−2 where D = 2, see Lemma 10.
Therefore the assumption at the beginning of the proof is wrong, and the system has only the 

trivial solution. �
Now we return to difference equation (2). Let R be the set of all the ratios t2/t1 where α(t1,t2) 	= 0. 

Let for each r ∈ R the corresponding set Mr be defined as Mr := {(t1, t2) | α(t1,t2) 	= 0 and t2/t1 = r}. 



O. Shkaravska, M. van Eekelen / Journal of Symbolic Computation 103 (2021) 22–45 35
For instance, for the running example one has R = {1, 2} with M1 = {(1, 1), (2, 2)} and M2 =
{(1, 2), (2, 4)}.

We select from each set Mr a representative pair t2,r := (tr1, tr2). Trivially, for each pair t2 =
(t1, t2) ∈ Mr there is a number λr,t2 ∈R such that t2 = λr,t2 t2,r . For the running example the natural 
representatives are (1, 1) and (1, 2) for r = 1 and r = 2 respectively, with (2, 2) = 2(1, 1) and (2, 4) =
2(1, 2).

Using these facts one can prove the following auxiliary statement.

Lemma 12. For any l ≥ 0 the coefficient of ul−k
0 in the polynomial Sl(u0, 0l) is equal to∑

r∈R

α′
r,l Bl,l−k

(
pl(t2,r)

)
,

where α′
r,l :=

∑
t2∈Mr

αt2λ
l
r,t2

.

Proof. By the definitions of Sl , A0l and Bl,m , it follows that Sl(u0, 0l) is equal to

l∑
k=0

ul−k
0

∑
t2∈T

αt2 Bl,l−k
(
pl(t2)

) =

l∑
k=0

ul−k
0

∑
r∈R

∑
t2∈Mr

αt2

k∑
j=0

bl,k, j pl−2 j
1 (t2)p j

2(t2)

where bl,k, j ∈ Q are defined in Lemma 8. We fix some r ∈ R and note that for a pair t2 = λr,t2 t2,r ∈
Mr and any non-negative integer 
 by the definition of p
 the equality p
(t2) = λ


r,t2
p
(t2,r) holds. 

Therefore, for any 0 ≤ j ≤ k one has that∑
t2∈Mr

αt2 pl−2 j
1 (t2)p j

2(t2) = pl−2 j
1 (t2,r)p j

2(t2,r)
∑

t2∈Mr

αt2λ
l
r,t2

.

Therefore, it is easy to check that if α′
r,l is defined as in the statement of the lemma then the 

coefficient of ul−k in Sl(u0, 0l) is equal to∑
t2∈T

αt2 Bl,l−k
(
pl(t2)

) =
∑
r∈R

α′
r,l Bl,l−k

(
pl(t2,r)

)
,

as it is stated in the lemma. �
Let N := |R| be the cardinality of the set R for the equation (2). We will prove now the following 

statement.

Lemma 13. Let the sets Mr be singletons, except possibly M1 , containing all t2 for which t1 = t2 . Then 
S2N−2(u0, 0l) is a non-zero polynomial, or there exists 0 ≤ l ≤ s − 1 such that Sl(u0, 0l) is a non-zero polyno-
mial.

Proof. Firstly, we will show that if S2N−2(u0, 02N−2) is the zero polynomial then for any t1 	= t2 the 
corresponding coefficient αt2 vanishes and the non-zero coefficients of the quadratic part of G can be 
of the form α(t,t) only. We fix l0 = 2N − 2 and assume that Sl0 (u0, 0l0) is the zero polynomial, that is 
for all 0 ≤ k ≤ l0 its coefficient of ul0−k is zero. By Lemma 12, we obtain that for any 0 ≤ k ≤ N −1 one 
has that 

∑
r∈R

α′
r,l0

Bl0,l0−k
(
pl0(t2,r)

) = 0. We consider a linear system 
∑
r∈R

xr Bl0,l0−k
(
pl0(t2,r)

) = 0 w.r.t. 

xr , where 0 ≤ k ≤ N − 1 ranges over the rows of the matrix. By Lemma 11, setting M = {t2,r | r ∈ R}
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there, one immediately obtains that the corresponding system has only the zero solution. Therefore, 
for all r ∈ R one has α′

r,l0
= 0. For any r 	= 1 the corresponding set Mr is a singleton of the form 

Mr = {t2,r}, and therefore 0 = α′
r,l0

=
∑

t2∈Mr

αt2λ
l0
t2

= αt2,r .

Secondly, we will show that the coefficients α(t,t) vanish as well, if the polynomials Sl(u0, 0l), 
where 0 ≤ l ≤ s − 1, are all equal to the zero polynomial. If for all 0 ≤ l ≤ s − 1 one has that Sl(u0, 0l)

is the zero polynomial then for any 0 ≤ l ≤ s − 1 the coefficient 
∑

t∈{τ1,...,τs}
α(t,t)Bl,l

(
pl(t, t)

)
of ul

0 in the 

polynomial Sl(u0, 0l) is zero. Since Bl,l
(
pl(x2)

) = bl,0,0 pl
1(x2) where bl,0,0 	= 0 by Lemma 8 for k = 0, 

this coefficient is equal to bl,0,0

∑
t∈{τ1,...,τs}

α(t,t) pl
1(t, t) = bl,0,0 ·2 

∑
t

α(t,t)t
l . The determinant of the s × s

system

∑
t∈{τ1,...,τs}

xtt
l = 0, where l = 0,1, . . . , s − 1

is a non-zero Vandermonde determinant since all the shifts τ1, . . . , τs are pairwise distinct. Therefore, 
this system only has the zero solution and all α(t,t) vanish as well.

Therefore, the assumption that the polynomials S2N−2(u0, 02N−2) and Sl(u0, 0l) for all 0 ≤ l ≤ s −1
are the zero polynomials leads to vanishing of the quadratic part of the difference equation, which 
contradicts the fact that we consider quadratic equations. Therefore S2N−2(u0, 02N−2) is a non-zero 
polynomial or at least one of Sl(u0, 0l), where 0 ≤ l ≤ s − 1, is a non-zero polynomial. The lemma is 
proven. �

To see that the condition of Lemma 13 does not influence the generality of the approach, one 
needs to consider a shifted equation of the form (19) with some properly chosen �. To provide the 
reader with an intuition we start with the running example of equation (3). In that equation the ratios 
2
1 and 4

2 for two corresponding products P (x − 1)P (x − 2) and P (x − 2)P (x − 4) coincide. We note 
that one can construct a shifted equation which has the same polynomial solution as equation (3)
and with such � that the ratios 2+�

1+�
and 4+�

2+�
are distinct. For instance, with � = 1 one has 2+1

1+1 = 3
2

and 4+1
2+1 = 5

3 . In general, the following lemma holds.

Lemma 14. Given a finite set of pairs U ⊂ R2 such that it does not contain pairs of the form (0, t) and pairs 
of the form (t, t), one can effectively define � ∈R+ such that for any two distinct pairs (t1, t2) 	= (t′

1, t
′
2) ∈ U

one has t2+�
t1+�

	= t′2+�

t′1+�
.

Proof. For any two distinct elements (t1, t2) 	= (t′
1, t

′
2) ∈ U we will find �t1,t2,t′1,t′2 such that 

t2+�t1,t2,t′1,t′2
t1+�t1,t2,t′1,t′2

= t′2+�t1,t2,t′1,t′2
t′1+�t1,t2,t′1,t′2

holds. Since this equation is equivalent to a polynomial equation w.r.t. 

� > 0, there will be a finite number of the corresponding solutions �t1,t2,t′1,t′2 for all distinct pairs 
of pairs (t1, t2) and (t′

1, t
′
2). Therefore, one can pick up an arbitrary � > 0 which is distinct from all 

these �t1,t2,t′1,t′2 , and this � will satisfy the condition of the lemma.

We start with solving the equation t2+�
t1+�

= t′2+�

t′1+�
w.r.t. � > 0. This equation is equivalent to (t2 +

�)(t′
1 + �) = (t′

2 + �)(t1 + �) which is reduced to a linear one

(t2 + t′
1 − t′

2 − t1)� = t′
2t1 − t2t′

1.

For the sake of convenience we set K := (t2 +t′
1 −t′

2 −t1), L := t′
2t1 −t2t′

1 and consider the equation 
K� = L:
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• K 	= 0; then the only solution is �t1,t2,t′1,t′2 = L/K ;
• K = 0, L 	= 0, this case is impossible since 0 · � = L implies L = 0;
• K = L = 0; it is routine calculations to check that this case leads to a contradiction with the con-

ditions of the lemma. Details can be found in the technical report (Shkaravska and van Eekelen, 
2018).

Now, take any � which is distinct from all the �t1,t2,t′1,t′2 where (t1, t2) 	= (t′
1, t

′
2) ∈ U . This �

makes t2+�
t1+�

	= t′2+�

t′1+�
for any (t1, t2) 	= (t′

1, t
′
2) ∈ U . This concludes the proof of the lemma. �

The shifted equation for the running example, where � = 1 has the form

P (x − 2)P (x − 2) − 3P (x − 2)P (x − 3)+
5
2 P (x − 3)P (x − 3) − 1

2 P (x − 3)P (x − 5)+( − P (x − 1)
) + 2P (x − 2) − 1

8 P (x − 3) = 0

(23)

which does satisfy the condition of Lemma 13. It is a routine to show, e.g. using a computer algebra 
system, that the polynomials S0(u0), S1(u0, 0) and S2(u0, 02) for the shifted equation (as well for 
the shifted equation for an arbitrary �) are exactly the same as for the original one, that is 0, 0 and 
1
2 u0(3 − u0) respectively.

Now, we are ready to prove the main result of the presented work.

Theorem 5. If K =R then for a difference equation of the form (2) with D = 2 there exists a countable family 
{ fl(u0)

∞
l=0 of univariate polynomials and a number 0 ≤ l0 ≤ max{s − 1, 2N − 2} such that the polynomial 

fl0 (u0) is non-zero. Moreover, if the difference equation has a polynomial solution of degree d then

• d ≤ l,
• or d < deg(G0),
• or d is a root of fl0(u0).

Proof. Using Lemma 14 one can construct � such that the corresponding shifted difference equation 
satisfies the conditions of Lemma 13. A polynomial solution for the original difference equation is a 
solution for the shifted equation and vice versa. By Lemma 13 for the family { fl(u0) := Sl(u0, 0l)} for 
the shifted equation there exists an index l, where l ≤ s − 1 or l = 2N − 2, such that fl(u0) does not 
vanish. We set l0 to be the minimal such index l and apply Theorem 4 to complete the proof of the 
theorem. �
6. Algebraic difference equations of degree D with variable coefficients

In this section we study a difference equation (1) of total degree D ≥ 2 with the polyno-
mial coefficients where G(x)(x1, . . . , xs) =

∑
i1+···+is≤D

ai1...is (x)xi1
1 · · · xis

s . Let H be the maximal degree 

of the coefficients ai1...is (x) of the terms of degree D in the polynomial G(x)(x1, . . . , xs) and let 
P (x) = c(x − r1) · · · (x − rd) be a hypothetical polynomial solution of the ADE. Again, we will construct 
polynomials S∗

l (u0, ul) such that cD S∗
l

(
d, pl(rd)

)
is the coefficient of xDd+H−l on the left-hand side of 

the given equation after substituting the symbol P in it by the hypothetical polynomial solution. We 
will show that if one of the polynomials f ∗

0 (u0) = S∗
0(u0), f ∗

1 (u0) = S∗
1(u0, 0) or f ∗

2 (u0) = S∗
2(u0, 0, 0)

is non-zero, then an upper bound of the degree d of P is defined similarly to difference equations 
with constant coefficients in Theorem 1, otherwise the method does not give an answer.

Contrary to quadratic difference equations with constant coefficients, degrees of polynomial so-
lutions for difference equations with polynomial coefficients in general cannot be bounded because 
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there are quadratic difference equations with polynomial coefficients that have a solution of any pos-
itive degree. Consider, for instance, the equation

Pn(x)Pn(x − 1) − xP 2
n(x − 1) + (x − 1)Pn(x)Pn(x − 2) = 0 (24)

It is a routine to check that for an arbitrary positive integer number n the falling factorial 
Pn(x) := x(x − 1) . . .

(
x − (n − 1)

)
, which is a polynomial of degree n, solves this equation. The de-

tailed calculations can be found in the technical report (Shkaravska and van Eekelen, 2018).
However, the earlier results for polynomial difference equations with constant coefficients of an 

arbitrary degree D ≥ 2 in Shkaravska and van Eekelen (2014), to some extent still can be generalised 
for equations with polynomial coefficients.

The set of shifts {τ1, . . . , τs} ⊆K is finite and therefore can be totally ordered. Let � denote a total 
order on this set. If K ⊆R then we assume that � is the usual order ≤ on real numbers.

Let m be a positive integer number and Tm denote the set of all non-decreasing m-tuples of the 
elements from the set {τ1, . . . , τs}. Formally, Tm = {(t1, . . . , tm) | τ1 � t1 � · · · � tm � τs}. Let t range 
over the tuples from all the sets T1, . . . , T D . Then equation (1) with polynomial coefficients has the 
following representation:

D∑
m=1

∑
t∈Tm

αt(x) · P (x − t1) · · · P (x − tm) + G0(x) = 0 (25)

where the coefficient of the m-fold product P (x − t1) . . . P (x − tm) is the polynomial αt(x) = w0,txnt +
w1,txnt−1 + · · · + wnt,t with the number nt being the degree of the polynomial αt(x) and wk,t ∈ K
being the coefficient of xnt−k in αt(x). For instance, for equation (24) one has n(0,1) = 0, n(1,1) = 1 and 
n(0,2) = 1 with α(0,1)(x) = 1, α(1,1)(x) = −x and α(0,2)(x) = x − 1 respectively.

As earlier, tD abbreviates a (non-decreasing) D-tuple of the shifts. Also, let wl denote the 
(l + 1)-tuple of the variables (w0, . . . , wl), and wl,tD denote the (l + 1)-tuple of the values 
(w0,tD , . . . , wl,tD ) ∈Kl+1.

Let H D−1 denote the maximal degree of the polynomial coefficients of the (D − 1)-fold prod-
ucts P (x − t1) · · · P (x − tD−1) respectively. For instance, for equation (24) one has H D−1 = 0 whereas 
H = 1.

We consider now a product of the form αtD (x) · P (x − t1) · · · P (x − tD). If the degree of αtD is some 
n < H , we assign wk,tD = 0, where k + n < H . To compute the coefficients of xDd+H−l in this product, 
where 0 ≤ l ≤ Dd + H , one will need the following definition, based on the rule of multiplication of 
two polynomials applied to the polynomial αtD (x) and the symbolic polynomial P (x − t1) · · · P (x −
tD):

Definition 7. E∗
l (wl, v0, vl, u0, ul) :=

l∑
k=0

Ek
(

v0, vl, u0, ul
)

wl−k .

Using the rule of the multiplication of two polynomials, it is easy to prove the following lemma.

Lemma 15. Let 0 ≤ l ≤ Dd + H. The coefficient of xDd+H−l in the product αtD (x) · P (x − t1) · · · P (x − tD) is 
equal to cD E∗

l

(
wl,tD , D, pl(tD), d, pl(rd)

)
.

Proof. Fix some integer numbers k1 and k2 such that 0 ≤ k1 ≤ H and 0 ≤ k2 ≤ Dd. Since w H−k1,tD is 
the coefficient of xH−(H−k1) = xk1 in αtD (x) and the value E Dd−k2

(
D, pDd−k2 (tD), d, pDd−k2(rd)

)
is the 

coefficient of xDd−(Dd−k2) = xk2 in the symbolic product P (x − t1) · · · P (x − tD), divided by cD , by the 
polynomial-multiplication rule one has that the coefficient of xDd+H−l in the product 1

cD αtD (x) · P (x −
t1) · · · P (x − tD), is equal to:
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∑
k1+k2=Dd+H−l

w H−k1,tD E Dd−k2

(
D,pDd−k2(tD),d,pDd−k2(rd)

) =l1:=H−k1,l2:=Dd−k2

∑
l1+l2=l

wl1,tD El2

(
D,pl2(tD),d,pl2(rd)

)
,

where 0 ≤ l1 ≤ H and 0 ≤ l2 ≤ Dd. The conclusion of the lemma follows by setting l1 = l − k and 
l2 := k in the equality above. �

Now, we introduce the following definition.

Definition 8. S∗
l (u0, ul) :=

∑
tD∈T

E∗
l (wl,tD , D, pl(tD), u0, ul).

Obviously cD S∗
l

(
d, pl(rd)

)
is the coefficient of xDd+H−l on the left-hand side of equation (1) if 

Dd + H − l > (D − 1)d + H D−1 and (D − 1)d + H D−1 ≥ deg(G0). Therefore, it must vanish when these 
inequations hold. Using a computer algebra system it is easy to prove the following statement.

Theorem 6. Let an algebraic difference equation (1) be given. If there exists an integer number 0 ≤ l ≤ 2
such that f ∗

l (u0) := S∗
l (u0, 0l) is a non-zero polynomial and for any 0 ≤ l′ ≤ l − 1 the corresponding 

fl′ := S∗
l′ (u0, 0l′ ) is the zero polynomial, then the following holds for the degree d of a polynomial solution 

of equation (1):

• d ≤ l − H + H D−1 ,
• or d <

(
deg(G0) − H D−1

)
/(D − 1),

• or d is a root of f ∗
l (u0).

Proof. We fix l that satisfies the condition of the lemma. Assuming that the first two alternative 
conclusions of the lemma do not hold, we will show that then the third one must follow.

If d > l − H + H D−1 and d ≥ (deg(G0) − H D−1
)
/(D − 1) then S∗

l

(
d, pl(rd)

) = 0 and the schema of 
the proof is the same as the schema of the proof of Theorem 1 for the polynomials with constant co-
efficients. We consider the expression E∗

l (wl, v0, vl, u0, ul) as a polynomial in K[wl, v0, vl][u0][ul] and 
define the polynomial A∗

il
(wl, v0, vl)(u0) as its coefficient of ui1

1 · · · uil
l . Consequently, the polynomial 

B∗
l,m(wl, vl) is the coefficient of um

0 in the polynomial A∗
0l
(wl, vl)(u0).

Using symbolic computations it is easy to check that for l = 0, 1, 2 and il 	= 0l the polynomial 
A∗

il
(wl, v0, vl)(u0) is a K[u0, v0]-linear combination of the polynomials B∗

l,m(wl, vl), where 0 ≤ m ≤
l − 1. In Subsection A.3 in the Appendix one can find the tables which contain the expressions for the 
polynomials A∗ . Moreover, the symbolic coefficients for the corresponding K[u0, v0]-linear combina-
tions are given there as well.

For l = 3 the expression for A∗
100(w3, v0, v3)(u0) is not a K[u0, v0]-linear combination of the 

polynomials B∗
l,m(wl, vl), where 0 ≤ l ≤ 2 and 0 ≤ m ≤ l − 1. This can be shown by solving the 

symbolic linear system w.r.t. the unknown coefficients of the hypothetical K[u0, v0]-linear combi-
nation for A∗

100. The system is derived by equating the corresponding coefficients of the monomials 
wk0

0 wk1
1 wk2

2 wk3
3 v j1

1 v j2
2 v j3

3 in A∗
100 and in the linear combination. The system is inconsistent and there-

fore the linear combination does not exist.5

From this it follows that if S∗
0(u0) =

∑
tD∈T

w0,tD = 0 then the dependency on u1 vanishes in 

S∗
1(u0, u1) =

∑
tD∈T

E∗
1(wl,tD , D, pl(tD), u0, u1). If S∗

1(u0, 0) is a non-zero polynomial then it is an in-

5 The calculations are implemented in the Maxima script VariableCoefficients which can be found on the Radboud 
Resource Analysis web-page.
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dicial polynomial for the difference equation under consideration. Otherwise, the dependencies on u1
and u2 vanish in S∗

2(u0, u1, u2). If S∗
2(u0, 0, 0) is a non-zero polynomial then it is an indicial polyno-

mial. Otherwise the method does not give an answer. In this case the coefficient of u1 in S∗
3(u0, u3)

is equal to −1/2 
∑
tD ∈T

p2(tD)w0,tD and does not necessarily vanish in general. Therefore S∗
3(u0, u3) is 

not reducible to a 1-variable polynomial of u0 and cannot be taken as an indicial polynomial. �
Note that the coefficients wk(y1, . . . , yD) considered as functions given by their values wk(tD) =

wk,tD can be viewed as the polynomials obtained by the D-variate interpolation in the nodes 
(tD , wk,tD ), where tD ∈ T . In principle, the polynomials wk(y1, . . . , yD) can be made symmetric by 
adding the nodes of the form 

(
σ(tD), wk,tD

)
where σ runs over all the permutations of the variables 

y1, . . . , yD . However such polynomials are not necessarily homogeneous. Still there may be possibili-
ties to refine Theorem 6 using homogeneous symmetric polynomials. Studying such possibilities will 
be a subject of our future work.

7. Constructing polynomial solutions given an upper bound of their degrees

In this section we will show that if the first-order theory for the field K is decidable then knowing 
an upper bound of the degree of a possible polynomial solution for a given ADE allows to find all its 
polynomial solutions or to establish their absence. A remarkable example of fields with decidable 
first-order theories are real closed fields.

We continue with the running example given by equation (3). As it has been shown in Section 2, 
for this ADE the degree d of its possible polynomial solution can be found among the numbers 
0, 1, 2, 3. Introducing a symbolic polynomial Pa3,a2,a1,a0(x) = a3x3 + a2x2 + a1x + a0 and substituting 
it into equation (3), one obtains an algebraic system w.r.t. the parameters a3, a2, a1, a0 by equating 
to zero the coefficients of x6, . . . , x1, x0 on the l.h.s. of equation (3) after this substitution. Using a 
computer algebra system one can solve this system. The coefficients of x6 = x2d−0, x5 = x2d−1 and 
x4 = x2d−2, where d = 3, vanish since they are equal to S0(3) = 0, S1(3, 0) and S2(3, 02) = 0 respec-
tively. The symbolic coefficients of x3, x2, x, 1 are equal to

C3(a0,a1,a2,a3) = (168a2
3 + 7a3)/8

C2(a0,a1,a2,a3) = −(888a2
3 + (−168a2 + 24a1 + 42)a3 − 8a2

2 − 7a2)/8

C1(a0,a1,a2,a3) = (1584a2
3 + (−592a2 + 168a1 − 72a0 + 36)a3)/8+

((8a1 − 28)a2 + 7a1)/8

C0(a0,a1,a2,a3) = −(952a2
3 + (−528a2 + 224a1 − 168a0 + 8)a3)/8+

(24a2
2 + (24a0 − 12)a2 − 8a2

1 + 14a1 − 7a0)/8

(26)

respectively.6 Solving the system C3(a0, a1, a2, a3) = 0, . . . , C0(a0, a1, a2, a3) = 0 w.r.t. a3, . . . , a0, yields 
an infinite number of solutions amongst of which there are complex ones and the trivial one a3 =
· · · = a0 = 0. Real and rational tuples solving this system exist as well. For instance, there is a subfam-
ily of solutions defined by the relations a3 = −1/24, a1 = −(192a2

2 +5)/24, a0 = (256a3
2 +20a2 −5)/12, 

where a2 is free.
In general, the following statement holds.

Lemma 16. If the first-order theory of the field K is decidable then for any ADE of the form (1) there exists 
a finite deterministic algorithm which for an arbitrary nonnegative integer d answers the question if this ADE 
has a polynomial solution of maximal total degree d or not.

6 One can find the corresponding Maxima script RunningExample on the above mentioned Radboud Resource Analysis 
web-page.
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Proof. Given an ADE and an arbitrary integer d ≥ 0, the decision procedure for K takes as an input 
the finite system of algebraic equations w.r.t. the parameters ad, . . . , a1, a0 induced by equating to zero 
the coefficients of xl on the l.h.s. of the ADE, which is instantiated with the parametric polynomial 
Pad,...,a1,a0(x) := adxd +· · ·+a1x +a0. The procedure decides if the system is solvable or not. Moreover, 
if the procedure finds ad, . . . , a1, a0 constructively, then the corresponding polynomials Pad ,...,a1,a0(x)
are solutions of the ADE, by their construction. �

Generally speaking, real closed fields are decidable because they admit quantifier elimination, 
which is currently implemented in different versions of cylindrical algebraic decomposition (Collins, 
1998). However, from the practical point of view these procedures are not always efficient if one 
needs to find a polynomial solution for an ADE or to prove its absence. Since the search for such 
a solution, given an upper bound for its degree, amounts to solving a finite system S of polynomial 
equations w.r.t. solution’s coefficients, one can use methods involving Gröbner bases. For instance, one 
can test if the system S has solutions applying Hilbert’s Weak Nullstellensatz (Cox et al., 2015) in the 
following way. One computes a minimal Gröbner basis G of S and checks if 1 is an element in the 
set G . If yes, there is no solution for the system S and therefore the ADE does not have a polyno-
mial solution. Otherwise, there is at least one tuple (ad, . . . , a0) ∈ Kd+1 on which all the equations 
in S vanish simultaneously, and this tuple defines a polynomial solution of the ADE. Gröbner-basis 
methods can be also used to compute the tuples (ad, . . . , a0) explicitly. For instance, if there are only 
finitely many such tuples one can utilize the Shape Lemma (Winkler, 1996) to find them.

If the first-order theory of the field (or, more generally, ring) K is not decidable then in general 
it is not decidable if a given ADE in K has a polynomial solution in K[x] of degree at most d. It 
can be proven by establishing a connection between Diophantine equations and algebraic difference 
equations. How it is done in general is shown in the technical report (Shkaravska and van Eekelen, 
2018). Here, we consider a simple example which gives an idea behind the connection between ADEs 
and Diophantine equations. We will construct an ADE which has a polynomial solution P (x) = a1x +a0

of degree d = 1 in Q[x] if and only if the corresponding equation aD
0 + aD

1 = 1 has rational solutions 
(a0, a1) ∈ Q2. It is known that for D ≥ 3 this equation does not have solutions w.r.t. (a0, a1), other 
than (0, 1) and (1, 0). This is the version of Fermat’s last theorem for rational numbers. For the 
equation aD

0 + aD
1 = 1 the corresponding ADE is derived in the following way. First, one considers the 

parametric system w.r.t. a0 and a1:

a1x + a0 = P (x)

a1(x − 1) + a0 = P (x − 1)
(27)

The corresponding determinants from Cramer’s rule for this system are �(x) = x − (x − 1) = 1, 
�1(x, P ) = P (x) − P (x − 1), and �0(x, P ) = xP (x − 1) − (x − 1)P (x). The ADE that corresponds to 
the Diophantine equation aD

0 + aD
1 = 1 is obtained via the substitutions a0 := �0(x, P )/�(x) and 

a1 := �1(x, P )/�(x) into this Diophantine equation:

(
xP (x − 1) − (x − 1)P (x)

)D + (
P (x) − P (x − 1)

)D = 1. (28)

This example illustrates the complexity of the problem of solving ADE’s in Q[x] even when an 
upper bound of the degree of a possible polynomial solution is given. Recall that the existence of an 
algorithm which, given a Diophantine equation, decides if it has a rational solution or not (Hilbert’s 
10th problem for rational numbers), is still an open problem.
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Appendix A

A.1. Notations and definitions

This section contains a table of notations and a table of definitions used in this article.

Notation Meaning Page

K a field of characteristic zero 1
tD , rd (t1, . . . , tD), (r1, . . . , rd) 25
ul,vl (u1, . . . , ul), (v1, . . . , vl) 26
pl(tD),pl(rd)

)
the tuples of the values
of the power-sum polynomials(

p1(tD), . . . , pl(tD)
)
,(

p1(rd), . . . , pl(rd)
)

respectively 26
il, jl,0l (i1, . . . , il), ( j1, . . . , jl), (0, . . . ,0) 27
|il| i1 + 2i2 + · · · + lil, the weight of il 6
Q the field of rational numbers 28
xn the tuple of the variables (x1, . . . , xn) 25
π jn the product of the power-sum polynomials

p j1
1 · · · p jn

n 3
R the field of real numbers 23
wl the tuple of the variables (w0, . . . , wl) 38
wl,tD the tuple of the values (w0,tD , . . . , wl,tD ) 38

(A.1)

Definition Brief description Page

ϕ is a map from the set of s-tuples of nonnegative 
integer numbers such that ϕ : (i1, . . . , is) �→
(τ1, . . . , τ1︸ ︷︷ ︸

i1

, τ2, . . . , τ2︸ ︷︷ ︸
i2

, . . . , τs, . . . , τs︸ ︷︷ ︸
is

)

where i1 + · · · + is = D 25
T the image ϕ({i = (i1, . . . , is) | ∑ j i j = D}) 25

El(v0,vl, u0,ul) −(1/l)

(
l∑

κ=1

El−κ (v0, vl−κ , u0, ul−κ ) ·
( κ∑

λ=0

(
κ

λ

)
uλvκ−λ

)) 26

Sl(u0,ul)
∑
tD∈T

αtD El
(

D, pl(tD), u0, ul
)

27

Ail (v0,vl)(u0) is the coefficient of ui1
1 · · · uil

l in El(v0, vl, u0, ul). 
For il = 0l this polynomial does not depend on 
v0, therefore one can write A0l (vl)(u0)

27

Bl,m(vl) is the coefficient of um
0 in A0l (vl)(u0) 27

E∗
l (wl, v0,vl, u0,ul)

l∑
k=0

Ek
(

v0, vl, u0, ul
)

wl−k 38

A∗
il
(wl, v0,vl)(u0) is the coefficient of ui1

1 · · · uil
l in 

E∗
l (wl, v0, vl, u0, ul)

39, the proof 
of Theorem 6

B∗
l,m(wl,vl) is the coefficient of um

0 in A∗
0l
(wl, v0, vl)(u0) ibid.
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A.2. Auxiliary lemmas

In this section we prove two auxiliary lemmas. Lemma 17 allows to omit the variable v0 in the lists 
of the variables of the polynomials A0l , where l ≥ 0. Moreover, it is used in the proof of Lemma 18. 
Lemma 18 is used in the proofs of Lemma 6 and Lemma 8.

Lemma 17. For the polynomials A0l the following inductive identity holds:

A()()(u0) = 1,

A0l (vl)(u0) = −(1/l)
l∑

h=1

A0l−h (vl−h)(u0) · u0 vh.
(A.2)

This also means that for any l ≤ 0 the polynomial A0l does not depend on the variable v0. Moreover, for l ≥ 1
there are no non-zero u0-free terms in A0l .

Proof. We recall Definition 2 of El(v0, vl, u0, ul):

E0
(

v0, (), u0, ()
) := 1,

El(v0,vl, u0,ul) := −(1/l)
l∑

h=1

El−h(v0,vl−h, u0,ul−h)

(
h∑

λ=0

(
h

λ

)
uλvh−λ

)
.

To obtain the non-zero ul-free terms in El(v0, vl, u0, ul) one needs to set the indices λ in the 
products of the form 

(h
λ

)
uλvh−λ only to 0, since these terms are constituted by the summands that 

contain only the products of the form u0 vh where h ≥ 1. Then, identity (A.2) follows immediately. 
By induction on l it follows that A0l does not contain occurrences of v0. Moreover, from the proven 
identity it follows that for l ≥ 1 there are no non-zero u0-free terms in A0l (vl)(u0) because all the 
summands on the right-hand side of this identity are divisible by u0. �
Lemma 18. Let l ≥ 1 and 0 < k < l. Then the identity

Bl,l−k(vl) = −1/l
k+1∑
h=1

Bl−h,l−k−1(vl−h)vh

holds and Bl,0(vl) = 0.

Proof. We use Lemma 17 above. First, the fact that for l ≥ 1 there are no non-zero u0-free terms in 
A0l (vl)(u0) implies that Bl,0(vl) = 0 since it is the u0-free term of A0l (vl)(u0) by its definition.

Second, identity (A.2) implies that for the coefficient Bl,m(vl) of um
0 in A0l (vl)(u0), where 1 ≤ m < l, 

the following recurrent identity holds:

Bl,m(vl) = −1/l
l∑

h=1,l−h≥m−1

Bl−h,m−1(vl−h)vh = −1/l
l−m+1∑

h=1

Bl−h,m−1(vl−h)vh.

We introduce the index k by assigning k := l − m. Then, the identity above implies the statement of 

the lemma: Bl,l−k(vl) = −1/l 
k+1∑
h=1

Bl−h,l−k−1(vl−h)vh . This concludes the proof of the lemma. �
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A.3. Tables of the coefficients for the analysis of ADEs with variable polynomial coefficients

This subsection provides detailed technical information for Section 6. The expressions for E∗
l , A∗

il
and B∗

l,m for 0 ≤ l ≤ 3 given here are used in the proof of Theorem 6. They are obtained by program-
ming the corresponding recursive definitions in the computer algebra system Maxima.

The expressions for E∗
l :

E∗
l expression

E∗
0(w0, v0, u0) w0

E∗
1(w0, w1, v0, v1, u0, u1) w1 − u0 w0 v1 − v0 w0u1

E∗
2(w2, v0,v2, u0,u2) w2 − (u0 w0 v2)/2 − (v0 w0u2)/2 − u0 v1 w1 − v0u1 w1+

(u2
0 w0 v2

1)/2 + u0 v0 w0u1 v1 − w0u1 v1 + (v2
0 w0u2

1)/2

E∗
3(w3, v0,v3, u0,u3) w3 − (u0 w0 v3)/3 − (v0 w0u3)/3 − u0 v1 w2−

v0u1 w2 − (u0 w1 v2)/2 + (u2
0 w0 v1 v2)/2 + (u0 v0 w0u1u2)/2−

w0u1 v2 − (v0 w1u2)/2+
(u0 v0 w0 v1u2)/2 − w0 v1u2 + (v2

0 w0u1u2)/2+
(u2

0 v2
1 w1)/2 + u0 v0u1 v1 w1 − u1 v1 w1 + (v2

0u2
1 w1)/2−

(u3
0 w0 v3

1)/6 − (u2
0 v0 w0u1 v2

1)/2 + u0 w0u1 v2
1−

(u0 v2
0 w0u2

1 v1)/2 + v0 w0u2
1 v1 − (v3

0 w0u3
1)/6

(A.3)

Expressions for A∗
0l

:

A∗
0l

(wl,vl)(u0) expression

A∗
()(w0)(u0) w0

A∗
0(w0, w1, v1)(u0) w1 − u0 w0 v1

A∗
00(w2,v2)(u0) w2 − (u0 w0 v2)/2 − u0 v1 w1 + (u2

0 w0 v2
1)/2

(A.4)

Expressions for B∗
l,m:

B∗
l,m(wl,vl) expression

B∗
()(w0) w0

B∗
1,0(w0, w1, v1) w1

B∗
1,1(w0, w1, v1) −w0 v1

B∗
2,0(w2,v2) w2

B∗
2,1(w2,v2) −(w0 v2)/2 − v1 w1

B∗
2,2(w2,v2) (w0 v2

1)/2

(A.5)

Expressions for A∗
i (wl, v0, vl)(u0), where il 	= 0l:

l
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A∗
il
(wl, v0,vl)(u0) expression presentation via B∗

l,m

A∗
1(w0, w1, v0, v1)(u0) −v0 w0 −v0 B0,0(w0)

A∗
10(w2, v0,v2)(u0) −v0 w1 + u0 v0 w0 v1 − w0 v1 (1 − u0 v0)B1,1(w0, w1, v1)−

v0 B1,0(w0, w1, v1)

A∗
20(w2, v0,v2)(u0) (v2

0 w0)/2 (v2
0)/2B0,0(w0)

A∗
01(w2, v0,v2)(u0) −(v0 w0)/2 −(v0/2)B0,0(w0)

A∗
100(w3, v0,v3,u3)(u0) −v0 w2 + (u0 v0 w0 v2)/2− (−v0)B2,0(w2,v2)+

w0 v2 + u0 v0 v1 w1 − v1 w1− (2u0 − u2
0 v0)B2,2(w2,v2)+

(u2
0 v0 w0 v2

1)/2 + u0 w0 v2
1 (1 − u0 v0)B2,1(w2,v2)−

(w0 v2)/2

(A.6)
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