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Abstract

Chemical structure-property relationships are essential for the development of
new materials used in all facets of life. Practically, this process amounts to pro-
jecting regions of the chemical compound space (CCS) onto certain descriptors
related to the property of interest, allowing the structure-property relationship
to be inferred. The challenge in constructing these relationships usually stems
from a lack of data, as their accuracy and transferability will depend on how well-
sampled CCS is with respect to the chosen descriptors. High-throughput screening,
in which the properties of compounds are determined in an automated fashion, is
one strategy used to overcome this problem. However, for many properties of
soft-matter systems, this approach is difficult to implement computationally. This
difficulty arises due to the large costs associated with adequately sampling com-
plex free energy landscapes at atomistic resolutions using established tools such
as molecular dynamics (MD) simulations. Coarse-grained (CG) models, param-
eterized at lower resolutions compared to their atomistic counterparts, provide a
means to circumvent these costs. However, many of these models are constructed
in order to specifically reproduce the properties of a small number of compounds,
making it difficult to generalize across CCS. In this work, we demonstrate that
the coarse-grained Martini model reduces the size of CCS, and can be used in
computational high-throughput screening methods to efficiently construct chem-
ical structure-property relationships over wide ranges of CCS. We find that this
reduction of CCS is due to a limited number of Martini interaction types, with
multiple atomistic chemical fragments mapping to the same CG interaction type.
We then investigate the relationship between unsupervised machine learning and
coarse-graining, yielding strategies for parameterizing chemically transferable CG
models from both a top-down and bottom-up perspective. We employ these data-
driven techniques to parameterize new top-down CG models and quantify their
transferability and accuracy as a function of the number of CG interaction types
for each model. Finally, we develop a method that uses unsupervised machine
learning in combination with the bottom-up multiscale coarse-graining technique
to generate chemically-transferable CG models with high structural accuracy. We
examine the limitations of both top-down and bottom-up approaches and make
recommendations for the future development of these methodologies. Overall, our
work demonstrates the means by which chemically-transferable CG models can
be both constructed and utilized to efficiently infer chemical structure-property
relationships for materials discovery.






Zusammenfassung

Das Verstandnis der Beziehung zwischen Struktur und Figenschaft chemischer
Verbindungen ist essenziell um neue Materialien zu entwickeln, die in allen Facetten
unseres Lebens benutzt werden. In der Praxis wird dies erreicht, indem Regio-
nen des Raums der chemischen Verbindungen (CCS) auf bestimmte Deskriptoren
projiziert werden, die mit den gewtlinschten Eigenschaften zusammenhéngen und
auf die Struktur-Eigenschaft Beziehung folgern lassen. Die Herausforderung beim
Konstruieren dieser Beziehungen entsteht haufig durch ein Mangel an Daten, da
die Korrektheit und Generalisierbarkeit davon abhéngig ist, wie gut der Raum
der chemischen Verbindungen abgebildet wurde beziiglich der gewahlten Deskrip-
toren. Hochdurchsatz-Screening, bei dem die Eigenschaften der Verbindungen
automatisiert bestimmt werden, ist eine Strategie, um dieses Problem zu losen.
Leider ist dieser Ansatz fir viele Eigenschaften von weicher Materie schwierig
zu implementieren aufgrund des hohen Rechenaufwands, der betrieben werden
muss, um die Freie-Energie-Landschaft mithilfe herkommlicher Methoden, wie
Moleculardynamik-Simulationen (MD), addquat mit atomistischer Auflésung abzu-
tasten. Coarse-grained (CG) Modelle, die auf geringer Auflésung als ihre atomistis-
chen Gegenstiicke parametrisiert wurden, sind nititzlich, um diese hohen Kosten zu
verringern. Leider sind viele dieser Modelle konstruiert, um spezielle Eigenschaften
von einer kleinen Anzahl an Verbindungen zu reproduzieren, was es schwierig
macht diese im CCS zu Generalisieren. In dieser Arbeit demonstrieren wir, dass
das coarse-grained Martini-Modell die Groflie des CCS reduziert und dass es be-
nutzt werden kann, um hochdurchsatz Methoden durchzufiihren, damit chemische
Struktur-Eigenschaft Beziehungen fiir grofle Bereiche des CCS effizient konstru-
iert werden konnen. Wir zeigen, dass der CCS durch eine beschrinkte Anzahl an
Martini-Wechselwirkungstypen reduziert wird, wobei mehrere atomistische Frag-
mente auf denselben CG-Wechselwirkungstyp projiziert werden. Des Weiteren un-
tersuchen wir die Beziehung zwischen uniiberwachtem Maschinellem Lernen (ML)
und CG, was zu Strategien fithrt, um Parametrisierungen fiir chemisch general-
isierbare CG-Modelle fiir top-down sowie auch bottom-up Methoden zu finden.
Wir wenden diese datengesteuerte Technik an, um neue top-down CG Modelle
zu parametrisieren und quantifizieren ihre Generalisierbarkeit und Korrektheit fiir
jedes Modell als eine Funktion der Anzahl an CG Wechselwirkungstypen. Zuletzt
entwickeln wir eine Methode, die uniiberwachtes Maschinelles Lernen mit bottom-
up Multiskalen-CG kombiniert, um chemisch generalisierbare CG-Modelle mit ho-
her Korrektheit zu generieren. Wir untersuchen die Grenzen von top-down sowie
bottom-up Anséatzen und machen Empfehlungen fiir die weitere Entwicklung dieser
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Methoden. Zusammengefasst demonstriert unsere Arbeit unter welchen Bedin-
gungen chemisch generalisierbare CG Modelle konstruiert und verwendet werden
kénnen, um chemische Struktur-Eigenschaft Beziehungen fiir Materialien effizient
zu untersuchen.
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1 Introduction and Theory

The design and production of novel materials has been an intrinsic aspect of the
human experience for many millennia. While ancient humans may not have real-
ized it, they were discovering relationships between different chemical compounds
and the properties of these compounds that interested them. Some examples in-
clude tuning the mechanical properties of bronze, which would depend on the
specific composition of the copper alloy, or the use of different plant-based sub-
stances in the creation of dyes with varying colors. The modern scientific method,
coupled with a fundamental understanding of chemistry and physics, has led to
explicit mappings of specific chemical compounds to desired properties of interest.
Thus, the creation of these so-called “structure—property relationships” has con-
tinued into the present day, leading to the development of new materials that aid
humanity in all facets of life.

Figure 1.1: Schematic of a typical structure-property relationship. Each point de-
notes a molecule projected onto descriptors f; and f5. In this cartoon
example, data is roughly separated into two clusters, one correspond-
ing to small branched hydrocarbons with F and N substitutions and
another cluster without any heteroatom substitutions. The data is fit
to a line, relating the projected chemical structures to the property of
interest, g.



1 Introduction and Theory

A good structure—property relationship not only provides a holistic and intu-
itive sense for the physical phenomena that give rise to properties of interest, but
also enables quantitative predictions for new compounds. A cartoon example of
a structure—property relationship is shown in Fig. 1.1. Here, the points on the
plot represent a subset of the space of all stable chemical compounds, known as
chemical compound space (CCS), projected onto two descriptors f; and fo [1—
3]. In this example, the structure—property relationship is obtained by fitting the
data to some physically-informed function, g, which corresponds to the property
of interest.

How large is CCS? For small, drug-like molecules the number of stable com-
pounds was estimated to be about 10 [4]. For comparison, the estimated number
of stars in the entire universe is only about 10! (lending some credence to chemical
space, rather than outer space, being the true final frontier). Despite this daunt-
ing size, one of the main goals of materials science is to obtain structure—property
relationships that span CCS, enabling the design of novel, high-performing mate-
rials. Ideally, these structure—property relationships can be used for both direct
and inverse molecular design [5, 6]. Direct molecular design allows for the predic-
tion of a property value given a new chemical structure. Inverse molecular design,
however, yields a chemical structure or set of structures given a desired property
value. Regardless of the approach, accurate predictions can only be obtained if
CCS is sufficiently sampled. The overarching, long-term goal of this work is to in-
vestigate methods for quickly sampling broad regions of CCS in order to facilitate
the construction of structure-property relationships for materials design [7-10].

One commonly used strategy used to explore CCS is high-throughput screen-
ing. High-throughput screening is a method in which a large number of chemi-
cal compounds are systematically tested in an automated fashion to obtain their
chemical properties of interest. Experimentally, there have been notable successes
in using this approach for direct molecular design. Zhang et al. has developed
a high-throughput cell imaging-based screening assay which has led to the dis-
covery of new chemotherapeutic agents [11]. Shevlin et al. has demonstrated a
high-throughput method for discovering new and efficient catalysts for chemical
synthesis of chiral drug-like compounds [12]. Wambach et al. developed a high
throughput approach for obtaining the thermoelectric properties of the entire Ti-
Ni-Sn ternary system, in which several thin films could be characterized at once
[13]. However, the experimental approaches require a large monetary and time in-
vestment for the synthesis of new compounds that are not commercially available.

On the other hand, the rapid growth of computer technology over the last thirty
years has made running high-throughput computational simulations a feasible al-
ternative. While this approach also requires a large monetary and time investment
in terms of CPU cores and CPU hours, unlike the experimental high-throughput



methods, it has no restrictions stemming from compound synthesis, as even highly
unstable compounds can be probed, for example transition states in chemical re-
actions [14]. Furthermore, this approach benefits from the recent development of
robust, numerical approaches that can infer underlying relationships given suffi-
cient data, known as data-driven methods, or machine learning (ML) [15]. ML
has been used by several groups to infer structure—property relationships for the
electronic properties of small organic compounds [16-18]. Recently, Faber et al.
have developed a new ML molecular representation that enables the prediction
of many electronic ground state properties of organic molecules with accuracy
comparable to ab initio methods [19]. He et al. have used a high throughput
approach in combination with ML to discover new, conductive metal-organic com-
plexes [20]. Korbel et al. has used high-throughput ab initio calculations to find
and characterize new inorganic perovskites for numerous electronic applications
[21]. The high-throughput step for these schemes requires ab initio calculations,
in which the electronic probability distribution is obtained by numerically solving
Schrodinger’s equation, to be run in vacuo for each compound screened. Rela-
tively few high-throughput computational methods have been proposed that build
structure-property relationships for thermodynamic properties in the condensed
phase, for which thermal fluctuations play an important role [22, 23|. For these
methods, the corresponding computational method used for screening is usually
classical molecular dynamics (MD) simulations. This simulation approach approxi-
mates the quantum-mechanical interactions between atoms as classical force-fields,
enabling the use of Newton’s equations of motion to evolve condensed-phase sys-
tems in time. Yang et al. used a combination of high-throughput MD simulations
and ML to predict the stiffness of silicate glasses [24]. Xu et al. used a com-
bination of high-throughput docking calculations and MD to discover new drug
molecules that target human bromodomains, which are critical to many differ-
ent cellular processes [25]. The main bottleneck to implementing high-throughput
screening that incorporates MD simulations is the time required to produce tra-
jectories from which thermodynamic properties can be obtained. Specifically, the
equations of motion must be applied to large systems usually containing thousands
of particles for hundreds of nanoseconds, corresponding to approximately 10> CPU
hours [26, 27]. Consequently, many studies that rely on MD simulations sample
an extremely narrow region of CCS, usually containing O(10) compounds [28-30].

One method for overcoming the computational bottlenecks caused by large sys-
tem sizes and long sampling times required when running MD simulations is the
use of coarse-grained (CG) models [31-34]. A CG model represents chemical com-
pounds as particles in a similar fashion to all-atomistic (AA) MD simulations.
However, each particle in a CG model represents groups of atoms rather than
a single atom. The model can be constructed by projecting information from
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Figure 1.2: The effect of coarse-graining on structure—property relationships. The
majority of the compounds map to only two coarse-grained represen-
tations, as shown by the red and green circles. This demonstrates the
reduction of CCS and enables a broader variety of compounds to be
sampled.

a high-resolution simulation (e.g. AA), by inferring microscopic behavior using
macroscopic experimental results, or some combination of both. In all cases, the
goal of the CG model is to reproduce certain properties of interest by projecting
the information pertaining to the property onto a minimal set of parameters. This
approach has interesting parallels with the construction of chemical structure—
property relationships, as both involve relating chemical structure to a desired
property using a reduced model. Furthermore, CG MD simulations require fewer
particles compared to AA (usually by some multiplicative factor between two and
ten) and do not require as much sampling time due to the removal of degrees of
freedom that are irrelevant to the studied property due to a scale separation. For
example, the bond vibrations of the hydrogen atoms in a methyl group may be
fully decorrelated with the secondary structure formation of the protein to which
it belongs. These two effects can reduce the number of CPU hours needed by
orders of magnitude [31, 35]. Therefore, CG modeling may provide a means to ac-
celerate the computational high-throughput screening process for condensed phase
thermodynamic properties.

The difficulty in utilizing CG models for high-throughput screening stems from
the fact that many CG models are chemically specific, meaning that they are
constructed for a single chemical compound or small set of chemical compounds,
usually at a single thermodynamic state point [31, 36-39]. Because they require an



AA MD simulation or other, equally expensive experimental data for their param-
eterization, the transferability of these models is usually limited to the chemistry
used in their construction. This means that for each compound, the high-resolution
data would have to first be obtained, making the actual construction of the CG
model unnecessary for a high-throughput approach. Several instances of extending
the transferability of CG models have been demonstrated, but these are applied
to the state point variables, allowing for CG models to be run at various temper-
atures, pressures, and concentrations given the same set of chemical compounds
[38, 40, 41]. On the other hand, relatively little work has been done that investi-
gates the chemical transferability of CG models [42, 43]. A chemically-transferable
CG model would be highly beneficial in a high-throughput screening process be-
cause a single CG molecule would be representative of many different chemical
compounds. In the context of structure—property relationships, this would corre-
spond to Fig. 1.2, in which two CG molecules represent the majority of the indi-
vidual chemical compounds shown. Fig. 1.2 indicates that chemically-transferable
CG models essentially reduce the size of the CCS, enabling the construction of
structure—property relationships that are more robust to chemical variety.

The central theme of this work is to investigate the different ways in which
CG modelling can be used to augment computational high-throughput screening
methods for condensed phase thermodynamic properties. The rest of the thesis is
organized as follows. The remainder of this introductory chapter provides a theo-
retical foundation for all of the methods used in the subsequent chapters, written
so as to be comprehensible to anyone with at least an undergraduate degree in
Chemistry, Physics, or Chemical Engineering. In Chapter 2, we demonstrate the
chemical transferability of a specific top-down CG model called Martini and use
it to construct low-dimensional structure property relationships pertaining to the
permeability of lipid-bilayer membranes. In particular, we focus on how inverse
molecular design is enabled via this approach, and explore the regions of CCS that
map to single CG representations using unsupervised ML techniques. We also ex-
plore the relationship between unsupervised machine learning and coarse-graining
by examining how different molecular representations and unsupervised learning
techniques coarsen CCS in different ways. In Chapter 3, we quantify the chemical
transferability of Martini and compare it to three other CG models in the Martini
framework with varying number of bead types. This provides a method for opti-
mizing chemically-transferable top-down CG models so that they more efficiently
represent CCS. In Chapter 4, we use a combination of unsupervised machine learn-
ing techniques and extended-ensemble coarse-graining methods to construct a new
bottom-up CG model that is both chemically-transferable and structurally accu-
rate. Finally, we conclude with Chapter 5, emphasizing the importance of the
work as well as highlighting many new questions to be answered in the future.



1 Introduction and Theory

1.1 Theory

1.1.1 Statistical Mechanics and Thermodynamics

An important goal of thermodynamics is to explain, using statistical mechanics,
how certain properties of matter are derived from the collective behavior of that
matter on the single particle level. While statistical mechanics is useful for de-
scribing both quantum and classical phenomena, here we will focus on the latter.
Central to the thermodynamic view of statistical mechanics is the idea of mi-
crostates and microstate ensembles. In this context, a microstate is defined as a
configuration of particles with all of their degrees of freedom specified [44]. An
ensemble of microstates refers to the collection of microstates that contribute to
a particular thermodynamic system at equilibrium, as well as the corresponding
weights attached to each microstate. In the following subsections, we further ex-
plain some of the results of statistical mechanics which are highly relevant for
understanding the work as a whole. For a more thorough understanding of many
of the concepts outlined here, the interested reader is recommended the textbook
by M. Scott Shell [44].

Partition Free Energies

For a closed system at constant temperature and volume, known as a canonical
ensemble, the Helmholtz free energy, A, can be defined in terms of potential energy,
E, temperature, T, and entropy, S, via the following relation:

A=E-TS. (1.1)

This essentially states that the free energy determines whether the system is driven
by the internal energy or entropic fluctuations at a given temperature [44]. The
corresponding free energy for a closed system at constant temperature and pressure
is known as the Gibbs free energy, G, and also takes into account a pressure-volume
potential-energy term. In the canonical ensemble, the system is at thermodynamic
equilibrium when the Helmholtz free energy of the system is minimized [44]. From
a microscopic view the probability P of a microstate with energy E existing in
this ensemble is

1
P = —¢P0) 1.2
Ze Y ( )
where [ is the inverse temperature scaled by Boltzmann’s constant, 5 = 1/(kgT),
and Z is the canonical partition function, defined as

Z = el =P, (1.3)

The potential energy is, by definition, a relative energy, and the free energy by
itself has little meaning. Consequently, the free energy is expressed in terms of
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free energy differences between two thermodynamic state points. A negative free
energy difference indicates that the system will be driven towards the second state
point over the first in order to reach equilibrium, whereas a positive value denotes
the opposite case. These thermodynamic state points can be defined for a large
variety of different systems. Some common examples include the solvation free
energy, which is the difference in free energy of a molecule in vacuum versus the
same molecule in a solvent, binding free energy, for which the state points are
the molecule close to/far from a surface, or alchemical free energy differences, in
which atoms of the molecule are changed into other atom types while the system
remains fixed [45, 46]. A free energy change going from state 1 to 2 in the canonical
ensemble at temperature T can be determined using the following expression

N _—BUs(rN)
AA:AQ—Alz—%ln (fdr ‘ ) (1.4)

[ drNe—fU(rY)

In this equation, U; and U; are the potential energies of the system at states 2
and 1, respectively [45, 46]. These energies are functions of the positions of all
N particles in the system, ", and the integrals in the equation are carried out
over the entire configurational space of the system. Note that the free energy is
a path-independent quantity (also known as a state function), meaning that the
free energy difference between two state points is the same regardless of the path
taken. This path-independence allows for the creation of thermodynamic cycles,
which are a series of state points in which thermodynamic variables are changed
with the first state point being equal to the last. This means that the net change
in free energy over the entire cycle is zero.

An important type of free energy difference is the water/octanol partition free
energy, AGyy_ (], which gives the free energy change when changing the solvent
surrounding a solvated molecule from water to octanol. It is defined using the
Gibbs free energy as follows:

AGyy_ 01 = Gw — Go, (1.5)

where Gw and G are the free energies of the water-solvated and octanol-solvated
systems, respectively [47]. Since water is a highly polar solvent whereas octanol is
relatively apolar, the water/octanol partition free energy is highly correlated with
the polarity of the solute molecule. Many factors can influence the polarity of a
molecule, including its size, flexibility, and the existence of specific chemical func-
tional groups within the molecule [48]. A hydrophobic molecule will have a clear
preference for octanol over water, resulting in a negative AGyy_, ) value, whereas
the opposite will be true for a hydrophilic molecule. The hydrophobic/hydrophilic
character, and by extension the water/octanol partition free energy, play an im-
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portant role in the physics of soft-matter systems as a major driving force in phe-
nomena such as self-assembly, protein-ligand binding, and membrane permeability
[49-51].

The Potential of Mean Force

It is often useful to determine how the free energy of the system varies as a function
of a specific variable or reaction coordinate of interest. Computing the free energy
along one of these reaction coordinates yields a potential of mean force (PMF).
The PMF, F(§), is formally defined by partially integrating the configurational
partition function, Z, expressed in terms of the reaction coordinate, £ [45].

F(¢) = —%an(N V,T,§) = ——ln/drNe BUEN§1e — ()] (1.6)

é is a function that outputs the value of the reaction coordinate as a function of
the system configuration, V. The name “potential of mean force” stems from
the fact that taking the derivative of the potential with respect to the reaction
coordinate over the entire ensemble yields the average force projected onto that
reaction coordinate.

1.1.2 Lipid-bilayer Membranes

A lipid bilayer membrane is a self-assembled structure that serves as the basis for
the cell membranes in the human body, making the study of lipid bilayer mem-
branes an active field in science [52]. The membrane is made up of lipid molecules,
which are organic molecules consisting of a polar functional group, known as the
lipid head, and a long hydrocarbon chain, known as the lipid tail. From a macro-
scopic, elastic-physics perspective, the Canham-Helfrich equation dictates that a
collection of lipid molecules minimize exposure of their hydrophobic tails as well as
their total surface free energy [52]. The “bilayer” aspect means that the structure
itself consists of lipid molecules arranged into two oppositely facing sheets of lipids
sandwiched together such that the exposure of the tails to water is limited. From
a microscopic perspective, this hydrophobic effect stems from a combination of
two factors. The first contributor is an entropic force that aims to maximize the
number of hydrogen bonds that can be formed by water molecules and prevent
any water molecules from being “locked” in position as they would be around a
hydrophobic surface. The other effect is the maximization of the attractive dis-
persion interaction formed as a result of weak, spontaneous dipole moments in the
hydrophobic tails. Fig. 1.3 shows an example lipid molecule as well as the struc-
ture of the lipid-bilayer membrane. As is the case for most soft-matter systems,
there are no chemical bonds formed between lipid molecules in the bilayer, and the
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energy scale of their self-assembly is comparable to the ambient thermal energy at
room temperature. The lipid molecules are free to diffuse within the plane of the
bilayer membrane, which is why lipid bilayer membranes are commonly referred
to as 2-D liquids. There are many different types of lipid molecules, varying based
on their degree of saturation (the number of double bonds in the tail groups), the
length and number of tail groups, and the chemistry of the head group [53]. These
differences lead to different membrane properties such as the surface density of
the lipids, the rigidity of the membrane, and the diffusivity of the lipid molecules
within the plane of the membrane. Other types of biomolecules, such as mem-
brane proteins, and cholesterol, are also found in a typical cell membrane, and
often responsible for significant deviations to the properties of pure lipid bilay-
ers. As an initial approximation, however, lipid bilayer membranes provide many
useful insights into the biological mechanisms that occur in and around the cell
membrane.

Figure 1.3: (a) The lipid molecule 1,2-Dioleoyl-sn-glycero-3-phosphocholine
(DOPC) is shown, with Carbon atoms colored gray, Oxygen atoms
red, and Phosphorous atoms orange. (b) A snapshot from an MD sim-
ulation of a DOPC lipid-bilayer membrane. The individual atoms are
not shown; rather, the molecules are divided into polar head groups
and apolar tails. Adapted with permission from Menichetti et al. [54].

Lipid Membrane Permeability

Since lipid membranes behave as two-dimensional liquids, passive permeation of
small molecules through the membrane can occur. Lipid membrane permeability
is a measure of how quickly molecules can travel across a membrane through either
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an active or passive mechanism [51]. The active mechanism refers to the active
transport of the permeating molecule, either through some sort of directed motion
of the molecule itself or vesicular uptake, meaning that a lipid vesicle fuses with
the membrane as in order to facilitate transport of the molecule contained within
the vesicle. On the other hand, passive permeation of the lipid membrane occurs
as a result of Brownian diffusion only. Therefore, the passive permeability of
small molecules is an important property for designing drug molecules, as it tells
us whether the drug molecule prefers to pass through the membrane regardless
of any external influences. For example, passive permeation of the membrane is
known to be a significant mechanism for the uptake of many local anaesthetics
[55].

The passive permeability is usually quantified in terms of the permeability coef-
ficient, P. The derivation for this permeability coefficient was first performed by
Marrink and Berendsen, and is reproduced below [56].

Given a solute particle of species 4, in the low Sherwood number limit (mean-
ing the motion of 7 is dominated solely by diffusion), its average velocity,u;, is
proportional to the gradient of the potential energy, u;, as shown below:

1
&
Here, &; is the friction coefficient of the ith solute particle. The flux,.J; for the
system is given as

V ;. (1.7)

U; = —

C

Avins 1.8
g VH (1.8)

where ¢; is the concentration of species i. We then carry out two substitutions,
the first of which uses the Einstein relation,
kg NAT
&
where D; is the diffusivity of species ¢, Ny is the ideal gas constant, and 7' is the
temperature. The second expression to be substituted is the chemical potential in

an ideal solution, which is obtained by applying Raoult’s law to the expression for
the chemical potential in an ideal gas.

pi = pY + kgNaT In ¢ (1.10)

Ji = ciu; =

Di:

(1.9)

Applying both of these substitutions to Eq. 1.8, we get Fick’s first law of diffusion,

The only dimension of importance for this case is the z dimension, which is defined
as normal to the plane of the lipid membrane. Note the conservation law
0J;(2) N Jci(2)
0z ot

— 0, (1.12)

10
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which states that the change in the flux of solute particles must be equal to the
change in the concentration profile of those solute particles with respect to time.
In the steady state case, this means that the flux is a constant and 0.J/0z equals
to 0, allowing us to solve Eq. 1.11 for changes in chemical potential as a function

of z, Apu;.
22
1

A Jikg NAT /Zl dzcz-(z)Di(z) (1.13)
Marrink and Berendsen noted that the integral expression on the right hand side is
similar to the continuous form of the electrical resistance equation, allowing them
to define a corresponding resistance RY as

z2 1
RY = ¢ S P — 1.14
P [ gy _—

)

where ¢} is the bulk concentration difference across the membrane for species 7,
and ¢ is the localized equilibrium concentration of i [56]. The inverse of this
resistance is known as the passive permeability coefficient. Many standardized ex-
perimental techniques have been developed to measure this quantity. For example,
the parallel artificial membrane permeability assay (PAMPA) involves measuring
the concentration of a drug molecule after being injected onto one side of a small
volumetric container containing water and divided by a lipid bilayer membrane
[57]. A similar method involves using a type of human epithelial cell called Caco-2
cells, which are considered to provide more biologically accurate results due to the
presence of membrane proteins, channels, and microvilli [58]. The experimental
setup is essentially identical to that of PAMPA, but the dividing layer consists
of a monolayer of caco-2 cells grown over a perforated substrate. Furthermore,
these methods often result in permeability coefficients with errors spanning an
entire order of magnitude. For this reason, the permeability coefficient is usually
expressed as its base-10 logarithm, log P. In the following sections, the methods
by which each of the parameters affecting the passive permeability are obtained
from computer simulations is discussed.

The Membrane Potential of Mean Force

Eq. 1.14 expresses the permeability coefficient as dependant on the localized equi-
librium concentration of the solute particle, ¢;*. This concentration can also be
expressed in terms of the number of microstates in which the solute particle is
found in the interval (z, z 4+ dz) [56]. The equilibrium concentration as a function
of z can therefore be written as a “constrained” partition function,

clz)~Z(2) = a/drN6(20 — z)exp (—pr"). (1.15)
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where a is a proportionality constant. The concentration profile can then be
expressed in terms of free energy differences along z by taking the ratio of the
localized equilibrium concentration,c;*(z), to the solute concentration in the bulk
phase, c;:

G(z) = —kgNATIn (ZZ((;*))) = —kgNATIn (&) , (1.16)

where z* is any z in the bulk phase relative to the membrane. G(z) is the potential

of mean force acting in the direction normal to the lipid bilayer midplane, z.

Substituting this expression back into Eq. 1.14 yields

RP _ /'Z2 dzexp(G(z)/kBNAT) 1
21

() Dz(z) = F (1.17)

This equation is commonly used to compute permeability coefficient, P, from
computer simulations of drug-membrane permeation [26, 59]. The minimum of
the membrane PMF denotes the most thermodynamically favorable distance for
a drug molecule to be placed relative to the bilayer midplane. The PMF is also
used to determine the barrier heights in the free energy for a molecule to permeate
the lipid membrane. Fig. 1.4 shows the structure of a typical PMF calculated
for the membrane permeability of a small organic molecule. Note the three key
free energy differences that are contained within the PMF, the water/membrane
free energy, the membrane/surface free energy, and the water/surface free energy.
These three free energy differences form a thermodynamic cycle, meaning that
their sum equals to zero.

The Diffusivity

As seen in Eq. 1.11, the diffusivity relates the concentration gradient driving diffu-
sion of particles with the flux of those particles through some area. For a spherical
solute particle in a uniform environment, the diffusivity, D, takes the following
constant value, commonly known as the Stokes-Einstein equation [61]:

kT

D = .
6mnr

(1.18)

Here, kg is the Boltzmann constant, T is the temperature, 7 is the viscosity and r
is the radius of the spherical particle. While this holds for dilute concentrations of
particles solvated in a single medium, for particles diffusing through a lipid bilayer
membrane, the surrounding environment changes based on the distance away from
the bilayer midplane, z. Therefore, a localized diffusivity that is a function of z is
used in Eq. 1.17.

12
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Figure 1.4: A schematic of the potential of mean force for the insertion of a small
molecule into a lipid-bilayer membrane. The three key environments
are denoted with red stars, with arrows between them indicating the
change in free energy between them. Adapted with permission from
Menichetti et al. [60].

The Effect of Acidity on Permeability

The acidity or basicity of drug-like molecules will also affect their passive perme-
ability. The acidity /basicity of a molecule refers to its tendency to lose a hydrogen
nucleus (deprotonate) or gain a hydrogen nucleus (protonate) resulting in a net
negative/positive charge in the molecule [59]. The probability of this type of pro-
tonation event occurring depends on the chemical structure of the molecule as well
as the concentration of protons in the surrounding water. This is quantified via a
dissociation constant which gives the ratio of concentrations of the molecule itself,
HA, its dissociated form, A~, and the dissociated protons, H", as dictated by the
following chemical reaction

HA= A"+ H* (1.19)

The acid dissociation constant, K, is then expressed as

[AT][H]

Ba="gar

(1.20)

where the brackets denote the molar concentration of each species [62]. These
concentrations are the equilibrium concentrations corresponding to the acid disso-
ciation reaction shown above. A similar reaction can be written for the molecules

13



1 Introduction and Theory

which protonate to gain a net positive charge, known as bases.
AHT = A+ H" (1.21)

The dissociation constants are commonly expressed as pK,s, in which the negative
log is applied to the dissociation constant [62].

pK, = —logo(Ka) (1.22)

For each of the chemical reactions shown above, this results in an acidic and a
basic pK,, the apK, and bpK,. Note that these are not the standard definitions
used to quantify acidity and basicity (pK, and pKy). The apK, is equivalent to
the standard definition of the pK,. The bpK,, however, is a rearrangement of the
chemical reaction commonly used to define basicity, expressed as the deprotona-
tion of a conjugate acid instead of protonation of the base. These nonstandard
definitions, which are used by the CHEMAXON software to predict these properties,
are introduced here and revisited in Chapter 2 of this work, where we utilized this
software.

In the context of drug membrane permeability, at equilibrium, molecules which
have multiple protonation states may permeate the membrane in both their proto-
nated and deprotonated form. As seen from Eq. 1.17, the permeability coefficient
is the inverse of the membrane resistivity. For the case where multiple permeating
species exist, a total resistivity, Rr(z) can be defined as

Ry'=R;'+ R, (1.23)

where R, and R, correspond to the resistivities of the neutral and charged species,
respectively [54, 59]. The individual resistivites shown in this equation have the
same form as those seen in Eq. 1.17, with one significant difference. The PMFs
must account for the free energy difference between the neutral and charged forms
of the molecule. This can be derived from a thermodynamic cycle in which the
compound is first neutral in water, neutral in the membrane, charged in the mem-
brane, and charged in water [59]. Solving for the free energy difference between
the acidic and basic forms yields the following equation:

Gbase = Gacid + kBT(pKa - pH) In 107 (124)

indicating that the changes to the PMF come in the form of a vertical shift, the
height of which is determined by the difference between the molecule’s apK, (or
bpK,) and the neutral pH of water, pH = 7.4.

It is also possible for certain molecules to be zwitterionic. These molecules con-
tain separate chemical functional groups with basic and acidic character, retaining
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a net neutral charge despite the occurrence of multiple protonation/deprotonation
events. In this case, Eq. 1.24 takes the form

Greuwt = Guwit + kT (bpK, — apK,) In 10, (1.25)

meaning that the vertical shift depends on the relative pK,s (and therefore rel-
ative dissociation strength) of each functional group. Eq. 1.25 assumes that the
dissociation reactions are completely independent from each other.

1.1.3 Molecular Dynamics Simulations

MD simulations are a computational tool used to model many different types of
systems, including soft-matter systems. In an MD simulation, atoms are repre-
sented as particles whose interactions are governed by classical (as opposed to
quantum) mechanics, although different flavors of MD also exist that account for
electronic degrees of freedom [63, 64]. Newton’s equations of motion (specifically
Newton’s second law) are then solved in order to propagate the system in time.
Assuming the simulation has been properly initialized and has propagated for a
sufficient amount of time, many thermodynamic quantities from the simulation
can be computed and compared to experimental results. MD can also be used to
measure kinetic properties and observe specific transitions in the system of inter-
est [65, 66]. In general, the steps in an MD simulation are as follows: for each
time step, the forces acting on each particle in the system are calculated, and the
equations of motion are integrated in order to determine the changes in particle
position and velocity for the following time step. In this section, we detail the
specific numerical machinery used to implement these steps. Most of these ex-
planations are adapted directly from the textbook written by Frenkel and Smit,
which is recommended for a thorough understanding of MD simulations [46]. Ad-
ditionally, the lecture notes of M. Scott Shell are frequently cited as they provide
a cogent and intuitive summary of many of the same concepts [45].

The Force Field

After initializing the system, the first step in the MD algorithm is the calculation
of forces. The forces are obtained by taking the derivative of the potential energy
function, U(r"), with respect to the relative positions of the particles themselves.
This potential energy function, commonly referred to as the force field, is usu-
ally expressed as a sum of intramolecular and intermolecular interactions between
particles, Uiyira and Uipger-

U(TN> = Uintra + Uinter (126)
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rV refers to the positions of all particles in the system, otherwise known as a single
configuration of the system [45]. The intramolecular part of the energy function
is further expressed as a sum over all bonded, angle, and dihedral interactions
within the molecules of the system. Each of these interaction types approximate
the energy corresponding to the electronic probability density obtained by solv-
ing Schrodinger’s equation for the atoms in the ground state with fixed nuclear
positions. Many atomistic resolution force fields have been obtained by fitting
energies calculated via ab initio methods to simple analytical functions. In these
cases, bonded and angle interactions are usually written as harmonic oscillators
that deviate from the equilibrium bond distances, dy, and angles, 6, whereas
dihedral interactions are described using a cosine series [45]:

Uintra = Z a(d — do)? + Z b(h — 6p)? + Z (Z Cp, COS (w)n> . (1.27)

bonds angles dihedrals \n=0

In this equation, a, b, are constants that determine the strength of the harmonic
potentials. Similarly, ¢, coefficients are defined for the cosine series used to ap-
proximate the ab initio dihedral potential for all possible dihedral angles, w.

The intermolecular part of the potential energy function, Ujye, is separated
into two parts, corresponding to the pairwise neutral and charged non-bonded
interactions between particles belonging to different molecules in the system, as
given by the following equation [45]:

Unier = Y (46 {(%ﬂ) o (%) _6} + %) . (1.28)

pairs

For many systems, the interactions between two neutral non-bonded particles is
expressed as a Lennard-Jones potential (shown as the first term in equation 1.28),
which accounts for Pauli repulsion and van der Waals attraction as a function
of the pairwise distance, 7;; [46]. Here, ¢ and o are Lennard-Jones parameters
that depend on the atoms ¢ and j that make up the pair. The contribution to
the Lennard-Jones potential becomes minimal after r. ~ 2.5¢ [45]. Therefore, in
practice, the potential is usually truncated (by cutting and shifting the poten-
tial to avoid discontinuities) after this cutoff distance, r., to avoid iterating over
all pairs in the system, thereby reducing computational overhead. However, this
contribution becomes significant when computing the total pressure and potential
energy of the system. Assuming that the system is isotropic and homogeneous in
composition beyond the cutoff distance (i.e., g(r > r.) = 1), a correction can be
added to the net potential energy and pressure by integrating the Lennard-Jones
interaction from 0 — oo for the energy and r. > r > oo for the pressure, both of
which can be expressed analytically [45, 46]. The force due to electrostatic inter-
actions is, in theory, perfectly expressed via Coulomb’s law, shown in the second
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term in Eq. 1.28. ¢; and ¢; are the charges assigned to atoms ¢ and j, and ¢ is
the electric permittivity in a vacuum. In practice, the Ewald summation method
is commonly used to evaluate this contribution to the intermolecular interactions
[46]. In this approach, the electrostatic interaction is split into a short-range and
long-range contribution, with the electrostatic force being calculated in real space
for the short-range contribution and in Fourier space for the long-range contribu-
tion. This method drastically reduces the time needed for the force calculation to
converge, making it advantageous when compared to performing a summation over
all charged particles in the system. The Particle Mesh Ewald summation further
reduces this computational cost by employing the Fast Fourier Transform algo-
rithm to calculate the long-range term, which requires a projection of the charge
densities onto a discretized grid [46].

Evolving the System in Time

When running MD simulations, several methods have been developed to numer-
ically integrate Newton’s equations of motion and accurately compute positions
and velocities for each particle at each time step. In this section we will derive
only two, the Verlet algorithm and the Leap-Frog algorithm, the latter of which is
used in this work.

The following derivation of the Verlet algorithm is lifted from the work of Frenkel
and Smit [46]. A particle with mass m and position r after some time ¢ can be
approximated via Taylor expansion to the fourth order:

. f (t) 2 At3 n 4
r(t+ At) = r(t) + v(t)At + %At + =7 (t) + O(AtY), (1.29)
where v(t) and f(t) are the velocity of the particle and the force acting on the
particle, respectively, and r”(t) refers to the third derivative of r with time. A
similar expression can be derived for the particles previous position, making the
algorithm time-reversible.

r(t—At) =r(t) —v(t)At + %Atz — A3—fr”/(t) + O(AtY) (1.30)

By summing the previous two equations and moving r(t — At) to the right hand
side, we obtain

f(t)

r(t+ At) = 2r(t) —r(t — At) + WAR + O(AtY), (1.31)

which is the equation used in the Verlet algorithm. The equation is evaluated
up to the second-order term and has an error that is of the order At to the
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1 Introduction and Theory

fourth power. However, calculating the second-order term will cause numerical
imprecision to arise. The forces f(t) are obtained by taking the derivative of the
potential U at time ¢ with respect to the particles position, r.

f(t) = - (1.32)

The Leap-Frog equation is derived in a similar fashion, but begins with expressions
for the velocities of the particles at time t — At/2 and ¢t + At/2,

_ r(t) —r(t — At)

u(t — At/2) N

(1.33)

and
r(t+ At) — r(t)
At

The second expression can be rearranged to obtain the positions at the next
time step:

vt + At/2) =

(1.34)

r(t+ At) = r(t) + v(t + At/2)At, (1.35)

and the sum of the two equations is used to obtain the velocities

v(t + At/2) = v(t — At/2) + %At. (1.36)

Because the leap-frog equation comes from the Verlet equation, the trajectories

produced by each should be identical [46]. However, the numerical imprecision that

stemmed from the second-order term in Eq. 1.31 is no longer present. Therefore,

using this algorithm enables our system to evolve in time in a deterministic fashion
while maximizing precision.

Calculation of Average Properties

In general, to compute the average, A, of some observable A from an MD simu-
lation, the following integral is evaluated over some length of simulation time 7

146).
A:lfdmm (1.37)

T

This is value is assumed to be equivalent to the true statistical mechanical average
at equilibrium if the simulation has first been properly equilibrated, and then

run for long enough time such that A is sampled over multiple correlation times
[45, 46].
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Controlling Temperature and Pressure

In order to run simulations in the canonical ensemble, it is necessary for the system
to maintain a fixed temperature. This is equivalent to ensuring that the system is
in contact with a large heat bath which is at the desired temperature [46]. Note
that, for a system at constant temperature 7', the probability density function, P
for finding a specific particle with mass m; and momentum p; corresponding to T
is known as the Maxwell-Boltzmann distribution [44].

3/2
Ply) - ( ) exp [ By /(2m)] (1.38)

2mm;

The Andersen thermostat is used to maintain a constant temperature by randomly
selecting particles in the system to undergo a simulated collision with the heat bath
at fixed time intervals [45]. The simulated collision in this case is just a reassign-
ment of the particle velocities to velocities taken from the Maxwell-Boltzmann
distribution. Note that the velocity-rescaling thermostat used in Chapters 2 and 3
of this work smoothly incorporates this canonical equilibrium distribution for the
kinetic energy directly into the integrator used to evolve the system in time [67].

The Nosé thermostat enables a deterministic approach for maintaining con-
stant temperatures in MD simulations [46]. For a system with N particles, this is
achieved by using an extended Lagrangian formulation which explicitly includes
an imaginary heat bath with corresponding position and momentum,

N
i 3N +1
LoNose = Z <m7321)i2> — U™ + %vz — ;_ In(s). (1.39)
The variable s can be considered as the position of the imaginary heat reservoir
coupled to the system, with velocity v, and mass (). Performing a Legendre

transform on this Lagrangian yields the corresponding Hamiltonian

N N X In(s)
Hyoss = <2m-32) +UEN) + 0+ (3N +1) R (1.40)

The equations of motion can then be derived and implemented using this Hamil-
tonian, requiring the mass of the heat bath, @), to be specified by the user. This
Hamiltonian yields the following partition function in the cannonical ensemble:

¢ 1N . P’ N
ZNOSé = ﬁ/dpzdr exp [—ﬁ; <2_TTLZ +U(’I" ) (141)
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Here, p; is the momentum scaled by the variable s, and C' is the scaled kinetic
energy contribution of the heat bath, which is constant at fixed 7. We can now
compute average properties using Eq. 1.37, but with the scaled momentum.

A:l/wamymﬂﬁ» (1.42)

T Jo

By evolving the system using this approach, both the coordinates and momenta for
the particles as well as the imaginary heat bath are obtained deterministically [46].
The relationship between s and p; is key to maintaining a constant temperature.
Because the scaled quantities are ultimately used to progress the simulation, they
are denoted here with the ’ symbol as being the “real” variable whereas the lack of
this symbol denotes a “virtual” variable. While r remains unscaled, the momentum
p; and time step At are both scaled by s.

At = At/s. (1.43)

However, because the position of the imaginary heat bath, s, will vary with time,
the previous equation implies that the time step is not a constant during the
simulation. A modification of the previously defined Hamiltonian was proposed
by Hoover [46].

N 2 2
HNosé—Hoover = Z (;;T;”L) + U(""N) + 5262 + 3N1né$) (144)

2

Where the friction coefficient, £, is defined as

dlns
= . 1.45

This reformulation results in equations of motion that no longer imply a variable
time step. Rather, the value of the friction term changes based on fluctuations in
the instantaneous kinetic energy. The mass of the heat bath remains a parameter
to be specified by the user.

In order to simulate isobaric ensembles, a barostat is used to maintain constant
pressure. Here, we focus on the Parinello-Rahman Barostat [68]. This barostat
is constructed in a similar fashion to the Nosé-Hoover thermostat, but with a
pressure-bath, rather than a heat bath, being coupled to the system in an extended
Lagrangian formulation. The vector corresponding to the simulation box, b is
coupled to the pressure bath via the following equation:

dv? L
E == VW b (P - Pref)- (146)
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where V' is the volume of the box, and P, and P are the reference (desired) and
instantaneous pressure tensors, respectively [68]. W ™! is known as the inverse
mass parameter matrix, and it determines the strength of the coupling. The
Hamiltonian, when including this coupling, is as follows:

N 5 2
, 1 db;

Hpp = E (—2‘2;;) +U(rN) + g P,V + E §VV]k (—d;k) - (1.47)
' j gk

Both the Nosé-Hoover thermostat and the Parinello-Rahman barostat are usu-
ally used in tandem, with a joint Hamiltonian constructed from a Lagrangian that
contains both heat and pressure-bath couplings. Deriving the equations of motion
from this Hamiltonian enables the simulation of systems in the NPT ensemble.

Constraints

The time step used when running atomistic MD simulations is usually limited by
the frequency of harmonic oscillations used to model bonds between atoms [46].
Therefore, one strategy that enables the use of a larger time step is to replace these
harmonic oscillations with constraints that are holonomic. The term holonomic
is used to describe a type of constraint which is only dependant on the positions
of the particles and the time, t. In this work, an algorithm known as the LINear
Constraint Solver, or LINCS, is used to constrain the bonds containing Hydrogen
atoms in atomistic systems [69]. This enables the use of a 2 fs timestep when
running atomistic MD simulations of bulk organic liquids, further discussed in
chapter 4. The method and its implementation were developed by Hess et al, and
a detailed derivation and implementation can be found in their work [69]. We now
provide a short summary of that derivation. For a system with N particles, we
define a position vector, r, for each particle. Assuming K number of bonds to be
constrained, the holonomic constraint expression is as follows:

hi(r) = |ri, —=riy|—di=0 i=1,... K, (1.48)

where |r;, — r;,| is the distance between constrained particles 1 and 2, and d; is
the user-specified length of the ith constraint [69]. The implementation of these
constraints takes place in three steps for each time step. The first step consists
of performing an unconstrained update, allowing for changes in the bond length
and orientation. Next, the projection of the forces in the bond direction from the
previous time step is removed. In the last step, corrections are applied to account
for lengthening of the bond due to rotation (i.e., to account for the centripetal
forces remaining after removing the forces in the previous step).
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The Radial Distribution Function

The radial distribution function (RDF) is commonly used to quantify the structure
of a simulated bulk, condensed-phase system [45]. For a system in the canonical
ensemble with only a single particle type, the RDF, g, between two particles with
positions r; and 5 is defined as the following:

V(N — 1) [ drsdry...dry e V0
g(rim) = —5 Z(N,V,T) ’

(1.49)

where V' is the volume of the system and Z(N,V,T') is the partition function [45].
This can be extended for different particle types A and B as shown below:

o [ drsdry..dry e BUTY)
Z(NA7 NB) ‘/7 T)

gap(ri,r2) = (1.50)

An example RDF is shown in Fig. 1.5. Conceptually, the RDF is the probability of
finding another particle of the desired type some distance away from the reference
particle. For soft-matter systems in the isotropic bulk-liquid phase, this value
approaches 1 at long distances. The Fourier transform of the RDF, the static
structure factor, can also be obtained by performing small-angle and wide-angle
scattering, making the RDF a useful tool for validating MD simulations using
experimental scattering data.

Thermodynamic Integration

Previously, we defined a general equation for the free energy difference between
two states using Eq. 1.4. One method to compute this property using MD tra-
jectories is called thermodynamic integration. This is done by first defining the
thermodynamic path between the two states and breaking this path into interme-
diate states [70]. Typically, these intermediate states are specified via a coupling
parameter, A\, that ranges from 0 to 1, where A\ = 0 is equivalent to state 1 and
A = 1 is equivalent to state 2. In order to compute the free energy difference be-
tween states 1 and 2 we first take the derivative of the free energy A with respect

to \: )
d 1 d N
S8 [ qeNeBUOa), 1.51

a\ BZdA/ re (1.51)

which can then be expressed as the ensemble averaged derivative of the potential

with respect to A:
dA dU (N, rN)
= TN 1.52

dA < dA >/\ (152)
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Figure 1.5: An example intermolecular radial distribution function for a homoge-
neous, bulk-phase organic liquid.
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Integrating this expression over all lambda then yields the change in free energy:

AA:/1 dA<%>A. (1.53)

In practice, since a finite number of trajectories are run at different lambda values,
a numerical integration is performed [70]:

AA%iwk<w>k. (1.54)

k=1

Here, w;, refers to the weights that correspond to the free-energy histogram with
total number of bins K used when performing the numerical integration. A simple
use-case for thermodynamic integration is to calculate the free energy difference
of changing a Hydrogen atom to a Fluorine atom. In this example, A is chosen as
a switching parameter between the potential applied to the Hydrogen atom and
the Fluorine atom, respectively. To ensure accurate results, enough A states must
be simulated such that dU/dA is smooth and continuous over A.

The Bennett Acceptance Ratio

In many cases, running a large number of simulations at different lambda values
is computationally unfeasible, especially for large system sizes. Another method
to estimate free energy differences was derived by Bennett, requiring only two
trajectories at the initial and final thermodynamic state points [46]. The Bennett
Acceptance Ratio method is derived from Eq. 1.4, which we restate below:

AA:——ln (fdrN o ) (1.55)

[drNeB0i™)

Bennett modified this expression by multiplying and dividing an expression similar
to that used in free-energy perturbation methods, in which this expression would
be the partition function of only one of the states. However, unlike the free-energy
perturbation approach, the expression used here results in a free energy difference
that is based on averages over both trajectories [46].

fd,rN —BUs(r fdr (r™)e —BU1 (rN)—BU2(r™)
Ad= ——ln [ drNe=fULrY) [ dpNow(rN)e— AU rN)—FU2(rT)

(1.56)
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Here, w(r") is a weighting function that is obtained by minimizing the variance

of the free energy difference to be:
C
M) | (1.57)
(Z1/n1) exp(—BUs) + (Z/n2) exp(—pU;)
where C' is a constant to be determined self-consistently. If we plug this equation
into Eq. 1.56, we get

w(r

A= _—Ln (<f(U2_U1+C)>1). (1.58)

5 (f(Ur = Uy = C))s

where f(z) is the fermi-dirac function, f(z) = 1/(1 + exp(fx)) . A caveat when
using the Bennett Acceptance Ratio is that there must be significant overlap in
phase space between the trajectories at the different state points. In the case where
there is no phase space overlap between the state points, a A coupling parameter
can be used in a similar fashion to thermodynamic integration, to bridge the gap
in phase space. The overall free energy difference is then the sum of each of the
free energy differences between consecutive lambda states.

Umbrella Sampling and the Weighted Histogram Analysis Method

For many systems, large free energy barriers exist that prevent the sampling of
certain energetically favorable microstates in a computationally tractable amount
of time when sampling using conventional MD simulations. For example, the free
energy barrier for a highly polar molecule to enter a lipid bilayer membrane is
roughly 20 times the ambient thermal energy, kg7, at room temperature [26].
Computational methods used to quickly overcome these barriers are known as en-
hanced sampling techniques. One of these methods, known as umbrella sampling,
is specifically used in this work to obtain potentials of mean force in the afore-
mentioned lipid bilayer membrane example [71]. Generally, this involves applying
a bias potential that is a function of the reaction coordinates (also referred to
as collective variables) upon which the free energy landscape is projected. When
calculating the lipid membrane potential of mean force for a small molecule, we
use the distance along the normal to the bilayer midplane, z, as the reaction co-
ordinate. The full range of 2z values is first divided into simulation windows. For
each window, ¢, a harmonic biasing potential, w(z), is included in addition to the
unbiased potential, U", yielding the biased potential, U" as shown in the following
equation:

UP = U +w(2) = U™+ ki(2 — 204)° (1.59)

The choice of force constant,k;, used for these harmonic potentials is important,
as small values will prevent barrier crossing, whereas large values result in limited
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sampling along the reaction coordinate. After sufficiently sampling each window
via an MD simulation, the probability distribution corresponding to the biased
potential is obtained, P"(2). This is related to the unbiased probability, P'(z) via
the following expression:

P(2) = PP(z)efvR) (e=Au2)y), (1.60)

By taking the logarithm of equation 1.60, we obtain the potential of mean force

for each window, G;(2):
-1 b 1

where C; is a constant. This constant must be computed in order to combine
each of these PMFs into a G(z) which spans all of the previously defined windows.
The method used in this work to obtain this constant is known as the weighted
histogram analysis method [72]. Using this method, the global unbiased probabil-
ity distribution is expressed as a weighted average of the distributions from each
window:

P(z) = Z pi(2) P (2), (1.62)

where W is the total number of windows and p;(z) are the weights. By minimizing
the error of P"(z), and applying a normalization condition on the weights, the
following equations are obtained:

. a;z
- w
Zj a;

a;(2) = Nye PwizI+5G: (1.64)

pi(2) (1.63)

Here, a; is another constant which, along with C;, must be solved self-consistently.
Solving equations 1.63 and 1.64 enables the unbiased probability distribution to be
calculated, which can then be substituted into equation 1.6 to obtain the unbiased
potential of mean force.

1.1.4 The Generated Database of Compounds

The Generated DataBase (GDB) is a list of organic compounds automatically gen-
erated using a computer algorithm developed by Fink et al. [73]. The algorithm
proceeds in the following steps. First, a large number of graphs are systematically
generated with a maximum of four edges per node. The nodes correspond to the
Carbon atoms in saturated Carbon chains, and the edges represent carbon-carbon
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single bonds. Next, a series of filters is applied to remove graphs representing non-
physical or highly unstable structures. For example, some of these filters remove
graphs from the data set if they contain single carbon atoms shared across multiple
3- or 4-membered rings, or if the energy-minimized ring strain is above a certain
threshold value. In the next step, double and triple bonds are combinatorially in-
troduced to the remaining structures, followed by hetero-atom substitutions. This
results in several highly unstable combinations of hetero-atoms being covalently
bonded to each other, and another filter is applied to remove these instances. The
final step is to remove compounds that are tautomers of each other, meaning that
they can spontaneously interconvert between the two structures under ambient
conditions. By setting the maximum number of heavy atoms to be 11 and only al-
lowing N, O, and F substitutions, the GDB-11 was created, containing 26.4 million
unique chemical compounds [73]. Note that the number of compounds increases
exponentially with respect to the number of heavy atoms per compound. There-
fore, in this work, only the molecules containing up to 10 heavy atoms (as well
as subsets of this database) are used as a proxy for CCS. This data set contains
approximately 3.5 million molecules. The GDB-11 can be found on the Reymond
group’s website and is stored as a series of text files, with each text file containing
a list of compounds for a given number of heavy atoms. The compounds them-
selves are represented as a simplified molecular-input line-entry system (SMILES)
string, which is an intuitive notation used to represent chemical compounds [74].

Chemical Functional Groups

In this work, we define a chemical functional group as a single perturbation or a
localized series of perturbations of a saturated carbon scaffold. A perturbation in
this instance can be either a replacement of a single bond with a double or triple
bond, or the replacement of carbon atoms with another atom type. The former
case is referred to as a bond substitution and the latter case is called a hetero-atom
substitution. We used the program CHECKMOL, developed by Norbert Haider, to
automatically identify the functional groups present in chemical compounds from
the GDB [75]. The program requires a 3D structure file containing the coordi-
nates and topology of a compound as an input. It then checks for the presence
of specific functional groups by calling a series of subroutines that exhaustively
search for different types and combinations of bond substitutions and hetero-atom
substitutions. In this way, over 200 different functional groups can be identified
by CHECKMOL.
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1.1.5 Coarse-Graining

As previously discussed in the introduction of this chapter, coarse-grained (CG)
models provide a means to drastically reduce the computational cost of simulating
soft matter systems while retaining their underlying physics. In this section, we
describe the general steps involved in building CG models and highlight many
of the different approaches that have been developed in this regard. For more
thorough explanations of the fundamental concepts discussed here, the reader is
referred to this review by W.G. Noid [31].

Bottom-up vs. Top-down Coarse Graining

There are two broad categories into which coarse-grained modeling can be classi-
fied: bottom-up and top-down approaches. Bottom-up coarse-grained models are
constructed using data from higher-resolution models of the same system. In this
work, the higher-resolution models refer to AA MD simulations, although this is
itself a coarsened approximation of an ab initio model. Rigorous methods have
been developed that guarantee the preservation of the underlying physics at the
higher resolution in the resulting CG model [76-78]. Therefore, the accuracy of
bottom-up CG models depends on the quality of the higher-resolution data which
is used in its construction. Consequently, bottom-up CG models tend to be highly
chemically-specific, meaning that they are only meant to model certain molecules
under specific conditions, because of the expensive requirement for high-quality
higher-resolution data. However, rigorous methods for extending the transferabil-
ity of bottom-up CG models have also been developed [40, 41].

On the other hand, top-down methods do not rely on higher resolution models,
but instead are constructed to match specific macroscopic properties, usually ob-
tained from experiments. This approach can provide insight as to what physical
concepts must be included in a CG model in order to explain phenomena observed
at the macroscopic scale. Furthermore, since many top-down CG models aim to
reproduce these phenomena using as few parameters as possible, the degree of
chemical specificity in top-down models is often significantly reduced compared to
bottom-up models [79]. However, it is by no means evident that these top-down
CG models can be easily related to the physical phenomena of the same system
at the microscopic level. For example, certain thermodynamic properties, like the
bulk density or partitioning free energy of a compound, may be accurately repro-
duced by a top-down model while failing to reproduce the specific conformations
or packing behavior at the atomistic resolution.
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The Mapping Function

The first step in the coarse graining process is to define a mapping function M (7)
[31]. This function assigns atoms in the high resolution MD trajectory with po-
sition r to pseudo-atoms called beads, and sets their configuration, R, according
to some assignment rule. For example, the coordinates R; for a single coarse
grained bead I, can be expressed as the weighted center of mass of all of the
atomic positions ¢ that correspond to I at the all-atomistic (AA) resolution.

R[ = M[(’I") = ZC[ﬂ"‘i. (165)

Since the total degrees of freedom are reduced in the CG system, it is impossible
to preserve all of the features of the high resolution system, regardless of the
accuracy of the potentials assigned to the CG beads. This makes the choice of
which atomistic fragments should be mapped to a single bead an important one,
although, in practice, this is often based on chemical intuition alone. Recently,
however, more systematic methods have been developed to diagnose the quality of
CG mappings [80, 81].

The Many-Body Potential of Mean Force

The next step in the coarse-graining process is to determine the coarse-grained
potential. When taking a bottom-up approach, the goal is to ensure that the
probabilities of obtaining coarse-grained configurations, Pog(R), are the same as
the corresponding atomistic configurational probabilities, paa () [45].

e—BUcc(R) e—Buaa(r)

PC(;(R) = pAA(’I") = ZCG = an s (166)

where Zcg and zaa are the partition functions corresponding to the CG and AA
systems. We then express paa(R) in terms of only the atomistic configurations
and the mapping function, M (r).

paa(R) = /dTpAA(T)5[M(r) - R (1.67)

Note that multiple atomistic configurations will map to the same coarse-grained
configuration. Plugging this equation into Eq. 1.66 yields the following expression:

e—BUca(R) e Buaa(r)
el / arE St — R). (1.68)
Zca ZAA
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Next, we take the log of both sides of the equation and group the expressions
containing partition functions together as a constant, C"

Uca(R) = —% In / dre PuasM§(M(r) — R] + C. (1.69)

The first term on the right hand side is known as the many-body potential of mean
force (MBPMF) [31, 45]. Like the PMF defined in Eq. 1.6, it is also a projection
of the free energy. In this case, however, the MBPMF is a projection of the atom-
istic free energy surface onto the coarse-grained degrees of freedom, as specified
by the mapping function. Note that there is no restriction on the functional form
of the MBPMF. The “many-body” aspect of the MBPMF refers to the fact that
integrating over the residual atomistic degrees of freedom results in the generation
of many-body interactions between CG beads. Therefore, conventional CG po-

tentials, which are expressed as a sum of pair-wise contributions, will never fully
approximate the MBPMF [31].

Direct Boltzmann Inversion

Because it is computationally unfeasible to calculate the MBPMF for large complex
systems, an approximate CG potential is often developed in order to reproduce
certain structural distributions of the atomistic systems. The simplest approach to
doing so is known as direct Boltzmann inversion [76]. As a bottom-up approach,
it initially requires the generation of an atomistic MD trajectory of the system.
After determining the CG mapping scheme, an atomistic structural distribution
is projected onto the corresponding CG degrees of freedom. From this distribu-
tion, labeled p¢(z), the CG potentials U, for each intramolecular and pairwise
interaction ( are obtained via the following equation:

_ 1 (p(x)

where z refers to the interaction-specific variable (i.e., distances or angles), and
J¢(z) is the Jacobian factor for the specific interaction type. For example, bonded
distributions should be scaled by the square of the bond length, whereas angle
distributions should be scaled by the sine of the angle [76]. Direct Boltzmann
inversion is mainly successful when the interactions modelled are highly isolated
from the other interactions occurring in the system. However, if there are any
interactions that are strongly coupled, applying this method will ignore the cross-
correlations between them, and the subsequent CG structural distributions will
not match those of the AA reference.
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Iterative Boltzmann Inversion

While direct Boltzmann inversion will fail to reproduce atomistic distributions in
systems with coupled interactions, it is possible that iteratively tuning these po-
tentials and measuring the change to the resulting CG structural distribution will
lead to an improved CG potential. The Iterative Boltzmann inversion approach
proceeds in the following steps [45, 82]. First, compute coarse-grained potentials
via direct Boltzmann inversion. Next, run a CG MD simulation and calculate
the corresponding structural distributions. The third step is to modify the CG
potential via the following expression:

UC,neW<x) = U<701d(l’) — %hl (%) . (171)

The previous two steps are repeated until the coarse-grained potential converges.
Simultaneously applying this method to the full CG potential during each iteration
implicitly accounts for cross-correlations between interactions. However, for sys-
tems containing highly coupled cross-correlations compounded over many different
interactions, convergence of the CG potential may not be possible.

The Multiscale Coarse Graining Method

Unlike the previous two methods, which specifically aim to reproduce structural
distributions found in the reference atomistic system, certain bottom-up CG meth-
ods aim to produce a CG potential that best approximates the MBPMF via a
variational approach. Omne such method, known as Multiscale Coarse Graining
(MSCG), finds the CG potential that minimizes the following functional:

) = <3iNZ F1(r) - FI<M<r>>F>, (172

where x? is the ensemble-averaged sum of square errors between the force acting
on a group of atoms f7(r) that map to the coarse interaction site I, and the corre-
sponding coarse-grained force acting on I, Fy(M(r)). The specific notation used
in this section is taken from the work of Dunn et al. [83]. Eq. 1.72 essentially states
that the optimal CG potential will be the one that best reproduces the average net
force acting on mapped CG sites from the atomistic trajectory. For this reason,
the MSCG approach is also commonly referred to as the force-matching method
for bottom-up coarse-graining. If a potential is found that sets the right hand side
of the equation to zero, this potential must be the MBPMF'. Therefore, minimizing
this expression yields the closest possible approximation to the MBPMF. A major
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advantage of this variational approach is that it does not restrict the functional
forms used to express the CG potential. Rather, we express the CG potential as:

Ur(R) =) ) Udver(R)). (1.73)
¢ A

where the first sum is over all interaction types, (, the second sum is over all
groups of particles, A, and ¢¢\(R) is the corresponding scalar function, with CG
coordinates R. The force on site I is obtained by taking the gradient of the
potential:

Fi(R) =) > F(¢on(R)Viva(R) (1.74)
¢ A

where Fr = —dU;/dx and V; = 0/0R;. F; can be expressed as a linear combina-
tion of basis functions f4(z) with weights ¢¢4. This allows the force on a site /
to be rewritten as:

Fe(x) =) ¢cafcal). (1.75)
d
We next define the corresponding force-field basis vectors, G'r,¢cq, as:

Grca =Y Fealbor(R)Viver(R), (1.76)

For convenience, we replace the subscript combination (d with D, which denotes
a single (d pair. We now rewrite Eq. 1.75 as:

F/(R)=> ¢pGrp(R). (1.77)

By plugging this expression into Eq. 1.72 and then minimizing the resulting ex-
pression, the following system of linear equations is obtained:

Z Gpp¢p = bp. (1.78)
where
1
o= <3_N > i) GI;D<M<r>>> , (1.79)
and

1
Gov = <3_N > Gro(M(r): GI;D/<M<r>>> . (1.50)

In this equation, Gppr is a symmetric matrix called the metric tensor that mea-
sures the cross-correlations between all atomistic interactions when projected onto
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the force-field basis vectors defined in Eq. 1.76. bp is a vector obtained by pro-
jecting the MBPMF of the atomistic reference onto these force field basis vectors.
Solving Eq. 1.78 yields the weights ¢p, corresponding to the optimal CG potential
that minimizes x? given the force field basis vectors Gy.p.

Extended Ensemble Coarse-Graining

Because a variational approach is used to find the potential that best approximates
the MBPMF in the MS-CG method, it is a simple matter to extend the variational
principle over multiple thermodynamic state points [40]. This collection of multiple
state points is called an extended ensemble. An average over the extended ensemble
is defined in the following manner

(ay(ry)) = Zp"/<a"Y(T’Y>>’Y7 (1.81)

where v denotes the specific state point, and p, gives the probability of being
in that ensemble, set to 1/T", where I" is the total number of state points in the
extended ensemble. Each ensemble will have its own mapping, and a corresponding
MBPMEF. In this case, solving the force-matching functional yields the potential
that best approximates all of the MBPMF's over the extended ensemble, averaged
as shown in the above equation. The derivation proceeds just as described in the
previous section, while additionally taking the sums over all I' corresponding to
the different state points [40, 83].

Coarse-Graining and Pressure

The averaging over unnecessary atomistic degrees of freedom results in a smoother
CG free energy landscape, which can lead to dramatic changes in the resulting
thermodynamic properties. For example, it is usually the case that bottom-up
methods result in CG systems with immensely large internal pressures compared
to the atomistic reference. Furthermore, these CG potentials are constructed by
mainly accounting for short-range repulsive interactions, while the long-range Van
der Waals attractive forces are neglected, facilitating the drastic increase in pres-
sure [84]. Das and Anderson proposed that the following functional be minimized
in order to modify an existing CG potential such that the correct internal pressure,
Pint(T, P, v) Was recovered [85].

X3(U] = ([pine(r, p,v) — Pt (M (1), M(p), v)[*) (1.82)
The CG potential now has the following form:
U(R, V) = UR<R) + Uv(V>, (183)
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where Ug(R) is the CG interaction potential and Uy (V') is the volume-dependent
potential. The corresponding pressure can be written as

Pu(R.P.V) = PY,(R.P.V) + Fy(V). (1.84)
where
2 OUg(R)
0 _ _ [ =R
P (R, P)V)= 3VK(P) < o ) ) (1.85)

The two terms on the right hand side of Eq. 1.84 correspond to pressure contribu-
tions from the interaction potential, P2 (R, P,V), broken into their kinetic and
virial contributions (shown in Eq. 1.85), and a pressure correction term Fy (V)
[83, 84]. Similar to the MSCG approach, Uy (V) is expressed as a sum of basis

functions, uy4(V):

Uv(V) = dequ(V) (1.86)
d
weighted by coefficients ¢). The basis functions take the following form:

N(V/v) ford=1

N(V/v—1)% ford=2 (1.87)

qu(V) == {

Here, v is the average volume computed from the atomistic reference simulation.
Only two basis functions are required, and their corresponding weights are related
to the pressure and compressibility corrections, respectively [83]. Similar to the ap-
proach taken to solve the force-matching functional, by plugging Eq. 1.86 into the
pressure matching functional and subsequently minimizing this expression yields
a set of linear equations that can be solved for the coefficients 11 and 1. While
this results in a CG system that qualitatively matches the density fluctuations of
the atomistic reference, it does not ensure quantitative agreement. Dunn and Noid
developed an iterative scheme to ensure quantitative agreement between CG and
atomistic pressures. The steps are highly analogous to the Iterative Boltzmann
approach [83]. In the first step, a CG NPT simulation is run with a trial Uy, with
corresponding force Fy. The difference between the CG and atomistic pressures
is then used to correct Fy .

0Fy (V) = pint(v) — Pue(V) (1.88)

These steps are repeated until Fy converges, which, in practice, only requires two
to three iterations. Successfully applying these pressure corrections guarantees
that the coarse-grained system will exhibit the same thermodynamic properties as
the atomistic reference.

34



1.1 Theory

The Martini Force Field

The Martini force field is a popular top-down coarse-grained model used for simu-
lating a large variety of soft matter systems, with an emphasis on biomolecules [79,
86-88]. It was originally developed to model lipid membranes but has since been
extended for use in protein, nucleic acid, and even non-biological soft molecules.
This top-down model was optimized using many different experimental partition
free energies between multiple organic liquids and water, as well as certain struc-
tural properties of lipid bilayers. The philosophical goal of the force field is to be
broadly applicable to many different systems without requiring drastic reparame-
terization for specific state points.

The Martini force field consists of four sets of different bead types—each cor-
responding to different levels of chemical polarity—designated as polar, nonpolar,
apolar, and charged bead types. The polar bead types represent molecules or
functional groups that are greatly stabilized in the aqueous phase, while the ap-
olar bead types correspond to chemistries highly stabilized in the organic phase.
The nonpolar bead types represent molecules containing both polar and apolar
character, and the charged bead types correspond to any ions or molecules with
a net nonzero charge. Fach bead interacts with other beads via bonded and non-
bonded interactions, following the same template as discussed in Section 1.1.3. The
intramolecular potentials are usually obtained via bottom-up methods such as di-
rect Boltzmann inversion [89]. The non-bonded potentials consist of electrostatic
interactions for the charged bead types as well as Lennard-Jones interactions. The
Lennard-Jones o values vary depending on the size and certain characteristics of
the atomistic reference structure. Normal-sized neutral beads have a ¢ value of
0.47 nm, while charged beads have o values of 0.62 nm. These beads are prescribed
for mappings of 4-5 heavy atoms per bead, although there is no strict upper limit
to this criterion [88]. The small-sized beads, used to represent molecular rings,
have ¢ = 0.43 nm, and the tiny-sized beads, which were specifically developed for
nucleotide modelling, have o = 0.32 nm. The € values are fitted so as to match
the partitioning free energies of several alkane-water mixtures, as well as certain
structural features of lipid bilayers, such as the surface area per lipid and bend-
ing modulus [88]. These € values form the Martini interaction matrix and, by
construction, are well correlated with the organic-aqueous partition free energies
of the beads themselves. The assignment of molecules or molecular fragments to
specific bead types is done by matching its hydrophobicity, quantified by the wa-
ter/organic partition free energy, with that of the closest corresponding bead type.
Furthermore, if the molecule/fragment contains a hydrogen bond donor, acceptor,
or donor/acceptor, special nonpolar and charged bead types have been included
with modified Lennard-Jones well depths to account for these interactions. Exam-
ple molecules and fragments are provided in the so-called Martini Bible [79].
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Automatic Martini Parameterization

Bereau and Kremer developed an automated Martini parameterization algorithm
for organic small molecules, called AUTO-MARTINI [90]. This program systemat-
ically determines a Martini representation given the structure of a small organic
molecule or a SMILES representation of that molecule. The algorithm proceeds in
four steps. First, beads are systematically placed on the heavy atom positions of
the atomistic molecule to define the set of possible mappings. In this systematic
placement, beads must contain more than a single atom, beads cannot be placed
on atoms bonded to each other, and all atoms in a bead must be connected to at
least one other atom in the bead. In the second step, the best mappings are found
by optimizing the following function:

2
E(Mpy) = Wy Npr + w, Ny + wps Z exp (_ T )

402
I£J 1J
2
Ty
—W,aB m;exp | — 52
i J J

) +wa2i:mi1:19("“w —0y)

Each of the terms on the right side of the equation denote different contributions to
the mapping energy, with a corresponding weight used to scale that contribution.
The first term is an energy penalty for introducing a new bead. The second term
is a repulsion between beads, which prevents beads from being placed too close to
each other. The third term is an attraction between each bead and the atoms of the
molecule that are close to the bead. The last term adds an penalty for atoms that
are far from any bead. Once this optimal mapping is found, the third step is to as-
sign Martini bead types to each bead. This requires that the atomistic molecule be
broken up into fragments corresponding to each bead, done via a simple Voronoi
partitioning scheme. The algorithm then assigns a bead type to each fragment
based on the water/octanol partition free energy of the fragment. This is obtained
by using ALOGPS, a neural network that predicts the water /octanol partition coef-
ficient of small organic molecules with an absolute error of 0.36 kcal/mol [91, 92].
If the fragment contains hydrogen bond donor/acceptor groups and is within a
certain threshold value (1.0 kcal/mol) of the Nd/Na/Nda water/octanol partition
free energy, the fragment is assigned to the corresponding bead type. If the frag-
ment contains a charged group, it is automatically assigned to the corresponding
Q-type bead. The final step is to compare the overall water/octanol partition free
energy of the atomistic molecule with that of the coarse-grained molecule. Atom-
istically, this partition free energy is obtained via ALOGPS, whereas an additivity
assumption is used to determine the CG partition free energy, meaning that the
CG partition free energy is assumed to be the sum of the partition free energies of
each bead. If the CG partition free energy is within 50% of the atomistic partition

(1.89)
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free energy, the CG representation is accepted. Otherwise, steps 3-4 are repeated
with the next optimal mapping until the additivity check is passed.

1.1.6 Machine Learning

The term “Machine Learning” (ML) can be applied to any computational method
that uses data to construct statistical models [15]. In general, a successful ML
model will show improved performance as more data is used in its construction.
This is where the learning aspect of ML comes into play; with increasing data, the
model better “learns” the underlying structure of the data. ML methods can be
broadly classified into two categories: supervised and unsupervised learning. The
goal of supervised learning techniques is to take labeled data points and either
learn the function that best fits the data (regression) or learn the function that
best separates the data into categories (classification). Unsupervised learning, on
the other hand, aims to find inherent structure in unlabeled data. For this reason,
common applications for unsupervised learning techniques include the identifica-
tion of both clusters within the data set and manifolds upon which the data might
lay.

In the following sections we begin with a brief review of Bayes theorem. We then
describe all of the clustering techniques used in the work. Next, we describe sev-
eral methods for dimensionality reduction, another form of unsupervised machine
learning. Because much of the data obtained in this work has high dimension, it is
often necessary to visualize the data in 2-D so as to obtain a sense for the structure
of the data. This is especially important for validating clustering techniques, as
it allows for a visual confirmation of the clustering. We next introduce the single
supervised ML technique which is used in this work, Kernel Ridge Regression.
We conclude with the BASIN-HOPPING algorithm and the relative entropy, both
of which are useful for understanding and navigating large, high-dimensional data
sets.

Bayes Theorem

Bayes theorem is a powerful equation that is ubiquitous in the field of artificial
intelligence and machine learning. This theorem predicts the conditional proba-
bility of event A occuring given event B, utilizing external knowledge about the
probabilities of A and B. An intuitive derivation follows. Assume that, in the
space of all possible events, 2, A and B are overlapping subsets of 2, and that
their individual probabilities, P(A) and P(B) are greater than zero. It is clear
that the intersection of A and B can be written in terms of both the probability
of A given B, P(A|B) and the probability of B given A, P(B|A), as well as their
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individual probabilities.
P(ANB)=P(A|B)-P(B)=P(B|A)-P(A) (1.90)
Solving this for P(A|B) yields Bayes theorem:

P(B|A)P(A)

P(A|B) = PGB

(1.91)
The P(A|B) is commonly referred to as the posterior probability, the P(B|A) is
known as the likelihood, P(A) is known as the prior, and P(B) is a normalization
factor [93]. In a practical context, the likelihood is usually the output of some
experiment with inputs A and outputs B. Bayes theorem states that including
information about the independent probabilities of A and B will augment the
information gained from sampling the likelihood alone.

K-means Clustering

In the next three subsections, we introduce different unsupervised learning tech-
niques used later on in the work. Note that, unlike the previously discussed Bayes
Theorem, these are not strictly probabilistic methods. The goal of unsupervised
learning is to identify and separate groups of data points that share common
features based on their similarity to each other. One of the simplest and most
commonly used methods in unsupervised learning is K-means clustering [94]. The
K-means clustering algorithm proceeds in the following steps. The algorithm takes
as input the data itself as well as the number of clusters to which the data should
be assigned. Given N points in the data set, g, x1, xs, ..., zy, the first K points
are randomly chosen to be cluster centroids. The rest of the data is then assigned
to be in clusters with the closest centroids to each point.

(1.92)

1 ifl{::alrgrrlilfl||$i—,ujH2
Wik = !
0 otherwise

Here, w;;, indicates whether or not the ¢th data point, x;, is included in cluster k
by checking to see if the Ly norm between x; and the nearest cluster centroid, ;
is minimized when j = k. After all of the data has been divided into clusters, new
centroids are selected by averaging over all points in each cluster.

N
_ Do Wik
=&t

> Wik
The previous two steps of first assigning points to centroids and then recalculating
new centroids are repeated for each new data point until the centroid positions

ik (1.93)
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converge. Doing so minimizes the following cost function:

N K
C=> "> willa: — il (1.94)
i k

which is the overall cost function of the K-means algorithm. This approach is
stochastic because different initializations of centroids can lead to differences in the
converged clusters. Therefore, several iterations of K-means are usually performed
with different random initializations in each iteration. The best of the converged
set of clusters is chosen based on how well it minimizes C', the sum of the variances
within each cluster.

There are several assumptions that the K-means algorithm makes that may lead
to incorrect cluster assignment. First, the number of clusters must be specified be-
forehand, requiring some intuitive sense of how the data should cluster. Secondly,
the algorithm assumes that clusters are spherical in shape, and will not accurately
assign ovular clusters or clusters with more complex geometries. Finally, even if
the correct number of clusters are chosen, because K-means aims to minimize the
total variance per cluster, a greater importance is given to larger clusters. There-
fore, small clusters located close to larger clusters are often mistakenly identified
as part of the larger cluster.

Spectral Clustering

Spectral clustering is a popular alternative to K-means because it does not require
specifying the number of clusters beforehand [95]. Instead, this approach treats
each point in the data set as a node in a graph, and identifies groups of nodes
based on how their edges are connected. Along with the data itself, the input for
this method is either the k-nearest neighbors that specify the number of edges that
each node must have, or a cut-off distance within which all nodes are connected.
It is also possible to take the fully-connected graph, meaning that each of the N
nodes will have N — 1 edges to every other node in the graph. We define the graph
G = (V, E) with a set of vertices V = Vj, V5, ..., Vy and the edges E connecting
them. Each edge can be left either unweighted or weighted by some similarity
measure, usually chosen as a Gaussian function applied to the distance between
points. Once a network has been constructed out of the data set, the first step is
to build the adjacency matrix W'.

W = (wij)ij=12..N (1.95)

This is simply an N x N matrix with elements of 0 or w;; depending on whether or
not the ¢th and jth node are connected. The next step is to construct the degree
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matrix D, which is an N x N matrix with the sum of the edge weights per node

on the diagonal.
d; ifi=j
p={% t=J (1.96)
0 ifi#y
where

N
j=1

Next we obtain the graph Laplacian, L by subtracting the adjacency matrix
from the degree matrix, normalizing it with respect to the degree matrix.

L=I-D'*wWD'/? (1.98)

Performing an eigendecomposition of L reveals some interesting properties of our
input graph. The number of eigenvectors with eigenvalues equal to zero is the num-
ber of connected components in the graph. In the case where the fully-connected
graph is used, only the first eigenvalue will have a value of zero. Furthermore,
the magnitude of the nonzero ith eigenvalue provides a measure of how densely
connected the ith set of components are. The closer this magnitude is to zero,
the fewer connections exist between components, and the more likely it is that
these components can be separated. If the data-set is well-behaved, there will be
a jump in the magnitudes of the eigenvalues that specifies the total number of
clusters to be included. The eigendecomposition of the graph Laplacian is also
referred to as a graph Fourier transform, with the eigenvectors forming a Fourier
basis with frequencies denoted by the eigenvalues. This is one of the main advan-
tages of graph-Laplacian based methods: they allow discrete representations to be
translated into continuous representations and vice versa.

Once the number of clusters ¢ has been chosen, the first ¢ eigenvectors are
computed and concatenated into a matrix V', with each column corresponding to
an eigenvector. Next, we construct the matrix U, which is the same as V but
with the row sums normalized to 1:

Uz’j
OIRCARE

Here, u;; and v;; denote each element of the matrices U and V', respectively.
Each row of matrix U is now a transformed coordinate for each data point i.
Furthermore, this transformation automatically separates the data such that the
K-means algorithm can be used to easily identify the c¢ clusters, without running
into the issues mentioned in the previous section. However, for this approach to
be considered successful, there must be a clear jump in the eigenvalue magnitudes
such that the total number of clusters is easily identifiable. When a fully-connected

(1.99)

uij =
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graph is used, performing the eigendecomposition can be highly computationally
demanding based on the size of the data set. Even in this case, there may not be
a significant jump in the eigenvalue magnitudes that delineates the total number
of clusters. In cases where a fully-connected graph is not used as the input, the
change in the eigenvalue magnitude will be heavily influenced by the choice of
k-nearest neighbours or the cutoff distance. This is because, in many cases, the
local density of the graph can vary drastically such that a single global parameter
will be insufficient to properly identify all clusters in the data [96].

Hierarchical Density-Based Clustering

Recently, Campello et al. developed a Hierarchical Density-Based clustering al-
gorithm called HDBSCAN [97, 98]. This algorithm overcomes the limitations of
using a single length-scale or cutoff parameter by how “long-lived” they are. The
main inputs that HDBSCAN takes in, aside from the input data, is the smallest
number of points, s, that can be considered a cluster, and the number of nearest
neighbors, k, used to define the “core distance”, dcore, Of each point. This is the
minimum distance required from each data point such that the k-nearest neigh-
bors are included within the resulting hypersphere. Given core distances for each
point, the “mutual reachability distance” (MRD) between two data points x; and
z;, separated by distance d(z;, x;), is defined as follows:

MRD(x;, ;) = max{dcore(;), deore(x;), d(z;, ;) }. (1.100)

This ensures that the distance between points in dense clusters will be preserved,
whereas sparse regions will be further separated from the rest of the data. Sim-
ilar to the spectral clustering approach, we now construct an adjacency matrix.
However, in this case, the off-diagonal elements are weighted by the MRD. This
means that the weighting is different for each edge depending on the local density
surrounding each point. This adjacency matrix is used to construct the minimum
spanning tree, which is the smallest set of edges required to fully connect all com-
ponents. Connected components are defined by a cut-off MRD. Points with MRDs
above this value are discarded, and as the MRD cut-off decreases, the minimum
spanning tree goes from being fully connected to fully disconnected. Plotting this
progression as a function of the cut-off MRD results in a dendrogram, a useful
tool for visualizing how many connected components are in the data and how the
clusters subdivide as the cut-off MRD decreases. One could then choose a single
cut-off MRD value as the characteristic length-scale used to separate clusters, as
is done in the spectral clustering approach. However, this results in the inability
to identify variable-density clusters. Instead, we use the minimum cluster size, s,
as a starting point, discarding any clusters with fewer than s points. As we de-
crease the MRD cut-off, we see splits in the dendrogram and evaluate them based
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on the size of each sub-cluster. If one of the sub-cluster has fewer than s points,
than this sub-cluster is labeled the child of the other, parent cluster. However, if
both sub-clusters have greater than s points, this is considered a true cluster split.
For any parent-child splits, the child sub-cluster is removed from the dendrogram,
whereas true cluster splits are preserved in the dendrogram. Finally we can define
the stability of each cluster, ¢, as the following sum:

stablhty = Z )\z — )\birth- (1101)

i€c

In this equation, A = 1/MRD, and i refers to each data point within a cluster.
Abirth 18 the inverse MRD at which the cluster was first formed and ); is the inverse
MRD at which the data point i was separated from the cluster. As we decrease
the MRD, at each point where a cluster breaks into sub-clusters, we calculate the
stability of the initial cluster and compare to the sum of the stabilities of the
sub-clusters. If the initial cluster has a higher stability, we have found the most
stable cluster in the branch. However, if the sub-clusters have a higher stability,
we discard the initial cluster and repeat the process with each of the sub-clusters.
By continuing to evaluate the cluster stabilities at each break, we eventually find
the clusters that maintain stability over the widest range of lambda with respect
to their sub-clusters or super-clusters in the data set. By doing so, we identify
stable clusters without the use of a single length-scale or cut-off value. Any data
points not included in the stable clusters are classified as noise.

Principle Component Analysis

In the next four subsections, we introduce different dimensionality reduction tech-
niques used later on in the work. Principle Component Analysis (PCA) is one
of the most commonly used methods in dimensionality reduction. It projects the
data onto the linear combinations of its dimensions that show the highest variance
in the data set [99]. Given a series of datapoints X = {X;, Xo, ..., Xn} with yp
dimensions per datapoint, we calculate the covariance matrix, defined as:

K = (cov(Ym, Yn))mn=12,...M; (1.102)
where N
COV(Ym, Yn) = 2 { N _)1< ), (1.103)

and 9, and y,, are the mean values over the entire data set for each dimension. By
performing an eigenvalue decomposition on the covariance matrix, one obtains the
eigenvectors along which the data shows the highest variance. These are known
as the principle components of the data set, and their corresponding eigenvalues
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denote the amount of the total variance captured along their axis. In the case
where the first two principle components, meaning those with the two highest
eigenvalues, account for a significant percentage of the total variance, the data
may be projected onto these principle components. This generates a 2-D plot of
the data that accurately reflects its structure in the high-dimensional space.

Multidimensional Scaling

Another popular dimensionality reduction technique is Multidimensional Scaling
(MDS) [100]. Unlike PCA, which seeks to maximize the projected variance of the
data, the goal of MDS is to obtain a low-dimensional mapping that preserves the
distances between data points in the high dimension. Given high-dimensional data
points X = {X3, Xy, ..., Xn}, we wish to find the optimal low-dimensional points,
x = {x1,T9,...,xx}, via the following cost function

Cla) =D > (R —ry)” (1.104)

where R;; and r;; correspond to the distances between high-dimensional points X;
and X; and low-dimensional points x; and x;. The procedure is similar to PCA,
except it requires the eigenvalue decomposition of the Gram matrix built using
the distances between data points instead of the Covariance matrix built from the
data points directly. We start by centering the data matrix by subtracting the
mean, as was done in Eq. 1.103.

X:X—X:X(I—in) (1.105)
N

Here, X is a matrix of concatenated column vectors with each vector correspond-
ing to a high-dimensional data point, I is the identity matrix, and 1 is the matrix
of ones. The expression in parentheses in the right-most expression above is also
called the centering matrix. Next, we define the distance matrix as the adjacency
matrix, W, for a fully connected graph constructed from the data set, as pre-
viously defined in equationl.95, with the weights set to be the distance between
points. The Gram matrix, G, is obtained by taking the pairwise dot products
for each row/column in the centered distance matrix with respect to every other
row /column.

G = (I—%]l) W(I—%]l) = X'x (1.106)

We then express the Gram matrix both in terms of its eigendecomposition as well
as in terms of the singular value decomposition of the original data.

G = VgAgVE = Vx AR VY (1.107)
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This shows that the eigenvectors Vi; and Vx are equal and the eigenvalue diagonal
matrix Ag is equal to the square root of the eigenvalues from the spectral decom-
position of the data matrix. We can now project the high dimensional points into
a lower-dimensional space by using the eigenvectors corresponding to the first k
significant eigenvalues in the following manner

2~ (VA o /A, (1.108)

where A and v correspond to the diagonal entries of Ag and the rows of Vi, respec-
tively. Note that using a euclidean distance metric to calculate the Gram matrix
yields a solution that is equivalent to PCA. Furthermore, if the high-dimensional
data points are assumed to lie on a locally connected manifold, and the geodesic
distance is used to construct the distance matrix, the ISOMAP algorithm is re-
covered [101]. The ability to choose the distance metric used in constructing the
distance matrix makes MDS a highly robust method for representing many differ-
ent types of high-dimensional data.

The Sketch-Map Algorithm

In many cases, it has been shown that a linear dimensionality reduction technique
is insufficient for accurately representing the structure of high-dimensional data,
especially if it lies on some nonlinear topological manifold [102, 103]. Ceriotti et
al. showed that, when reducing the dimensionality of data collected from MD tra-
jectories, linear methods like PCA would be insufficient to characterize its global
structure [104, 105]. This is because the majority of the accessible phase space
when running MD simulations lies in free energy basins. Therefore, one can imag-
ine that the free energy landscape can be likened to a network of basins connected
via specific transition pathways in the high-dimensional space. Ceriotti et al. have
proposed a nonlinear dimensionality reduction method called SKETCH-MAP, which
is meant to preserve this type of structure even when reduced to two dimensions
[104]. The method uses a modified version of Eq. 1.104,

Cla) = 30D (F(Ry) = £lr3) (1.109)

Where R;; and r;; are the distances between points 7 and j in the high-dimensional
and low-dimensional spaces, respectively. F and f are sigmoid functions that take
the following forms:

F(R)=1—(1+ 2V —1)(R/o)")~B/4 (1.110)

fr)=1—Q+ 27 =1)(r/o)*) e, (1.111)
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where o, A, B, a, and b, are all fitting parameters used to specify the sigmoid
functions. Eq. 1.110 transforms the distances of the high-dimensional space by
applying the switching function, F', and searches for an embedding that preserves
these nonlinearly transformed distances in the lower dimension. The sigmoid func-
tion effectively selects an “interesting” subset of the data to be highlighted based
on the histogram of pairwise distances calculated in the high-dimensional space.
Distances that are either very close or very far with respect to ¢ are assigned a dis-
tance close to zero or one after the sigmoid function is applied. However, distances
in the vicinity of ¢ will be preserved and will primarily dictate the structure of the
lower-dimensional map. Ceriotti et al. posited that, when examining MD trajec-
tory data, the small pairwise distances correspond to thermal fluctuations within
a free energy basin, while the large pairwise distances are uniformly distributed
in the high-dimensional space, corresponding to poor sampling of transitions be-
tween far basins [104]. Therefore, by selecting a sigma value that highlights the
intermediate distances found in MD trajectory data, the SKETCH-MAP approach
ensures that the essential structure of the high-dimensional landscape is preserved
for well-sampled transitions between neighboring free energy basins. However, in
many cases, multiple key length-scales may be present that are well represented in
the data, and projecting this data using a single sigmoid function will be insuffi-
cient to fully capture the high-dimensional structure.

Uniform Manifold Approximation and Projection

Recently, McInnes et al. has developed a nonlinear dimensionality reduction tech-
nique that assumes the input data lies on a high-dimensional topological manifold
and aims to project the data onto a similarly structured low-dimensional manifold
[106]. The algorithm is called Uniform Manifold Approximation and Projection
(UMAP), and as implied by the name, it assumes that the data is uniformly dis-
tributed on a Riemannian manifold which has local connectivity and a localized
distance metric. The main input parameter required for UMAP, other than the
input data, is the number of k-nearest neighbors to be taken for each data point.
The procedure is divided into two steps. The first step is to express the data as a
graph and construct an adjacency matrix similar to the one used in spectral clus-
tering. In order to determine the weights that should be assigned to each edge in
the graph, the UMAP algorithm assumes that each point can be expressed as part
of a localized fuzzy simplicial set with its nearest neighbor. For each data point,
we first determine the nearest neighbor distance, p;, and then use the k-nearest
neighbor distances to find the localized length-scale o; used to normalize p;. o; is

45



1 Introduction and Theory

determined by iteratively solving the following expression:

Z;exp (_max (0, d(%;, X,) —p¢)> — log, (k), (1.112)

0;

where d(X;, X;) is the distance between high-dimensional points X; and X; by any
metric of choice. Next, a weight-directed graph G can be constructed with vertices
V', edges F, and weight function w. The vertices correspond to the data points,
the edges denote the connectivity for each vertex up to the k-nearest neighbors,
and the weight function is defined as follows:

—max (0,d(X;, X;) — pz)) '

ag;

w((X;, X)) =exp ( (1.113)
Given the directed adjacency matrix corresponding to G, A, we construct an
undirected adjacency matrix B via the following expression:

B=A+A" - A0 A" (1.114)

This undirected adjacency matrix now corresponds to an undirected graph G that
represents a manifold of locally connected fuzzy simplicial sets in the high dimen-
sional space. The next step is to find a low-dimensional approximation for this
graph. In practice, this is done by using a force-directed graph layout approach.
The low-dimensional positions are initialized by performing a spectral embedding
(i.e., transforming the data using the graph Laplacian shown in 1.98). Next, at-
tractive and repulsive forces are defined that act on edges and vertices, respectively.
The attractive force is defined as

P = 220 (1.115)
attr — w i i T; —Xj). .
L+ ||z — 5|3 ! !

where z; and z; are the low-dimensional positions of X; and X;. a and b are
hyperparameters that must be optimized. The repulsive force is given by

b

Fre -
P (e o = all3) (1 + o — a13)

w((Xs, X)) (s — ;). (1.116)

where € is a negligible constant that ensures that division by zero does not occur.
The optimization of the low-dimensional positions occurs iteratively via stochastic
gradient descent, with a nonlinear least-squares fitting applied at each iteration to
solve for the hyperparameters a and b which are then used in the force-directed
graph layout approach. It has been shown that minimizing these force functions
and thus optimizing the low-dimensional positions is equivalent to minimizing
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the cross-entropy between the high-dimensional and low-dimensional manifolds.
Unlike the methods described in the previous sections, UMAP applies a series of
nonlinear transformations to the high-dimensional distances in a localized manner,
meaning that the relative densities of the points in the high-dimensional space is
not quantitatively preserved. However, by taking a manifold learning approach,
UMAP better preserves the global structure of the high-dimensional data set.

Kernel Ridge Regression

Kernel Ridge Regression (KRR) is a supervised ML method that is often favored
over deep learning methods because it requires comparatively less data to achieve
convergence of the model [107, 108]. Conceptually, KRR can be understood as
linear ridge regression with the inclusion of the kernel trick, which allows nonlinear
problems to be approximated as high-dimensional linear problems by mapping the
input to a high-dimensional implicit feature space [109]. We first discuss both of
these aspects separately before combining them to formally define KRR.

Linear ridge regression can be thought of as applying Tikhonov regularization
to linear regression. Linear regression assumes that the data can be fit to a line
by minimizing the least-squares error between the data and the line. Given a line
of the form

=FTX +e, (1.117)

where Y is the predicted value given inputs X = X, Xs, ..., X, with coefficients
[ and irreducible error values e. When performing linear least squares regression,
the next step is to minimize the following expression

C = Z — gTX;)? (1.118)

However, if the number of dimensions used to represent X is large, there is a
significant danger of over-fitting the data. This over-fitting can also be expressed
in terms of the variance in 5, which should be restricted to prevent this issue. The
solution, known as Tikhonov regularization, is to add a term to the cost function
that penalizes the L, norm of 3. This has the added benefit of providing numerical
stability when inverting the matrix equation to solve for 3

N
C=> (Y= "X+ MB]> (1.119)

This effectively restricts the domain of  to fall within the hypersphere whose
radius is set to A, causing a significant decrease in the variance of the model
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weights while limiting the degree to which the model is biased by outliers in the
data.

This works well for data that has a highly linear structure, but this may not be
true for many data sets. If we generalize Eq. 1.119 such that 87X is replaced by
some arbitrary function f(X) and substitute this expression in to the cost function
we get

€= (V= FX) + Al (1120)

We can then express this as a constrained optimization problem to be solved using
Lagrange multipliers. We do this by introducing the constraint £ = Y — (f, X})
(the angular brackets denote the inner product) to get

L= 252 (1.121)

such that
Ifl< B. (1.122)

The Lagrangian can then be written as
L=+ BilYi- < f,Xi > =&+ (|| fI*-B?) (1.123)

Setting the partial derivatives with respect to f and £ equal to zero gives the
following relations

26 = Bi,2M\f = ZﬁiXi (1.124)

and

2N =) BiXi. (1.125)

Substituting this back into the Lagrangian and simplifying gives the dual La-
grangian,

)

Lp=)_ (—}lﬁf + BiY;) — % Z (B:3;Kij) — AB? (1.126)
ij
where Kj; is the Kernel defined as
K;; = (X;, Xj). (1.127)
Note that the kernel K can be any function of the similarity between two inputs.

Common choices are Laplace or Gaussian kernels, which will introduce parameters
o or o2, respectively. The similarity between inputs depends heavily on the choice
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of distance metric (i.e., Ly vs. Ly norm) as well as the mathematical object used
to represent the input data, known as the representation or fingerprint. The kernel
matrix maps the input into a high-dimensional (potentially infinitely so), implicit
feature space. This property, known as the Kernel Trick, explains how KRR solves
nonlinear problems by approximating them as a high-dimensional linear problem.
We next define o = /3;/2\ and rewrite this expression as

ED = —)\2 ZO&ZQ + 2)\2 OliXi — )\ZO&Z'O!]'K,']‘ — )\B2 (1128)
i i ij

Optimizing this with respect to a gives the solution for the dual Lagrangian,
;= (K(X;, X;) + 27X, (1.129)
and the final solution is then:
f(X) =Y (K(X;, X;)+ M) 'K'(X], X;). (1.130)

In the above equations, we explicitly show the dependence of K on the known
data points X, also referred to as the training data set. Given this set of input
data, with corresponding output Y, the coefficients a are obtained by using 1.129.
K' is a separate kernel matrix constructed using the similarity between any new
inputs, X', and the training data. Outputs, f(X), for this new data (referred to
as the test data set) can be predicted by solving Eq. 1.130. Usually, in order to
check the robustness of the model, the data is separated into training and test
categories, of which the latter is used to check the accuracy of the predictions
made after training the model using the training data set. In order to remove
the possibility of bias when choosing the training and test set, a procedure known
as cross-validation is used. This involves averaging over a statistically significant
number of training/testing iterations with different training sets in each iteration.
Y can also be reframed as a Bayesian posterior distribution with a prior ex-
pression that accounts for the covariance matrix K between all training inputs as
well as the covariance K’ between the training set and the test input [109]. If one
assumes that the f(X) in Eq. 1.130 is Gaussian in each dimension, solving for the
mean of this posterior distribution, f(X'|Y") yields the following expression:

fX')Y) =Y (K(X;, X;)+ o’ ) ' K'(X], X;). (1.131)

This approach, known as Gaussian Process Regression, results in a solution ex-
actly equal to that of KRR if the kernel matrices are equal and A\ = o2. The
variance of the posterior distribution is known as the predictive variance, and it
relates the variance of the error, which is also assumed to be Gaussian, to the
covariance matrices K’ and K between test-training and training-training data
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points, respectively. The predictive variance is a useful metric for calculating con-
fidence intervals on test set predictions. Rigorously, the hyperparameters ox and
o, can be obtained by maximizing the marginal likelihood functions p(ox|X,Y)
and p(o|X,Y), but this is computationally expensive. In practice, a grid search
optimization is usually performed for both hyperparameters, with the accuracy of
the KRR model minimized at each iteration.
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Figure 1.6: Three learning curves for the prediction of the three transfer free ener-
gies shown in Fig. 1.4 for coarse-grained Martini compounds consisting
of three beads with a linear topology. The error bars correspond to the
standard deviation of the mean absolute error values obtained during
cross validation. Adapted with permission from Hoffmann et al. [110].

Two major questions remain: (1) how does one choose a representation, and
(2) how does one evaluate the quality of the KRR model? In general, a good
representation is one that encodes and highlights the information most relevant
to the problem from the input data. The necessary attributes of representations
used in machine learning of chemical properties, as well as examples of these
representations, are given in Section 1.1.7. We focus now on the second question.
A common strategy for evaluating the quality of KRR models is to plot the cross-
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validated error as a function of the size of the training set. This type of plot
is known as a “learning curve,” and an example is shown in Fig. 1.6 [108, 111].
According to statistical learning theory, any ML model will have a corresponding
learning curve that maintains a power law decay as the size and uniqueness of
the training set increases in the input space [112]. However, if the input space
is poorly defined, or the data sampled is highly degenerate, the model will reach
a data saturation point past which the error no longer decreases. Therefore, it
is often the case that there is a hard limit to the amount of learning that can be
accomplished with a given data set, leading to learning curves that saturate, as seen
for two of the curves shown in Fig. 1.6. ML models which show the steepest decay
when their corresponding learning curve is plotted are desirable, as they enable a
high level of accuracy with fewer data points. As such, in addition to providing
an informative picture of the quality of a KRR model, these learning curves are
useful for optimizing hyperparameters, comparing different representations, and
evaluating model transferability across data sets.

The basin-hopping Algorithm

BASIN-HOPPING is a numerical approach to finding global minima in landscapes
that have many dimensions [113]. As the name suggests, the algorithm follows
the cycle of randomly jumping to a new point in the landscape, performing a
local minimization, and either accepting or rejecting the new minimum. The key
is to ensure that the random jumps have the correct magnitude: if they are too
short, only the local minimum will be explored. The algorithm was first developed
by Wales et al. in order to investigate the energy landscape of Lennard Jones
clusters, but can be adapted to many different optimization problems [114]. Our
implementation of this algorithm is discussed in Chapter 3.

The Relative Entropy

Similar to the thermodynamic entropy, which is related to the number of mi-
crostates accessible to a molecular system, the information entropy, H of any prob-
ability distribution for a random variable, X with possible outcomes, (1, x2, ..., Ty),
can be defined as follows:

H(X)=— Z P(z;)log, P(z;), (1.132)

where P(z;) is the probability of obtaining outcome z; [115]. This suggests a useful
method to compare two different distributions based on their information content.
This relative entropy can be expressed as a Kullback-Leibler divergence (KLD)
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between probability distributions P(X) and Q(X) in the following expression:

Dicr(P|Q) = Y Plxi) In (gg;) : (1.133)

The KLD is equal to 0 when P(X) and Q(X) are identical, corresponding to
zero information loss [115]. There is no upper bound for the KLD, as one can
imagine scaling P(X) infinitely while keeping the same Q(X). However, problems
arise when comparing P and @ if P has a finite value at some x; while @) is 0 at
that same x;, making In(P(z;)/Q(x;)) undefined. A convenient work-around is to
instead use the Jensen-Shannon Divergence (JSD), which is defined as the sum of
two KLDs of P(X) and Q(X), each taken with respect to the average of the two
distributions M (z):

Dys = 3 Dt (POOIIM (X)) + 5 D (QUX)|M(X)), (1134)
where .
M(X) = 5(P(X) +Q(X). (1135)

The JSD is symmetric with respect to both distributions P and Q, and now has
an upper bound, which is 1 if the base-2 log is used and In(2) if the natural log
is used [116]. The relative entropy in the form of a JSD is also highly useful as a
means to quickly test the validity of results when generating massive amounts of
data, as will be discussed further in Chapter 4.

1.1.7 Molecular Representations

The means by which molecules are mathematically represented is a critically im-
portant factor when exploring CCS. A good molecular representation encodes
chemical information such that projecting CCS onto that representation natu-
rally leads to a correlation with a target property. Therefore, a molecular repre-
sentation should ideally encode properties of the molecule which pertain to the
physics of the problem under consideration. Examples may include the number
and type of atoms as well as their positions, the topology of the molecule, the
number of hydrogen-bonding sites, etc. In cases where the geometry of the com-
pound is relevant, invariances with respect to geometric translations and rotations
should be preserved, unless a specific reference frame can be universally applied
(i.e., distance to the binding pocket of an enzyme). Similarly, the representation
should be invariant to permutations in the ordering of the atoms that make up a
given molecule. Finally, a good representation should be bijective, smooth, and
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continuous, allowing for straight-forward empirical fitting of structure—property
relationships that span CCS [117, 118].

In the following subsections, we introduce the three molecular representations
that will be referenced in the rest of this work: the Coulomb Matrix, the Spectrum
of London Axilrod-Teller-Muto potential, and the Smooth Overlap of Atomic Po-
sitions Kernel [118-120]. These representations were recently developed for the
prediction of quantum-mechanical properties using machine-learning techniques,
and all take the atomic numbers and internal geometries of molecules as an in-
put. A cartoon schematic of each representation is shown in Fig. 1.7. For each
representation, the molecules are first converted from an input SMILE string to
a 3-D structure that is then energy minimized using the UFF force field in a
molecular mechanics based optimization scheme with the RDKIT package. The
aforementioned atomic numbers and internal geometries are then taken from this
3-D structure and used to create the representation.

The Coulomb Matrix

Developed by Rupp et al., the Coulomb Matrix molecular representation consists of
a matrix whose off-diagonal elements are the pairwise coulombic interactions which
are calculated using the nuclear charge of each element, with diagonal elements
obtained by fitting a polynomial to the atomization energies of individual atoms
as a function of their nuclear charge [119]. Given an input molecule with atomic
coordinates R; and corresponding nuclear charges Z;, the Coulomb Matrix, C, is a
symmetric matrix with the number of rows/columns equal to the number of atoms
in the molecule, and whose elements C;; are defined as

(1.136)

{0.5234 for i = j
Cij =

Z,7; for i -
or
|Ri— R #J

The coulomb matrix encodes all of the atom types and their relative distances
to each other, ensuring a bijective mapping of chemical compounds. As it was
originally designed for prediction of quantum-mechanical properties, the rationale
behind this descriptor is to include the same input information as required by the
ab initio simulations which are normally used to compute these target properties.
Because the pairwise distances are taken irrespective of any reference frame, the
representation is both translationally and rotationally invariant. Since the input
features are continuous variables, the representation is also continuous. However,
it is not permutationally invariant, as changing the order in which atoms are input
will result in different Coulomb Matrices. There are many suggested schemes for
adding permutational invariance to the Coulomb Matrix, which include sorting,
diagonalizing, or using an ensemble of randomly sorted matrices. In this work, we
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Figure 1.7: Cartoon schematics of the molecular representations used in this work.
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(a) For each heavy atom in the molecule, the Coulomb Matrix encodes
all of the pairwise distances in terms of their Coulombic interaction,
with the diagonal term determined based solely on the heavy atom
type. The upper triangular of this matrix is taken as the final output
[119]. (b) The atomic version of the SLATM vector for the carbon
atom (colored black) consists of a one-body term concatenated together
with two-body and three-body spectra [121]. (c¢) The SOAP kernel
finds the overlap between local environments for different molecules
by modelling the local environment as a sum of Gaussian functions
placed at each atom’s position. For clarity, only a single Gaussian is
shown for each molecule. The output is a similarity matrix with each

row/column of the matrix set as the representation for each molecule
[118].
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sort the Coulomb Matrix by the distance of each atom to the center of mass of the
whole molecule, with the atom closest to the center of mass always representing
the first row/column of the matrix. Ensuring permutational invariance also results
in making the representation smooth with respect to nuclear charge and position.
Additionally, in this work, we only include the heavy (non-Hydrogen) atoms of the
molecule when constructing the representation. Furthermore, since the matrix is
symmetric, it is only necessary to store the upper triangular of the matrix as a
sequenced vector in practice. Fig. 1.7a shows the Coulomb Matrix representation
of an ethanol molecule as it would be implemented in this work.

The Spectrum of London Axilrod-Teller-Muto vector

The Spectrum of London Axilrod-Teller-Muto (SLATM) vector describes a molecule
as a sum of atomic environments that encode the 1-body, 2-body, and 3-body in-

teractions within a cut-off distance [120, 121]. Fig. 1.7b shows a cartoon schematic

of an atomic SLATM (aSLATM) vector. For each atom, its corresponding SLATM

vector consists of Z;, the elemental atomic number (1-body), a spectrum of 2-body

London interactions convoluted with a gaussian (2-body), and a spectrum of 3-

body Axilrod-Teller-Muto interactions also convoluted with a gaussian (3-body).

The two-body spectrum is computed over the distance, r, which ranges from zero

to a cut-off value with a specified step-size, using the following expression:

1
aSLATM; 2 boay = 57 > Z;s(r — Rij)g(r) (1.137)
i#]
where R;; is the distance between atoms ¢ and j, é(x) is a normalized Gaussian
function,
1 2

d(z) = Ome_‘” : (1.138)

and g(r) is used to scale the distance, in this instance corresponding to the
London interaction,

o(r) = % (1.139)

Similarly, the three-body spectrum is computed over the angle, 8, via the fol-
lowing expression:

1
aSLATMi,g,body = gZZ Z Z]Zk5(9 — GZJk)h(Q, Rija le) (1140)
i#j#k
Here, 6,j;, is the angle between pairwise-distance vectors R;; and R;;. h(0, R;;, Rix)
is the 3-body Axilrod-Teller-Muto potential, defined as
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1 + cosficostj;costy;;
(Rij Rix ;)

As seen in Fig. 1.7b, the aSLATM vector is a concatenation of the 2-body and 3-
body spectra with the atomic number of the atom. The molecular SLATM vector is
constructed by first taking the sum of all aSLATM vectors of the same atom type.
Each of the summed SLATM vectors is then concatenated by interaction type. For
example, the 1-body component of the SLATM vector corresponding to ethanol
would be [8.0,12.0], corresponding to one oxygen atom and two carbon atoms.
When comparing multiple molecules with many different atom types, a reference
SLATM vector is first constructed by determining all possible unique many-body
interaction types. If a molecule does not have some of these interaction types
(for example, in ethanol, there will be no 2-body interaction between Carbon and
Nitrogen), the vector is filled with zeros. Similar to the Coulomb Matrix, this rep-
resentation uses only the internal geometry of the molecule, making it translation-
ally and rotationally invariant. Unlike the Coulomb Matrix, however, making the
SLATM vector the sum of the constituent aSLATM vectors ensures permutational
invariance when comparing molecules. Convoluting the interactions with Gaussian
functions results in a continuous and differentiable metric. Furthermore, the inclu-
sion of the 3-body spectrum via the SLATM vector was shown to vastly improve
the performance of statistical models to predict quantum-mechanical properties
as opposed to restricting the representation to pairwise interactions only, as is the
case for the Coulomb Matrix [120].

h(0, Rij, Riy) = (1.141)

The Smooth Overlap of Atomic Positions Kernel

The final representation used in this work is the Smooth Overlap of Atomic Posi-
tions (SOAP) Kernel developed by Bartdék et al. [118]. Similarly to the SLATM
vector, each atom is represented by its local environment. While the SLATM vector
explicitly decomposes this local environment into 2-body and 3-body interactions
acting on the atom, this representation assumes that an atomic environment is rep-
resented as a local density surrounding each atom. The atomic neighbor density
function is defined as follows:

pn(r) = Zexp (—%) . (1.142)

The atomic density py of each local environment, N, is written as a sum of
Gaussian functions placed on all atomic positions within a defined cutoff distance.
The SOAP kernel is obtained by integrating the overlap between these local density
functions over the space of all possible 3-D rotations, R [118, 122].
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2

KV = [ Q| [ dp(row(Be)

The kernel is usually normalized such that the similarity of any environment
with itself is set to 1.

(1.143)

B k(N,N’)
VE(N,N)k(N', N')
The integral shown in Eq. 1.143 can be evaluated analytically by first expanding

pn in a basis of spherical harmonics and orthogonal radial basis functions. Doing

so enables the right hand side of Eq. 1.143 to be written as the dot product of unit-

length vectors py and px+ , which consist of elements of the rotationally invariant
power spectra corresponding to the expanded basis.

K(N,N")

(1.144)

K(N,N') = py - py (1.145)

This essentially means that the dot product between two local environments
yields the degree of overlap between them. The corresponding distance between
two local environments, d(N, N') can then be defined as:

d(N,N") = /2 = 2py - px (1.146)

We now have a means of calculating the similarity between specific atomic neigh-
bor density functions, and in order to extend the representation to calculate molec-
ular similarity, we construct a covariance matrix C;;(A, B) between all neighbor
densities 7 and j making up each molecule A and B.

C;;(A,B) = K(N/', NP) (1.147)

Similar to the Coulomb Matrix representation, we obtain a matrix comparing
atomic properties (the local environment around an atom for SOAP versus the
Coulombic interaction between an atom and all of its neighbors for the Coulomb
Matrix), but the representation is still not permutationally invariant. Following
the work of De et al., we apply a global kernel, K (A, B), that identifies the best
overall match between the two molecules by maximizing their covariance.

- 1
K(A, B) = 1 max Z Cir, (A, B) (1.148)
Furthermore, we use a reference structure that is constructed using the minimum
number of atoms and atom types needed for all of the molecules in the data set to

be reproduced. In addition to ensuring permutational invariance, this also results
in a smooth landscape in the representation space.
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So far, we have defined the SOAP kernel assuming only a single atom type. In
addition to the previously defined SOAP kernel, we again follow the work of De
et al. and apply an alchemical kernel k.3 between differing atom types o and 3
[122], yielding the alchemical SOAP (ASOAP) kernel:

kv = [ dﬁ‘ JEDIGr A 2

aao!

(1.149)

= 3" Ps(N) - P (N) o ki
afBa’ B!

This allows us to define a measure of similarity between different atom types,
essentially scaling the degree to which the presence of other atom types is seen
in the neighbor density function. In this case, we scale the atomic similarity by
calculating the difference between the atoms’ electronegativity, E, [122]:

Kag = €XD (M) . (1.150)

Unlike the previous two representations discussed above, the SOAP kernel does
not take only a single molecule’s geometry and atom types as input. Rather it
computes the similarity between molecules across the full set of molecules. The
dimensionality of a molecule represented via the SOAP kernel is therefore equal to
the number of compounds being compared to each other. Molecule A is considered
to be the row/column of the SOAP similarity matrix that gives the dot-product
distance defined in Eq. 1.146 between A and every other molecule in the data set.

Having laid the theoretical groundwork for all of the methods used in this work,
the next chapters describe how these methods are used to investigate the effect of
coarse-graining on CCS.
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2 The High-Throughput
Coarse-Grained Simulation
Method

Several figures and sections of this chapter have been published as sections in three
separate research articles, which are listed below. These sections are reproduced
here with kind permission from the other authors and the journals which published
these articles.

Roberto Menichetti, Kiran H. Kanekal, Kurt Kremer, and Tristan Bereau

In silico screening of drug-membrane thermodynamics reveals linear
relations between bulk partitioning and the potential of mean force
The Journal of Chemical Physics 147(12):125101, 2017.

DOI: 10.1063/1.4987012

(© 2017 AIP Publishing

Roberto Menichetti, Kiran H. Kanekal, and Tristan Bereau
Drug—-membrane permeability across chemical space
ACS Central Science 5(2):290, 2019.

DOI: 10.1021 /acscentsci.8b00718

(© 2019 American Chemical Society

Christian Hoffmann, Roberto Menichetti, Kiran H. Kanekal, and Tristan Bereau
Controlled exploration of chemical space by machine learning of
coarse-grained representations

Physical Review E 100(3):033302, 2019.

DOI: 10.1103/PhysRevE.100.033302

(© 2019 American Physical Society
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Additionally, for each of the sections taken from one of the above articles, I
include a single * symbol if I was the primary contributor for that specific section
and a double ** symbol if I was not the primary contributor for that specific
section. If no symbol is added, the section was written by me specifically for this
thesis.

2.1 Introduction

Pharmacokinetic profiles are used in the pharmaceutical industry to identify the
extent to which different drug-uptake mechanisms are activated in the human
body when administering a drug [123]. One critical feature of these profiles is
the passive membrane permeability, which denotes the flux for drug molecules
passing through a lipid-bilayer membrane without relying on the active transport
mechanisms of a cell [124]. Especially when considering small organic molecules as
drugs, this passive permeability may compete significantly with active methods for
cellular uptake [125]. Overlooking this property can result in unpredictable side
effects, since the drug molecule could be acting in unintended regions of the cell
at unknown concentrations. Consequently, the passive membrane permeability is
a required component in any pharmacokinetic profile.

It then stands to reason that a structure—property relationship linking chemical
structure to passive permeability would be extremely helpful as a means to quickly
filter results in a high-throughput search for new drug molecules. In this context, a
structure—property relationship refers to a small set of molecular descriptors onto
which the chemical compound space (CCS) is projected such that an empirical
relationship can be determined that maps the chemical structure to the desired
property[126]. However, since the size of CCS has been estimated to be on the
order of 10% for small drug-like molecules, ensuring that the desired structure—
property relationship is flexible enough to enable prediction for a large variety of
compounds is a daunting task [4]. In order to prevent model bias towards specific
chemistries, the construction of a sufficiently large and varied database of chemical
compounds and their corresponding permeabilities is required. Furthermore, a
good structure—property relationship enables both direct and inverse molecular
design, such that a property can be predicted given a specific input chemistry and
a chemical structure(s) can be predicted given a desired property value [5, 6].

Several methods have been developed to calculate the passive permeability of
small molecules passing through a lipid-bilayer membrane, usually expressed as the
log of the permeability coefficient, or log P. Experimental methods, like the Caco-2
or PAMPA assays, involve measuring concentration gradients of the drug molecules
using in vitro test systems analogous to the in vivo case [127, 128]. Computational
approaches to calculating log P usually require simulating a drug molecule in the
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lipid-bilayer membrane environment using molecular dynamics (MD) techniques
[129, 130]. From the resulting simulation trajectory, the permeability coefficient
can be calculated via the inhomogeneous solubility-diffusion model [56, 131, 132].
This model expresses the permeability coefficient, P, in terms of the potential of
mean force (PMF), G(z), and the local diffusivity, D(z), where z is taken as the
direction normal to the lipid-bilayer midplane

L7 en(d6()
5[, =g 21)

where § = 1/kgT [56]. The PMF provides a measure of how statistically likely
a molecule will partition to a specific region of the membrane environment, and
is heavily influenced by the hydrophobicity of the drug molecule. Note that the
PMF can not be obtained using experimental methods and can only be resolved
via simulation. The diffusivity quantifies the degree to which the concentration
gradient of the drug molecule impacts its flux across the membrane. Both of these
quantities can be obtained from MD simulation trajectories, usually computed
with the help of enhanced-sampling techniques such as umbrella sampling. Several
studies have been conducted that utilize this approach to calculate log P for small
sets of amino acids or drug compounds [26, 133-135].

Both computational and experimental approaches to calculating log P men-
tioned previously are too inefficient to enable the construction of structure—property
relationships that span CCS. In the experimental case, the limiting factor is the
cost of synthesizing new molecules for testing. While the computational approach
does not suffer the same costs of synthesizing new molecules as its experimental
counterpart, the high computational cost (10> CPU hours needed per compound)
prevents this route to quickly generating the desired structure—property relation-
ship [26].

One tool commonly used as an alternative to fully atomistic simulations are
coarse-grained (CG) molecular dynamics simulations using models which retain
the essential physics of the simulated system [34, 136]. A CG representation is
formed by assigning groups of atoms in a molecule to a single CG particle, also
known as a bead. The interaction potentials of the CG beads are parameterized
so as to reproduce the desired phenomena observed either from a higher-resolution
simulation (bottom-up approach) or from experimental observations at resolutions
even lower than that of the CG model (top-down approach). Many studies involv-
ing CG molecular dynamics simulations focus on modeling single molecules or
small groups of molecules, limiting the transferability of the resulting potentials to
other compounds so as to render a high-throughput screening approach unfeasible.
Therefore, a highly transferable CG model with an easily-implemented mapping
protocol is required. In this work,we use the CG Martini force field, which meets
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2 The High-Throughput Coarse-Grained Simulation Method

the aforementioned criteria, as it has been applied to study many different types
of biomolecules [79, 86, 88, 137]. Martini is a top-down CG model consisting of
a set of bead types that are parameterized to reproduce the partitioning behavior
of molecules of varying hydrophobicity, from fully polar to fully apolar phases.
Atomistic molecules are assigned a combination of Martini bead types by match-
ing the corresponding partitioning free energies of the chemical fragments which
make up the molecule.

From a materials design perspective, using this type of transferable CG model is
akin to reducing the dimensionality of the problem before running an experiment:
the CCS is now first projected onto the CG force field, and the results of the CG
simulation can be applied to all of CCS that mapped to a particular CG molecule.
Since single CG molecules are representative of specific regions of CCS, running
simulations over an entire range of different CG compounds results in a data set
that spans CCS to the same extent. The reduced data set can then be projected
onto molecular descriptors that are independent of the resolution used when mod-
eling the property of interest. This allows the same structure—property relationship
derived from the CG model to be applied to real molecules for which the molec-
ular descriptors are available. Essentially, this high-throughput coarse-grained
(HTCG) method has two major advantages over other approaches for computa-
tional screening of CCS. The CG mapping results in (7) the removal of extraneous
atomistic degrees of freedom, which leads to (ii) a smoother free energy landscape,
as well as (4i7) a smaller number of particles to simulate in the system, requiring
fewer computational resources to sufficiently sample the CG conformational space
when compared to its atomistic counterpart. Secondly, because multiple atomistic
compounds will map to the same CG representation, coarse-graining effectively
reduces the size of CCS, allowing for faster construction of broadly encompassing
structure—property relationships. Fig. 2.1 shows an implementation of the HTCG
method in order to obtain a structure—property relationship for membrane perme-
ability.

In this chapter, we outline our work in applying the HTCG method to obtain
structure—property relationships for key features of the membrane PMF as well as
membrane permeability using the CG Martini force field. First, in Section 2.2, we
show how systematically running simulations of all 119 neutral Martini single-bead
compounds (unimers) and two-bead compounds (dimers) led to the discovery of a
linear relationship between the water-octanol partitioning free energy, AGw _, 0y,
and the membrane PMF. In Section 2.3, we go on to use the partition free energy
as well as the acidity of a compound to construct a structure—property relationship
that related molecular structure to membrane permeability. Further extending this
approach to Martini trimers and tetramers without any modification would prove
computationally unfeasible, as the number of compounds to screen grows exponen-
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Reduction of chemical space Insertion of neutral and
according to size and charged compounds across
hydrophobicity the m

Permeability surface across
chemical space along two
molecular descriptors

Potential of mean force of
neutral and charged species

log,o P

Figure 2.1: Schematic portraying the HTCG method used to calculate membrane
permeabilities. The above figure and following caption are reproduced
here with permission from Menichetti et al. [138]. From left to right:
Coarse-graining reduces the size of chemical space, such that many
small molecules of similar size and hydrophobicity get mapped to the
same representation [60]. For each molecule, we model its passive
translocation across a lipid bilayer (water not shown for clarity). The
thermodynamics of the system is characterized by the potential of mean
force (PMF), evaluating both the neutral and charged species, shifted
according to the compound’s pKy. The major dependence of the PMF
on the water/octanol partitioning and the pKa motivates these as
molecular descriptors to construct a permeability surface (Eq. 2.1).
These two molecular descriptors, also highlighted in red, are exper-
imental quantities directly fed into the physics-based simulations to
yield a parameter-free estimation of the permeability coefficient.
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2 The High-Throughput Coarse-Grained Simulation Method

tially with the number of particles per compound. Therefore, in Section 2.4, we
discuss our implementation of a Monte-Carlo scheme, which, when coupled with a
supervised machine learning technique, enables us to predict the membrane PMF's
of Martini trimers and tetramers without fully sampling this CG compound space.

Note that, in all of the aforementioned sections, I was not the largest contribu-
tor to each project. Rather, my main role was to apply the algorithm developed
by Bereau and Kremer, AUTO-MARTINI, on the computer-generated database of
chemical compounds (GDB) developed by Reymond et al, which serves as a proxy
for CCS [139, 140]. I could then apply the structure-property relationships ob-
tained through the HTCG method to the set of GDB compounds that mapped
to Martini representations, yielding predictions for over 500,000 compounds which
mapped to Martini unimers and dimers, and over 1.3 million compounds when
including trimers. This process as well as the resulting analyses are detailed in
Sections 2.5 and 2.6.

Assume that a certain Martini representation outperforms all others when using
the HTCG method to screen for a desired property. Because thousands of chemical
compounds can be mapped to a single Martini representation, it remains unclear
as to which chemical compounds should actually be chosen for further testing, and
it would be costly to computationally screen all of these compounds at an atomistic
resolution. In Section 2.7, we use a combination of clustering and dimensionality
reduction techniques to suggest a hierarchical screening approach that enables
continued sampling of CCS efficiently at higher resolutions. We also compare
different molecular representations which depend only on the chemical structure
of a molecule, and see if any of these representations enable us to directly link
chemical structure with the property used to assign the molecule to a Martini
bead type: AGyy_ o) Finally, we summarize our findings and discuss future
avenues of study in Section 2.10

2.2 Linear relations between bulk partitioning and
the potential of mean force

Disclaimer: These sections from the following work by Menichetti et al. are repro-
duced here with permission.

Roberto Menichetti, Kiran H. Kanekal, Kurt Kremer, and Tristan Bereau

In silico screening of drug-membrane thermodynamics reveals linear
relations between bulk partitioning and the potential of mean force
The Journal of Chemical Physics 147(12):125101, 2017.

DOI: 10.1063/1.4987012

(© 2017 AIP Publishing
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2.2.1 Methods **

Molecular Dynamics simulations in this work were performed in GROMACS 4.6.6,[141]
using the Martini force field [142-145]. We relied on the standard force field
parameters[146] with an integration time step of 6t = 0.027, where 7 is the model’s
natural unit of time as dictated by the units of energy £, mass M and length L,
T =Ly MJE.

A Parrinello-Rahman barostat[147] and a stochastic velocity-rescaling thermostat|67]
provided control over the system pressure (P = 1 bar) and temperature (T =
300 K). The corresponding coupling constants were 7p = 127 and 70 = 7.

Bulk simulations consisted of Ny = 450 and Nop = 336 water and octane
molecules, respectively. A DOPC membrane of 36 nm? was generated by means
of the INSANE building tool[148] and subsequently minimized, heated up, and
equilibrated. The total number of lipids in the membrane was N, = 128 (64
per layer), immersed in Ny, = 1590 water molecules. As usual when using non-
polarizable Martini water, we added an additional 10% of antifreeze particles in
the simulations containing water molecules [143].

In the case of two-bead molecules, we first considered a representative subset
of 40 coarse-grained compounds, roughly uniformly covering a range of transfer
free-energies from water to bilayer midplane of AGwyy_,\; =~ [—8.14] kcal/mol.
We determined the corresponding potentials of mean force as a function of the
distance z of the compound from the bilayer midplane, G(z), by means of umbrella-
sampling techniques [71]. We set biasing potentials with a harmonic constant of
k = 240 kcal/mol/nm? every 0.1 nm along the normal to the bilayer midplane, for
a total of 24 simulations. In each of them, two solute molecules were placed in
the membrane in order to increase sampling and alleviate leaflet area asymmetry
[59, 149, 150]. The total production time for each umbrella simulation was 1.2 -
10°7. We estimated the free-energy profiles by means of the weighted histogram
analysis method,[72, 151, 152] and the corresponding errors via bootstrapping
[153]. The same calculations were performed in order to determine the potentials
of mean force for all of the 14 single-bead compounds analyzed in this work. The
computational cost for the reconstruction of each potential of mean force amounted
roughly to 200 CPU hours.

We herein focus on calculating AGyy_ 1 and AGT_,), the transfer free-energies
between the three different environments—water (W), interface (I), and bilayer
midplane (M)—along the potential of mean force. In terms of G(z), these are
defined as AGyy_1 = G(2) — G(2 — o) and AG_,\j = G(z = 0) — G(z), where
Z ~ 1.8 nm is the position of the lipid-water interface with respect to the bilayer
midplane (z = 0).

The transfer free energies for all 105 coarse-grained two-bead molecules were
determined from alchemical transformations [154]. Given the excellent agreement
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between the two end points of a potential of mean force and the water/octane
partitioning (see Sec. 2.2.1 and Fig. 2.2), as already pointed out in Ref. [155], the
latter was used as a proxy for the hydrophobic core of the membrane.

In the calculation of the AG;‘_’B , 7 = LW,0, we employed the multistate Ben-
nett acceptance ratio[156] (MBAR), a generalization of the BAR method [157].
MBAR determines the free energy difference AG{HB by appropriately combining
the results obtained from simulations that sample the statistical ensembles gener-
ated by a set of interpolating Hamiltonians H()\), A € [0,1], with H(A = 0) = HA
and H(\A = 1) = HB. Specifically, we made use of 21 evenly distributed \-points
between 0 and 1 for each alchemical transformation and in each environment (in-
terface, water and octane). The production time for each A point was 2 - 107 in
bulk water and bulk octane and 4 - 10*7 at the interface. The cumulative compu-
tational cost of performing each alchemical transformation in water, interface and
octane amounted roughly to 60 CPU hours.

2.2.2 Results and Discussion **

Fig. 2.2 shows the excellent agreement between the two end-points of a potential
of mean force (i.e., AGyy_,\ = G(z = 0) — G(2 — 00)) and the water/octane
partitioning, AGyy_, ), which illustrates that bulk octane is a good proxy to rep-
resent the hydrophobic core of the bilayer, as already discussed in Ref [155]. A
linear fit for the two quantities provided

AGW—)O = AGWHM — Q, (2.2)

a =~ 0.28, 0.32 kcal/mol for one-bead and two-bead compounds respectively, with
Pearson correlation coefficients R? = 0.99. As described in the Methods section,
this allowed us to determine transfer free energies with respect to an octane envi-
ronment, later converting them to the corresponding membrane values.

For every compound, the transfer free energies are subject to a thermodynamic
cycle that links the three variables

AGW—J + AGI—>M — AGW%M =0. (2.3)

Fig. 2.3 illustrates the relationship between these three transfer free energies for
all 119 coarse-grained molecules considered in this work inserted in a DOPC mem-
brane. In both cases of one- and two-bead compounds, beyond the thermodynamic
cycle linking AGvyy_,1, AGT_ )\ and AGyy_,)\[, We observe a collapse of the data
onto two lines, indicative of a linear relationship between these transfer free ener-
gies. Moreover, the only difference between one- and two-bead results consists in
the presence of a simple offset (i.e., same slope) between the profiles.
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Figure 2.2: Relationship between the two endpoints of the potential of mean force
(ie, AGyw_ v = G(z = 0) — G(z — o0)) with the water/octane
and water/octanol partitioning free energies, in the case of one- (1B)
and two-bead (2B) compounds. Figure and caption reproduced with
permission from Menichetti et al. [60].
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As a result, the thermodynamic cycle shown in Fig. 1.4 can be reconstructed
from the knowledge of a single variable and the Martini bead representation of the
compound. The error in doing so amounts to ~ 0.4. kcal/mol. These relationships
are validated from reference atomistic simulations of amino-acid side chains,[59],
where we consider only atomistic compounds whose Martini representation consists
of a single bead. While most points fall within the linear fit from the single-bead
coarse-grained data, we observe three statistically significant outliers: asparagine
(asn), isoleucine (ile), and glutamine (gln). These molecules lie on the data corre-
sponding to two-bead compounds, although their Martini representation consists
of a single bead. The origin of such discrepancies will be explained below. The
comparison of atomistic and Martini potential of mean force for protein side-chains
was already performed in Ref. [144].

Remarkably, the relationships between transfer free energies displayed in Fig. 2.3
can further be linked to a compound’s water/octanol free-energy AGyy_, (], given
its accurate linear relation with AGyy_,\p, see Fig. 2.2. A fit of the data provided

AGW%M = 7AGW—>OI + 0, (2.4)

with v = 1.70, 1.75 and § = 2.51, 4.69 kcal/mol for one- and two-bead compounds,
with R? = 0.97. Given a compound’s experimentally determined bulk measure-
ment and Martini representation,[139] we can thereby reconstruct the three main
points of the potential of mean force, as shown in Fig. 2.4a. We rationalize these
findings by noting the suitability of the octanol environment as a proxy for the
membrane interface. Similarly, we showed the appropriateness of octane for the
bilayer midplane (Fig. 2.2). Indeed, both water/alcohol and water/alkane coeffi-
cients correlate with blood-brain partitioning [158]. Therefore, the relationships in
Fig. 2.3 stem directly from the linear correspondence between water/octane and
water /octanol transfer free energies (which can be deduced from the linear rela-
tions shown in Fig. 2.2). From the model’s perspective, the linear relations are not
entirely unexpected, as Martini describes hydrophobicity by a set of equally-sized
Lennard-Jones particles, with varying well-depths. Interestingly, these relation-
ships also hold at the atomistic level. At infinite dilution, the difference in parti-
tioning of a single small molecule between water and either octane or octanol is
due to a single hydrogen bond. We suspect that, at the atomistic level, the impact
of this hydrogen bond on the partitioning behavior strongly informs the linearity
observed, although the exact mechanism remains unclear.

The statistical errors displayed by the coarse-grained simulations are marginal:
less than 0.1 kcal/mol. However, a comparison of experimental measurements of
the water/octanol partitioning free energies of several hundred small molecules
against Martini predictions yielded a mean-absolute error of 0.79 kcal/mol [139].
Given the relation between the water/octanol and water /midplane curves of Fig. 2.2
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(a)

AGw_\ keal /mol]

Figure 2.3: (a) Transfer free energies from water to interface AGyy_1 as a func-
tion of the compound’s water/membrane partitioning free energy,
AGwy_M- The red and orange curve correspond to coarse-grained
estimates for one-bead (1B) and two-bead (2B) molecules, respec-
tively. The green points (AA) depict corresponding atomistic refer-
ences of amino-acid side chains [59]. (b) Transfer free energies from
interface to the membrane AGy )\ as a function of the compound’s
water/membrane partitioning free energy, AGyy_,)1- Color coding
follows from (a). In both figures, statistically significant outliers (see
text) are marked with a label (asn, ile, and gln). Figure and caption
reproduced with permission from Menichetti et al. [60]. 69
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we deduce from it a mean absolute error on features of the potential of mean force
of approximately 1.4 kcal/mol. Further, the error associated with the fitted lines
on Fig. 2.3 amounts to an overall error of roughly 1.8 kcal/mol in reconstructing
the main points of the potential of mean force—at the bilayer midplane and at
the interface, see circles in Fig. 2.4a—Dby using as input only the experimental wa-
ter/octanol partitioning free energy of a compound. At the atomistic level, too few
potentials of mean force are available to provide errors across chemical compounds.

The linearity observed between the free-energy barrier AGw_,1 (equivalently
AG7y_\p) and the water/membrane partitioning free-energy AGyy )\ suggests
the possibility of looking for an approximately smooth two dimensional free-energy
surface G'(z, AGyy_,)\p) across chemical space, hence as a function of AGyy_,\ as
well as of the distance from the bilayer midplane z.

In the case of two-bead coarse-grained molecules, we then constructed a two
dimensional map of the free-energy surface G(z, AGyy_,)\1) starting from the set
of 40 potentials of mean force that were determined by means of umbrella sampling
simulations, covering a range AGyy )\ =~ [—8, 14] kcal/mol. Results are shown
in Fig. 2.4b.

The correlations shown in Fig. 2.3 between AGw_,; and AGW _\ for differ-
ent compounds correspond, on this surface, to the set of points G(z = 1.8
nm, AGyy_,)p). Apart from minor fluctuations, it is evident how the overall
smoothness of the surface on the lines with constant z allows us to identify the
existence of an average functional relationship between AGyy_,\ of a compound
and its potential of mean force G(z) for every value of z. As an example, a small
free-energy barrier located at z =~ 2.5 nm is present for all the compounds with
AGw_ M € [-8,0] kcal/mol. Small shifts in z may result from bilayer-thickness
discrepancies between atomistic and coarse-grained simulations [139].

In this work we focused on the reconstruction of key features of the potential of
mean force (i.e., the water/interface and interface/membrane transfer free energies,
AGwy_1 and AGy 1) The results shown in Fig. 2.4b further suggests that a
knowledge of the water/membrane partitioning free energy of a compound, which
can be obtained from the corresponding water/octanol one via the linear relation
reported in Eq. (2.4), allows for a semi-quantitative reconstruction of the whole
potential of mean force G(z).

2.3 High-throughput coarse-grained screening to
obtain membrane permeabilities

Disclaimer: These sections from the following work by Menichetti et al. are repro-
duced here with permission.
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Figure 2.4: (a) Representative potentials of mean force of various Martini com-
pounds as a function of the normal distance to the bilayer midplane.
The color range denotes the water/octanol partitioning of the small
molecule. Large circles correspond to estimates from the thermody-
namic relation extracted in this work. (b) Two dimensional map of
the free energy surface G(z, AGyy_,)\p) for a small molecule, as a func-
tion of its distance from the DOPC bilayer midplane z and its mem-
brane/water partitioning free energy AGyy_\[-
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2.3.1 Methods **

Molecular dynamics simulations **

Molecular dynamics simulations in this work were performed in GROMACS 4.6.6[141]
and with the Martini force field, [86, 142, 143] relying on the standard simulation
parameters [146]. The integration time step was 6t = 0.02 7, where 7 is the model’s
natural unit of time dictated. Sampling from the NPT ensemble at P = 1 bar
and T' = 300 K was obtained by means of a Parrinello-Rahman barostat [147] and
a stochastic velocity rescaling thermostat,[67] with coupling constants 7p = 12 7
and 7 = 7 respectively. We relied on the INSANE building tool[148] to gener-
ate a membrane of ~ 36 nm? containing N = 128 DOPC lipids (64 per layer),
N’ = 1890 water molecules, N” = 190 antifreeze particles,[143] and enough coun-
terions to neutralize the box. The system was subsequently energy-minimized,
heated, and equilibrated.

The potential of mean force G(z) of each compound was determined by means
of umbrella sampling [71]. We employed 24 simulation windows with harmonic
biasing potentials (k = 240 kcal /mol/nm?) centered every 0.1 nm along the normal
to the bilayer midplane. In each of them, two solute molecules were placed in
the membrane in order to increase sampling and alleviate leaflet-area asymmetry
[59, 149]. The total production time for each umbrella simulation was 1.2 - 10° 7.
We then estimated the free-energy profiles by means of the weighted histogram
analysis method [72, 151, 152].

Permeability coefficients **

The permeability coefficient is obtained from the potential of mean force G(z) and
local diffusivity D(z) in the resistivity R(z) = exp[8G(z)]/D(z), see Eq. 2.1. For
compounds with multiple protonation states, both neutral and charged species con-
tribute to the total flux, leading to the total resistivity R given by[26] Rr(z) ! =
Rn(2)7!' + Rc(2)7!, where Ry and Rc are the resistivities of the neutral and
charged species, respectively. In calculating these quantities in the case of a single
(de)protonation reaction, one has to offset the corresponding PMFs Gx(z) and
Gc(z) by the free-energy difference for the acid/base reaction in bulk water[59]

Gbase = Gacid + kBT(pKa - pH) In 107 (25)
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see Fig. 2.1, where we systematically consider neutral pH = 7.4. Beyond the
distinction between acid and base, we consider both neutral and charged species
(Fig. 2.1): (i) a neutral acid deprotonates into a charged conjugate base (acidic
pKa or apKy) and (ii) a neutral base protonates into a charged conjugate acid
(basic pKy or bpKjy).

Estimation of the local diffusivity, D(z), using the CG simulations is a priori
problematic given the tendency of these models to inconsistently accelerate the
dynamics [159].
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Figure 2.5: (a) Three diffusivity profiles used to determine the sensitivity of log P
to the diffusivity D(z). (b) Changes in log P as a function of AGyy_,\
for each of the three diffusivity profiles shown in (a). It is clear that
the diffusivity has a minor impact on the log P for apolar molecules
only, even when a constant diffusivity value is used. Figure reproduced
here with permission from Menichetti et al. [138].

One method for computing D(z) for membrane permeability was implemented
by Hummer, in which the diffusion coefficient is obtained via the velocity auto-
correlation function for a harmonically restrained particle [160]. Carpenter et al.
applied this method to several organic small molecules and noted that the diffu-
sivity profile is highly uniform, even when the chemistry of the molecules varied
significantly [26]. Because of this, we approximate the diffusivity profile for small
organic molecules by fitting the diffusivity profiles calculated by Carpenter et al.
to a sigmoidal function:

B

(2.6)

where a, 3, v, and ¢ are all parameters obtained from the fit. We also performed
a sensitivity analysis with respect to D(z) by investigating how horizontal shifts
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and vertical stretching of the function would influence log P. We found that there
is only a noticeable change in log P for hydrophobic molecules, but even this change
was within a single log unit, which is an acceptable degree of error for permeability
coefficient. This sensitivity analysis is shown in Fig. 2.5.

Permeability surfaces **

We obtained the permeability surfaces presented in Figs. 2.6 and S4 by first de-
termining the PMF G(z) for all possible neutral combinations of one and two CG
beads, 119 in total. For each of them we then determined G(z) for its charged
counterparts, amounting to a total of 232 additional compounds. All PMF calcu-
lations required less than 10> CPU hours, on par with the typical computational
time needed to run a single compound at an atomistic resolution [130]. At the
CG level, protonating (deprotonating) a neutral chemical group amounts to re-
placing the bead type with a positive (negative) charge. We assume that the
(de)protonation reaction always occurs in the chemical fragment represented by
the more polar bead, and select the bead accordingly. By combining neutral and
charged PMFs, we calculated the permeability coefficient of every compound as
a function of the apKy (or bpKjy) every 0.2 pKjy unit, and projected the results
on the (AGyy_,\, PKa) plane. The data consisted of a discrete set of permeabili-
ties densely covering the partitioning free-energy axis located at the AGyy_ )\ of
each CG compound, and were finally interpolated on a grid with gaussian weights
resulting in the surfaces shown in Fig. 2.6.

Chemical space coverage *

Prediction of the water/octanol partitioning on both chemical databases consid-
ered in this work, GDB[140, 161] and ChEMBL,[162] was performed by means of
the neural network ALOGPS [163]. apKja and bpKj predictions of neutral com-
pounds were provided by the Calculator Plugin of CHEMAXON MARVIN [164]. The
mean absolute error associated with the two prediction algorithms are 0.36 kcal /mol[163]
and 0.86 units,[165] respectively. The aggregate predictions of water/octanol par-
titioning and pKa on both databases required roughly 102 CPU hours. Functional
groups were identifed using the CHECKMOL package [166]. 511,427 molecules were
coarse-grained using the AUTO-MARTINI scheme [139]. AUTO-MARTINI automati-
cally determines the coarse-grained force field in two steps: (i) the CG mapping
is optimized according to Martini-based heuristic rules and (i7) interactions are
set by determining a type for each bead, selected from chemical properties of
the encapsulated atoms, especially water/octanol partitioning, net charge, and
hydrogen-bonding.
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2.3 High-throughput coarse-grained screening to obtain membrane permeabilities

2.3.2 Results and Discussion *#*

While drug permeation is known to depend on lipid composition,[135] in this
work we only consider a single-component bilayer made of 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC). The permeability coefficient, P, is readily estimated
from the PMF and diffusivity profile (Eq. 2.1). The PMFs are extracted from
HTCG simulations of all CG representations made of one and two beads, map-
ping to a representative subset of small organic molecules in the range 30 — 160 Da
[60]. For compounds capable of (de)protonating, we also model the corresponding
charged species. For convenience, we distinguish the pKy of a chemical group as
being either acidic (apKy) or basic (bpKjy), which quantifies the propensity of a
neutral compound to deprotonate or protonate, respectively. The effective per-
meability coefficient is constructed by a combination of the two PMFs (Fig. 2.1),
shifted according to the compound’s pKjy in water, see Methods [59, 164]. The
diffusivity profile is estimated from reference atomistic simulations [26].

Fig. 2.6 displays smooth permeability surfaces as a function of the drug’s acidic
and basic pKy value in water. The log,, scale of the permeability surfaces indi-
cates the wide timescale variations these molecular parameters exert on the ther-
modynamic process. For both panels, the horizontal behavior indicates that larger
permeabilities are obtained toward the left—more hydrophobic compounds—while
polar molecules experience more difficulties crossing the lipid bilayer, leading to a
drastic reduction in P. The effect is compounded by (de)protonation: panel (a)
across the vertical axis describes the effect of the compound’s ap Ky in water onto
P. Extremely strongly acidic molecules (apKy < 2) effectively remain charged
across the membrane interface, leading to prohibitively large free energies along
the PMF, such that their rate of permeation is strongly suppressed. Increasing
ap Ky shows a significant increase in P, up to apKy ~ 7, beyond which P plateaus.
This stabilization is due to the competition between neutral and charged PMFs,
where the charged PMF is shifted to increasingly larger values, and therefore never
contributes significantly compared to the more attractive neutral PMF. Of partic-
ular interest are the strong acids (2 < apKg < 7), which neutralize upon entering
the membrane, effectively enhancing the permeability coefficient as compared to a
compound that remains charged across the interface. An approximately symmetric
behavior can be observed when switching from acidic to basic compounds (panel
(b)). The impact of both apKa and bpKy on the permeability coefficient becomes
even more pronounced in the case of zwitterions, where high permeation rates
are only obtained for compounds containing both weak acidic and basic chemical
groups.

The permeability surface also displays a comparison against atomistic simulations|26,
59, 133] for several compounds (symbols in Fig. 2.6). These points provide a valida-
tion of our methodology—we report a mean absolute error of 1.0 log,, unit across
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Figure 2.6: Permeability surfaces (log;, scale) calculated from HTCG simulations
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as a function of two small-molecule descriptors: the (a) basic or (b)
acidic pKjy in water and the water/membrane partitioning free en-
ergy, AGywy_\- Cooler (warmer) colors correspond to faster (slower)
permeating molecules. The intersection between the two surfaces cor-
responds to compounds that effectively always remain neutral. Green
circles, yellow stars, and orange squares correspond to deviations from
atomistic simulations within 0.5, 1.3, and 2.2 log units, respectively.
Figure and caption reproduced from Menichetti et al. [138].



2.4 Supervised machine learning applied to the coarse-grained exploration of chemical space

the two molecular descriptors. Most importantly, the few datapoints highlight the
extremely limited exploration of chemical space using in silico simulations at an
atomistic resolution.

2.4 Supervised machine learning applied to the
coarse-grained exploration of chemical space

Disclaimer: These sections from the following work by Hoffmann et al. are repro-
duced here with permission.

Christian Hoffmann, Roberto Menichetti, Kiran H. Kanekal, and Tristan Bereau
Controlled exploration of chemical space by machine learning of
coarse-grained representations

Physical Review E 100(3):033302, 2019.

DOI: 10.1103/PhysRevE.100.033302

(© 2019 American Physical Society

2.4.1 Methods **

Coarse-grained simulations **

MD simulations of the Martini force field [137] were performed in GROMACS 5.1.
The integration time-step was 0t = 0.02 7, where 7 is the model’s natural unit
of time. Control over the system temperature and pressure (7' = 300 K and
P =1 bar) was obtained by means of a velocity rescaling thermostat [67] and
a Parrinello-Rahman barostat [147], with coupling constants 70 = 7 and 7p =
12 7. Bulk simulations consisted of Ny = 450 and Ng = 336 water and octane
molecules, where the latter was employed as a proxy for the hydrophobic core of the
bilayer [60]. As for interfacial simulations, a membrane of 36 nm? containing Ny, =
128 DOPC lipids (64 per layer) and Ny, = 1890 water molecules was generated
by means of the INSANE building tool [148], and subsequently minimized, heated
up, and equilibrated. In all simulations containing water molecules we added an
additional 10% of antifreeze particles.

Free-energy calculations **

Water /interface and interface/membrane transfer free energies AGyy_,; and AG[_,\p
for all compounds investigated in this work were obtained from alchemical trans-
formations, in analogy with Ref. [60]. This construction is based on the relation
linking the transfer free energies of two compounds A and B (AG4, ., AGE
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2 The High-Throughput Coarse-Grained Simulation Method

and AG{,,, AGE.,,) to the free energies of alchemically transforming A into B
in the three fixed environments, AG{ 75, AGHP and AG{P

AGY_1 = AGy_y + (AGTTP — AGHP),
AGE = AGLy + (AGHT? — AGEP). (2.7)

AGABAGH7P | and AGRP were determined by means of separate MD sim-
ulations at the interface, in bulk water, and in bulk octane. For the calculation of
each AGA7B i = 1, W, M we again relied on the multistate Bennett acceptance
ratio (MBAR) [156, 167]. We employed 24 evenly spaced A-values for each al-
chemical transformation and in each environment (interface, water, octane). The
production time for each \ point was 4 - 10* 7 at the interface and 2 - 10* 7 in
bulk environments. To calculate AG{?® we added a harmonic potential with
k = 1000 kJmol ' nm~2 between the compound and the bilayer midplane at a
distance z = 1.5 nm to account for the spatial localization of the interface.

Monte Carlo sampling **

We perform a stochastic exploration of the chemical space of CG linear trimers and
tetramers through the generation of Markovian sequences of compounds. Given
the last compound A of a sequence, the new compound B is proposed by randomly
selecting a bead of A and changing its type. The move from A to B is then accepted
with probability

Pap =min{l,exp [-B(AGY_; — AGw_1)] } (2.8)

where AG{,_,; and AGE, | are the water/interface transfer free energies of A and
B, respectively. This choice for P4, aims at driving the Monte Carlo (MC) sam-
pling towards compounds that favor partitioning in the membrane. While in this
work we set 5 = 1/kgT, we stress that § can in principle be chosen independently
of the system temperature. The free-energy difference in Eq. 2.8 is derived from
the alchemical free-energy differences of transforming A into B in the three fixed
environments AGZ~E, i = W, I, M (first relation in Eq. 2.7), which we compute
from MD simulations.

We generated up to five independent Markovian sequences in parallel, each start-
ing from a different initial compound. To avoid recalculating alchemical trans-
formations already visited, we stored the history of calculations and looked up
previously-calculated values when available.

Thermodynamic-cycle optimization **

We reconstructed the transfer free energies AGyy_1 and AGy_ ) for all com-
pounds analyzed in this work as a summation over a sequence of alchemical trans-
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formations by means of Eq. 2.7. The outcome of our Monte Carlo sampling consists
of an “alchemical network” in which each node of the network represents a com-
pound, and an edge connecting two nodes A and B corresponds to an alchemical
transformation that was sampled via an MD simulation. Each edge is charac-
terized by the free-energy differences AG# P in the three fixed environments,
1=W, [, M.

For each environment, the net free-energy difference along any closed cycle in
the network must be zero, by virtue of a free energy being a state function. We
thus enforced this thermodynamic condition to optimize the set of free-energy
differences calculated from MD simulations. We employed the algorithm pro-
posed by Paton [168] to identify the cycle basis that spans the alchemical network,
i.e., each cycle in the network can be obtained as a sum of the Ng basis cycles.
We denote the MD free-energy differences involved in at least one basis cycle by
AG?, J =1,..,Ng, © = W, I, M, while nodes connected to only a single edge
cannot be taken into account. For each environment, we optimized the set of free
energies ACNH by minimizing the loss function

Ng Nc
£=3 (G - AG) + 3w S -1eadd) (2.9)
j=1 k=1

JjEk

While the first term ensures that the optimized free-energy differences Aéf remain
close to the MD simulation results, the second term (w = 10.0) penalizes deviations
from zero for each thermodynamic cycle within a basis cycle. The exponent s;
controls the sign of the free-energy difference in the cycle, taking values of 0 or
1. To minimize the cost functions, we employed the Broyden-Fletcher-Goldfarb-

Shanno method (BFGS) [169].
Machine learning **

We use kernel ridge regression (KRR) [170], where the prediction of target property
p(x) for sample x is expressed as a linear combination of kernel evaluations across
the training points x!:

p(x) = Z o K (x5, X). (2.10)

The kernel consists of a similarity measure between two samples

K(x,x) = exp G@) , (2.11)

g

which corresponds to a Laplace kernel with a city-block metric (i.e., Li-norm), and
o is a hyperparameter. The optimization of the weights o consists of solving for the
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2 The High-Throughput Coarse-Grained Simulation Method

samples in the training with an additional regularization term \: a = (K+ ) 'p.
Error bars are computed using the predictive variance

e =K — (K (K + \I)"'K*, (2.12)

where K™ and K* represent the kernel matrix of training with training and train-
ing with test datasets, respectively [170]. The two hyperparameters o and A were
optimized by a grid search, yielding o = 100 and A = 1074

The representation ought to include enough information to distinguish a com-
pound’s chemical composition and geometry, as well as encode the physics relevant
to the target property [19]. Because the CG compounds all consist of beads ar-
ranged linearly and equidistant, we have found that encoding the geometry had no
benefit to the learning. Instead we simply encode the water/octanol partitioning
of each bead, yielding for linear trimers x = (AG%)/'HOP AG%)]%OI’ AG%;)/*)OI) .
Note that while the problem we consider in this work contains reflection sym-
metry for the compounds (i.e., ABC is equivalent to CBA), we did not need to
encode this in the representation. Instead we sorted the bead arrangement when
generating compounds for the importance sampling and machine learning.

We consider the insertion of a small molecule across a single-component phos-
pholipid membrane made of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) sol-
vated in water. The insertion of a drug is monitored along the collective variable,
z, normal distance to the bilayer midplane (Fig. 1.4). We focus on three ther-
modynamic state points of the small molecule: the bilayer midplane (“M”), the
membrane-water interface (“I”), and bulk water (“W”). We link these quantities
in terms of transfer free energies, e.g., AGyy_,\[ denotes the transfer free energy
of the small molecule from water to the bilayer midplane.

2.4.2 Results and Discussion **
Importance sampling **

We ran MC simulations across CG linear trimers, randomly changing a bead type,
calculating the relative free energy difference between old and new compound in the
three different environments, and accepting the trial compound using a Metropolis
criterion on the water/interface transfer free energy AGyy 1. This criterion aimed
at selecting compounds that favor partitioning in the membrane.

The MC algorithm yielded an acceptance ratio of 0.2. While initially most
trial compounds contributed to expand the database, the sampling scheme quickly
reached a stable regime where roughly half of the compounds had already been
previously visited. Because each free-energy calculation is expensive, we avoid
recalculating identical alchemical transformations to help efficiently converge the
protocol.

80
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Interestingly, we find a large number of closed paths within the network of com-
pounds sampled via our MC algorithm. Since the free energy is a state function,
the closed path represents a thermodynamic cycle—it must sum up to zero. We
found negligible changes in the free energies regardless of whether or not this con-
dition was enforced on the closed path, meaning that our chain of transformations
does not compound significant statistical error.

Machine learning **

We trained an ML model using the vector of water/octanol partitioning of each
Martini bead type—one of their salient properties [139]. When trained on most of
the MC-sampled data, we obtained out-of-sample mean absolute errors (MAE) as
low as 0.2 kcal/mol for AGyy_,1 and AG]_,)\[, on par with the statistical error of
the alchemical transformations. Remarkably, the prediction of AGyy_,\[ converges
to an MAE lower than 0.05 kcal/mol, illustrative of the strong correlation between
water/octanol and water/membrane free energies in Martini [60]. For all three
quantities we monitor a correlation coefficient above 97%, indicating excellent
performance.

Next, we train our ML model on the entire dataset of MC-sampled compounds.
We use this model to predict all other CG linear trimers. Because of the importance-
sampling scheme, the predicted compounds will typically feature different charac-
teristics, e.g., more polar compounds that would preferably stay in the aqueous
phase. As such the ML model is technically extrapolating outside of the training
set. This can be seen in Fig. 2.7, where the projections on the top and the right
highlight the distinct coverages of sampled and predicted compounds along each
variable. Yet, the main panels (a) and (b) display strong linear relations between
transfer free energies. These correlations are not built in the ML models, since
we optimize independent weight coefficients for the different target properties.
They also offer higher accuracy compared to simple linear fits: MAE of 0.3 and
0.5 kcal/mol for the ML and linear fit, respectively, across a small set of reference
compounds in the sampled dataset. Importantly, these linear relations had already
been highlighted in previous work for CG unimers and dimers (data reproduced
on Fig. 2.7) [60]. The linear behavior displayed across both sampled and predicted
compounds testifies to the robustness of the ML model, despite the extrapolation.

A systematic coarse-graining of compounds in the GDB using AUTO-MARTINI
was performed to identify small organic molecules that map to CG linear trimers
[139, 140]. We identified 1.36 million compounds, for which we can associate all
three transfer free energies, AGvwy_\, AGw_1, and AG[ ;- We note that
the sampled and predicted CG representations amount to similar numbers of com-
pounds, such that the ML boosting introduced here offers an additional 0.8 million
compounds to the database.
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Figure 2.7: (a) Transfer free energies from water to interface AGyy 1 as a func-
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tion of the compound’s water/membrane partitioning free energy,
AGwy_ - The red and orange curves correspond to coarse-grained
estimates for unimers (1B) and dimers (2B), respectively, previously
presented in Menichetti et al. [60]. The dark and light blue points
depict corresponding quantities for trimers estimated from MC sam-
pling (3B-MC) and the ML predictions (3B-ML), respectively. Linear
fits highlight the molecular-weight dependence. (b) Transfer free ener-
gies from the interface to the membrane AGy_ 1 as a function of the
compound’s water/membrane partitioning free energy, AGyy_,)1- The
coverages are projected down along a single variable on the sides. Error
bars for 3B-MC are on par with the datapoint sizes (not shown), while
error bars for 3B-ML display the 95% confidence intervals from the
predictive variance. Figure and caption reproduced with permission
from Hoffmann et al. [110].



2.4 Supervised machine learning applied to the coarse-grained exploration of chemical space

The overwhelming size of chemical space naturally calls for statistical techniques
to analyze it. A variety of data-driven methods such as quantitative structure—
property relationships (QSPR) and ML models at large have been applied to chem-
ical space [17, 119, 171, 172]. While sparse databases easily lead to overfitting [130],
a dense coverage can offer unprecedented insight [173]. Here we rely on tools from
statistical physics to ease the exploration of chemical space: the application of im-
portance sampling guides us toward the subset of molecules that enhance a desired
thermodynamic property. The latter is akin to recent generative ML models [6],
but without the a priori requirement for labeled training data.

A conceptually-appealing strategy to expand the MC-sampled distribution is
through an ML model. Effectively we train an ML model on the MC samples and
further boost the database with additional ML predictions. Unfortunately, the
limited extrapolation behavior of kernel models means that accurate predictions
can only be made for compounds similar to the training set. How similar is often
difficult to estimate a priori. Similarity metrics are often based at the level of the
ML’s input space—here the molecular representation. For instance, the predictive
variance estimates error bars based on the query sample’s distance to the training
set [170].

Instead of basing a similarity metric on the ML’s input space, we focus on the
target properties directly. Our physical understanding of the problem offers a clear
requirement on the transfer free energies, through the linear relationships shown
in Fig. 2.7 [60]. As such, the thermodynamics of the system impose a physically-
motivated constraint on the predictions. Rather than specific to each prediction,
this constraint is global to the ensemble of data points. Satisfying it grounds our
predictions within the physics of the problem, ensuring that we accurately expand
the database.

Remarkably, we find that we can significantly expand our database—doubling it
for trimers and a factor of 10 for tetramers—while retaining accurate transfer free
energies. Unlike conventional atomistic representations [174], our ML model is en-
coded using a CG representation, such that compounds need only be similar at the
CG level. This CG similarity is strongly compressed because (i) of a more straight-
forward structure—property link [138] and (ii) coarse-graining reduces the size of
chemical space [60]. All in all, backmapping significantly amplifies the additional
region of chemical space reached by the ML model. Our work highlights appeal-
ing aspects of bridging physics-based methodologies and coarse-grained modeling
together with machine learning, offering better robustness and transferability to
explore significantly broader regions of chemical space.
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2.5 Reduction of chemical space due to
coarse-graining *

Disclaimer: This section from the following work by Menichetti et al. is reproduced
here with permission.

Roberto Menichetti, Kiran H. Kanekal, Kurt Kremer, and Tristan Bereau

In silico screening of drug-membrane thermodynamics reveals linear
relations between bulk partitioning and the potential of mean force
The Journal of Chemical Physics 147(12):125101, 2017.

DOT: 10.1063/1.4987012

(© 2017 AIP Publishing

Fig. 2.8 shows how the Martini model groups molecules into fewer coarse-grained
representations, thereby effectively reducing the size of chemical compound space.
This grouping stems from the discrete set of bead types of the Martini model,
which assigns the same representation to groups that are chemically similar. To
estimate this grouping, we have coarse-grained compounds from the Generated
Database[140] of molecules up to ten heavy atoms. In Fig. 2.8, we show the distri-
butions of compounds that map to any one of the one- and two-bead coarse-grained
representations considered here, as a function of the water/octanol partitioning.
The atomistic distributions of Fig. 2.8b,d were obtained using the ALOGPS neural
network [175]. Despite the uneven spacing of the water/octanol partitioning free
energies of the coarse-grained molecules, the atomistic distributions are roughly
reproduced by the coarse-grained distributions in Fig. 2.8a,c, except for small ar-
tifacts in the strongly polar regime (i.e., AGyy_, ] 2 2.0 kcal/mol). In total, we
identified 465,387 unique molecules, representing most synthetically-feasible small
organic molecules between 30 and 160 Da. This many-to-few mapping arises solely
from the limited representability of thermodynamic properties of chemical groups,
rather than the coarser structural representation (i.e., atoms to beads).

The removal of chemically and structurally specific information present in atom-
istic simulations is traditionally viewed as a necessary drawback for access to
otherwise computationally prohibitive simulations. However, it is precisely this
drawback that enables a single coarse-grained simulation to be representative of
a large number of small molecules, as degenerate chemical groups are mapped to
the same bead type. As a counterexample, fixing a Martini-like mapping in com-
bination with a non-transferable, chemically-specific parametrization (e.g., as in
most bottom-up, structure-based models) would prevent any reduction in chemi-
cal space. This work thereby introduces the ability for transferable coarse-grained
models to screen large numbers of small molecules.
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Figure 2.8: Histograms of 465,387 small molecules extracted from GDB that map
onto one-bead or two-bead coarse-grained representations. (a),(c)
Coarse-grained and (b),(d) atomistic populations as a function of wa-
ter /octanol partitioning free energy. The width of the bars in (a),(c)
have no physical significance and are simply for the reader’s conve-
nience.Figure and caption reproduced with permission from Menichetti
et al. [60].
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Additionally, we report predictions for the transfer free-energies from water to
the bilayer midplane or interface estimated from both coarse-grained simulations
and the thermodynamic relations displayed in Fig. 2.3. For the latter case, the
water/octanol partitioning free energy predicted by ALOGPS is used as the input.

2.6 Relating property back to structure *

Disclaimer: These sections from the following work by Menichetti et al. are repro-
duced here with permission.

Roberto Menichetti, Kiran H. Kanekal, and Tristan Bereau
Drug—membrane permeability across chemical space
ACS Central Science 5(2):290, 2019.

DOI: 10.1021 /acscentsci.8b00718

© 2019 American Chemical Society

To better elucidate how the chemical structure impacts the permeability coeffi-
cient, we consider a large database of small organic molecules from combinatorial
chemistry: the generated database (GDB) [140, 161]. It consists of a large set of
stable molecules up to 10 heavy atoms made of the chemical elements C, O, N,
and F, saturated with H. We pointed out how transferable coarse-grained models
effectively reduce the size of chemical space by lumping many molecules into one
coarse-grained representation [60]. This allows us to associate the above-mentioned
one- and two-bead CG permeability results to 5 x 10° molecules. The distinction
made between compounds that reduce to CG molecules made of a single bead
(“unimers”) from those made of two beads (“dimers”) effectively amounts to a
segregation between molecular weights [60]. We populate the permeability sur-
faces with these compounds—projecting them onto the two molecular descriptors:
pKa and water/octanol partitioning free energy AGyy ). By coarse-graining
every single compound, we establish a map between chemical structure and its
CG thermodynamic property.

Fig. 2.9 displays the chemical-space coverage of GDB compounds onto the molec-
ular descriptors. For all panels, we have colored the points in terms of the perme-
ability calculated using HTCG simulations. Top and bottom panels distinguish
between bpKy and ap Ky, while left and right denote unimers and dimers, respec-
tively. We first note that the cloud of points is not uniformly distributed, but is
instead centered around zero in AGyy_, - An increase in the molecular weight
of the compound (left to right in Fig. 2.9) opens up new regions of chemical space,
as we observe a significant broadening of the distribution along the water/octanol
axis. This naturally arises due to the extensivity of the water/octanol partitioning,
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Figure 2.9: Chemical-space coverage of GDB projected onto pKy and wa-

ter/octanol partitioning free energies, AGyy_ - Basic and acidic
pKy are shown in panels (a,b) and (c,d), respectively. Panels (a,c) and
(b,d) describe the coverage corresponding to coarse-grained unimers
and dimers, respectively. Regions highlighted in light blue display
several representative chemical groups. Substitutions denoted by “?”
correspond to either H or a substitution starting with an alkyl or aryl
carbon, while “?*” only corresponds to substitutions that begin with
an alkyl carbon. (e) Our analysis clusters molecules containing both a
predominant functional group (blue), but also one or several substitu-
tions (black), of which only a few possibilities are shown. Figure and
caption reproduced with permission from Menichetti et al. [138].
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the more complex combinatorics of atoms involved, and the additional presence of
five-membered rings.

Unlike bulk partitioning, the pKy of a compound is not significantly impacted
by aggregate behavior, but is instead dominated by one or a few specific chemi-
cal groups capable of (de)protonating. As such, we investigated the presence of
chemical groups representative of a subset of chemical space. The regions in blue
highlight a chemical group that is predominant, appearing in at least 50% of the
molecules in that subset. The localization of chemical groups remains largely simi-
lar from unimers to dimers (e.g., carboxylic group). Our high-throughput analysis
offers an intuitive visualization of the link between chemistry and permeabilities via
the pKjy. Fig. 2.9 reflects that oxygen-containing functional groups are generally
more likely to be proton donors, whereas nitrogen-containing functional groups can
serve as either proton donors or acceptors [176]. At low apKy values, we mainly
see carboxylic groups transitioning to nitrogen-containing functional groups (e.g.,
oxime derivatives) as we increase the apKy. Contrastingly, the bpKy chemical
coverage displays no predominant oxygen-containing functional groups. Notable
exceptions are the zwitterionic amino acid-like compounds and certain aromatic
heterocyclic compounds shown in Fig. 2.9, which have both a low apKy and a
high bpKy. These functional groups largely contribute to the chemical coverage
of zwitterions.

2.6.1 Functional Group analysis and molecular design *

Fig. 2.9 enables a robust ad hoc method for both direct and inverse molecular
design. The direct route amounts to estimating the permeability coefficient given
a chemical structure. Fig. 2.9 simply requires an estimate for the two molecular
descriptors, pKa and AGyy_, ()], either from experiments or prediction algorithms
[163, 164]. More interestingly, our results allow us to focus on specific regions of
chemical space compatible with a desired permeability coefficient. We effectively
reduce the high dimensionality of chemical space by projecting down onto our
molecular descriptors and identifying key scaffolds.

Fig. 2.9 offers a simple route at an inverse design procedure. For example, if
designing a small molecule of 3 to 5 heavy atoms (i.e., mapping to a CG unimer)
that requires a log;, P of —1.0, Fig. 2.9c suggests molecules containing either
a terminal hydroxyl group or an oxime group. Indeed, small alcohols such as
propanol and butanol match this target, although we are not aware of relevant
experimental studies containing small oxime derivatives. Interestingly, we can
also predict how small chemical changes will affect permeability: a change that
impacts hydrophobicity (e.g., through hetereoatom substitions) will smoothly shift
the compound horizontally on the surface. On the other hand, the introduction of
new (de)protonatable groups might lead to large jumps on the surface, dictated by
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the strongest acid or base present in the molecule. The different behavior across
the horizontal and vertical axes is due to the extensive and intensive characters of
the descriptors, respectively.

Critically, Fig. 2.9 shows remarkable transferability outside the range of com-
pounds used in the screening. For example, while salicylate is made up of 10
heavy atoms, its aromatic ring leads to a four-bead representation. CG sim-
ulations using this parametrization result in log,, P = —4.21, deviating only
one log;, unit from the atomistic results (highlighted as one of the symbols in
Fig. 2.6) [26]. Alternatively, we can easily read off the permeability from the
surface: the carboxylic group is the main contributor for its descriptors apKy
= 2.8 and AGyy_, 0] = —2.7 keal/mol (Fig. 2.9). This results in a simulation-free
prediction for log,, P of —3.72, less than two log units away from the atomistic
results. The discrepancy between the four-bead representation and the dimer
surface we rely on is the main source of errors: we have observed a systematic
shift between AGyy_ ) and AGyy_,\ as a function of the number of CG beads
[60]. An even more challenging test case involved ibuprofen (206 Da, significantly
outside our range of molecular weights), for which both CG simulations and the
surface prediction yield an accuracy within 1log;, unit within the atomistic re-
sults (symbol in Fig. 2.6). The transferability beyond the initial molecular weight
considered speaks to the robustness of our physics-based approach. This feature
contrasts radically with statistical methods that fit experimental data, such as
QSPR: the transferability of a QSPR model hinges upon potential biases in the
training dataset. Given the small dataset sizes available from experiments and the
wider range of molecular weights, QSPR models tend to be limited to chemistries
very close to those used in training [177, 178]. On the other hand, the HTCG
method systematically spans a wide region of chemical compound space without
resorting to parameter tuning, offering accurate predictions even beyond the range
of molecular weight considered.

2.7 Unsupervised Machine Learning as a Route to
Further Screening

Using the top-down CG Martini force field, we have now seen that coarse-graining
effectively reduces the size of CCS, with thousands of molecules mapped to in-
dividual Martini representations. Furthermore, we have demonstrated that this
HTCG method enables both direct and inverse molecular design. When applied in
practice, however, the CG resolution of the structure-property relationship may
not be sufficient when screening compounds. For example, if a suitable CG rep-
resentation is found that satisfies the target design criteria, it remains unclear as
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to which compounds would be the most suitable for synthesis and experimental
testing. At this point, computational sampling at the atomistic resolution would
be the next logical step, but with thousands of compounds mapping to a single
CG molecule, problems of computational feasibility arise once again.

Recently, there has been a significant progress in applying supervised ML tech-
niques to directly construct structure property relationships at the atomistic reso-
lution, with several examples of highly accurate prediction of quantum-mechanical
properties of small organic molecules [17, 119, 171, 172]. Many of these studies
successfully used kernel ridge regression (KRR) to predict the heats of formation
of these molecules with accuracy comparable to that of costly ab initio simulations
which are normally used. Huang et al. has previously showed that, when using
kernel ridge regression, the mathematical representation of the molecule plays a
significant role in determining the accuracy of the model [111]. While the super-
vised learning approach is not easily implemented for soft-matter properties due to
the difficulty in obtaining training data, it is possible that some of the molecular
representations developed for the prediction of quantum-mechanical properties are
also correlated with the thermodynamic properties of the same molecules.

In the following sections, we apply three molecular representations on a subset
of CCS that maps to Martini molecules and use unsupervised ML techniques to
determine whether these representations correlate with the water/octanol parti-
tion free energy (AGyy_,(]); @ thermodynamic property. We choose AGvwy_,
for two reasons: (i) the ALOGPS neural network provides an independent method
to quickly predict the AGyy_, ) of the molecules used in the input data set, re-
moving the need for additional experiments or simulation to obtain this property,
(it) AGyy_, ] is the property used by the AUTO-MARTINI algorithm to assign
chemical fragments to Martini bead types, and therefore, correlating a molecu-
lar representation with AGyy_, () is equivalent to predicting the corresponding
Martini bead assignment. Successfully correlating these molecular representations
with AGyy_, ] would point towards a more efficient route to the prediction of
thermodynamic properties using kernel ridge regression, as opposed to a more
computationally costly neural network like ALOGPS. While some molecular rep-
resentations will not strongly correlate with AGyy_ ], they may correlate well
with other properties relevant to the screening process. In the final section, we
demonstrate that the combination of these molecular representations with unsu-
pervised learning methods enables a hierarchical screening approach. Rather than
exhaustively sampling the compounds that map to a single Martini representation,
this would allow for the sampling of separate clusters as a computationally feasible
alternative.
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2.7.1 The set of unique fragments mapping to Martini beads

In our previous work, we were able to predict permeability coefficients for over
500,000 GDB compounds with 10-or-fewer heavy atoms made up of elements
C,F,0, and N, mapping to Martini unimers or dimers. The set of compounds
chosen for this work was obtained by first taking the set of over 400,000 com-
pounds from this data set that mapped to dimers. Using the AUTO-MARTINI
algorithm, each of these molecules was split into the two fragments, which were
output as SMILES strings using the RDKIT package. All repeated fragments were
removed, and the number of heavy atoms per fragment was restricted to 6 only.
After applying all of these filtering steps, the final database consisted of 2035
unique fragments. Note that, despite referring to them as fragments, both during
the coarse-graining process and for the subsequent analysis, hydrogen atoms are
added by RDKIT to satisfy the valency criteria of each fragment, making them into
whole molecules.

2.7.2 Molecular Representations

Each molecule in the data set is first converted from an input SMILE string to a
3-D structure that is then energy minimized using the UFF force field in a molec-
ular mechanics based optimization scheme with the RDKIT package. The atomic
numbers and internal geometries are then taken from this 3-D structure and used
to create the three representations studied in this chapter: the Coulomb Matrix,
the Spectrum of London Axilrod-Teller-Muto vector, and the alchemical smooth
overlap of atomic positions (ASOAP) kernel [119, 120, 122]. For a full descrip-
tion of these representations, see Sec. 1.1.7. Since the number of heavy atoms is
restricted to 6, the dimensionality of the Coulomb Matrices used in this work is
21. We used our own PYTHON code to convert the 3-D conformation generated
by RDKIT into this representation. To convert our database of compounds into
SLATM representations, we applied the QML package made for PYTHON 2.7 [179].
A cutoff value of 0.48 nm was used with a grid spacing of 0.003 nm and 0.03
radians used for the 2-body and 3-body spectra, respectively. As a result, the
length of the SLATM vectors was 6694, making SLATM the representation with
the highest dimensionality out of the three used in this work. Finally, the alchem-
ical SOAP kernel was constructed using the 2035 molecules making up the data
set, meaning that each molecule was represented as an array of 2035 distances to
every other molecule. We used the GLOSIM code made available by the Laboratory
of Computational Science and Modeling at the EPFL, Switzerland to compute the
ASOAP distance matrix. While we have used the terms “similarity” matrix and
“kernel” interchangeably in this section, we clarify that, in much of the KRR lit-
erature (for example as was shown in Eq. 2.11) usually the kernel matrix refers
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to the kernelized similarity matrix, meaning a kernel function (e.g. Gaussian or
Laplacian) has been applied to the similarity matrix. However, the input used
for dimensionality reduction in this study was the un-kernelized similarity matrix,
which is the matrix of pairwise dot-product distances between molecules.

2.7.3 Dimensionality Reduction Results

We initially converted the database of unique fragments mapping to Martini dimers
with 6 heavy atoms into three corresponding high-dimensional databases for each
representation studied in this work: the Coulomb Matrix, SLATM vector, and
ASOAP kernel. In order to qualitatively determine how each of these representa-
tions transforms CCS, the next step was to apply dimensionality reduction meth-
ods in order to visualize this effect. However, it is unclear as to which dimen-
sionality reduction technique would be best suited to accurately understand how
the data is structured in the high-dimensional space. Just as the choice of rep-
resentation could highlight different features of the input molecules, the choice of
dimensionality reduction techniques will also bias the resulting 2-D visualization,
possibly obscuring or exaggerating key structural features of the high-dimensional
space. To assess the extent to which the choice of dimensionality reduction tech-
nique plays a role in projecting the high-dimensional data set into 2-D, we applied
three different methods for each of the three high-dimensional databases: Principal
Component Analysis (PCA), SKETCH-MAP, and Uniform Manifold Approximation
and Projection (UMAP) [99, 104, 106]. The results are shown in Fig. 2.10. What
follows is a discussion of each of these dimensionality reduction techniques and how
well they can be used to visualize our input data sets. For an in-depth explanation
of each of these techniques, we refer you to Chapter 1.

The first dimensionality reduction technique we applied was PCA, a highly pop-
ular linear method [99]. Given a high-dimensional input data set, PCA fits the
data to the hyperplane that minimizes the least squares error over the whole data
set. The vectors tangent to each hyperplane are known as the principal compo-
nents. An equivalent framing of the method is that the principal components are
a set of orthogonal vectors that maximize the variance in the high dimensional
data set. In practice, this means that the principal components are found by
calculating a covariance matrix over the entire data set and then performing an
eigenvalue decomposition on this matrix. The resulting eigenvectors are the prin-
cipal components and their corresponding eigenvalues denote the fraction of the
total variance in the data set that is projected onto that eigenvector. The eigenval-
ues and eigenvectors are decreasingly ordered by the magnitude of the eigenvalues.
Therefore, projecting the data onto the first principal component will give a 1-D
plot maximizing the variance of the data as much as possible, projecting the data
onto the first two components will do the same but projected onto a plane, and so
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Figure 2.10: Plots showing the molecular fragment data set used in this work pro-
jected into 2-D using a variety of different dimensionality reduction
techniques (corresponding to rows in the grid) after encoding the frag-
ments using three different molecular representations (corresponding
to columns in the grid). The molecules are colored based on their
predicted AGyy_, ) value (in kcal/mol) from ALOGPS.
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on. Fig. 2.10 shows PCA plots for each of the three representations, with points
colored by their predicted AGyy () value using ALOGPS. The amount of vari-
ance captured by the first two principal components was approximately 40% for
the Coulomb Matrix and approximately 70% for both the SLATM and ASOAP
data. While the Coulomb Matrix data set seems to show rough clustering behavior,
none of these clusters strongly correlate with AGyyy_, (). On the other hand, both
SLATM and ASOAP appear to correlate nicely with AGyy_, ), with well-defined
clusters. This is somewhat expected, as both of these representations encode local
environments which are defined from the perspective of individual heavy atoms.
However, the SLATM data exhibits much cleaner separation between clusters com-
pared to ASOAP. This is likely due to the composition of the SLATM vector, which
is structured into separate spectra for each type of 2-body and 3-body interaction
(for example all many-body interactions that contain an Oxygen will be set to
zero if a molecule doesn’t have O in it). Because we use an alchemical kernel
in addition to the regular SOAP kernel, this separation due to the discretization
of different interaction types seen in SLATM becomes blurred, which is why the
ASOAP clusters are not as clearly defined. Because both ASOAP and SLATM
correlate strongly with AGyy_,(y], one might naively assume that the clustering
seen in the PCA plots might correspond to the Martini bead types. However,
Fig. 2.10 clearly shows that this is not the case. All of the apolar fragments, which
would map to five different apolar Martini bead types, are found within one or two
clusters only. Similarly, the nonpolar and polar molecules, which would map to the
remaining 9 bead types, dominate the populations of the remaining clusters, with
some of these clusters containing roughly equal numbers of non-polar and polar
molecules. This motivates a data-driven approach for optimizing top-down coarse-
grained models for chemical transferability, which we discuss further in Chapter
3.

The inherent assumption when using PCA to visualize in 2-D is that the under-
lying manifold from which the data is sampled in the high-dimensional space is a
plane, which may not be the case. Many projections of CCS exhibit highly nonlin-
ear behavior, as a small perturbation in chemical composition (for example replac-
ing a C with an N) can result in disproportionately large changes in the resulting
properties. The molecular representations studied in this work may also contain
some of this nonlinear character, meaning that PCA would not accurately repre-
sent the data in 2-D. Therefore, we decided to apply SKETCH-MAP, a nonlinear
dimensionality reduction technique, to our data sets [104]. Specifically, SKETCH-
MAP is essentially a nonlinear version of metric multidimensional scaling, which
aims to preserve the high-dimensional distances in the data set when projecting
to lower dimensions. Note that, if the euclidean distance is used, this is equiva-
lent to PCA. Instead, SKETCH-MAP nonlinearly transforms the high-dimensional
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distances using the following sigmoidal function:

F(R)=1—(1+ (Y2 —1)(R/o)*)~P/4 (2.13)

where R is the high-dimensional distance, and o, A, and B are fitting parameters
of the sigmoid that are specified by the user [104]. The choice of o is especially
important, as distances much smaller than o are set to 0 while distances much
larger than o are set to 1. The design philosophy behind implementing this sig-
moidal function is to prioritize the preservation of the distances between clusters
of data, which should correspond to the chosen ¢ value, rather than preserving
intra-cluster distances, which would tend to 0 after applying the sigmoid function.
In this way, SKETCH-MAP aims to better represent the global structure of the data.
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Figure 2.11: Histogram of Euclidean distances (or dot-product distances for
ASOAP) in the high-dimensional space created when expressing the
data set used in this work in terms of their Coulomb Matrix (left),
SLATM (middle), and ASOAP (right) representations. Additionally,
the red line in each case is the sigmoidal function used to transform
these distances using SKETCH-MAP.

Fig. 2.11 shows the distribution of Euclidean distances between all data points
for each of the three molecular representations. Also shown are the sigmoidal func-
tions that transform these high dimensional distances for each of the corresponding
SKETCH-MAP plots shown in Fig. 2.10. The SKETCH-MAP plots show similar quali-
ties to those observed from the PCA plots. The weakly defined clusters seen in the
Coulomb Matrix data set are further blurred by applying the sigmoidal function,
and the lack of global correlation with AGyy_ ) is similarly exacerbated. On
the other hand, the clustering seen in the PCA plots is mostly reproduced for the
SLATM and ASOAP cases, with the clusters appearing slightly more compressed
here. This compression effect is likely due to the fact that the intra-cluster dis-
tance is much smaller than the o values of the sigmoidal function, making these
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distances tend to zero in the low dimensional output, whereas these distances are
linearly scaled when applying PCA.

As an aside, we now discuss the applicability of the “curse of dimensionality”, a
term coined by Bellman referring to the exponential increase in volume that occurs
when increasing the dimensionality of data points and using a Euclidean distance
metric [180]. Aggarwal et al. confirmed this effect, demonstrating that the ra-
tio between a data points nearest neighbor and farthest neighbor approaches 1 as
dimension increases, meaning that all data points are roughly equidistant when
using a Euclidean distance metric [181]. The curse of dimensionality can therefore
be a major barrier to identification of clusters in a high-dimensional space. How-
ever, the results of these works assumed that the input data set had a uniform
distribution, corresponding to a unimodal distribution of distances, becoming nar-
rower as dimension increased. Remarkably, Fig. 2.11 shows that only the Coulomb
Matrix falls into this trap, with a single unimodal distribution of distances despite
having the lowest dimensionality of the three representations used by two orders
of magnitude. Using both SLATM and ASOAP, however, there appear to be mul-
tiple peaks present, suggesting that, even with dimensionalities of 6694 and 2035,
respectively, there is clustering occurring. The plots of the data projected into
2-D seen in Fig. 2.10 also show a significantly higher degree of clustering when
using these two representations as compared to the Coulomb Matrix. Bennett et
al. showed that, even for high-dimensional data, multimodal distributions in the
Euclidean distances between points indicate that the curse of dimensionality does
not apply [182]. Essentially, if there is a high pairwise cluster stability, meaning
that the distance between points within a cluster is drastically reduced compared
to the inter-cluster distance, the euclidean distance remains useful. Houle et al.
further noted that this effect will occur if there is a high degree of contrast be-
tween the “important” and “unimportant” dimensions in the data set [183]. This
points to the hierarchical nature that is implicitly built into both the SLATM and
ASOAP representations. The stochiometric contribution to the representation
shows the most variance, causing molecules with similar chemical composition to
first be clustered together, with the geometrical differences appearing within in-
dividual clusters. For example, the 1-body terms in the SLATM vector show the
greatest variance due to the fact that they are simply a sum of the total number
of valence electrons for each atom type. This means that they will either have
values of 0 if the specific atom type is not present in the molecule, or they will
be equal to the number of valence electrons times the number of the specific atom
type present in the molecule. On the other hand, the 1/r® and 1/r° scaling ap-
plied to the 2-body and 3-body terms dictates that the variance of these spectra is
significantly reduced by comparison, ensuring that major clusters will be defined
based on chemical composition and intra-cluster distributions will depend on the
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internal geometry of the molecule.

One of the major limitations of the SKETCH-MAP approach is that it assumes
a single length-scale, and thus a single o value, is necessary to separate clusters
in the high-dimensional data set. This means that SKETCH-MAP is not useful for
visualizing data with multiple inter-cluster length-scales. For example, the com-
pression effect seen in the SKETCH-MAP plots in Fig. 2.10 makes it difficult to
deduce how many sub-clusters there may be in each cluster, and several SKETCH-
MAP plots may be necessary, each with different ¢ values, in order to ascertain
the localized structure of the data within a cluster. As an alternative to this ap-
proach, we applied UMAP as our third and final dimensionality reduction method
in this work [106]. UMAP constructs a fuzzy topological manifold using the high-
dimensional data, assuming that the data can itself be reduced to a set of locally
connected topological sets, each with its own distance metric. This distance metric
is determined by fitting a Gaussian function to each point as well as its k-nearest
neighbors, where k is a user-specified input parameter. After constructing this
high-dimensional topological manifold, the algorithm aims to construct a corre-
sponding low-dimensional manifold and minimizes the cross-entropy between the
two. The data is then embedded into 2-D using the optimized low-dimensional
manifold. Because the definition of distance varies across the high-dimensional
manifold, UMAP is highly successful for visualizing local clusters of similar data
points. However, for the same reason, the degree to which UMAP can approximate
the global structure of the high-dimensional data cannot be easily assessed using a
global metric. Two factors affect this: (i) the number of nearest neighbors consid-
ered when defining local distance, with more neighbors resulting in the preservation
of more global structure, and (ii) the optimization of the cross-entropy is not a
convex problem, but is solved using stochastic optimization methods. Therefore,
even when using a large k value, it is still possible to get stuck in a local minimum.
These two effects result in well defined clusters that can seem randomly placed in
comparison to each other when using UMAP.

To demonstrate this, we first vary the number of nearest neighbors considered
by UMAP when constructing the locally connected sets used to define the high-
dimensional manifold. The results are shown in the bottom three rows of Fig. 2.10.
First, for £ = 5, we see many small disconnected clusters. This is especially true
for SLATM, where many single points or pairs are scattered over the plot. For
both SLATM and ASOAP, as k increases from 5 to 50, many of these points are
coalesced into fewer clusters overall. On the other hand, even with k£ = 5, the
CM plot suggests large amounts of clustering. However, this indicates that all of
the points are somewhat uniformly distributed in the high-dimensional space, and
each individual point has much more than 5 points that are all equidistant to it.
This also agrees with the distance distribution seen in Fig. 2.11.
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We further investigate the extent to which each of these dimensionality-reduction
methods preserve the global structure of the data by calculating the joint prob-
ability density functions for the distances in high-dimensional spaces versus the
distances in 2-D, shown in Fig. 2.12 [105]. Unsurprisingly, PCA does the best
job at preserving the distances, despite the low percentage of the variance cap-
tured for each representation. SKETCH-MAP systematically underestimates the
2-D distance, but maintains the trend of large distances remaining large even af-
ter reducing the dimension. As expected, there is very little correlation between
the high-dimensional and 2-D distances when using UMAP, as, by construction,
UMAP defines a different distance metric for each point in the high-dimensional
space. However, the fact that the improvement is only slight despite increasing
the number of nearest neighbors by a factor of 10 may suggest that the algorithm
was caught in a local minimum when optimizing the lower-dimensional manifold.

This poses a problem when using UMAP. The probability density functions for
PCA and SKETCH-MAP shown in Fig. 2.12 allow us to trust that the overall global
structure of the data is being captured when using these methods. Since UMAP
emphasizes local clustering rather than global structure, a different approach is
needed for validation of the UMAP. One possible means to accomplish this could
be to find clusters of points in the high-D space and see how well UMAP reproduces
these clusters in the low-D space.

In order to test this hypothesis, we performed a clustering analysis on the
SLATM data set. Both Figs. 2.10 and 2.11, indicate that this data set con-
sists of well-separated clusters in the high-dimensional space. We use a clustering
algorithm that relies on a hierarchical density-based approach, called HDBSCAN
originally developed by Campello et al. [97, 98]. For a full description of how
the HDBSCAN algorithm works, please refer to Chapter 1, as we provide only a
cursory description here. The data is treated as a connected graph with data
points representing nodes. The edges connecting these nodes are weighted accord-
ing to a localized distance metric that depends on the nearest neighbor distances
for each point in the data set. Rather than take a single cut-off length-scale or
cut-off density as input, HDBSCAN requires the size of the smallest possible cluster
to be defined in addition to the number of nearest neighbors accounted for when
reweighting the graph edges. A dendrogram is then calculated that spans the en-
tire data set, and the stability of clusters is determined by how “long-lived” they
are as the furthest points from the cluster center are systematically removed until
the minimum cluster size is reached. This “lifetime” metric essentially answers
the following question: if the furthest assigned data point were removed, would
the remaining data set still be considered a single cluster, or would it have to
be split into separate clusters? The final clusters that are chosen are those that
are the most stable under this criterion. We applied HDBSCAN as implemented
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Figure 2.12: Smoothed 2-D histograms portraying the joint probability density
functions between the high-dimensional (R) and low-dimensional (r)
Euclidean distances for each of the dimensionality reduction tech-
niques and molecular representations used in this work. The distances
are scaled for each method such that the maximum distance is 10. The
black line denotes R = 7.
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in PYTHON 2.7 to the high-dimensional SLATM data set, as well as all of the
2-D plots of the SLATM data set, setting the minimum cluster size to 5 points
for all cases. As previously discussed, the curse of dimensionality does not seem
to play a significant role when using the SLATM representation. In addition, the
Mutual Reachability Distance metric used by HDBSCAN to initally transform the
data implicitly takes into account the shared nearest neighbor distances between
points, which has been shown to be a well-performing metric in high-dimensional
spaces [183]. The number of clusters found in the high-D data set was 176. Un-
surprisingly, both PCA and SKETCH-MAP showed far fewer clusters with 138 and
132 clusters found, respectively. Interestingly, the number of clusters found when
using UMAP varied significantly as a function of the number of nearest-neighbors
considered, from 195 when k£ = 5 to 140 when k£ = 15 and 103 when k& = 50. This
suggested a means of choosing the k£ parameter such that the number of clusters
would match what was given from the high-dimensional data. Indeed, we found
that choosing k£ = 9 resulted in a UMAP with the number of clusters being equal
to 175, a promising match to the high-dimensional result of 176. We then com-
pared the cluster assignments between the high-dimensional data set and this new
UMAP. Out of the 176 clusters found in the high-dimensional space, 160 of these
were perfectly reproduced in the 2-D space. For 7 of these remaining 16 clusters,
over 70 % of the cluster was correctly assigned. This means that approximately 95
% of the clustering was preserved when using UMAP to construct the 2-D space,
with only 155 out of 2035 points incorrectly labeled as noise or as belonging to
a different cluster. This shows that using UMAP in combination with a cluster-
ing scheme like HDBSCAN provides a means to correctly tune the parameters used
for the visualization and assess the validity of the result by using the number of
clusters, rather than distance, as a global metric. However, our success in apply-
ing this clustering approach was also due to the use of the SLATM vector, which
demonstrated strong clustering behavior even in the high-dimensional space. We
recommend a similar level of investigation (i.e., high-dimensional distance distri-
butions, preliminary linear dimensionality reduction plots) to assess the quality of
other high-dimensional data sets when using this approach. We further note that,
by increasing the minimum cluster size input parameter used by HDBSCAN, it is
possible to identify the larger clusters seen in the PCA and SKETCH-MAP plots,
though the information regarding the sub-clusters is consequently lost. Overall,
these unsupervised machine learning methods are highly useful tools for determin-
ing what underlying structure (if any) exists in a given data set and obtaining a
more intuitive sense of the data.

The contrast between UMAP and the other two methods of dimensionality reduc-

tion, PCA and SKETCH-MAP, is similar to the contrast between the bottom-up and
top-down approaches used in another dimensionality-reduction technique: coarse-
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graining. The top-down approach seeks to develop a CG model that reproduces
certain macroscopic properties. For example, the Martini model aims to correctly
model the hydrophobicity of molecules over a wide range of CCS. Similarly, both
PCA and SKETCH-MAP emphasize the global structure of the high-dimensional
data, and show a global trend with respect to a macroscopic property, AGw _, 0y
for both the SLATM and ASOAP representations. Therefore, dimensionality re-
duction techniques that emphasize global structure are a good starting point for
coarse-graining CCS in a top-down manner. Fig. 2.10 shows that the Martini
bead types do not seem to match the clusters shown when using PCA or SKETCH-
MAP. This suggests that a data-driven top-down coarse-graining approach using
AGyy_, ) may result in a partitioning of the CCS that is more efficient than
Martini for exploring CCS. We apply this data-driven optimization and determine
its effect on coarse-grained screening efficiency in Chapter 3. Bottom-up coarse-
graining, however, takes a higher-resolution model and coarsens it by removing
extraneous degrees of freedom. In this analogy, the higher-resolution model is
the high-dimensional data set taken as input. UMAP is then able to visualize the
localized clusters that are identified in this space, which is validated using HDB-
SCAN. In this work, we were able to reduce the data from 2035 input fragments
to 176 representative clusters, potentially paving the way for a bottom-up ap-
proach to coarse-graining CCS. We validate this approach in Chapter 4, in which
we construct a chemically-transferable bottom-up coarse-grained model using the
unsupervised machine learning methods described here.

2.8 Predicting partition free energies using SLATM

Both PCA and SKETCH-MAP plots seen in Fig. 2.10 demonstrate a clear correla-
tion with AGyy_, 9] when using the SLATM vector. In order to further investigate
this correlation, we parameterize a KRR model trained on experimental data and
compare it’s accuracy to that of the ALOGPS neural network. The experimental
data was obtained from the National Cancer Institute (NCI) database and was re-
stricted to molecules with twenty or fewer heavy atoms, resulting in 2324 molecules
total [184].The data itself consisted of the SMILES strings of each molecule as well
as the log of the water/octanol partition coefficient, logoP. Note that this is sep-
arate from the log of the membrane permeability coefficient discussed previously,
and it is related to AGyy_ () by the following Arrhenius-type relation:

1 (log,, P
AG =— 2.14
W-01™ 5 <10g10 6) 24

where kg is the Boltzmann constant and the temperature 7" is set to 300 Kelvin.
After generating 3-D structures from an input SMILES string, the molecules were
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2 The High-Throughput Coarse-Grained Simulation Method

then converted into molecular SLATM representations using the QML package.
Just as was done for the prediction of partition free energies, as seen in Eqn. 2.11,
we used a Laplacian kernel with the same ¢ and A values (although these were also
optimized in a separate grid search) but with a Euclidean L, norm rather than
the city-block metric used in the earlier work. We then constructed the learning
curve shown in Fig. 2.13, with the error bars denoting the standard deviation
corresponding to the distribution of predicted mean absolute errors when applying
10-fold randomized cross validation. The resulting model showed an MAE of 0.32
log units with a standard deviation of 0.03 log units, corresponding to an error in
AGyy_, 01 of 0.44 £ 0.05 kecal/mol. The ALOGPS neural-network-based program
was also used to predict the error of the same experimental data set, and an MAE
of 0.24 log units was obtained, corresponding to an error in AGyy_ ) of 0.33
kcal /mol, only slightly outperforming our model.

We now provide a description of the ALOGPS program so as to better compare
the two models tested. ALOGPS uses an associative neural network approach to
predict log;, P [163, 175]. Given an input SMILES string, a 3-D conformation
of the molecule is constructed, and the input vector consists of the number of
non-Hydrogen atoms, the number of Hydrogen atoms, and then a series of 73 elec-
trotopological state (e-state) indices, which were initially developed by Hall and
Kier [185]. These e-state indices can be subdivided into atom-type and bond-type
indices, which take into account the electronic properties, topology, and geome-
try of the molecule as it pertains to a specific atom or bond. For the calculation
of atom-type indices, each atom is given an intrinsic value, which is the ratio of
valence to sigma orbital electrons while covalently bonded in the input molecule.
The e-state index for the atom is then given by summing over all pairwise dif-
ferences in intrinsic value between that atom and every other atom, divided by
the squared distance between the two atoms. An intrinsic bond value for a bond
between two atoms is calculated by averaging the intrinsic values of the atoms
that make up the bond. The bond-type e-state index is then obtained by doing
a similar pairwise-sum over bonds as was done for the atomic indices. This input
feature vector is then fed into an ensemble of 64 dense, feed-forward neural net-
works, with each network being trained on a different portion of the total data
set. For a new input molecule, the output property is then given by performing a
weighted average over the output of each neural network such that the variance of
the individual networks is accounted for. Each neural network consisted of a single
hidden layer of only 5 neurons. Therefore, the total parameter space for the entire
neural network ensemble was 24,384 weights and biases in total. The network was
trained on half of the 12,908 molecules randomly selected from the PHYSPROP
database, with the remaining half used as a test set [186]. The resulting MAE
was found to be 0.26 log units. Unfortunately, we were unable to find this specific
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version of the PHYSPROP database, and so were unable to test the accuracy of
our KRR model on this data set.
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Figure 2.13: Learning curve corresponding to the KRR model that used the
SLATM representation to predict the log of the water/octanol parti-
tion coefficient. The error bars correspond to the standard deviation
when running 10-fold randomized cross validation.

Remarkably, our model achieves an accuracy within 0.11 kcal /mol of ALOGPS
despite being trained using a data set roughly 1/3rd the size of that used to train
ALOGPS. Furthermore, the number of parameters optimized when training the
KRR model is equivalent to the number of molecules used in training, 2324, which
is approximately a full order of magnitude less than the number of parameters
optimized in the neural network approach. On the other hand, the dimensionality
of the input feature used in the KRR model is approximately two orders of magni-
tude greater than the 75 input features fed into the neural network. This speaks to
the fundamental differences between the KRR approach versus the neural network
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2 The High-Throughput Coarse-Grained Simulation Method

approach. The KRR model is successful due to the fact that the SLATM vector
already encodes much of the relevant information, minimizing the amount of data
needed for the model to attain high predictive power. On the other hand, the
high parameter space of the associative neural network used by ALOGPS, as well
as the increased training set size, allows for the network to “learn” an optimal rep-
resentation before predicting the target property. Notably, both our KRR model
and ALOGPS only require a single conformation of the input molecule to predict a
thermodynamic property that is normally obtained by averaging over many con-
formations. This may indicate that the conformations chosen were already very
close to the equilibrium conformations for the given molecules. Further testing to
see how including a conformational average rather than a single conformation, as
was recently done by Rauer et al., is necessary [187].

2.9 Hierarchical Screening

Fig. 2.10 shows that clustering is a viable means to hierarchically screen com-
pounds that may all map to a single Martini representation. Using the SLATM
vector or the ASOAP kernel, enables a finer exploration of CCS with respect to
AGyy_, ) when compared to Martini. However, since Martini already accounts
for AGyy_, 01, a second level of screening using the same property may be re-
dundant, and other properties, such as the molecule’s size and shape may be of
greater interest at this point. While the Coulomb Matrix didn’t correlate well
with AGyw_, (], it was the cheapest out of all representations to generate, with
the lowest dimensionality of the representations investigated. In order to deter-
mine whether or not this type of representation could be applicable for screening
based on molecular size and shape, we applied a modified version of the Coulomb
Matrix that did not account for atom type (i.e., setting all atom types to C) to
only encode the internal geometry of the molecules in terms of their pairwise dis-
tances. Note that this is essentially equivalent to the Weyl Matrix of pairwise
distances [118]. Fig. 2.14 shows the application of this representation to the set
of GDB molecules with 7 heavy atoms that all mapped to a single Martini bead,
numbering 2177 molecules in total. The 28 dimensional space was projected into
2-D using SKETCH-MAP and HDBSCAN was used on the high-dimensional data to
identify the largest clusters, with the minimum cluster size now set to 15. The
clustering analysis revealed that each cluster corresponded to a particular molecu-
lar scaffold, as shown in Fig. 2.14. Since molecules that mapped to every Martini
bead type are found in every cluster, filtering first by bead type and then by
molecular scaffold could be an effective means to screen compounds. Rather than
exhaustively sample all of the compounds mapping to a single Martini representa-
tion, representative molecules from each cluster can be sampled. The clusters to
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which the best performing molecules are assigned could then be further clustered
using a different representation that highlights other relevant properties, and so
on, until a reasonable number of test compounds is achieved. If coupled with a
back-mapping scheme similar to those recently proposed that rely on generative
adversarial neural networks, the sampling of these clusters could be integrated into
an online high-throughput workflow [188]. This hierarchical screening approach is
currently being tested in our group and will be the subject of a future work.
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Figure 2.14: Sketch-map of molecules corresponding to Martini unimers with 7
heavy atoms. The molecules have been expressed as Coulomb Ma-
trices, but without accounting for atom type (essentially the same
as a Weyl matrix). Each point is colored by its Martini bead type.
The boundary colors correspond to clusters identified using HDBSCAN.
These clusters correspond to different molecular scaffolds, which al-
low for different scaffolds to be sampled when performing hierarchical
screening.
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2.10 Conclusions

In this chapter, we first introduced the HTCG approach as a means to quickly con-
struct structure—property relationships that span CCS. By applying this method
using the top-down Martini force field, we were able to identify linear relationships
between key thermodynamic state points when modeling the behavior of small
molecules in a lipid bilayer membrane environment. A single, easily-accessible pa-
rameter, AGyy_, )] is the only required input in order to predict the transfer free
energies between these state points. We extended this structure-property rela-
tionship by introducing a second descriptor, the acidity, onto which we could then
project the coarse-grained permeabilities for all Martini unimers and dimers. We
then demonstrated that further exploration of coarse-grained CCS, corresponding
to Martini trimers and tetramers, was possible by implementing a Monte-Carlo
scheme that used alchemical transformations to construct and optimize thermo-
dynamic cycles that efficiently sampled the CG compound space. A KRR model
was then trained on these results to further expand the transferability of these
structure property relationships. In implementing the HTCG approach, we also
demonstrated a drastic reduction of CCS when coarse-graining using Martini due
to the degeneracy of molecules that were mapped to the same Martini represen-
tation. Approximately 1.8 million molecules in total were mapped to Martini
unimers, dimers, and trimers, using the AUTO-MARTINI algorithm. By performing
a functional group analysis on these compounds, we were able to provide a means
to implement inverse molecular design when targeting a specific membrane perme-
ability. Next, we assessed three different molecular representations as well as three
different dimensionality reduction techniques in order to determine whether unsu-
pervised ML could provide a means for further screening in a hierarchical manner.
We found that PCA and SKETCH-MAP preserve the global structure of the high-
dimensional data while the UMAP visualizations consisted of well-separated clusters
which were randomly placed in relation to each other. Additionally, the SLATM
and ASOAP representations were able to relate chemical structure to AGyy_, ),
whereas the Coulomb Matrix did not show a strong correlation to this property.
This insight led to the parameterization of a KRR model using the SLATM vec-
tor that could compete with the ALOGPS program, although it remains unclear
as to why a single input configuration was sufficient to achieve such high accu-
racy when predicting a thermodynamic property. We showed that even relatively
low-dimensional representations, like the modified Coulomb Matrix, could iden-
tify molecular scaffolds which could be used in a hierarchical screening approach.
Further work is currently underway to apply the HTCG approach for other target
properties. Finally, it is clear that the clusters obtained from this unsupervised
ML approach do not always correspond to specific Martini bead types. This sug-
gests a more efficient top-down assignment of hydrophobicity values for each bead
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type that could be useful for better covering CCS. We detail our approach towards
deriving a data-driven version of Martini that more efficiently covers CCS, as well
as the inherent limits that arise when relating Martini-like top-down models to
specific chemical structures, in the next chapter.
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3 Resolution limit of data-driven
top-down coarse-grained models
spanning chemical space

In the previous chapter, we put forward two methods for coarse-graining chemi-
cal compound space (CCS), analogous to two different dimensionality reduction
techniques. We saw that, with the correct choice of representation and dimension-
ality reduction technique, a clear trend was seen with respect to a macroscopic
thermodynamic property, AGyy_, - The chemical structure of the molecules,
and specifically the presence of certain hetero-atom substitutions were primarily
responsible for the overall clustering, in addition to dictating the partitioning be-
havior of these compounds. This overall correlation between the encoded chemistry
and the AGyy_, ()] suggested that even projecting the CCS onto the 1-D AGvyy_, ()
axis would still preserve sufficient chemical information, such that dominant chem-
ical motifs could be easily inferred from a given AGyy_, () value. In this chapter,
we expand on the idea that these global dimensionality reduction techniques can
be likened to a top-down coarse-graining of CCS because both aim to capture the
global structure of an input data set of compounds.

Although the data set of compounds in the previous analysis corresponded to
fragments which mapped to Martini dimers, the clustering observed did not neatly
correspond to the Martini bead types, with several apolar bead-types found pre-
dominantly in two clusters. This was somewhat expected, as the Martini model
was not designed to optimally represent CCS projected onto a descriptor quan-
tifying hydrophobicity, like AGyy_, ;- This observation, along with the insights
highlighted in the previous chapter, motivate us to develop multiple top-down
coarse-grained models that more effectively represent CCS when projected onto
AGyy_,]- We use a data-driven approach that allows us to vary the number
of bead types in each model, corresponding to varying resolutions in AGyy_, )
space. This enables a hierarchical-screening approach from a top-down perspec-
tive, with models of higher resolution used to screen increasingly narrower regions
of CCS with similarly hydrophobic compounds. While increasing the resolution of
these models can provide a stronger indication as to the chemical structures that
give rise to the desired properties, we demonstrate that this top-down approach
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is limited by the use of a single descriptor, with negligible increases in screening
efficiency as the number of bead types increases.

This chapter has been previously published as the following research article
listed below. The article is reproduced here with kind permission from the other
authors and the Journal of Chemical Physics which published this work.

Kiran H. Kanekal and Tristan Bereau

Resolution limit of data-driven coarse-grained models spanning
chemical space

The Journal of Chemical Physics 151:164106, 2019.

DOI: 10.1063/1.5119101

(© 2019 AIP Publishing

We again follow the convention of the previous chapter of using a * symbol to
specify which sections are taken from the above publication whereas sections that
are unique to this chapter have no such symbol.

3.1 Introduction *

Molecular design is a cornerstone of materials science, requiring a fundamental
understanding of the relationships between molecular structure and the resulting
properties. Traditionally, these structure—property relationships[189] only arise
after multiple rounds of screening and discovery of new materials [190-194]. These
screening approaches constitute examples of direct molecular design, in which the
space of all chemical compounds, known as the chemical compound space (CCS),
is explored to determine the most suitable chemistry for the target application.
Direct molecular design can be interpreted as projecting a hypersurface in the high-
dimensional CCS onto a lower dimensional space defined by certain key molecular
descriptors that strongly correlate with the desired property. In contrast, inverse
molecular design, in which a structure—property relationship is used to infer a
suitable chemical structure from a desired property, remains a “holy grail” of
materials science. The main obstacle to achieving this goal is the inability to
quickly establish structure—property relationships that can span broad regions of
CCS. This is an exceedingly difficult task, given that the size of CCS was estimated
to be 10% for drug-like molecules less than 500 Da [4]. Experimentally, this process
is inhibited due to both the material and time cost associated with synthesizing
and testing a large variety of chemistries that are necessary to infer a relation that
is both robust and accurate enough to enable inverse molecular design.
Computationally, recent advancements in processing power and in machine learn-
ing have enabled several efficient methods for estimating the electronic properties
of a large variety of materials [195-200]. These methods have the added benefit of
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Figure 3.1: A cartoon schematic showing the projection of CCS onto the hydropho-
bicity descriptor AGyy_, ], allowing for the creation of top-down
chemically-transferable coarse-grained models with a) five, b) nine, ¢)
twelve, and d) sixteen bead types. The number of bead types included
in these models defines the degree to which CCS is partitioned on the
AGyy_, ) axis. By varying the number of bead types in each model,
we obtain greater insight as to the range of chemistries spanned by a
single bead type.
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screening molecules that cannot be easily synthesized, and can thus motivate (or
demotivate) the experimental exploration of these chemistries. However, there has
been relatively little success in applying computational high-throughput screening
methods to determine the stability of chemical compounds in soft-matter systems
for which thermal fluctuations play a critical role [201, 202]. Force-field based
methods, such as molecular dynamics simulations, are typically used to account
for the immense number of configurations that result from thermal fluctuations
in these systems. Unfortunately, due to the extensive computational resources
required, a high-throughput scheme based on atomistic molecular dynamics sim-
ulations is currently unfeasible for spanning the large regions of CCS needed to
obtain broadly applicable structure—property relationships.

Coarse-grained molecular dynamics simulations provide a means to significantly
reduce the computational expense relative to fully atomistic simulations while still
capturing the relevant physical properties [32, 34, 136, 203]. Coarse-grained rep-
resentations of molecules result from mapping groups of atoms to coarse-grained
“pseudo-atoms” or beads. The governing interactions between beads are deter-
mined such that the desired properties of the atomistic system are retained. This
usually corresponds to a smoothing of the underlying free-energy landscape, al-
lowing for more efficient sampling. Conventionally, coarse-graining is applied to a
single molecule with the goal of efficiently sampling a specific system of interest.
The coarse-grained potentials are obtained via one of several possible methods
(e.g., iterative Boltzmann inversion[76, 204], force-matching[77, 205]). However
these methods are computationally expensive, requiring an initial atomistic simu-
lation that sufficiently explores the underlying free energy landscape of the system
of interest [206]. Therefore, adapting coarse-grained molecular dynamics simu-
lations to high-throughput screening of chemical compounds requires flexible yet
reliable mapping and force field parameterization methods that do not rely on
results from higher-resolution simulations for each compound screened.

The coarse-grained Martini force field has become widely used to simulate bi-
ological systems as it provides a robust set of transferable force field parameters
by constructing biomolecules from a small set of bead types [142, 144, 207]. The
Martini model is a top-down model, which maps an atomistic compound or molec-
ular fragment to a coarse-grained site based on its partitioning between aqueous
and hydrophobic environments. In the context of molecular design, the main
advantage that Martini provides is its chemical transferability. While the force
field was explicitly parameterized for a set of specific molecules, a single Martini
bead can represent several different chemistries that share similar oil/water par-
titioning characteristics. Thus, the main feature captured by the Martini model
is hydrophobicity, which can act as a key driving force in the physics of soft-
matter systems. Rather than running a single atomistic simulation that yields a
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single data point in CCS, a Martini coarse-grained molecular dynamics simulation
provides a representative point in CCS, corresponding to the average behavior
of all the chemistries that lay in the region surrounding that point. Thus, high-
throughput coarse-grained (HTCG) simulations that use chemically-transferable
force fields, such as Martini, are advantageous because they span vast regions of
CCS to quickly infer the structure—property relationships and chemical descriptors
that can be used to enable inverse molecular design at any resolution. Menichetti et
al. recently demonstrated this by running Martini HTCG simulations to construct
a structure—property relationship describing the thermodynamics of the insertion
of a small organic molecule into a biological membrane across CCS [208, 209).
In doing so, they discovered a linear relationship between the bulk partitioning
behavior of the solute and its potential of mean force. They were then able to
identify a structure—property hypersurface to obtain membrane permeabilities for
these solute molecules. Using the Generated DataBase[73, 161] (GDB), a system-
atically computer-generated set of organic drug-like compounds, as a proxy for
CCS, we then related the regions of this surface to regions of CCS that were dom-
inated by specific chemical moieties, enabling inverse molecular design of small
molecules given a desired permeability. The question remains: how representa-
tive of CCS is the Martini force field? Given that Martini was designed to re-
produce the partitioning behavior of certain solvents as well as the properties of
lipid-bilayer membranes, is there a way to accurately parameterize a transferable
coarse-grained force field with the goal of optimizing its coverage of CCS? In the
context of high-throughput coarse-grained simulations that use Martini, creating
a structure—property relationship that enables inverse design requires an under-
standing of the chemistry that is representative of a specific bead type. The met-
rics used in assigning specific chemical fragments to Martini bead types mainly
consist of several water/oil partitioning free energies, although bulk liquid den-
sities and membrane-specific properties have also been used [89, 210]. Here, we
focus specifically on the water/octanol partitioning free energy (although other wa-
ter/oil partitioning free energies could also be used as they also effectively encode
hydrophobicity). Therefore, an intuition for which chemistry maps to a given bead
type can only be obtained by understanding how AGyy_, ) varies as a function
of chemistry. Given that the number of heavy (non-hydrogen) atoms that usually
map to a Martini bead is around four, we can think of each bead as representing
a small carbon scaffold perturbed to some degree by either replacing carbons with
other heavy atom types (e.g., oxygen, nitrogen, or fluorine) or by replacing single
bonds with double or triple bonds. We define a functional group as being one or
a localized combination of these types of perturbations.

In this work, we quantify the information loss that occurs when a top-down
coarse-grained model, like Martini, is used to reduce the resolution of CCS. Ad-
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ditionally, we parameterize three sets of coarse-grained force fields in the Martini
framework. In this context, we use the terms “force field” and “model” inter-
changeably, defined as a set of parameters which describe the interactions between
a fixed number of coarse-grained representations called bead types. Each force field
developed in this work consists of five, nine, and sixteen neutral bead types, as well
as two extra types to account for hydrogen-bond donors and acceptors. We observe
that Martini does not provide the most efficient reduction of CCS. We show that
the nine-bead force field reduces CCS to the same degree as Martini despite hav-
ing three fewer bead types, and that further increasing the number of bead types
yields negligible improvements in the performance of the model. The models are
validated by performing coarse-grained simulations to calculate the water/octanol
partitioning free energies of approximately 500 compounds for which experimen-
tal data is available. Finally, we demonstrate that the main advantage of a force
field with a large number of bead types is the reduction of uncertainty when back-
mapping these coarse-grained representations to real chemical functional groups.
Just as decreasing the resolution of the coarse-grained mapping reduces the reso-
lution of the potential energy landscape, a reduction in the number of bead types
of a chemically-transferable coarse-grained force field allows for an increased de-
generacy of chemical fragments that map to a single bead type, illustrated in
Fig. 3.1. Ideally, a well-designed chemically-transferable coarse-grained force field
would contain some number of bead types that can be intuitively back-mapped to
single chemical functional groups. However, the size of a single functional group
is small relative to the size of a Martini bead, such that many functional groups
could be identified within a fragment mapping to a single Martini bead. Here, we
demonstrate that this mismatch between the size of a Martini bead and a single
functional group requires additional constraints in order to identify the unique
chemistry that maps to each bead type. Incorporating these constraints into a
Bayesian formalism yields probabilities of specific chemistries mapping to a given
bead type, further promoting inverse molecular design. However, even these ad-
ditional constraints allow for the same functional groups to be present in multiple
bead types, indicating a natural resolution limit when using AGyy_, (] as the sole
basis for a chemically-transferable, top-down coarse-grained model.

3.2 Methods *

Note that a large amount of data referenced in this chapter is available in a ZENODO
repository for download. [211]
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3.2.1 The Auto-Martini Algorithm *

This work relies on the AUTO-MARTINT algorithm initially developed by Bereau and
Kremer [139]. The algorithm first determines an optimal mapping for an organic
small molecule. The mapping provides the number of coarse-grained beads used
to represent the molecule as well as their placement. A mapping cost function is
minimized for each molecule so as to optimize both the number and placement of
beads used in its coarse-grained representation. The assignment of coarse-grained
potentials to each bead (bead-typing) occurs by assigning an existing Martini
bead type that has the closest matched water/octanol partitioning free energy
(AGyy_, 1) with that of the molecular fragment encapsulated by the bead. The
partition coefficients of these fragments are obtained by using ALOGPS,[163, 175] a
neural network algorithm that predicts these values given the chemical structure
of the fragment.

Several changes were made to the AUTO-MARTINI code in order to increase its
accuracy when applied to a large and varied database such as the GDB. The
“lonely atom penalty”[139], which weights the effect of leaving single heavy atoms
outside the van der Waals radii of the Martini beads, was increased slightly from
0.20 to 0.28. Additionally, the “additivity check” was removed for molecules that
map to single beads. This additivity check was designed to ensure that the voronoi
decomposition of molecules into fragments and the subsequent selection of bead
types for each fragment was sensible (the sum of the AGyy ) values for each
bead should be within a cutoff value when compared to the AGyy_ ) of the
entire molecule). This was enacted in order to resolve an issue in which molecules
that were meant to be mapped to a single bead (e.g. propanol) were unable to
be successfully mapped using the code. The effect of these two changes on the
distributions of AGyy_, ) is shown in Fig. 3.2a and b.

The removal of the additivity check for molecules mapping to single beads caused
the gap in the distribution in Fig. 3.2a to no longer appear, meaning that several
molecules that would normally map to a single bead were excluded because they
failed the additivity check, which should not be applied for single beads. Note
that there is a noticeable dip in the coarse-grained distribution of Fig. 3.2. This
corresponds to the NO bead type, which is underpopulated when compared to the
corresponding region in the atomistic distribution. We found that this was an
artifact due to a cut-off value in the code that caused molecules to be mapped to
a donor-acceptor type of bead even if their AGyy_, ) was closer to the NO value.
By reducing this cut-off value, we were able to obtain the distribution shown in
Fig. 3.7, and is also shown in Fig. 3.8c. The final change has to do with the assign-
ment of ring molecules. The standard approach for ring molecules was to use the
entire set of atoms in the ring for each fragment and weight each bead’s contribu-
tion by a scaling factor. For all ring molecules, this was previously set to 2/3 so as
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Figure 3.2: Comparison of the AGyy _, () distributions for molecules mapping to a
single Martini bead using the (a) originally published AUTO-MARTINI
code and (b) after increasing the lonely atom penalty and removing
the additivity requirement for single beads.

to reproduce the Martini parameterizations for benzene and cyclohexane [139, 210].
However, in order to optimize the mappings for the multitudes of ring-containing
molecules in the GDB, we found that a factor of 1/2 for 5-membered rings and
1/3 for six-membered rings yielded much better agreement with respect to the
ALOGPS predictions for the ring molecules. The results are shown in Fig. 3.3 for
both 5-membered and 6-membered rings. Changing these scaling factors resulted
in an decrease in the MAE from 1.64 kcal/mol to 0.946 kcal/mol for 6-membered
rings and a decrease from 0.893 kcal/mol to 0.807 kcal/mol for the 5-membered
rings. All of these updates are included in the latest version of the code which is
freely available via a GITHUB repository [212].

Using the refined AUTO-MARTINT algorithm, approximately 3.5 million molecules
with ten heavy atoms or less that make up the GDB were mapped to coarse-grained
representations for four different force fields. The molecules contain carbon, nitro-
gen, oxygen, fluorine, and hydrogen atoms only. Of these 3.5 million compounds,
approximately 340,000 were successfully mapped to both coarse-grained unimers (1
bead representations) and dimers (2 bead representations) for all of the force fields
described in this work. The majority of the remaining compounds were mapped
to coarse-grained representations with a higher number of beads, and a small
fraction of compounds were unable to be successfully mapped by the algorithm.
Histograms comparing the distributions of AGyy_, (] for each set of atomistic com-
pounds mapping to coarse-grained unimers and dimers and their coarse-grained
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Figure 3.3: Correlation curves showing the agreement between the predicted par-

titioning free energy values from ALOGPS for ring molecules and the
partitioning free energy of the coarse-grained Martini representation as-
signed by AUTO-MARTINI for (a) five-membered and (b) six-membered
ring-containing molecules.
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counterparts were constructed using the NUMPY histogram function[213], with the
number of bins equal to 1000 and 1050 for unimers and dimers, respectively. These
histograms are shown in Fig. 3.7a-d for Martini, and are repeated in Fig. 3.8 along
with all of the other histograms computed using the different force fields for easy
comparison.

3.2.2 Under-mapping of molecules *

In Fig. 3.4, we show the absolute populations of molecules/fragments that map to
unimers/dimers as a function of the number of heavy atoms per fragment. Note
that the fragment size distribution is roughly centered between four and five heavy
atoms. While a four to one mapping scheme is prescribed by the Martini model
for normal sized beads, coarser mappings are also possible. For example, Butanol
maps to a single Nda bead in the Martini model, and Octanol maps to only a C1
and a P1 bead. Furthermore, we note that 98% of the molecules/fragments that
have six heavy atoms have either a double bond, triple bond, or a branching struc-
ture, with most of these fragments having some combination of these molecular
features. The presence of any of these features causes a reduction in the radius of
gyration and a reduction in the internal degrees of freedom of each fragment, jus-
tifying the mapping to a single bead. The remaining molecules/fragments which
have more than six heavy atoms make up 14% of the total set of molecules.
Auto-Martini starts by finding a set of optimal mappings for an input molecule
ranked by how well they minimize the cost function defined in the original auto-
martini paper [139]. If the molecule or fragment includes some of the molecular
perturbations mentioned above, it is highly likely that one of the mappings (though
not the best ranked one) will correspond to a single bead. The algorithm then tries
to find combination of bead types such that the sums of the AGyy_, ) values of
each molecule add up to the overall AGyy ) of the molecule as predicted by
ALOGPS, within a threshold defined in the aforementioned additivity check. If
the algorithm cannot find any combination of bead types that satisfies this check,
it repeats this process with the next optimal mapping until it can find a mapping
that allows a bead type combination that satisfies the AGyy_, ) criteria. This
results in a small fraction of the chemical compound space being under-mapped,
as seen in Fig. 3.4. Coarse-graining involves balancing the entropy reduction that
comes from reducing the atomistic degrees of freedom by modifying the enthalpic
terms (e.g., the potential energy functions) such that the overall thermodynamic
properties of interest are preserved. In this case, the thermodynamic property
of interest is the AGyy_, (), the AUTO-MARTINI algorithm only maps molecules
to coarse-grained representations that best match the AGyy_ ) as determined
by ALOGPS, which accounts for the effect of the molecule size when making its
prediction. Thus, even if the molecule is under-mapped, the partitioning behavior
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Figure 3.4: Histograms showing the population distribution of molecules (for
Unimers) or fragments (for Dimers) mapping to single Martini beads
based on the number of heavy atoms in each molecule/fragment.

119
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of the resulting coarse-grained representation is still matched.

The AUTO-MARTINI algorithm also assigns a two-bead mapping for five-membered
rings and a 3-bead mapping for six-membered rings. Because we are interested
in the region of the CCS that maps to unimers and dimers in this work, we only
include database entries for molecules containing up to 5-membered rings. This
is consistent with the recommendation of the Martini model, which requires a 2-
3 heavy atom mapping for the S bead types. We did not take steps to enforce
ring planarity for these 5-membered rings by adding a third bead, as we found
that doing so caused large errors in matching AGyy_, () because of the inability
of ALOGPS to accurately predict the contribution of single-heavy-atom fragments
that resulted when trying to map a 5-membered ring to 3 beads. Furthermore,
there are issues with the Martini model itself when modeling 5-membered rings
using 3 S-type beads. The thickness of the coarse-grained ring structure is signif-
icantly larger than that of the atomistic ring. Additionally, it was recently found
that the lack of cross-parameterization for interactions between Martini beads of
different sizes can lead to errors when calculating partitioning free energies. Due
to these concerns, we have again placed more importance on achieving the overall
thermodynamic accuracy with respect to the ALOGPS prediction rather than the
specific mappings.

3.2.3 The Jensen-Shannon Divergence *

In this work, the main tool used to quantify information loss when going from
atomistic to coarse-grained resolution is the relative entropy in the form of a
Jensen-Shannon divergence (JSD or Djg) [214]. The relative entropy framework
has been previously established as a useful tool for evaluating the quality of coarse-
grained models [78, 215]. The JSD is a variation of the well-known Kullback-
Leibler divergence[216] (Dxky,) used to calculate the relative entropy between two
distributions. It offers two advantages over the Kullback-Leibler divergence in that
it is symmetric and always has a finite value. Rather than directly relating two
distributions, as is the case for the Kullback-Leibler divergence, the JSD computes
the relative entropy by comparing each of these distributions to a third distribu-
tion which is the average of the other two distributions, as shown in the following
equations

1 1
Djs = §DKL (PCGHPavg) + §DKL (PAAHPavg) ) (3‘1)

N
where Dy (A||B) = Zai In (%) ,

=1
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1
and Pavg = §<PCG + PAA)~

In the above equations, we define Dy, in terms of two arbitrary distributions, A
and B with N elements a; and b;. Here, we use the JSD to evaluate how well the
distribution of the water/octanol partitioning free energies for the coarse-grained
molecules (Pog) match the corresponding distribution at the atomistic resolution
(Paa). A value of 0 indicates that the two distributions are the same. The use
of the average distribution (FP,yg) conveniently prevents divisions by zero when
comparing histograms like those shown in Fig. 3.7a-d.

3.2.4 Basin Hopping and Minimization Schemes *

In this work, we use multiple methods to optimize the coarse-grained partitioning
free energies to best match the atomistic distribution of free energies. The first
such method is the basin-hopping method,[113] which is a variation of Metropolis-
Hastings Monte Carlo. The algorithm proceeds in the following steps. Given a
set of initial coordinates and objective function, the initial coordinates are first
randomly perturbed and subsequently minimized. The results of the minimization
are either accepted or rejected based on a predefined Metropolis criterion. These
two steps form a single iteration of the algorithm, and a large number of iterations
may be required to find the desired minima. Here, we use the JSD as our objective
function and a set of possible water/octanol partitioning free energies for each
coarse-grained bead type as our initial coordinates. Each move then corresponds to
shifting the values of AGyy_, () for each coarse-grained bead type in a given force
field. The optimizations were performed in order to define the desired AGyy_,
values for the five-bead-type force field, using the BASINHOPPING function provided
by scipy[217] with a Broyden-Fletcher-Goldfarb-Shanno local minimizer,[218] a
Metropolis temperature parameter of 0.008, and a step size of 0.024 kcal/mol.
For the reference atomistic distribution, we applied the ALOGPS neural network
to predict AGyy_, o for all molecules in the GDB with eight heavy atoms or less
that were known to map to single bead Martini representations using the AUTO-
MARTINT algorithm. However, finding the optimal set of AGyy_, ] values for the
sixteen-bead-type force field using this approach proved to be computationally
unfeasible, as the dimensionality of the problem scales with M*, where N is the
total number of bead types in the force field and M is the range of AGyy_, )
values spanned by the Martini bead types divided by the step size. To parameterize
the sixteen-bead-type force field, we used the SCIPY minimize function[217] with
the modified Powell method,[218] starting with an initial set of eighteen bead
types that were evenly distributed along the AGyy_, () axis. The results of the
minimization indicated two sets of two bead types that were within 0.1 kcal/mol
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of each other, and so each pair was combined into a single bead type, resulting in
sixteen bead types total.

3.2.5 Clustering the GDB *

In addition to optimization of the JSD, a new set of coarse-grained water/octanol
partitioning free energies was also proposed by clustering the GDB, leading to the
9-bead-type force field. Specifically, all GDB molecules with eight heavy atoms
or less were grouped based on the number and type of hetero-atom substitutions
present in the molecule (i.e., the number of times that a C was replaced with
N, O, or F). The resulting atomistic molecular populations as well as the mean
and standard deviation of their water/octanol partitioning free energies are shown
in Fig. 3.9. Detailed information on each of the distributions (beyond what is
provided in Fig. 3.9) is available in the ZENODO repository. The distributions are
constructed based on the number and type of heavy atom substitutions that exist in
the molecules. For example, the file named “GDB02to08_HAstats_fooo_subs.pdf”
shows the AGyy_ () distribution for all molecules containing one fluorine and
three oxygen substitutions. Also included in the repository is a single file called
“GDBO02to08_HAstats.dat” which contains the mean and standard deviation for
each of the distributions provided, which were used to make Fig. 3.9. The desired
water /octanol partitioning free energies are determined by clustering the points on
this graph, starting from the highest populated points and accepting anything that
was within plus or minus 0.5 kcal /mol of these points. For example, the first point
with the highest population in Fig. 3.9a is chosen as a starting point for the first
bead type. All points that fall within 0.5 kcal/mol are assigned to this bead type
and the AGyy_, (] is determined by taking a population-weighted average of all of
these points. The next bead type is determined by selecting the highest point on
Fig. 3.9a that is not already assigned to a bead type and repeating the process. For
both this clustering and for the numerical optimization methods discussed in the
previous section, the maximum number of heavy atoms per molecule was limited
to eight. For all other data-driven calculations, all GDB molecules with up to ten
heavy atoms were included.

3.2.6 Functional Group Analysis *

A statistical analysis of the functional groups found in the molecular fragments
mapping to single beads is necessary in order to obtain a more detailed picture as
to which chemistries are representative of specific bead types. The enumeration
of functional groups was achieved through the use of the CHECKMOL software
developed by Haider [166]. This software uses the 3D coordinates of each atom
and the corresponding atom labels in a given molecule to identify common chemical
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functional groups. A full list of the functional groups identified can be found in the
ZENODO repository. Using CHECKMOL, we determine the degeneracy of specific
functional-group pairs with respect to single bead types for the set of molecular
fragments that mapped to a single bead. This amounts to counting the number
of fragments containing a specific functional group pair and mapping to a single
bead type. This population is then normalized with respect to the total number of
fragments containing that same functional group pair across all bead types. It is
useful to frame this statistical analysis in terms of conditional probabilities, as this
yields specific information relevant for molecular-design applications. For example,
the aforementioned counting and normalization is equivalent to calculating the
likelihood of assigning a bead type (T) given a specific functional group pair (F),
defined as P(T'|F'). We use the fragment population distributions for each bead
type and each functional group pair to obtain probabilities P(T') of a bead type
and P(F) of a functional group pair. We then calculate the posterior probabilities
P(FI|T) of a given bead type back-mapping to a specific functional group pair
using Bayes’ theorem

P(T|F)P(F)
P(T)

The results are shown as a series of heat maps for each force field in Fig. 3.10 and
the corresponding heat maps for four-heavy-atom fragments is shown in Fig. 3.11.

P(F|T) = (3.2)

3.2.7 Parameterization of New Bead Types *

The new force fields share most of the parameters defined by the Martini force
field [210]. For the intra-molecular interactions, bonded, angle, and dihedral force
constants remain the same as those prescribed by Martini. The non-bonded in-
teractions only deviate from Martini through the strength of the potential used.
We linearly interpolate across the interaction matrix defined in Martini,[210] uti-
lizing the distance between the established Martini AGyy_,1[139] and the de-
sired AGyy_, ] for the interpolation. Fig. 3.5 shows the relationship between the
Lennard-Jones € parameter (related to the depth of the attractive well) for three
given Martini bead types and the AGyy_ () for all Martini bead types [210]. It
is evident that there is no clear underlying functional form that can be applied
to all Martini bead types. While there are localized regions that can be easily fit
to lines, there are sharp discontinuities for each of the bead types at the bound-
aries of these localized regions. Therefore, linear interpolation is used to preserve
these discontinuities in the new models, using the desired AGyy_, )] as the tar-
get. The results of this interpolation are shown in Fig. 3.6. To construct this
plot, we parameterized a new bead type for a series of AGyy_ ) values evenly
spaced along the range of AGyy_, ) covered by Martini and ran simulations to
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calculate the AGyy_, () for each using the methods described in Section 3.2.9. The
results clearly show that the interpolation was successful for recovering the desired
AGyy_,]- There are some slightly larger deviations close for AGyy_, () closer to
the P4 and P5 beads. This is probably due to the fact that, despite having a more
attractive interaction with Martini water, the P5 bead has a slightly more positive
AGyy_, 0 than the P4 bead type [139]. Since this interpolation was validated
by calculating partitioning free energies between Martini water and pure Martini
octanol, we also tested the effect that using a water-saturated octanol phase would
have on the results [219]. This new phase consisted of 256 total solvent molecules,
with 64 water molecules and 192 octanol molecules. The results are shown as the
green points in Fig. 3.6. While the apolar and nonpolar bead types seem com-
pletely unaffected by this change in the octanol phase, the polar bead types show
a AGyy_, offset of approximately -0.5 kcal/mol compared to the interpolation
target. We have included the epsilon values that make up the interaction matrices
for all the new force fields as text files in the ZENODO repository.
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Figure 3.5: Relationship between the Lennard-Jones € parameters for the Martini

C1, P4, and NO bead types and the AGyy_, ()] values for every Martini
bead type.
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Using this interpolation method, we parameterized three coarse-grained force
fields. For the donor and acceptor types, we assigned the bead type which had the
AGyy_,) closest to 0.0 as the bead type corresponding to molecules containing
both donor and acceptor groups. Note that the donor/acceptor bead types are
not labeled with “da” lettering, as is done for the Nda Martini bead type. We
then followed the example set in the Martini interaction matrix [210]. The donor-
only and acceptor-only bead type were assigned the same parameters as the da
bead type but with a decrease in the € value of 0.5 kJ/mol (making the interaction
slightly more repulsive) when interacting with like bead types. For each force field,
the bead types and corresponding AGyy_, )] and € values are given below. For all
new bead types in this work, the Lennard-Jones ¢ matched that of a normal-sized
Martini bead, ¢ = 0.47 nm.
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Bead Type Name | Polar/Nonpolar/Apolar, Donor/Acceptor | AGyy_, o [kcal /mol]
T1 Polar 2.05
T2 Polar 1.91
T3 Nonpolar Donor+Acceptor 0.098
T3d Nonpolar Donor 0.098
T3a Nonpolar Acceptor 0.098
T4 Apolar -2.46
T5 Apolar -3.13

Table 3.1: Names, characteristics, and AGyy_, ] values for each bead type in the

five-bead-type force field. For all beads, o = 0.47 nm.

Bead Type Name | Polar/Nonpolar/Apolar, Donor/Acceptor | AGyy_, o [kcal/mol]
T1 Polar 2.14
T2 Polar 1.39
T3 Polar 0.672
T4 Nonpolar Donor+Acceptor -0.074
T4d Nonpolar Donor -0.074
T4a Nonpolar Acceptor -0.074
T5 Nonpolar -0.899
T6 Apolar -1.36
T7 Apolar -2.17
T8 Apolar -2.76
T9 Apolar -3.51

Table 3.2: Names, characteristics, and AGyy_, ] values for each bead type in the
nine-bead-type force field. For all beads, ¢ = 0.47 nm.

The partitioning free energies of each bead type was then confirmed by running
coarse-grained molecular dynamics simulations of single beads of each new bead
type. These results show that this method yields an accurate force field without
relying on an iterative scheme. The new bead types are named as T4 types, with ¢
ranging from 1 to N where N is the total number of bead types in the force field.
The numbering is also ordered by polarity. For example, the T1 bead type for all
new force fields is the most polar type. Conversely, the T5, T9, and T16 bead
types are the most apolar bead types in the five, nine, and sixteen-bead-type force
fields, respectively.
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Bead Type Name | Polar/Nonpolar/Apolar, Donor/Acceptor | AGyy o [keal/mol]
P4 Polar 2.22
P5 Polar 2.12
P3 Polar 2.11
P2 Polar 0.92
P1 Polar 0.54
Nda Nonpolar Donor+Acceptor -0.595
Nd Nonpolar Donor -0.595
Na Nonpolar Acceptor -0.595
NO Nonpolar -1.00
Ch Apolar -1.66
C4 Apolar -2.42
C3 Apolar -2.93
C2 Apolar -3.28
C1 Apolar -3.39

Table 3.3: Names, characteristics, and AGyy_, ) values for each neutral bead type
in the Martini force field. For all beads, ¢ = 0.47 nm.

3.2.8 Extension to the Polarizable Martini Model

Due to the high popularity of the Martini model, many different modifications
have been implemented, which allow for the modelling of other important physical
interactions at this resolution. One such “flavor” of Martini was the introduction
of a polarizable Martini water model by Yesylevskyy et al. [220]. This new Martini
water consisted of three particles, which consisted of a standard neutral Martini
bead type which interacted with other beads via a Lennard-Jones interaction only,
as well as two charged beads (one positively and one negatively charged) that were
bound to this neutral bead and only interacted with other charged particles via a
Coulombic interaction only, with no other intermolecular interactions enabled. By
replacing the previous Martini water (the P4 bead type) with this new water model,
they were able to replicate the dielectric screening effect of bulk water in a Martini
environment [220]. This model was improved by Michalowsky et al, with further
modifications including new bead types that accurately represented monovalent
ions and their electrostatic screening behavior in water [221, 222]. In order to
determine whether an efficient HTCG approach could be implemented for more
complex systems where charge screening plays a significant role, we implemented
our interpolation scheme with the five-bead model using this improved polarizable
Martini model, known as the “Reflon” model.

It was first necessary to calculate the AGyy_, ) values of each bead type using
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Bead Type Name | Polar/Nonpolar/Apolar, Donor/Acceptor | AGyy_, o [kcal /mol]
T1 Polar 2.18
T2 Polar 1.85
T3 Polar 1.03
T4 Polar 0.507
Th Polar 0.335
T6 Nonpolar 0.126
T7 Nonpolar Donor+Acceptor -0.061
T7d Nonpolar Donor -0.061
T7a Nonpolar Acceptor -0.061
T8 Nonpolar -0.627
T9 Apolar -0.838
T10 Apolar -1.33
T11 Apolar -1.62
T12 Apolar -1.82
T13 Apolar -2.20
T14 Apolar -2.62
T15 Apolar -2.81
T16 Apolar -3.60

Table 3.4: Names, characteristics, and AGyy_, ] values for each bead type in the
sixteen-bead-type force field. For all beads, 0 = 0.47 nm.

the Reflon model in order to perform the interpolation as was previously done
for the standard Martini model. These values were obtained using the methods
described in Section 3.2.9, but with the Reflon model used instead of standard
Martini, and without the addition of antifreeze particles, as these were no longer
necessary when using the Reflon model. Because the calculation of the hydration
free energy is performed as a prerequisite for obtaining AGyy_, (), we validated
our simulations by comparing our obtained hydration free energies with those
previously published by Michalowsky et al. for the neutral bead types, and find
excellent agreement with their values. These results, as well as the corresponding
AGyy_,) values for each bead type in the Reflon model are shown in Table 3.5.
Unfortunately, we were unable to find previously reported hydration free energies
for the charged bead types using the Reflon model.

After obtaining the AGyy_, (] values for the individual bead types of the Reflon
model, we applied the interpolation scheme detailed in Section 3.2.7 to obtain force
field parameters for the five-bead-type model, using their AGyy_ ) calculated
from the standard Martini model as a target. We then calculated the AGyy_,
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Bead Type | Charged/(A/Non)Polar AGHydr [kcal/mol] | AGwy_, 0 [keal/mol]
PQa Charged -27.51 25.45
Qda Charged -25.48 21.52
PQd Charged -22.52 20.47
QO Charged -22.8 20.41
Qd Charged -23.96 19.99

Qa Charged -23.96 19.99
POL Polar -3.47 3.30
P4 Polar -4.30 2.23
P3 Polar -4.27 1.89
P5 Polar -5.42 1.67
P2 Polar -3.13 0.78
P1 Polar -3.07 0.33
Nda Nonpolar Donor+Acceptor -1.97 -0.829
Nd Nonpolar Donor -1.97 -0.829
Na Nonpolar Acceptor -1.97 -0.829
NO Nonpolar -0.66 -1.44
Ch Apolar 0.41 -2.34
C4 Apolar 1.00 -2.89
C3 Apolar 1.03 -3.47
C2 Apolar 1.83 -3.82
C1 Apolar 2.59 -4.12

Table 3.5: Names, characteristics, and AGyy_ ) values for each neutral and
charged bead type in the Reflon force field. For all beads, o = 0.47

nimn.

of the newly parameterized model and compared these values to the target values

used in the interpolation. The new AGyy_, ()

values are shown in Table 3.6 and

closely match the targeted values shown in Table 3.1. This model is currently
being used for HTCG screening schemes that will be detailed in a future work.

3.2.9 Coarse-Grained Simulations *

Coarse-grained molecular dynamics simulations were performed in GROMACS[141]
version 4.6.6 using the standard Martini force-field parameters as well as the new
force-field parameters derived in this work. A time step of 4t = 0.03 7 was used for
all simulations, where 7 is the natural time unit for the propagation of the model
defined in terms of the units of energy £, mass M and length £ as 7 = L1/ M/E.
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Bead Type Name | Polar/Nonpolar/Apolar, Donor/Acceptor | AGyy_, o [kcal /mol]
T1 Polar 2.03
T2 Polar 1.94
T3 Nonpolar Donor+Acceptor -0.05
T3d Nonpolar Donor -0.05
T3a Nonpolar Acceptor -0.05
T4 Apolar -2.21
T5 Apolar -3.12

Table 3.6: Names, characteristics, and AGyy_, ] values for each bead type in the
five-bead-type force field for use with the Reflon model. For all beads,
o =0.47 nm.

The simulations were run in an NPT ensemble with a Langevin thermostat and
Andersen barostat[223] to keep the temperature and pressure at 300 K and 1 bar,
respectively. The corresponding coupling constants were 70 = 7 and 7p = 127.

Water/octanol partitioning free energies were obtained by simulating approx-
imately 500 coarse-grained molecules in octanol and water. Approximately 250
octanol molecules and 350 Martini water molecules were simulated for their re-
spective systems, with the appropriate number of antifreeze particles [210]. The
free energies were computed using the Bennett acceptance ratio method[157] in
which the coarse-grained solute was incrementally decoupled from the solvent via
the coupling parameter, A\. Twenty-one simulations were run for each molecule at
evenly spaced A values ranging from 0 to 1, with each simulation run for 200,000
time steps. Finally, the partitioning free energies were calculated using the relation
AGw_ 0 = AGw — AGp. As this method does not take into account the satura-
tion of the octanol phase with water that occurs in experimental systems,[219] we
also ran some test simulations using an octanol phase which contained 25% molar
water molecules. We found that only coarse-grained molecules containing a ma-
jority of highly polar beads would show a reduction in their AGyy_, ) values due
to increased contact with water in the water-saturated octanol phase, as shown in
Fig. 3.6.
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Figure 3.7: Histograms of 343,700 small molecules extracted from GDB that map
onto one-bead or two-bead coarse-grained Martini representations.
(a),(c) Coarse-grained and (b),(d) atomistic populations as a function
of water/octanol partitioning free energy. The width of the bars in
(a),(c) corresponds to the range of atomistic water/octanol partitioning
free energies that can map to that coarse-grained representation. (e)
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3.3 Results *

3.3.1 Quantifying information loss of coarse-grained models
with varying number of bead types *

The updated AUTO-MARTINI algorithm was used to first map and subsequently as-
sign bead types to 3.5 million molecules of the GDB containing ten or fewer heavy
atoms using the Martini force field as well as the other three force fields parameter-
ized by interpolating the Martini interaction matrix. Fig. 3.7 shows a comparison
of the atomistic and coarse-grained AGyy _, (o distributions for molecules mapping
to Martini unimers (Fig. 3.7a,b) and dimers (Fig. 3.7c,d). In Fig. 3.8, we show
all of the histograms used to compute the JSDs shown in Fig. 3.7e. The width
of the coarse-grained bars reflects the range of AGyy_, ) values within which a
molecule must fall in order to be assigned that bead type, or, in the dimer case,
a combination of bead types. The height of the bars is set such that the area
covered by each bar is equal to the total number of molecules that were assigned
that coarse-grained representation. We then calculate the JSD between the coarse-
grained and atomistic histograms for each force field to quantify the information
loss as a function of the number of bead types present in each force field (Fig. 3.7e).
Increasing the number of bead types reduces the information loss when going from
atomistic to coarse-grained resolution, though this reduction becomes insignificant
after reaching nine bead types. The JSD comparing the unimer histograms (red
curve in Fig. 3.7e) changes negligibly when increasing the number of bead types
from nine to sixteen, with only a small increase for the Martini case (12 bead
types). This is expected due to the fact that the atomistic histogram of GDB
molecules mapping to a single bead is a simple, unimodal distribution with a peak
at AGyy_,01 = 0. Since all of the force fields have at least one amphiphilic bead
type with a AGyy_, ] close to 0, they all capture this defining feature of the his-
togram, and, comparatively, further information gains are negligible. Remarkably,
we find the JSDs were largely insensitive to the choice of numerical optimiza-
tion technique used for the derivation of each force field, as they all capture this
prominent feature.

The JSDs calculated from the dimer histograms (blue curve in Fig. 3.7e) show
a variety of interesting features. Both the nine and sixteen-bead-type force fields
maintain roughly the same JSD, suggesting that the combinatorial explosion that
results from doubling the molecular weight is captured by these force fields. The
slight increase seen in the unimer JSD for Martini is noticeably amplified for the
dimer case, indicating that careful placement of bead types on the AGyy_, ) axis
is necessary to maximize chemical transferability.

Surprisingly, the greatest deviation in the JSD going from the unimer to dimer
histogram comes from the five-bead-type force field, dropping well below the val-
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Figure 3.8: Histograms used to calculate JSD values shown in Fig. 3.7. The unimer
and dimer distributions are shown for the five-bead-type (a,b), nine-
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ues for the higher bead type force fields. The reason for this can be seen in Fig.
S3b, which shows that the distribution of atomistic compounds mapping to dimers
in the five-bead-type force field is significantly different from its analogs for the
other force fields. While the other distributions contain populations ranging from
3.3-10% to 3.4 - 10%, the 5-bead-type force field has only 3.0 - 10° molecules. Fur-
thermore, even though the shapes of the distributions for the other three force
fields are far more similar to each other than to the five-bead-type force field, the
intersection of the sets of atomistic compounds mapping to each force field consists
of 2.3-10° molecules. Including the set of molecules mapping to the 5-bead-type
force field reduces this intersection to 1.8 -10° molecules. This explains why the
JSD value for the five-bead-type model is significantly lower than all of the others.
This indicates that a significant number of molecules that would map to dimers
when using one of the other force fields are mapped to trimers or tetramers using
the 5-bead-type force field. Unfortunately, we were unable to compute histograms
of molecules corresponding to coarse-grained trimers or tetramers due to compu-
tational constraints: in order to get a converged distribution that could represent
the chemical space corresponding to molecules mapping to trimers, we would need
to run the AUTO-MARTINI algorithm on the GDB molecules containing up to at
least 15 heavy atoms (assuming a 5 heavy atom to 1 bead mapping), which is
computationally unfeasible due to the exponential growth of CCS as a function of
molecule size.

3.3.2 Relating chemistry to bead types *

As an alternative to purely numerical methods for determining the optimal AGvyy_, (]
values for the bead types of a coarse-grained force field that best partitions CCS,
we cluster the GDB itself and use the weighted average of AGyy_, () for each clus-
ter. Fig. 3.9a shows the two descriptors upon which we project and subsequently
cluster the GDB. Each point in Fig. 3.9a represents the set of molecules in the
GDB that have a specific number and type of heavy atom substitutions (i.e., N,
O, or F). The points are placed on the AGyy_, () axis according to the average
of their AGyy_ ) distribution. The error bars represent the standard deviation
of the AGyy_ (] in each distribution. One of the corresponding distributions is
shown in Fig. 3.9b, with the rest available in the ZENODO repository. The points
are clustered hierarchically with respect to population and average as shown in
Fig. 3.9a. The highest-populated points are all chosen as cluster centers as long as
they are separated by at least 0.5 kcal/mol, which is an arbitrarily chosen length-
scale for the clustering to ensure a reasonable number of bead types in the final
force field. After the points are clustered, the desired AGyy_ ) of each bead
type is determined by taking the population-weighted average of all the points in
a cluster. This intuitively provides a basic understanding of the chemistry that
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Figure 3.9: (a): Population versus average values of the distributions of wa-
ter/octanol partitioning free energies corresponding to GDB molecules
with up to 8 heavy atoms and a specific number and type of hetero-
atom substitutions. The error bars refer to the standard deviations of
each distribution. The colored backgrounds denote how these average
values are clustered to obtain new bead types that more efficiently di-
vide CCS. (b): Example distribution corresponding to top-most point
labeled in the graph on the left. The label refers to the number and
type of hetero-atom substitution, in this case 1 nitrogen and 1 oxygen
substitution. The color applied to the histogram corresponds to the
colors shown in (a), indicating the bead types to which these molecules
would be assigned.
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maps to a specific bead type. For example, a T4 bead is more likely to back-map
to a molecule with one N and one O substitution compared to two N substitutions
because of the difference in the GDB populations of each molecule type.

It is important to characterize the degree to which unique chemistries are cap-
tured by the bead types of each force field. Using the GDB as a proxy for CCS
enables a quantitative understanding of the chemical transferability of each bead
type through the calculation of conditional probabilities. Fig. 3.10 shows a series
of heat maps corresponding to each of the four force fields investigated in this
work. These heat maps are constructed by counting all fragments containing only
five heavy atoms and assigned to a specific bead type, such that two functional
groups are detected by the CHECKMOL software package. The fragment popula-
tion distributions are then used to calculate the Bayesian likelihood P(T'|F') and
posterior P(F|T) for each bead type/functional pair combination in every force
field. The numbers on the horizontal axis for each heat map denote specific pairs
of functional groups found in the chemical fragments that are assigned to a bead
type, while the color corresponds to either the likelihood or posterior probabilities.
We see the localization of functional-group pairs to specific bead types mainly be-
cause of the constraint of only including fragments with five heavy atoms. This
constraint limits the combinatorics of hetero-atom and bond substitutions that
result in functional-group pairs. Despite the addition of these constraints, a large
number of functional-group pairs are still split across multiple bead types.

Fig. 3.11 shows the likelihood and posterior values calculated for fragments con-
taining only four heavy atoms and two functional groups as specified by CHECK-
MOL. The total number of bead types of each force field is not reflected in these
heat maps, with the most apolar bead types missing. This is because all of the
fragments that map to these bead types consist of saturated hydrocarbons or
single alkene/alkyne substitutions only, and thus are not detected as having a
functional group pair by CHECKMOL. Furthermore, there are no values calcu-
lated for the T7 beads in the sixteen-bead-type force field because there were no
donor/acceptor/donor+acceptor fragments that also had two functional groups
within the narrow range of AGyy_, ) covered by the T7 bead types. Similar rea-
soning can also be applied to explain the lack of values for the T11 bead type in
the same force field.

Table 3.7 provides additional quantification of the trends seen in Fig. 3.10, dis-
playing the average number of functional-group pairs per bead type, as well as
the number of likelihood and posterior values above cutoff values of 0.99 and 0.2,
respectively. As the number of bead types increases, both the average number of
functional-group pairs per bead type and the number of likelihood values greater
than 0.99 decrease, indicating that fewer bead types in a force field increases the
coverage of CCS for each bead type. The opposite trend is observed for the num-

137



3 Resolution limit of data-driven top-down coarse-grained models spanning chemical space

Likelihood P(T|F') Posterior P(F'|T)

@) #\l my.
" LN
a0

T4

T5

T1

T2 (b) I.IF I 0.8
. |-' L oadut N
III

T4

T5 | ‘
6 | ' 0.4
17 [I |

T9

0 10 20 30 40 50 0 10 20 30 40 50

1
w (C) I by
P3 . I I 3 | 0.8
P2 | | [ | § il
Pl I l- | 0.6
Nda || III J .I N
NO 3 |
s | |I I ‘ 0.4
ci i
C3 | 0.2
C2
C1 P |
0
0 10 20 30 40 50 0 10 20 30 40 50
T1 ( d ) I..- | !
T2 1
T3 1 1. 11 1
T4 I L. I I 08
T5 [ |] 1
T6 I L
T7 LA | | 0.6
T8 ‘ Imn F [ |
T9 1
T10 | a 0.4
T11
T12 | | 1
T13 [ 1 (i 0.2
T14
T15 I|
T16
0
0 10 20 30 40 50 0 10 20 30 40 50
Functional Group Pair Index Functional Group Pair Index

Figure 3.10: Heat maps portraying the degeneracy of specific pairs of functional
groups for a given bead type for force fields containing five (a), nine
(b), twelve (c), or sixteen (d) bead types. The horizontal axes denote
specific functional-group pairs that exist in a chemical fragment with
five heavy atoms only. The color corresponds to either the column-
normalized or row-normalized probabilities. The column-normalized

138 probabilities (left side) are equivalent to the Bayesian likelihood of
a given functional group mapping to a specific bead type. The row-
normalized heat maps (right side) show the Bayesian posterior prob-
abilities of obtaining a specific functional group given a bead type.
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Figure 3.11: Heat maps portraying the degeneracy of specific pairs of functional

groups for a given bead type for force fields containing five (a), nine
(b), twelve (c), or sixteen (d) bead types. The horizontal axes denote
specific functional-group pairs that exist in a chemical fragment with
four heavy atoms only. The color corresponds to either the Bayesian
likelihood (left side) or posterior (right side) probabilities.
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ber of posteriors greater than 0.2, indicating that more bead types result in higher
chemical specificity for each bead type.

# of Avg. # of # of # of
Bead Types | Func. Group Pairs | Likelihoods > 0.99 | Posteriors > 0.20
5 16.4 40 8
9 10.1 33 17
12 (Martini) 7.4 35 20
16 6.4 27 26

Table 3.7: For each force field, the number of bead types, the average number of
functional-group pairs per bead type, the total number of likelihood
values over 0.99, and the total number of posterior values over 0.2.

Over the course of this work, certain idiosyncrasies were discovered when using
CHECKMOL. One such issue was the fact that the code tended to double-count
some functional groups. For example, fragments with only a single fluorine sub-
stitution were counted as both a “halogen derivative” and as a “alkyl fluoride”.
This was only observed for the aforementioned fluorine substitutions as well as
for dialkyl ethers. Other examples were also found for which the software could
not correctly identify the functional groups contained in the fragment. This is
probably due to the fact that CHECKMOL was not tested on some of the less com-
mon chemistries encountered in the GDB. The most egregious example of this was
found for fragments containing the smiles string “NC=N" which were incorrectly
labeled as a carboxylic acid derivatives by CHECKMOL. For this reason, we did
not explicitly label the horizontal axes with their corresponding chemistries in
Fig. 3.11 and Fig 3.10. For full transparency, we have included the smiles string
for each unique fragment used in the Bayesian analysis for both four-heavy-atom
and five-heavy-atom fragments as well as the corresponding values for P(F'), P(T),
P(T|F), and P(F|T) in the ZENODO repository. While the functional group labels
given by CHECKMOL are incorrect in a few cases, the overall trends reported in
this work are unaffected: namely, that increasing the number of bead types also
provides increased values of the Bayesian posterior probabilities for back-mapping
specific chemistries.

3.3.3 Coarse-grained force field validation *

While we have demonstrated that the careful placement of bead types on the
AGyy_, ) axis leads to more chemical transferability, the force fields themselves
must be validated. Because AGyy_, ) was used as the target property for the
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interpolation of the Martini interaction matrix, we must ensure that this property
is indeed captured by the resulting models and determine to what extent the ac-
curacy of these models changes as the number of bead types increases. Because we
used the Martini interaction matrix in our parameterization, our force fields are,
by construction, fully compatible with the existing Martini model. This allows us
to use the Martini solvent models for both water and octanol in our validation,
without having to derive new solvent models for each new force field. Essentially,
this means that, using the methods outlined in this work, it is possible to param-
eterize any number of new bead types with desired AGyy_, ) values within the
AGyy_, ] range covered by Martini that will also be compatible with the Martini
model. Fig. 3.12 shows correlation plots comparing AGyy_, ) values computed
from coarse-grained MD simulations with experimental values for approximately
500 ring-less molecules obtained from the National Cancer Institute database [184].
The comparison is made for all four of the models examined in this work. The
number of compounds varies for each model, as the AUTO-MARTINTI algorithm was
able to successfully find mappings for more molecules in the database when using a
model with a higher number of bead types, ranging from 479 compounds mapped
when using the five-bead-type model to 505 when using the sixteen-bead-type
model. The full set of compounds as well as their corresponding coarse-grained
representations is provided in the ZENODO repository. The vertical series of points
prominently seen in Fig. 3.12a are a consequence of the increased degeneracy of
CCS for the 5-bead-type model: they represent many compounds mapping to the
same coarse-grained representation. As expected, the correlation becomes less
discretized as the number of bead types increases. Examining Figs. 3.12e and
3.12f, we see corresponding gains and losses in the Pearson correlation coefficients
and MAEs, respectively. Surprisingly, the gains in accuracy are very slight as a
function of number of bead types—with the correlation coefficient only increasing
by 0.01 and the MAE decreasing by 0.2 kcal/mol—despite tripling the number
of bead types. Even with the five-bead-type model, we achieve an MAE of 0.8
kcal/mol, within the standard for chemical accuracy. We deliberately chose not
to include molecules that contained rings because this version of the Martini force
field quantitatively fails in modelling molecular rings for many documented rea-
sons. These reasons include lack of cross-parameterizations between normal-sized
and the “small” sized beads used to model rings,[224] as well as the size disparity
between the atomistic and coarse-grained ring structures [225]. For these reasons,
and in anticipation of the new Martini version 3.0 that is currently being developed
to address these flaws, we refrained from addressing ring molecules in this study.
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3.4 Discussion *

Given the immense size of CCS, the creation of reduced models that efficiently
subdivide the space is necessary for screening applications. Here we demonstrate
the use of the water/octanol partitioning free energy as the parameter used to gen-
erate top-down chemically-transferable coarse-grained models of varying numbers
of bead types. This choice of descriptor is inspired by the Martini force field, which
prescribes the use of partitioning free energies as the tool to encode the natural
hydrophobic/hydrophilic character of a molecule when determining the bead type
to be used to represent a molecular fragment [89]. A major strength of Martini is
its ability to model this important molecular property using simple Lennard-Jones
potentials with varying attractive well depths. Here, we use the GDB as a proxy
for CCS[208, 209] and apply the AUTO-MARTINI algorithm to compare the popula-
tions of the GDB molecules and their corresponding coarse-grained representations
for four different force fields with varying numbers of bead types. This effectively
amounts to a discretization of CCS projected onto AGyy_, ) at multiple resolu-
tions. Other oil/water partitioning free energies have also been proposed for the
determination of bead-type assignment in Martini, such as hexadecane, chloro-
form, and ether [210]. We restrict ourselves to the water/octanol partitioning free
energy because of the difficulty involved in obtaining either experimental parti-
tioning free energy data or predictions for the wide variety of chemistries found
in the GDB. The ALOGPS neural network allows us to obtain accurate predictions
of AGyy_,() for new chemistries in this regard. While it is possible that the use
of other water/oil partitioning free energies would change the resulting force-field
parameterizations, previous studies have shown that many Martini partitioning
free energies can be viewed as linear transformations of AGyy_, o [110, 208, 209].
Therefore, the use of a single type of partitioning free energy should be sufficient
as a metric for parameterizing these types of models with respect to the overall
hydrophobic/hydrophilic character of the bead types.

Fig. 3.7e quantifies the level of information loss using the JSD as the resolution
is varied, allowing us to determine how effectively each of these force fields, in-
cluding Martini, represents CCS projected onto AGyy_, ;- The JSD decreases as
the number of bead types increase. However, the information retention becomes
negligibly greater, essentially plateauing after nine bead types. Remarkably, de-
spite the fact that the Martini force field was parameterized using a small number
of chemical compounds (relative to the large distribution of compounds used to
parameterize the other models in this work), it shows only a minuscule increase
in the JSD. This is mainly due to the lack of a bead type that is placed at 0.0
kcal/mol on the AGvyy_, ) axis. The highly populated peak at this location is
the major defining feature for the atomistic distribution of molecules mapping to
unimers, and the placement of the Martini Nda and P1 bead types is insufficient
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to fully capture this feature. Unfortunately, this increase in the JSD is amplified
when comparing the AGyy_, ) distributions for dimer molecules, whereas for the
nine and sixteen bead type models, the JSD seems to converge. The combinatorial
explosion that results from doubling the size of molecules (i.e., going from unimer
to dimer) is reflected in these histograms as a broadening of the total distribu-
tion, since more hydrophobic and hydrophilic values of AGyy_, (] are possible as
molecule size increases. Fig. 3.7e shows that the nine and sixteen bead type force
fields match this combinatorial explosion.

On the other hand, Figs. 3.12e and f clearly demonstrate that a high level of
accuracy is already achieved with respect to AGyy_, ) using the five-bead-type
force field. What, then, is the benefit to using a model with more than five bead
types? As we show from Figs. 3.9 and 3.10, the main advantage is in back-
mapping the coarse-grained representations to their likely atomistic counterparts
[226]. Specifically, the nine bead force field is parameterized not by simply opti-
mizing the JSD, but rather by clustering the GDB molecules into sub-distributions
based on the type and number of heavy-atom substitutions on the carbon scaf-
fold of each molecule as shown in Fig. 3.9. As expected, this clustering strategy
also results in a minimal value of the JSD, while providing an added convenience.
The distributions that were clustered to make this force field provide a method
for predicting the chemistries that are most representative of a bead type. Since
the standard deviations of these distributions are so large, such that some span
across three different bead types, this provides only a rough idea of the probable
chemistry accessible to a bead type. Moreover, knowledge of the presence of one
or two heavy-atom substitutions on a carbon scaffold of up to 8 heavy atoms is
insufficient for back-mapping given the number of ways in which they can be ar-
ranged on that scaffold resulting in wildly different chemical properties. Fig. 3.10
shows how different functional-group pairs will map clearly to specific bead types
when the scaffold size is reduced to five heavy atoms. This extra constraint enables
a clearer understanding of the range of unique chemistries that are accessible to
a specific bead type. Decreasing the size of the scaffold from five to four heavy
atoms yields correspondingly narrower distributions of AGyy_, ], meaning that
the same functional group pair can be found in fewer bead types. By no longer
requiring functional-group pairs and increasing the scaffold size to eight heavy
atoms, we begin obtaining distributions similar to those seen in Fig. 3.9.

Table 3.7 also demonstrates that the number of unique functional-group pairs
that map to a given bead type decreases as the number of bead types increases, to
the point where, for Martini as well as the sixteen bead type force field, there exist
bead types that essentially back-map to a single functional group pair. Here, we
see a clear parallel with structural coarse-graining methods: just as decreasing the
size of the beads leads to a finer mapping of the configurational space, increasing
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the number of bead types leads to a finer mapping of CCS. The efficiency of a
coarse-grained model can be optimized by tuning the mapping function and bead
size of a coarse-grained model such that the accuracy of the model is balanced with
respect to the computational cost of simulating a greater number of particles. By
fixing the geometric mapping method and bead size, and only varying the number
of bead types possible, we instead balance between the accuracy of representing
specific chemical features and the cost of parameterization and validation of the
inter-particle potentials. We circumvent this cost by interpolating the Martini in-
teraction matrix to obtain accurate parameters for all of the force fields presented
in this work. However, this cost will be significant for models requiring a more
rigorous parameterization scheme relying on other molecular descriptors. Sepa-
rate from this trade-off between accuracy and parameterization cost, a “screening
efficiency” can be defined as the average number of functional-group pairs that
map to a single bead type, indicating a larger region of CCS being captured by
a single bead type. Unsurprisingly, Table 3.7 shows that the five-bead-type force
field clearly has the highest back-mapping efficiency.

This statistical analysis of functional-group pairs also suggests a Bayesian ap-
proach to computing the probability of a functional group pair, F', given a bead
type, T, represented as P(F|T') in equation 3.2. P(F’), the Bayesian prior, is the
probability of finding the specific functional group pair in the set of molecular
fragments (made up of five heavy atoms and containing two functional groups as
defined by CHECKMOL) that mapped to single beads, and P(T') is the probability
of choosing the given bead type from that same data set. The likelihood, P(T'|F),
shown in the left side of Fig. 3.10 prescribes the bead type or types to which a
fragment could be assigned based on its chemistry—the equivalent of the Martini
“bible” for assigning bead types. As shown in Table 3.7, the number of functional-
group pairs with likelihoods greater than 0.99 (essentially localized to a single bead
type) decreases as the number of bead types increases. The Martini force field de-
viates slightly from this trend, with two more functional-group pairs with high
likelihoods as compared to the nine-bead-type force field. This may stem from the
parameterization strategy used for Martini that relied on specific molecules and
their functional groups rather than aiming to efficiently span chemical space by
optimizing the JSD, as proposed in this work. The posterior probabilities, which
provide a quantitative description of which chemistries are more representative of
each bead type, increase as the number of bead types increases. This effect more
easily facilitates the back-mapping of coarse-grained representations. These two
quantities, the Bayesian likelihood and posterior, are essential for further exploring
CCS covered by specific bead types and enabling both direct and inverse molecular
design.

Interestingly, we immediately see a resolution limit with respect to the functional-
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group pairs that map to specific bead types. Because there are certain length scales
on the AGyy_, ] axis that correspond to the distribution of specific functional-
group pairs, increasing the number of bead types will naturally split these distri-
butions, such that one functional group pair is represented in multiple bead types.
Fig. 3.10a shows that the majority of functional-group pairs are encompassed either
by a single bead type or one of its neighbors on the AGyy _, ()] axis. Increasing the
number of bead types causes these splits to become more exacerbated, spanning
multiple bead types for an increased number of functional-group pairs. This is the
resolution limit of this type of top-down coarse-graining. The large bead sizes of
these models leads to a high degree of variability in the chemistry, meaning that it
is no longer obvious which functional group/functional group pair belongs to which
bead type. The limit is most evident for the functional-group pairs mapping to
the T3 and T13 bead types in Fig. 3.10d, indicating that they are placed too close
to their neighbors on the AGwyy_ ) axis. These functional-group pairs contain
some combination of the following functional groups: alkene, alkyne, enamine,
hydrazine, hydroxylamine, carboxylic acid derivatives, and fluorine substitution.
The placement of these functional groups within a five-carbon scaffold will dras-
tically shift the AGyy_ ) beyond the range of the next-nearest bead type on the
AGyy_, axis and highlights the limitations of only using this single descriptor
for the projection of CCS. While the addition of other partitioning free energies
may further increase the accuracy of both the models themselves and the map-
ping of specific functional groups, these descriptors are encoding essentially the
same information as AGyy_, () the hydrophobicity of the underlying chemistry.
However, determining a suitable orthogonal descriptor and then parameterizing a
chemically-transferable coarse-grained force field to achieve a more direct relation
with CCS is outside the scope of this work, and will be addressed subsequently.

3.5 Conclusion

In this work, we use the Jensen-Shannon divergence (JSD) to quantify the infor-
mation loss in chemically-transferable top-down coarse-grained models with vary-
ing numbers of bead types, with the GDB as our proxy for chemical compound
space (CCS). We find that Martini, while not designed to efficiently reduce CCS,
performs remarkably well in this regard, closely matching the other force fields
explicitly designed to minimize the JSD with only a small deviation. All force
fields yield roughly the same level of accuracy with respect to AGyy_, o1, but vary
greatly in their coverage of CCS. We used a Bayesian approach to calculate the
probabilities of back-mapping given bead-types to fragments containing specific
chemical substitutions. Here, we found it necessary to constrain the size of chem-
ical fragments to five heavy atoms and the presence of two functional groups in
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order to clearly differentiate between the chemical moieties mapping to each bead
type. The results of this Bayesian analysis indicate that increasing the number of
bead types decreases the range of accessible chemistry while increasing the corre-
sponding posterior probabilities for each chemistry. However, there is a resolution
limit when using this approach, as it does not take into account the specific posi-
tions of hetero-atom and bond substitutions within a fragment, causing different
bead types to appear representative of the same chemistry. Martini, as well as
other chemically-transferable coarse-grained models, can be used to quickly build
structure—property relationships that span broad regions of CCS. Here we highlight
the powerful combination of this method with Bayesian inference, providing an in-
formed mapping of a coarse structure—property relationship to a higher resolution
in chemical compound space and further enabling inverse molecular design.

This work also reinforces the conclusions of the previous chapter regarding the
top-down approach to coarse-graining CCS. In the previous chapter, global un-
supervised learning methods were applied to a data base of fragments that were
mapped to Martini dimers. The results indicated that AGyy_, ) correlated well
with the number and type of functional groups found on a carbon scaffold. We
therefore tested the extent to which the HTCG approach could be optimized by
developing models that covered the AGyy_, ()] axis at varying resolutions. We had
further noted that most of the apolar compounds were grouped into two clusters
only, which was at odds with the total number of apolar bead types used in Mar-
tini (C1 through C5). Indeed, we saw that the number of apolar bead types could
be reduced to two while maintaining the overall accuracy of the model for apolar
compounds, as was done for the five-bead-type model in this work (Fig. 3.12a).
At the same time, the presence of the vertical series of points dominating the
non-polar and polar regions of Fig. 3.12a also correlates with the results from the
previous chapter, with far more than three clusters corresponding to these regions
despite being represented by only three bead types in this model.

It was also evident from this work that, just accounting for the correlation
between the number/type of heavy atom substitutions and AGvy_, ) would be
insufficient to easily identify specific functional groups for inverse molecular design
without also drastically increasing the number of bead types. Even with sixteen
neutral bead types, the number of functional-group pairs with significant backmap-
ping probability was greater than twenty-five. This resolution limit stems from
deliberately ignoring the structural information encoded in the low-dimensional
maps in the previous chapter and determining how much chemical specificity could
be preserved when only using this 1-D approach. Therefore, in the next chapter
of this thesis, we tackle this problem of coarse-graining CCS from the opposite
direction of the method used in this chapter: using a bottom-up approach that
focuses only on clustering localized geometric environments while essentially ig-
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noring any overarching global structure that may be present in our input data set
of compounds.
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4 Bottom-Up
Chemically-Transferable
Coarse-Grained Models that
Preserve Structure

In Chapter 2, we saw that the high-throughput coarse-grained scheme can be
used to quickly generate chemical structure—property relationships when using
top-down models like Martini. We additionally demonstrated the means by which
different molecular representations and unsupervised machine learning methods
could be used to identify key features of CCS. We then made parallels between
these unsupervised learning methods and the two prevailing philosophies of coarse-
graining based on whether or not our input data set of compounds underwent
a global (corresponding to top-down) or localized (corresponding to bottom-up)
transformation. In Chapter 3, we explored this comparison between top-down
coarse-graining and global transformations applied to CCS by constructing our
own top-down coarse-grained models in the Martini mold that were optimized
with respect to a single global descriptor. This allowed us to optimize the screening
efficiency of our top-down models and relate this quantity to the number of bead
types in each model. However, we found a resolution limit that restricted our
ability to identify atomistic compounds that would likely map to our new coarse-
grained representations—even when tripling the number of bead types used—
because we relied only on a single descriptor, the water/octanol partition free
energy.

We also saw in Chapter 2 that both the HDBSCAN clustering algorithm and the
UMAP algorithm could be used to identify clusters in and reduce the dimensionality
of complex representations of CCS. Both of these methods treated the input data
set as a connected graph with each data point representing a node, and the edge
weights were calculated according to the nearest neighbors surrounding each data
point (i.e., a localized transformation rather than a global one, as is done for PCA).
We now take the opposite approach from our work in Chapter 3, and transform
the CCS using the SLATM vector, a high-dimensional molecular representation
that decomposes each compound into a set of localized environments centered on
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the heavy atoms making up each molecule (see Sec. 1.1.7). The SLATM vector
encodes all 1-body, 2-body, and 3-body interactions within a cutoff radius for
each heavy atom. Rather than project CCS onto a single descriptor/dimension,
we instead project CCS into the space defined by these SLATM vectors, and
use locally-defined distance metrics based on nearest-neighbor distances in this
high-dimensional space to cluster local environments across different compounds.
Representing CCS using single points from each cluster rather than taking all of the
data points allows us to build a minimal coarse-grained model that effectively spans
CCS. This approach is similar to traditional bottom-up coarse-graining approaches
in which extraneous degrees of freedom are removed from compounds, retaining
the essential physics of the higher-resolution system in the coarsened model. In
the same vein, reducing CCS to a set of representative points obtained using
unsupervised machine learning methods removes extraneous compounds that do
not significantly increase the amount of information preserved. In our specific case,
this is equivalent to forming a basis in the SLATM vector space defined by the
representative SLATM vectors and removing any SLATM vectors that are nearly
collinear with any of these basis vectors. In this chapter, we present a method
that combines this bottom-up approach to coarse graining CCS with traditional
bottom-up coarse graining techniques in order to develop a chemically-transferable
coarse-grained model that accurately reproduces the bulk liquid-phase structure
of small organic molecules and their mixtures. We show that the approach is
successful overall, and identify specific cases for which our transferable coarse-
grained model fails and discuss these cases in detail. Finally, we highlight several
interesting questions and avenues of further research that stem from this project
that will be addressed in future works. As this project is still a work in progress,
the results and conclusions presented here are still being validated, and will soon
be submitted for publication in a peer-reviewed journal.

4.1 Introduction

In order to facilitate molecular design for a wide variety of applications, there
has recently been a growing interest in utilizing data-driven techniques to in-
fer chemical structure—property relationships that span broad regions of chemical
compound space [2, 5, 6, 11, 14, 15]. A common rate-limiting step in deriving these
relationships is the acquiring of sufficient data so as to ensure the robustness and
transferability of the resulting structure—property relationship. As such, a push for
increasingly automated workflows for generating data via both experimental and
computational methods has risen in tandem with these data-driven approaches.
While experimental approaches are limited due to material cost and ease of chemi-
cal synthesis, computational methods, in which simulations of chemical compounds
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are performed to obtain target properties, do not suffer from these restrictions. In-
stead, the prohibiting factor for this approach is the computational costs, usually
requiring access to a high-performance computing cluster [26, 27]. These methods
also require a degree of accuracy and transferability when modelling the chemi-
cal compounds of interest. Therefore, cheaper computational methods that can
be successfully applied over large swaths of chemical compound space would be
extremely beneficial for efficiently constructing structure—property relationships.

Many of the aforementioned data-driven approaches consist of supervised machine-
learning techniques applied to organic small molecules in order to predict quantum-
mechanical properties over a broad range of chemistries [16-18]. Key to the suc-
cess of these methods is the use of molecular representations that contain high
information content, making it easier to learn relationships for target proper-
ties [19, 118, 120]. The best performing representations that have been reported
thus far all share certain characteristics. They encode the geometry of a given
compound while preserving translational, rotational, and permutational symme-
try with respect to atomic ordering. Importantly, they also include information
pertaining to the many-body interactions that exist within each molecule. How-
ever, it is unclear whether these same representations, which require only a single
conformation of a chemical compound, wield the same predictive power when used
to estimate the thermodynamic properties of compounds in a bulk liquid phase.
In general, thermal fluctuations play a significant role in determining these proper-
ties, requiring a computational method, like classical molecular dynamics or Monte
Carlo, that enables the calculation of averages that account for multiple conforma-
tions in an ensemble [44]. However, in Chapter 2, we were able to use one of these
representations, the Spectrum of London Axilrod-Teller-Muto (SLATM) vector, in
combination with a kernel ridge-regression model to predict the water /octanol par-
tition free energy despite representing each compound with a single conformation.
Rauer and Bereau were also able to use the SLATM vector to predict hydration-
free energies of organic small molecules in a similar fashion [187]. This implies that
the SLATM vector (and other representations that encode the same information)
can be successfully used to predict thermodynamic properties if enough data exists
to train the model. However, relatively few training sets for these properties have
been reported, primarily due to the high cost of acquiring data. This is especially
true when targeting certain structural properties pertaining to bulk-phase phe-
nomena for organic small molecules, which can only be “easily” obtained through
computer simulations. Given that the size of CCS for small drug-like molecules
is on the order of 10, the prospect of generating enough data to obtain reliable
structure—property relationships for these target properties is daunting [4]. Again,
this reinforces the demand for modeling tools that allow us to reduce the cost of
simulations for screening purposes.
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One such method that has been shown to drastically reduce the computational
costs for these types of simulations is particle-based coarse-graining, in which
groups of atoms are mapped to coarse-grained particles, known as beads [31].
The interactions that govern the behavior of these beads are assigned so as to re-
tain the essential physics of the higher-resolution data. This results in simulations
that are more computationally efficient due to the reduction in number of parti-
cles. Additionally, the parameterization of the coarse-grained interactions usually
results in a smoothened free-energy landscape that is more easily traversed due
to the removal of unimportant atomistic degrees of freedom [31]. In the previous
two chapters, we showed that coarse-graining is a highly effective means for gen-
erating databases for thermodynamic properties, such that a structure—property
relationship can be quickly inferred [110, 138, 227]. In those studies, we took
advantage of the chemical transferability of the top-down Martini coarse-grained
model, which accurately models the thermodynamic partitioning behavior of small
molecules in different media [137]. However, Martini has been known to inaccu-
rately reproduce structural features in many soft-matter systems. For example,
certain cross-correlations between beads of different sizes are not included in the
model [224]. Additionally, the Martini model fails to properly capture the phase
behavior of certain ternary lipid mixtures [228, 229]. This makes it difficult to use
the Martini model to screen compounds for applications where structural accuracy
is important.

Bottom-up methods, on the other hand, yield high structural fidelity (in some
cases by construction) [76-78]. Several studies have been conducted that focus
only on a single system or a small number of systems, and much work has been
done to elucidate how different bottom-up coarse-grained methods preserve the
essential physics of the higher-resolution data [230-232]. Furthermore, certain
bottom-up methods have been shown to ensure the transferability of a coarse-
grained model across multiple thermodynamic state points, known as an extended
ensemble. Dama et al. recently developed a method in which coarse-grained force
fields parameterized at different densities are mixed in order to successfully model
complex phase behaviors, such as the vapor-liquid equilibrium of a Lennard-Jones
fluid [233]. Mullinax and Noid demonstrated a coarse-grained potential that was
transferable across liquid-state binary mixtures of organic compounds [40]. Sanyal
and Shell used local-density potentials to do the same for benzene-water solu-
tions [41]. As far as we know, there has only been one reported study in which a
chemically-transferable coarse-grained model was derived using a bottom-up ap-
proach. Sanyal et al. recently developed a new extended-ensemble relative-entropy
method to develop a generalized coarse-grained protein-backbone model that could
accurately reproduce the structures of over 200 different globular proteins [42].
Even in this case, however, the native contact information for each protein was
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also required. Furthermore, there are practical considerations against employing
these methods for high-throughput screening applications, as they require higher-
resolution data to be initially generated for each compound of interest. Thus, there
is demand for chemically-transferable coarse-grained potentials that preserve struc-
tural accuracy without requiring the generation of higher-resolution data in order
for high-throughput coarse-grained screening applications to be feasible.

(a ) ( b) (C) Decompose into local (d ) Cluster averaged local environments (e) Extended Ensemble
Input Gas-phase environments and calculate across all compounds and of bulk liquid mixtures to
Compound List simulations conformational averages find representatives parameterize CG potentials
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Figure 4.1: A schematic showing the protocol used to develop a bottom-up
chemically-transferable coarse-grained model. (a)Given a set of com-
pounds as input, (b) we first run gas-phase MD simulations of each
compound. (c¢) We then decompose the gas-phase trajectories into a
series of local environments and compute the conformational average
of each unique local environment found in the trajectory. (d) We take
these averaged local environments and cluster them across all com-
pounds. (e) We use the clustering to find representative molecules, to
which we apply extended-ensemble bottom-up coarse graining methods
in order to obtain chemically-transferable coarse-grained potentials.

In this work, we present a new data-driven framework for creating chemically-
transferable coarse-grained models with structural accuracy. Our workflow is
shown in Fig. 4.1. Given a set of chemical compounds, this method applies
unsupervised machine-learning methods in order to determine a subset of “rep-
resentative” compounds that have the greatest probability of sharing features in
configurational space with the most compounds in the remainder of the data set.
This is accomplished by first running gas-phase simulations of each molecule in
the input database. The resulting trajectories are decomposed into a set of local
environments centered on each heavy atom, and averaged over the conformational
space sampled by each molecule during the simulation. Density-based cluster-
ing methods are then applied to the conformationally-averaged local environments
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of all of the compounds in the database. Compounds which contain the most
promiscuous local environments—meaning the compound is found in many differ-
ent clusters of local environments—are taken as “representative”. We then apply
the extended-ensemble MSCG method to this set of representative compounds.
The resulting coarse-grained potentials are constructed to be transferable across
the chemical space defined by the input data set using a limited number of bead
types. We apply this protocol to the subset of C;0O5 isomers in the Generated
Database (GDB) and begin to quantify the extent to which the transferable po-
tentials remain accurate [140, 161]. We quantify the accuracy of the transferable
coarse-grained model by comparing the radial distribution functions (RDFs) of
the coarse-grained system to its atomistic counterpart. We further parameterize
coarse-grained force fields using the MSCG method but limited to specific state
points, as would be traditionally done when developing a coarse-grained model for
a single system of interest, and use these models as a benchmark for our transfer-
able model. This is the first study in which the MSCG method has been applied
to a large number of systems (703 in total) in an automated fashion. Our prelim-
inary results show that applying this protocol does indeed result in transferable
coarse-grained potentials with structural accuracy. Surprisingly, parameterizing
the coarse-grained model by averaging over the entire extended ensemble led to
drastic improvements in accuracy when compared to the coarse-grained model
parameterized specifically for that state point. On the other hand, there were
certain systems where the ensemble-averaged force field performed significantly
worse than the state-point specific model. We examine each of these cases and put
forward hypotheses explaining the observed trends. Specifically, we find that gains
in accuracy are due to a “regularization-like” effect that effectively smoothens the
average forces acting on specific coarse-grained bead types, reducing the effect of
certain interactions that would otherwise dominate the system. In cases where the
ensemble-averaged force field performs poorly compared to the state-point specific
force field, we identify functional groups with complex interactions that result in
highly diverse conformational states. Averaging over the whole ensemble for these
functional groups results in a potential that is unable to reproduce any of these di-
verging conformational states. Overall, we provide a systematic means to perform
a bottom-up coarse-graining of CCS, resulting in chemically-transferable coarse-
grained potentials that retain structural accuracy in simulations of soft-matter
systems. At the same time, we highlight the limitations of this approach and note
key pitfalls to avoid when implementing this approach.
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4.2 Methods

4.2.1 Database

We selected a subset of the Generated Database (GDB), a computer-generated
set of drug-like organic compounds, to test our data-driven bottom-up approach
[140, 161]. Specifically, we selected the set of GDB compounds which were made
up of seven carbon atoms and two oxygen atoms only. We further filtered out
any compounds containing triple bonds. After applying these filters, we were left
with a database of 3441 C;0O, isomers, listed in their simplified molecular-input
line-entry system (SMILES) format. Despite restricting the size of the molecules
and only including three elements (C, O, and H), a large variety is still present
in the resulting chemical structures. Furthermore, complex interactions, such as
hydrogen-bonding and m-stacking interactions, are also present for many of the
compounds in this database. Because the database was limited in terms of the
chemical elements, but still contained compounds which we expected to display
complex behavior in the bulk phase, we felt this choice of database would prove use-
ful for determining which specific physical interactions would be (un)successfully
captured by our chemically-transferable model.

4.2.2 Gas-phase simulations

For each compound in the database, we first ran single-molecule gas-phase molec-
ular dynamics simulations. The initial structures were obtained by converting the
molecules from their SMILES string representations to energy-minimized 3D con-
formations using the RDKIT package [234]. The force field parameters for each
compound were generated using the CGENFF tool, included in the SILCSBIO 2018
package, which automatically assigns parameters from the CHARMM General
Force Field based on the input chemistry [235]. The simulations were run at con-
stant volume using a stochastic velocity-rescaling thermostat[67] to maintain a
constant temperature, 7" = 300 K. The simulations were run using a 2 fs timestep
for a total of 3 ns, with the LINCS algorithm used to constrain the hydrogen atoms
[69]. A frame was output every 2 ps, yielding 1500 frames per simulation for each
compound in the database. The GROMACS 16.1 package was used to run all of the
systems simulated in this work at the atomistic resolution [236].

4.2.3 Defining local environments with SLATM

The Spectrum of London Axilrod-Teller-Muto (SLATM) vector describes a molecule
as a sum of atomic environments that encode the 1-body, 2-body, and 3-body in-
teractions within a cut-off distance [120, 121]. For a full description of this rep-
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resentation, refer to Section 1.1.7, as we provide only a cursory explanation here.
For each atom, its corresponding SLATM vector consists of the elemental atomic
number (1-body), a spectrum of 2-body London interactions convoluted with a
gaussian function (2-body), and a spectrum of 3-body Axilrod-Teller-Muto inter-
actions also convoluted with a gaussian function (3-body). The two-body spectrum
is computed over the distance as a London interaction between all pairs within a
cut-off value with a specified step-size. Similarly, the three-body spectrum is com-
puted as an Axilrod-Teller-Muto interaction over the angle for all triplets within
the cut-off distance.

As seen in Fig. 1.7b, the atomic SLATM (aSLATM) vector is a concatenation
of the 2-body and 3-body spectra with the atomic number of the atom. Note that
this concatenation is performed over all possible many-body types found with re-
spect to all atomic elements found in the input data set. For example, the 1-body
component of a SLATM vector corresponding to a carbon atom in one of the com-
pounds used in this database would be [0.0,6.0], whereas an oxygen atom would
have a 1-body component of [8.0,0.0]. This would then be followed by all possible
two-body interactions (O-O,0-C,C-C), and subsequently all possible three-body
interactions. If an atom does not have some of these interaction types (for exam-
ple, a carbon atom will not have any O-O interactions), the vector is filled with
zeros. This representation uses only the internal geometry of the molecule, making
it translationally and rotationally invariant. Additionally, because the aSLATM
vector carries the same format for each of the atom types, and the spectra do
not depend on the permutational ordering of the atoms, the aSLATM vector is
also permutationally invariant. Convoluting the interactions with Gaussian func-
tions results in a continuous and differentiable metric. Furthermore, including
the 3-body spectrum was shown to vastly improve the performance of statistical
models that used the SLATM vector to predict quantum-mechanical properties
[120]. Because of the different scaling applied to the different many-body types, a
hierarchical structure is built in to this representation, guaranteeing that aSLATM
vectors are separated first by the atom type, then by the positions of the nearest
neighbors, and finally, the relative positions of the heavy atoms remaining within
the cut-off radius. We applied the QML package made for PYTHON 2.7 to con-
vert our database of compounds into aSLATM representations [179]. The default
values, which were optimized for predicting quantum-mechanical properties, were
used, with a cutoff value of 0.48 nm and a grid spacing of 0.003 nm and 0.03
radians for the 2-body and 3-body spectra, respectively.

Each frame of the gas-phase simulations is used to generate nine atomic SLATM
vectors, with one vector per heavy atom. Hydrogen atoms were not included when
calculating the SLATM vectors. Because the number of heavy atoms and chemical
composition was constant across the entire database, the length and ordering of
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the many-body types for each aSLATM vector was the same. Fig. 4.1c shows the
aSLATM vectors of all 1500 frames that were output from a gas-phase simulation of
the first molecule in our database projected into two dimensions using UMAP [106].
Note that there are only four large clusters due to the symmetry of the compound,;
both oxygen atoms, the terminal carbons, and the carbons bonded to the oxygen
atoms are all symmetric with respect to the carbon in the middle of the compound
(see Fig. 4.1b). Using HDBSCAN, we were able to easily identify the clusters shown
above in an automated fashion (insensitive to the choice of HDBSCAN parameters),
as was the case with all of the gas-phase results [98]. For a full description of how
the HDBSCAN algorithm works, please refer to Chapter 1, as we provide only a
cursory description here. The data is treated as a connected graph with data points
representing nodes. The edges connecting these nodes are weighted according to
a localized distance metric that depends on the nearest neighbor distances for
each point in the data set. Rather than take a single cut-off length-scale or cut-
off density as input, HDBSCAN requires the size of the smallest possible cluster
to be defined in addition to the number of nearest neighbors accounted for when
reweighting the graph edges. A dendrogram is then calculated that spans the entire
data set, and the stability of clusters is determined by how “long-lived” they are
as the furthest points from the cluster center are systematically removed until the
minimum cluster size is reached. This “lifetime” metric essentially answers the
following question: if the furthest assigned data point were removed, would the
remaining data set still be considered a single cluster, or would it have to be split
into separate clusters? The final clusters that are chosen are those that are the
most stable under this criterion. After identifying clusters, we compute the cluster
center as being the average of all aSLATM vectors that make up the cluster, and
select the aSLATM vector that is closest to this average for each cluster. Therefore,
the molecule shown in Fig. 4.1 is represented as four aSLATM vectors which are
the conformational averages of the unique local environments which make up the
molecule. We similarly apply this protocol to all the gas-phase trajectories and
represent each of the 3441 molecules by their aSLATM cluster centers.

4.2.4 Selecting representative molecules

All of the aSLATM cluster centers obtained from the gas-phase trajectories were
combined into a single data set and clustered using HDBSCAN. Here, we used the
default HDBSCAN parameters, with both the minimum cluster size and number
of nearest neighbors set to five points. Fig. 4.2 shows a UMAP of this data set
colored by element type. Within this separation by atom type, separate clusters
correspond to oxygen or carbon atoms that make up certain functional groups as
well as their placement within a carbon scaffold (i.e., edge of the molecule ver-
sus middle of the molecule). Note that this UMAP is used only for visualization
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Figure 4.2: A UMAP projection of the averaged aSLATM vectors obtained from
gas-phase trajectories of the 3441 C;O, isomers used in this work.
Points colored green represent aSLATM vectors corresponding to car-
bon atoms, whereas blue-colored points correspond to oxygen aSLATM
vectors. Several large clusters are labeled as the functional group that
is prominently featured in that cluster. The emboldened character
corresponds to the specific atom that the aSLATM vector is centered
on.
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purposes, and the identification of clusters was performed in the high-dimensional
space. We further note that, beyond the overall separation of aSLATM vectors
based on atom type, no further global trends are seen across the various clusters
defined. Although we only provide labels for a small fraction of the clusters iden-
tified in Fig. 4.2, we saw that most of the distinct clusters that are present in the
UMAP are also labeled as distinct clusters according to our HDBSCAN results on
the high-dimensional data. Because we were also able to identify the key chemi-
cal motifs that define these clusters via visual inspection, we are confident in the
accuracy of the clustering results. We then chose representative molecules by first
ranking them by the number of clusters “visited.” We then included subsequent
molecules if the number of new clusters visited by the molecule was greater than
the number of clusters already visited by the other chosen molecules. By applying
this simple algorithm, we found 19 molecules containing local environments that
shared cluster assignments with over 92% of the assigned aSLATM vectors. These
nineteen representative molecules, shown in Figs. 4.3-4.6, were then used as the
foundation for our extended-ensemble approach.

4.2.5 Atomistic simulations of bulk liquid-phase binary mixtures

An extended ensemble consisting of bulk liquid-phase molecular dynamics simula-
tions of each of the 19 representative molecules, as well as binary mixtures of the
representative molecules, was constructed. Each system consisted of 400 molecules
in total, with the concentrations for compounds in the binary mixtures ranging
from 20% to 80% in 20% increments. Therefore, the number of state points simu-
lated at the atomistic resolution was 19 (for each of the pure systems) plus every
possible binary mixture of each of the compounds at the four different concen-
trations specified, yielding a total of 703 state points making up the extended
ensemble.

Each of these 703 systems was simulated using the following protocol, which
adapts many of the steps taken by Dunn and Noid [84]. 400 molecules were first
randomly placed into an isotropic box with a volume of 1000 nm?. The system was
energy-minimized and then run in the NV'T ensemble using a velocity-rescaling
thermostat for 2 ns at a temperature of 1000 K [67]. The system was then cooled
to 300 K over the course of the next 10 ns. At this point a Berendsen thermostat
and barostat were used to reduce the size of the box and equilibrate the system in
an NPT ensemble at 300 K and 1 bar [237]. The resulting densities ranged from
0.80 g/cm? to 1.0 g/ecm3. While no specific density data could be obtained for
these 19 representative molecules, these densities roughly agree with those of 1,7-
heptanediol (0.95 g/cm?), heptanoic acid (0.92 g/cm?), and pentyl acetate (0.87
g/cm?), which also consist of 7 carbon and 2 oxygen atoms [238]. In a similar
vein, we were unable to find previously-reported isothermal compressibilities for
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these specific compounds, and used the isothermal compressibility of heptanoic
acid, 7.4 - 107° bar™! for all systems [239]. Production runs were then carried out
under these conditions in an NPT ensemble using a Nosé-Hoover thermostat and
a Parinello-Rahman barostat with coupling constants of 70 = 0.5 ps and 7p = 5.0
ps, respectively [84]. The force field parameters used were the same as those used
in the gas-phase simulations, with LINCS constraints applied to the hydrogen to
heavy-atom bonds. The final trajectories consisted of 60 ns simulations of each
system, of which the first 5 ns were discarded to allow for equilibration after
applying the new thermostat and barostat. In machine learning parlance, this
data is effectively the training data over which we will optimize our transferable
coarse-grained model.

4.2.6 Applying the multi-scale coarse-graining technique

Bead Type | Fragment | Bead Type | Fragment | Bead Type | Fragment
B0O1 CC B06 CCO B11 C=CO
B02 CO B07 COC B12 0C=0
B03 C=C B08 0CO B13 C(C)(C)C
Bo4 C=0 B09 CC=C B14 C(C)(C)O
B05 CCC B10 CC=0

Table 4.1: Bead types and their corresponding fragments in SMILES notation.

For a detailed description of the MSCG method, refer to Section 1.1.5, as we only
provide an overview here. The first step in the coarse-graining process is to define
a mapping function [31]. This function assigns atoms in the high resolution MD
trajectory to pseudo-atoms called beads, and sets their configuration according
to some assignment rule. Since the total degrees of freedom are reduced in the
CG system, it is impossible to preserve all of the features of the high resolution
system, regardless of the accuracy of the potentials assigned to the CG beads.
This makes the choice of which atomistic fragments should be mapped to a single
bead an important one, although, in practice, this is often based on chemical
intuition alone. The analysis of the clusters shown in Fig. 4.2 naturally points to
a mapping scheme in which specific functional groups are each assigned their own
bead type. Therefore, we adopted a mapping scheme in which all combinations of
two-heavy-atom and three-heavy-atom fragments consisting of carbon and oxygen
are assigned to different bead types, as shown in Table 4.1. In order to ensure
a “complete” mapping for all the compounds in our training set—meaning that
all heavy atoms are assigned to a bead type and the topology of the fragments
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are preserved—we also included two fully-branched bead types which mapped to
four-heavy-atom fragments. This set of bead types allowed for many molecules in
our training set to be mapped in multiple ways. The full set of training compounds
as well as their coarse-grained mappings is shown in Figs. 4.3-4.6. Although the
mappings shown in these figures range from circular to ellipsoid in shape, the
potentials assigned to each bead type are radially symmetric.

The next step in the coarse-graining process is to determine the coarse-grained
potential. When taking a bottom-up approach, the goal is to ensure that the
probabilities of obtaining coarse-grained configurations are the same as the cor-
responding atomistic configurational probabilities [31, 230]. By equating these
probabilities and solving for the coarse-grained potential yields a projection of the
atomistic free energy surface onto the coarse-grained degrees of freedom, known
as the many-body potential of mean force (MBPMF) [31].

The MBPMF is a projection of the atomistic free energy surface onto the coarse-
grained degrees of freedom, as specified by the mapping function. Note that there
is no restriction on the functional form of the MBPMF'. The “many-body” aspect of
the MBPMF refers to the fact that integrating over the residual atomistic degrees
of freedom results in the generation of many-body interactions between CG beads.
Therefore, conventional CG potentials, which are expressed as a sum of pair-wise
contributions, will never fully approximate the MBPMF [31].

In this work, we use the Multiscale Coarse Graining (MSCG) approach, which
aims to produce a coarse-grained potential that best approximates the MBPMF
via a variational approach [77]. The functional to be optimized via the MSCG
approach requires that the optimal CG potential will be the one that best re-
produces the averaged net force acting on mapped CG sites from the atomistic
trajectory. For this reason, the MSCG approach is also commonly referred to as
the force-matching method for bottom-up coarse-graining. A major advantage of
this variational approach is that it does not restrict the functional forms used to
express the CG potential. Instead, the mean force is expressed in terms of force-
field basis vectors. This enables the force-matching functional to be rewritten as
a system of linear equations:

Z Gppop = bp, (4.1)
D/

where D denotes a single interaction type at a specified distance. In this equation,
Gpp: is a symmetric matrix called the metric tensor that measures the cross-
correlations between all atomistic interactions when projected onto the force-field
basis vectors defined. bp is a vector obtained by projecting the MBPMF of the
atomistic reference onto these force field basis vectors. Solving equation 1.78 yields
the weights ¢p corresponding to the optimal CG potential that minimizes the
force-matching functional.
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Mapping O Mapping 1 Mapping 2

Mol 0
CC(CC(0)C=C)C=0

Mol 1
COC(CC(C)=C)C=0

Mol 2
COCCC(=0)C(C)=C

Mol 3
C=CCCOC(=C)C=0

Mol 4
0C(C=C)C(=C)0C=C

Figure 4.3: Representative molecules 0-4 used to make the extended ensemble, as
well as each coarse-grained mapping applied to the molecule.
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Mapping O Mapping 1 Mapping 2

Mol 5 0
CCOC(0C)C(C)=C
B6
O
@]

D

Mol 6
CCC(C)(0C=0)C=C

Mol 7
CCCC(=0)C=COC

o)
Mol 8
CCC=C(CO)CC=0
Figure 4.4: Representative molecules 5-9 used to make the extended ensemble, as
well as each coarse-grained mapping applied to the molecule.

Mol 9
CCC(=CC=C)C(0)=0
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Mol 10
CC(=0)CC(C)(C)Co

Mol 11
CCC(C)(0)C(=C)0C

Mapping 0

Mapping 1

Mapping 2

e

Mol 12
COC(C)(0C=C)C=C

B11

Mol 13
COC(=0)CCCC=C

sl

(J
B5

Mol 14
CCC=COC(C)0C

Figure 4.5: Representative molecules 10-14 used to make the extended ensemble,

as well as each coarse-grained mapping applied to the molecule.
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Mapping 0 Mapping 1 Mapping 2

Q

Mol 15
CCCC(C)OC(C)=0

Mol 16
CC(=C)0C(=0)CC=C

Mol 17
CCCOCOC(C)=C

¥

Mol 18 o5 P
€CCOC=Ccoc=C m® G g

Figure 4.6: Representative molecules 15-18 used to make the extended ensemble,
as well as each coarse-grained mapping applied to the molecule.
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In practice, we used the BOCS software package developed by Dunn et al. to
apply the MSCG method to each of the 703 state points in the extended ensemble
[83]. For systems made up of compounds with multiple mappings, we systemati-
cally applied every possible mapping (or combination of mappings in the case of
binary mixtures) and calculated the MSCG potential from each mapped atomistic
trajectory. We first applied the direct Boltzmann inversion method (see 1.1.5 for
details on this technique) in order to obtain intramolecular coarse-grained poten-
tials (i.e., bonded, angle, and dihedral potentials) from each atomistic trajectory.
In cases where the distribution of coarsened angles and dihedrals was not sam-
pled for certain angle and dihedral values, we modified the resulting potential
to include large barriers, effectively preventing the coarse-grained systems from
sampling these values as well. We then used these potentials to calculate the
contribution of the intramolecular interactions to the mean force, and subtracted
them before solving equation 4.1, including only the nonbonded interactions and
bonded interactions only. This ensured that the intramolecular contributions to
the mean force were not incorrectly attributed to the pairwise nonbonded interac-
tions. Bonded interactions are included in the calculation even after subtracting
their contribution to the mean force for reasons of numerical stability [232, 240].
Including these interactions does not affect the results of the nonbonded calcu-
lations due to the large energy-scale separation between these interaction types,
which also ensures that the force field basis vectors are decorrelated in the metric
tensor. We represented these pairwise interactions as radially-isotropic fourth-
order Basis splines with control points spaced every 0.01 nm ranging from 0.0 to
1.4 nm. Thus, a set of coarse-grained pairwise potentials was generated for each
mapping at each state point. This protocol was applied using an automated frame-
work, and, to the best of our knowledge, this is the first study in which such a large
number of systems has been systematically coarsened using the MSCG method.

4.2.7 Averaging over the extended ensemble

Because a variational approach is used to find the potential that best approximates
the MBPMF in the MSCG method, it is a simple matter to extend the variational
principle over an extended ensemble consisting of multiple thermodynamic state
points [40]. An average over the extended ensemble is defined in the following
manner

(ay(ry)) = Zp7<av<rv)>'y> (4.2)

where 7 denotes the specific state point, and p, gives the probability of being
in that ensemble, set to 1/I"; where I" is the total number of state points in the
extended ensemble. Each ensemble will have its own mapping, and a corresponding
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MBPMEF. In this case, solving the force-matching functional yields the potential
that best approximates all of the MBPMFs over the extended ensemble, averaged
as shown in the above equation. The derivation proceeds just as described in the
previous section, while additionally taking the sums over all I' corresponding to
the different state points [40, 83].

In practice, we first create a metric tensor Gpp and mean force vector bp that
corresponds to all 105 pairwise interactions between the fourteen bead types that
we have defined as well as all bonded interactions (to ensure numerical stability).
We then iterate over all of the state points and mappings, adding each of the
blocks of the metric tensor and segments of the mean force vector for a single state
point to the corresponding block and segment in the extended ensemble metric
tensor and mean force vector, respectively. We then compute the average for
each row/column of the metric tensor and segment of the mean force vector by
dividing by the number of state points that contained that specific interaction.
This prevents interactions that are less represented in the extended ensemble from
being neglected due to their lower contribution to the extended-ensemble mean
force. We are currently deriving Equation 4.2 for the case where the extended
ensemble consists of different systems that do not all have the same interaction
types in order to prove that this averaging approach also obeys the variational
principle. Using the BOCS software package, we solved Equation 4.1 with the
extended ensemble metric tensor and mean force vector, yielding coarse-grained
potentials that should be transferable across our input data set of 3441 C;O,
isomers.

4.2.8 Validation and quantifying structural accuracy

After obtaining the coarse-grained potentials by averaging over the extended en-
semble and solving Equation 1.78, we validate our new model by first running
coarse-grained simulations of the systems that make up the extended ensemble.
This is done using both the state point specific (SP) potentials that would be used
if applying the MSCG method to that specific state point only, as well as the
extended-ensemble (EE) potentials. The intramolecular potentials used for both
coarse-grained models are those obtained from the direct Boltzmann inversion of
the intramolecular distributions calculated from the atomistic trajectories for each
system. The coarse-grained simulations are run in the NVT ensemble using an
isotropic box that has dimensions matching the average density calculated from
the atomistic state point trajectory. A time step of §t = 0.002 7 was used for
all simulations, where 7 is the natural time unit for the propagation of the model
defined in terms of the units of energy £, mass M and length £ as 7 = L/ M/E.
The simulations were run for 5 million time steps, with every 500th frame saved as
output, and the first 500 output frames were discarded. The GROMACS 5.1 package
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was used to run all coarse-grained simulations in this work [68]. We observed a
speed-up factor of ~ 3.0 when comparing the coarse-grained to the atomistic sim-
ulations (with the coarse-grained simulations running at ~ 0.35 ns/CPU hour),
but larger time steps can be used to simulate the coarse-grained systems, resulting
in a further reduction of computational cost [84].

In order to assess the effectiveness of the EE potentials, we first calculate ra-
dial distribution functions (g(r), RDFs) using the atomistic trajectories as well as
the two coarse-grained trajectories. We then quantify the agreement between the
coarse-grained and the atomistic RDF's by using the Jensen-Shannon divergence
(JSD) [115]. The relative entropy framework has been previously established as
a useful tool for evaluating the quality of coarse-grained models [78, 215]. The
JSD was previously used in Chapter 3 to evaluate the agreement between distribu-
tions of partitioning free energies for atomistic compounds and their coarse-grained
counterparts. Here, we again use this metric to quantify the agreement between
our coarse-grained and atomistic RDFs. While the Kullback-Leibler divergence
(Dky) [216] directly relates two distributions, the JSD computes the relative en-
tropy by comparing each of these distributions to a third distribution which is the
average of the other two distributions, as shown in the following equations

1

DJS = §DKL (g<r)CG||g(T)avg) + %DKL (g(r)AAHg(r)avg) 3 (43)

where Dxr(g(r)allg(r)a) = mzm a(r) In (ﬁ) ’

r=0
1
and g(r)avg - 5(9(7")0(; + g(r)AA)‘

In the above equations, we define Dgj, in terms of two arbitrary RDFs, g(r)a
and g(r)a ranging from r = 0 t0 7y, with values of a(r) and b(r) for the given
radial distance values. For all RDFs; we used a grid spacing of 0.01 nm and an
Tmae = 1.5 nm. All RDFs were calculated using the GMX RDF package included
in GROMACS 5.1. After computing these RDF's for all three trajectories, the JSDs
for both the SP and EE are calculated by comparing their respective RDFs to the
corresponding atomistic RDF's.

Fig. 4.7 provides examples of atomistic and coarse-grained RDFs along with
the JSD value that quantifies the discrepancies between the two. Fig. 4.8 shows
the JSD values averaged over all interaction types for a specific pure molecule
system (pure signifies the data does not come from any of the binary-mixture
state points) and mapping, whereas Fig. 4.9 shows the same results, but averaged
with respect to specific interaction types over all of the pure systems. Thus, the
JSD provides a convenient method for quantifying the overall accuracy of the
transferable potentials compared to the state-point specific potentials.
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Figure 4.7: Examples of atomistic (black) and coarse-grained (red) RDFs with JSD
values of 0.01 (top row), 0.002(middle row), and 0.0001 (bottom row).
0.002 is used in the rest of this work as the cut-off value for “good”
agreement.

169



4 Bottom-Up Chemically-Transterable Coarse-Grained Models that Preserve Structure

4.3 Results

We calculated atomistic and coarse-grained RDF's, using both the state-point spe-
cific (SP) model for each system as well as the model obtained from the extended-
ensemble (EE), for all of the 19 single molecule systems. Because many molecules
have multiple coarse-grained mappings (see Figs. 4.3-4.6), the total number of sys-
tems considered was 36. All of the intramolecular interactions (bonded, angle,
dihedral) are the same for both SP and EE models for a given system, taken by
performing direct Boltzmann inversion using intramolecular distributions obtained
from the liquid-phase trajectories as detailed in the Methods section. The same
comparisons for the rest of the ensemble (i.e., the remaining 684 binary mixture
systems) are still underway, but we expect many of the errors seen in the pure
systems to also occur in the mixed systems.

Despite only examining 36 mappings here, each mapping has six RDFs on av-
erage, meaning the total number of RDFs to compare is over 200. If one were
to include the additional 684 binary mixture systems and all of their mappings,
this would result in over 2,700 state points with an average of 12 RDFs per state
point. Therefore, it is unfeasible to qualitatively scrutinize each and every RDF
generated in this work (although all RDF data for the entire ensemble is currently
being generated and will be accessible using a data-sharing service like ZENODO in
the final version of this work). Instead, we use the JSD to quantify the accuracy of
the SP and EE coarse-grained RDF's relative to the atomistic RDFs and average
these JSD values over all the RDF's for each state point. Fig. 4.7 provides a useful
reference for interpreting these JSD values in terms of the error when comparing
atomistic and coarse-grained RDFs. Fig. 4.8 shows these averaged JSD values
for each of the 36 state points (which includes all mappings) making up the pure
systems. Also shown in this figure are the total mean and variance calculated
using all the RDFs that make up these 36 state points for both the SP and EE
models. One might expect the EE model to perform worse than the SP models
because the EE model is obtained by averaging over many different state points,
which include binary mixtures, rather than only using information from the single
pure system that it is approximating. However, on average, the transferable EE
model outperforms the SP models with an average JSD value of 0.0024 versus
0.0038, respectively. Indeed, we see several state points for which the EE model
greatly outperforms the SP model (Molecule 3 mapping 0, Molecule 8 mapping 0,
Molecule 1 mapping 0). However, some instances of the reverse case, in which the
SP model shows better agreement with the atomistic structure compared to the
EE model, is also seen (Mol6 Map0, Mol5). Interestingly, the variance of the EE
model (shown in the legend of Fig. 4.8) is also significantly smaller than that of
the SP models, indicating that there is more regularity in the quality of the EE
model.
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Next, we take the same data set and the same RDF's and average not according
to molecule and mapping, but according to interaction type, as shown in Fig. 4.9.
While there are many instances of the EE model performing worse than the SP
models, the majority of the EE results remain under the 0.002 cutoff JSD value,
whereas there is a much more even split when considering the SP results. Be-
cause the JSD quantifies accuracy on a logarithmic scale, the average JSD will be
primarily influenced by the worst-performing RDFs. Since many of the systems
observed in Fig. 4.8 do not fall under the cutoff value of 0.002, we conclude that
the overall disagreement between the atomistic and coarse-grained structures for
these systems stems from the presence of just one or two coarse-grained RDF's that
fail to match their atomistic counterparts.

Molecule Num SMILES scaled SLATM distance from training set
19 CCC(CC)OC( )=0 0.43
20 CC(C)=CC(=C)C (O): 0.48
21 C=COC(=C)C(= C)C 0.88
22 CC(C)(C)C(C=0)C= 0.91
23 CC(C)C(C)(C:O)C:O 0.91

Table 4.2: Test molecules, their SMILES strings, and their SLATM distance to the
training set scaled by the maximum possible distance.

Finally, we consider five molecules that were not included in the 19 molecules,
which make up the “training” data set, but were part of the 3441 compounds that
were used to select these 19. These “test” compounds were selected based on their
molecular SLATM distance from the training compounds. The molecular SLATM
vector consists of the summed aSLATM vectors belonging to a molecule. In order
to quantify the similarity of compounds relative to our training compounds, we
first construct a matrix of pairwise euclidean distances between molecular SLATM
representations of each of the 3441 C;O, isomers. The rows in the pairwise distance
matrix corresponding to the 19 molecules in the training set were then summed
together and then sorted from smallest to largest values, corresponding to the
molecules closest and furthest from the training set compounds. The molecules as
well as their Euclidean SLATM distance (scaled such that the maximum distance
is 1.0) from the training set is given in Table 4.2.

These test molecules, as well as their mappings are also shown in Fig. 4.10. As
done in Fig. 4.8, we average the JSDs of the coarse-grained SP and EE RDFs
with respect to the atomistic RDF's for each system and plot the results. Again,
for each simulation, the intramolecular interactions remained constant, whereas
the intermolecular pairwise interactions came from either the SP or EE model.
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As expected, the structure of the closest molecule in terms of SLATM distance,
Molecule 19, is successfully captured when using the EE model, and even shows
improvements in structural accuracy compared to the SP model. Additionally, the
EE model outperforms the SP model for Molecule 23 and shows the same level of
accuracy as the SP models for Molecule 21, which are both relatively far from the
training set in terms of the SLATM distance. On the other hand, the EE model
underperforms compared to the SP model for the other “far” compound, Molecule
22. Surprisingly, the structure of Molecule 20 is poorly captured by the EE model
despite being relatively close to the training set. Further analysis of Molecule 20
as well as other specific examples from the data shown here is given in the next
section. Lastly, we note that performing this analysis on only five molecules is by
no means statistically significant, and, as such, these preliminary results may not
fully reflect the transferability of the EE model. Additional simulations of other
test compounds are currently underway.

4.4 Discussion

Fig. 4.8 shows that both the overall mean and variance of the JSD for the EE model
is lower than those of the SP models for each system, and, in some cases, the use
of the EE model results in a drastic improvement over the SP model. Naively,
one might expect that an extended ensemble force field derived by averaging over
the net mean force of several state points would introduce some degree of error
when trying to reproduce the structure at any single state point. These results
demonstrate that the addition of extra information in the form of additional state
points results in a force field that is not only more transferable, but also more
structurally accurate than simply using the MSCG method to coarse-grain at a
single state point. Furthermore, the reduced variance in the JSD for the EE model
when compared to the SP model implies that the EE model provides more reliable
expectations as to the quality of the coarse-grained force field and is less likely
to produce a highly inaccurate result. However, Fig. 4.8 also reveals several cases
for which the SP model greatly outperforms the EE model. In order to better
understand why there is greater overall agreement with atomistic results when
using the EE model as well as where the EE model fails, we further investigate
specific systems for which the EE and SP models yield wildly different JSD values.

First, we consider the pure Molecule 3 system, where Fig. 4.8 shows that Map-
ping 0 shows the greatest improvement in structural accuracy when switching
from the SP model to the EE model. The RDF's used to quantify this accuracy
are shown in Fig. 4.11. The reason for this significant improvement is evident
when comparing the SP RDFs (red curves) to the EE RDFs (green curves), which
closely match the atomistic RDF's (black curves). Just by examining these results,
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Figure 4.11: All RDFs calculated from atomistic and coarse-grained simulations of
the pure Molecule 3, mapping 0 system. The black curves denote the
atomistic RDF for the fragments which map to the bead types listed
in the top-right of each plot. The RDF's colored red correspond to the
state-point specific coarse-grained model, whereas the RDFs colored
green correspond to the extended-ensemble model.
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Figure 4.12: Potentials (solid lines) and forces (dashed lines) used in the state-point
specific (red) and extended-ensemble (green) coarse-grained simula-
tions of Molecule 3, mapping 0, which resulted in the RDF's shown in
Fig. 4.11.
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it is difficult to diagnose the SP model to determine which interaction(s) caused
the poor agreement. Therefore, in Fig. 4.12, we compare the potentials and the
corresponding instantaneous forces that are used when running the coarse-grained
MD simulations for both models. This allows us to clearly see how the interac-
tions change when accounting for a single state point versus the entire extended
ensemble. In this case, we see that the forces (dashed lines) for the B01-B0O1 and
B01-B03 interactions remain largely unchanged. The remaining interactions, how-
ever, seem to share the same qualitative features but show an overall reduction in
the magnitude of the repulsive forces. This is consistent with several works which
have shown that structure-based CG models tend to feature low cohesive energies
in the liquid state, favoring repulsive or weakly attractive potentials [84, 241-243].
This is most evident when looking at any interactions that include a B04 bead
type, which corresponds to a carbonyl group. The sole exception to this trend is
the BO1-B11 interaction, which instead shows a reduction in the magnitude of the
attractive forces. Note that the EE potentials look qualitatively more similar to
Lennard-Jones potentials than the SP potentials. Since the MSCG method does
not explicitly aim to reproduce the structure, but rather aims to reproduce the
mean force acting on a given bead type, it is likely that there is a high degree
of degeneracy when solving Equation 1.78 for a single system. Essentially, there
would be several pairwise potentials that could reproduce the mean force, but
only a subset of these that would also result in an accurate structure. Altogether,
this suggests that solving Equation 1.78 over the extended-ensemble promotes a
regularization-like effect by accounting for correlations across conformational and
chemical space for a given interaction. Averaging over these correlations has the
net effect of smoothening sharp, localized features in the mean force while pre-
serving the key features which remain across all systems in the ensemble. This
smoothening of the mean force also reduces the degeneracy of solutions to Equa-
tion 1.78, resulting in a potential that minimizes the force matching functional
and is more likely to provide structural accuracy. In order to validate this hypoth-
esis, we are currently comparing sections of the metric tensor from the Molecule
3 state point to their corresponding sections in the metric tensor that is averaged
over the whole ensemble. This then allows us to decompose the mean force into
direct contributions, which come from the interactions shown in Fig. 4.12, and in-
direct contributions that result from other correlations found in the environment
[230, 231]. Doing so will allow us to identify which specific contributions to the
mean force are smoothened by averaging over the extended ensemble.

Next, we examine cases for which the EE model fails to reproduce structure
as well as the SP models. Fig. 4.9 shows that that the B12-B12 interaction is
significantly worse when compared to the SP model, with an average JSD value of
0.03 versus 0.007, respectively. This interaction is responsible for the performance
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Figure 4.13: All RDFs calculated from atomistic and coarse-grained simulations of
the pure Molecule 6, mapping 0 system. The black curves denote the
atomistic RDF for the fragments which map to the bead types listed
in the top-right of each plot. The RDF's colored red correspond to the
state-point specific coarse-grained model, whereas the RDF's colored
green correspond to the extended-ensemble model.
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Figure 4.14: Potentials (solid lines) and forces (dashed lines) used in the state-point
specific (red) and extended-ensemble (green) coarse-grained simula-
tions of Molecule 6, mapping 0, which resulted in the RDF's shown in
Fig. 4.13.
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Figure 4.15: All RDFs calculated from atomistic and coarse-grained simulations of
the pure Molecule 9 system. The black curves denote the atomistic
RDF for the fragments which map to the bead types listed in the
top-right of each plot. The RDF's colored red correspond to the state-
point specific coarse-grained model, whereas the RDFs colored green
correspond to the extended-ensemble model.
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Figure 4.16: Potentials (solid lines) and forces (dashed lines) used in the state-point
specific (red) and extended-ensemble (green) coarse-grained simula-
tions of Molecule 9 which resulted in the RDF's shown in Fig. 4.15.
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Figure 4.18: Potentials (solid lines) and forces (dashed lines) used in the state-point
specific (red) and extended-ensemble (green) coarse-grained simula-
tions of Molecule 16 which resulted in the RDFs shown in Fig. 4.17.
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of the EE model for three out of the four worst performing molecules shown in
Fig. 4.8: Molecules 6, 9, and 16. As we did for the Molecule 3 system, we again
show the RDFs, potentials, and forces for each of these three systems in Figs. 4.13-
4.18. Tt is evident from looking at these figures that the B12-B12 RDF's generated
from the EE model all contain a sharp crystalline peaks, which are responsible for
the increased JSD values seen in fig. 4.9. Furthermore, the B12-B12 potential con-
tains very sharp kinks at approximately 0.3 nm, resulting in forces that dominate
all other interactions in all three systems. Comparing the qualitative features of
the B12-B12 potential with those of the SP model for each molecule allows us to
identify which features of the B12-B12 potential from each molecule are preserved
in the EE model. For example, the aforementioned kinks in the potential are
also present in the SP model for Molecule 9, indicating that this feature of the EE
B12-B12 interaction was “inherited” from Molecule 9. The next significant feature
of the B12-B12 interaction results in the large repulsive forces seen at 0.6 nm, a
feature that is qualitatively shared across all three of these systems. Finally, the
attractive well at 0.8 nm, which results in large attractive forces at 1.1 nm is not
seen in any of the SP models, which suggests that this feature comes from binary
mixtures, rather than the pure systems shown here. Overall, it is clear that inter-
actions involving the B12 bead type are obtained by averaging over significantly
different configurational ensembles. This is made evident by examining the atom-
istic RDFs corresponding to Molecule 9 (Fig. 4.15) to those of Molecules 6 and
16 (Fig. 4.13 and Fig. 4.17). Molecule 9 shows liquid crystalline behavior, with
sharp peaks seen in the B12-B12 RDF, whereas the other two compounds show
bulk-liquid behavior. This is expected due to the chemical structure of Molecule
9 versus Molecules 6 and 16. Molecule 9 consists of alternating single and double
bonds, implying that this compound experiences m-stacking interactions, which
are known to result in the formation of liquid crystals for organic small molecules
[244, 245]. Furthermore, the presence of the terminal carboxylic acid group means
that hydrogen bonding is occurring in the bulk liquid phase, which also promotes
ordering. On the other hand, the fragments that map to the B12 bead type for
both Molecules 6 and 16 are esters that lack hydrogen bonding, and they also
do not have any conjugated bonds that would promote m-stacking. Because the
local environments for the B12 fragment for each of these cases is so different at
the atomistic resolution, averaging over the correlations and the forces from these
systems results in a potential that cannot reproduce either case. Both m-stacking
and hydrogen-bonding interactions are highly anisotropic in nature, and it is dif-
ficult to determine whether both of these interactions can be reproduced using
an automated approach using isotropic pairwise potentials without fine tuning,
which is at odds with our automated approach [246, 247]. Therefore, an expanded
force field basis that accounts for this anisotropy would need to be used when
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performing the MSCG calculation over the extended ensemble, or specific modifi-
cations/corrections would have to be applied to the existing pairwise potentials in
order to accurately model these interactions [248].

Finally, we turn our attention to the test systems used to determine whether or
not the EE model is indeed chemically transferable. We chose molecules that were
relatively close (Molecules 19 and 20) as well as far (Molecules 21-23) in terms
of their molecular SLATM distance from the 19 compounds used to generate the
extended ensemble. As shown by Fig. 4.10, molecules 19,21, and 23 all show ei-
ther the same performance as the SP models or improvements in the structural
agreement. On the other hand, the structure of the Molecule 20 and 22 systems
is poorly reproduced by the EE model compared to the SP model. For Molecule
20, this disagreement again stems from the poorly modeled carboxylic acid group
that maps to the B12 bead type. Indeed, Molecule 20 is quite structurally similar
to Molecule 9 from the training set, as both have alternating single and double
bonds as well as a terminal carboxylic acid group. The m-stacking interaction in
combination with the presence of hydrogen bonding in the Molecule 20 system
leads to the formation of liquid crystals (indicated by the sharp peaks in Fig. 4.19
just as was seen in the Molecule 9 RDF's. Despite these similarities, it is unclear as
to why the SP model results in poor structural agreement for Molecule 9, whereas
the same automated approach yields excellent agreement for Molecule 20. Inter-
estingly, Fig. 4.20 shows that the greatest qualitative difference between the SP
model and EE model stems not from the B12 bead type, but rather the B09 bead
type, with a large peak appearing in the repulsive forces in the B09-B09 interac-
tion for the SP model that is nonexistent in the EE model. This is also expected,
as none of the molecules in the training set both had fragments mapping to a B09
bead and showed liquid crystal behavior in the bulk phase. This further reinforces
the idea that chemical fragments that drastically alter the intermolecular behavior
of the compound depending on their arrangement within the molecule (i.e., alter-
nating double bonds, carboxylic acids versus esters) should not be mapped to a
single bead type, as averaging over drastically different environments results in po-
tentials unsuited for either environment. The fact that the SP models outperform
the EE models for both this system and the Molecule 9 system further reinforces
this recommendation.

The remaining molecule in the test set, Molecule 22, also poses a challenge for
the EE model when compared to the SP model. Out of all the compounds chosen
to test the transferability of the EE model, both Molecules 22 and 23 are the two
furthest compounds from the training set compounds in terms of their SLATM
distance. Both molecules are also quite similar to each other, as both are highly
branched and symmetric with respect to the two carbonyl groups present in each
compound. Fig. 4.10 shows, however, that while the coarse-grained mapping for
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Figure 4.19: All RDFs calculated from atomistic and coarse-grained simulations of
the pure Molecule 20 system. The black curves denote the atomistic
RDF for the fragments which map to the bead types listed in the
top-right of each plot. The RDF's colored red correspond to the state-
point specific coarse-grained model, whereas the RDFs colored green
correspond to the extended-ensemble model.
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Figure 4.20: Potentials (solid lines) and forces (dashed lines) used in the state-point
specific (red) and extended-ensemble (green) coarse-grained simula-
tions of Molecule 20 which resulted in the RDFs shown in Fig. 4.19.
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Molecule 23 is also symmetric, the mapping for Molecule 22 is asymmetric. The
carbonyl groups in Molecule 23 are unevenly split into two-heavy-atom and three-
heavy-atom fragments that are mapped to a B4 and a B10 bead type, respectively.
The preservation of symmetry when choosing a coarse-grained mapping has also
been shown by Chakraborty et al. to have a negligible effect on the structural ac-
curacy of the coarse-grained model [249]. Indeed, when only using the Molecule 22
state point to calculate the potential, this asymmetry is irrelevant, as the SP model
has an average JSD below the cutoff value for good agreement (Fig. 4.10). How-
ever, since none of the compounds in the training set have a symmetric atomistic
structure that maps to an asymmetric coarse-grained representation, we hypoth-
esize that these correlations, which would be present in the metric tensor used
to calculate the SP model, are absent in the corresponding metric tensor for the
EE model. Essentially, this means that the resulting EE potentials are likely to
be less accurate for symmetric compounds with asymmetric coarse-grained map-
pings, since these types of symmetric atomistic correlations were not included
in the training set. On the other hand, because the coarse-grained mapping of
Molecule 23 is symmetric, the potentials are also symmetric, and the liquid-phase
structure is accurately reproduced. For both the Molecule 22 system as well as
the previously discussed examples (Molecules 6, 9, 16, and 20) in which the EE
model is outperformed by the SP model, we are currently performing a mean force
decomposition analysis so as to explicitly prove or disprove these hypotheses.

All in all, these initial results suggest that the EE model is indeed transferable
and can be used to model most of the remaining compounds in our input database
with structural accuracy without having to calculate new potentials for each new
system. However, we did not account for specific intermolecular interactions (i.e.,
hydrogen bonding and 7w-stacking) that play a significant role in determining the
structure of these systems in the bulk phase. The fact that an anomalous com-
pound was introduced into the extended ensemble speaks to the strength of the
clustering analysis and its ability to properly identify representative compounds
from the gas-phase trajectories alone. While this clustering approach was success-
ful in choosing representative compounds that would maximize the transferability
of the resulting coarse-grained potentials, the mapping scheme used was unable to
account for the emergent behaviors that occur in bulk liquid phases due to these
intermolecular interactions. One strategy to overcome this issue could be to per-
form another clustering step after choosing the representative molecules from the
gas-phase clustering results using the liquid-phase trajectories. This would reveal
the extent to which the local environments for compounds containing the same
fragments varies, and could be used to predict the number of bead types or other
modifications to the force-field basis set that should be added in order to account
for these differences. For example, adding a “B12-H” bead type for compounds
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that have a carboxylic acid group rather than an ester could have mitigated the er-
rors caused by using the B12 bead type in the EE model, although the intrinsically
anisotropic nature of these interactions will limit the extent to which adding ad-
ditional bead types improves the structural accuracy of the coarse-grained model.
Investigating and implementing these possible improvements to the EE model will
be the subject of a future work.

4.5 Conclusions and Future Work

In this work, we present a new workflow for obtaining chemically-transferable
coarse-grained models that preserve the liquid-phase structure of organic small
molecules. This method couples unsupervised learning methods with a traditional
coarse-graining approach. We initially ran gas-phase MD simulations of all of
the 3441 compounds in our input data set. Using the aSLATM molecular rep-
resentation, we then represented each compound as the set of conformationally-
averaged, unique local environments obtained from its gas-phase trajectory. we
then used HDBSCAN, a graph-based clustering technique, to identify the clusters
of local environments that were shared across all compounds in the input data
set. The clusters were organized according to multiple hierarchies of increasing
resolution, which corresponded to the many-body types encoded in the aSLATM
representations. Furthermore, it was clear that the clusters were differentiated
based on the types of functional groups that were shared across compounds, and
we therefore used these functional groups in our coarse-grained mapping scheme.
We then identified nineteen compounds whose local environments were found in
the greatest number of clusters. We hypothesized that these representative com-
pounds were therefore the most likely to share conformational similarities with
the remaining compounds in the data set. We then performed extensive bulk
liquid-phase simulations of these compounds as well as all possible binary mix-
tures between these compounds. These simulations formed the extended ensemble
which was used to calculate the transferable coarse-grained potentials. Specifi-
cally, we applied the extended-ensemble MSCG method, using these liquid-phase
trajectories as input, to obtain the transferable potentials. We note that, as far as
we know, there has been no bottom-up coarse-graining study performed on such
a large extended-ensemble up to this point. We then validated our results by run-
ning coarse-grained simulations of the pure (i.e., single-component) liquid systems
using both the transferable coarse-grained potentials as well as coarse-grained po-
tentials derived using only the atomistic trajectory of that specific thermodynamic
state point, and comparing the RDFs using both models to the atomistic reference
RDFs. Astonishingly, our transferable model outperformed the state-point specific
models on average, even though the extended ensemble used to parameterize our
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model mainly consisted of binary mixtures. We also tested the transferability of
the model by simulating five test compounds and found that our model performed
as well, if not better than, the state-point specific models for three out of five
of these test compounds. By examining a specific system for which the trans-
ferable model showed significantly better structural agreement in greater detail,
we have formed a plausible hypothesis as to why the transferable model yields
better results. By averaging across the extended ensemble, certain sharp features
in the mean force—which would otherwise dominate the coarse-grained potentials
resulting from a single state point—are smoothened, while key features that per-
sist across multiple state points are preserved. This results in a regularization-like
effect that restricts the space of force fields that can optimize the force-matching
functional to those that are more likely to also correctly reproduce the atomistic
structure. However, we also found that certain chemical fragments that have sig-
nificantly different interactions depending on where they are placed on a carbon
scaffold. Specifically, neither the hydrogen-bonding behavior of carboxylic acid
groups nor the delocalized m-orbital behavior that results from conjugated small
molecules were accounted for. Because systems that included these interactions
were grouped with systems that did not include these interactions, averaging the
correlations and the mean forces for these bead types resulted in potentials that
could not accurately capture either case. Furthermore, we hypothesized that com-
pounds that are symmetric require a symmetric coarse-grained mapping in order
for our transferable model to be fully applicable. We believe these two anomalies
explain why our model was unable to reproduce the structures for the two remain-
ing test compounds. We are currently investigating these cases in more detail so
as to prove these hypotheses.

While we were able to demonstrate that our approach was successful, several
questions remain. Aside from the unique cases for which we know our model fails
(systems with hydrogen bonding, conjugation, symmetry), we should expect that
each of the 3441 compounds can be accurately modeled, and we are currently run-
ning simulations of other compounds so as to make our results more statistically
meaningful. We intend to test other compounds that consist only of carbon and
oxygen heavy atoms but are outside the size restriction of nine heavy atoms to-
tal. Furthermore, the mapping scheme used in this work was not obtained in a
rigorous manner; rather, we used the clustering of the aSLATM vectors to justify
an encompassing approach in which all possible 2-heavy-atom and 3-heavy atom
fragments were assigned a bead type, as well as two branched bead types which
were added so as to ensure that every molecule in the database could be fully
mapped. Recently, several metrics for evaluating the quality of a coarse-grained
mapping have been proposed [81, 249, 250]. We are testing the viability of these
metrics as a reference to tune the parameters of the aSLATM vector (sigma val-
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ues, grid spacing, etc.) such that our approach yields clusters that correspond to
coarse-grained mappings that preserve the most information from the higher reso-
lution. In a similar vein, we are also remaking the transferable model using fewer
state points to see if we can find the information threshold that must be reached
in order to guarantee a certain level of transferability and accuracy. Additionally,
we have always used direct Boltzmann inversion on the bulk liquid-phase trajec-
tories to obtain intramolecular coarse-grained potentials. This is an unfeasible
approach if we wish to implement this transferable model in a high-throughput
screening scheme, similar to the methods used in Chapter 2 of this work. We are
therefore testing the accuracy of our model when using intramolecular potentials
obtained by performing direct Boltzmann inversion on the gas-phase trajectories.
This also motivates the creation of a supervised machine-learning model that can
predict coarse-grained intramolecular potentials in the bulk-liquid phase given an
input molecular structure and its coarse-grained gas-phase intramolecular poten-
tials. Another avenue that we are currently exploring is how to efficiently reduce
the number of bead types while maintaining the same level of accuracy. Just as
certain chemical fragments would require an expanded force field basis or an ad-
ditional bead type in order to account for different interaction types, it is possible
that certain chemistries (for example the aliphatic fragments) could all be treated
as a single interaction type, which could greatly increase the screening efficiency of
the model. In addition to the ongoing work mentioned above, we are also apply-
ing a pressure-matching method (see Chapter 1, Section 1.1.5) to ensure that our
model correctly reproduces the atomistic pressure, and thus allow it to reproduce
other thermodynamic properties. This will allow us to compare our coarse-grained
model to the Martini model, which is known for its ability to accurately model
thermodynamic partitioning.

Similar to UMAP, HDBSCAN is an unsupervised learning method that transforms
the data in the high-dimensional space by modeling it as a graph and uses the
nearest neighbors to re-weight the edges of the graph so as to identify stable clus-
ters. In both cases, the re-weighting is not applied globally, but is unique to each
point in the data set, and is dependant on the nearest neighbor distances for each
point. Here, we demonstrate that this unsupervised learning approach provides a
viable route to applying bottom-up coarse-graining to chemical compound space.
Having investigated both top-down and bottom-up approaches to coarse-graining
CCS, we summarize our results in the next and final chapter. We discuss the
impact of the work and the questions raised due to our findings, which should be
explored further.
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In this chapter, we summarize the content of each previous chapter, highlighting
the importance of the results presented and the conclusions drawn. We begin with
an overview, which is essentially a restatement of the introductory remarks and
motivation described in Chapter 1. We then follow this with summaries of each of
the subsequent chapters (which are modified versions of the conclusion sections of
each chapter), and conclude with an outlook that highlights the questions raised by
this work and discusses new avenues of research that could answer these questions.

5.1 Overview

Chemical structure—property relationships are essential for the development of new
materials used in all facets of life. As implied by their name, these relationships
connect chemical structures with properties of interest, which can include protein-
ligand binding, atomization energies, macroscopic phase transitions, and countless
others [9, 19, 251-253]. Specifically, a chemical structure—property relationship is
constructed by first projecting the space of all chemical compounds, called chem-
ical compound space (CCS), onto some number of descriptors that are related to
the property of interest [1-3]. The hypersurface upon which the CCS lies after
projection is the structure—property relationship. A good structure—property rela-
tionship not only provides a holistic and intuitive sense for the physical phenomena
that give rise to properties of interest, but also enables quantitative predictions
for new compounds. The challenge in constructing these hypersurfaces usually
stems from a lack of data, as their accuracy and transferability will depend on
how well-sampled CCS is with respect to the chosen descriptors. Therefore, a
commonly used approach to developing chemical structure—property relationships
is high-throughput screening, in which the properties of compounds are determined
in an automated fashion. Both experimental and computational high-throughput
schemes have been developed, each with their own advantages and disadvantages
in addition to their cost in time and resources [11-13, 16-18]. This is compounded
with the exorbitantly large size of CCS, estimated to be about 10% for drug-like
small molecules [4].

Recently, a number of methods that rely on machine-learning and other data-
driven techniques have been developed to infer structure—property relationships for
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the electronic properties of various organic and inorganic chemistries [15, 118, 121,
197, 200]. The high-throughput step for these schemes requires ab initio calcula-
tions, in which the electronic probability distribution is obtained by numerically
solving Schrodinger’s equation, to be run in vacuo for each compound screened. On
the other hand, relatively few high-throughput computational methods have been
proposed that build structure—property relationships for thermodynamic proper-
ties in the condensed phase, for which thermal fluctuations play an important role
[24, 25, 254, 255]. For these methods, the corresponding technique used for screen-
ing is usually classical molecular dynamics (MD) simulations, which also present
the main bottleneck towards their implementation in a high-throughput screening
protocol due to high computational costs.

Coarse-grained (CG) models provide a means to circumvent these costs [31-
34]. A CG model represents chemical compounds as particles in a similar fashion
to all-atomistic (AA) MD simulations. However, each particle in a CG model
represents groups of atoms rather than a single atom. The model can be con-
structed by projecting information from a high-resolution simulation (e.g. AA),
by inferring microscopic behavior using macroscopic experimental results, or some
combination of both. In all cases, the goal of the CG model is to reproduce cer-
tain properties of interest by projecting the information pertaining to the property
onto a minimal set of parameters. This approach has interesting parallels with the
construction of chemical structure—property relationships, as both involve relating
chemical structure to a desired property using a reduced model. Furthermore, CG
MD simulations require fewer particles compared to AA (usually by some multi-
plicative factor between two and ten). They also do not require as much sampling
time due to the removal of unnecessary information that is irrelevant (i.e., has
no correlation with) to the studied property. These two effects can significantly
reduce the number of CPU hours required [31, 34, 39]. Therefore, CG modeling
may provide a means to accelerate the computational high-throughput screening
process for condensed phase thermodynamic properties.

The difficulty in utilizing CG models for high-throughput screening stems from
the fact that many CG models are chemically specific, meaning that they are
constructed for a single chemical compound or small set of chemical compounds,
usually at a single thermodynamic state point [36-38]. Because they require an AA
MD simulation or other, equally expensive experimental data for their parameter-
ization, the transferability of these models is usually limited to the chemistry used
in their construction. This means that for each compound, the high-resolution
data would have to first be obtained, making the actual construction of the CG
model unnecessary for a high-throughput approach. Several instances of extending
the transferability of CG models have been demonstrated, but these are applied
to the state point variables, allowing for CG models to be run at various temper-
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atures, pressures, and concentrations given the same set of chemical compounds
[38, 40, 41, 256]. On the other hand, relatively little work has been done that in-
vestigates the chemical transferability of CG models [42, 243, 257]. A chemically-
transferable CG model would be highly beneficial in a high-throughput screening
process because a single CG molecule would be representative of many different
chemical compounds, thereby reducing the total number of simulations necessary
to construct a chemical structure—property relationship.

The central theme of this work is to investigate the different ways in which
CG modelling can be used to augment the computational high-throughput screen-
ing of CCS for condensed phase thermodynamic properties. We have shown that
chemically-transferable CG models reduce the size of CCS and can be used to
quickly construct broadly encompassing chemical structure—property relationships
[60, 110, 138]. We further investigated how unsupervised machine learning (i.e.,
clustering and dimensionality reduction) allows us to coarse-grain CCS in both a
top-down and bottom-up manner, and demonstrated approaches for parameteriz-
ing CG models that maximize their chemical transferability in both cases [227].
While further investigations are required, we are encouraged by our results and
believe that the methods highlighted here mark a fundamental first step towards a
new paradigm in efficiently constructing chemical-structure property relationships.

5.2 The High-Throughput Coarse-Grained
Simulation Method

In Chapter 2, we first introduced the high-throughput coarse-grained (HTCG) ap-
proach as a means to quickly construct structure—property relationships that span
CCS. By applying this method using the top-down Martini force field[79, 86, 8§],
we were able to identify linear relationships between key thermodynamic state
points when modeling the behavior of small molecules in a lipid bilayer mem-
brane environment. A single, easily-accessible parameter, AGyy_, )] was the only
required input in order to predict the transfer free energies between these state
points [60]. We extended this structure—property relationship by introducing a sec-
ond descriptor, the acidity, onto which we could then project the coarse-grained
permeabilities for all Martini unimers and dimers [138]. We then demonstrated
that further exploration of coarse-grained CCS, corresponding to Martini trimers
and tetramers, was possible by implementing a Monte-Carlo scheme that used
alchemical transformations to construct and optimize thermodynamic cycles that
efficiently sampled the CG compound space [110]. A Kernel Ridge Regression
(KRR) model was then trained on these results to further expand the transfer-
ability of these structure property relationships. In implementing the HTCG ap-
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proach, we also demonstrated a drastic reduction of CCS when coarse-graining
using Martini due to the degeneracy of molecules that were mapped to the same
Martini representation. Approximately 1.8 million molecules from the Generated
Database (GDB) were mapped to Martini unimers, dimers, and trimers, using the
AUTO-MARTINI algorithm [90, 140, 161]. By performing a functional-group anal-
ysis on these compounds, we were able to provide a means to implement inverse
molecular design when targeting a specific membrane permeability [138]. As far as
we are aware, we are the first to apply a coarse-grained model in a high-throughput
scheme that takes advantage of the chemical transferability of that model (which
is traditionally seen as a negative attribute of a coarse-grained model) in order to
dramatically increase the screening efficiency.

Next, we assessed three different molecular representations as well as three dif-
ferent dimensionality reduction techniques in order to determine whether unsu-
pervised ML could provide a means for further screening in a hierarchical manner.
We found that principal component analysis (PCA) and SKETCH-MAP preserve
the global structure of the high-dimensional data while the UMAP visualizations
consisted of well-separated clusters which were randomly placed in relation to each
other [99, 104, 106]. Additionally, the SLATM and ASOAP representations were
able to relate chemical structure to AGyy_, )], Whereas the Coulomb Matrix did
not show a strong correlation to this property [118-120]. This insight led to the
parameterization of a KRR model using the SLATM vector that could compete
with the ALOGPS program, although it remains unclear as to why a single input
configuration was sufficient to achieve such high accuracy when predicting a ther-
modynamic property [163, 175]. We showed that even relatively low-dimensional
representations, like the modified Coulomb Matrix, could identify molecular scaf-
folds which could be used in a hierarchical screening approach. We also demon-
strated that the clusters obtained from this unsupervised ML approach do not
always correspond to specific Martini bead types, motivating our work in the next
chapter. Importantly, we made parallels between different unsupervised learning
techniques and different approaches to coarse-graining. PCA and SKETCH-MAP
apply global transformations to high-dimensional data that is used to encode CCS
in a similar fashion to how top-down coarse-graining methods globally map CCS
to reproduce certain experimental data (in the Martini case this is AGW*)Ol)' On
the other hand, the localized means by which UMAP and HDBSCAN transform the
data is more reminiscent of bottom-up methods, which tend to be more chemically
specific, and therefore localized in CCS. These (non-rigorous) analogies suggested
strategies that would be useful for maximizing the chemical transferability of either
top-down or bottom-up CG models, and each of these strategies was subsequently
explored in the next two chapters.
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5.3 Resolution limit of data-driven top-down
coarse-grained models spanning chemical space

In Chapter 3, we used the Jensen-Shannon divergence (JSD) to quantify the infor-
mation loss in chemically-transferable top-down coarse-grained models with vary-
ing numbers of bead types, with the GDB as our proxy for CCS [115]. We found
that Martini, while not designed to efficiently reduce CCS, performed remarkably
well in this regard, closely matching the other force fields explicitly designed to
minimize the JSD with only a small deviation [227]. All force fields yielded roughly
the same level of accuracy with respect to AGyy_ ), but varied greatly in their
coverage of CCS. We used a Bayesian approach to calculate the probabilities of
back-mapping given bead-types to fragments containing specific chemical substi-
tutions. Here, we found it necessary to constrain the size of chemical fragments
to five heavy atoms and the presence of two functional groups in order to clearly
differentiate between the chemical moieties mapping to each bead type. The re-
sults of this Bayesian analysis indicated that increasing the number of bead types
decreased the range of accessible chemistry while increasing the corresponding
posterior probabilities for each chemistry. However, there was a resolution limit
when using this approach, as it did not take into account the specific positions
of hetero-atom and bond substitutions within a fragment, causing different bead
types to appear representative of the same chemistry. Overall, we saw that Mar-
tini, as well as other chemically-transferable coarse-grained models, can be used
to quickly build structure—property relationships that span broad regions of CCS.
Here we highlighted the powerful combination of this method with Bayesian infer-
ence, providing an informed mapping of a coarse structure—property relationship
to a higher resolution in chemical compound space and further enabling inverse
molecular design.

This work also reinforced the conclusions of the previous chapter regarding the
top-down approach to coarse-graining CCS. In the previous chapter, global un-
supervised learning methods were applied to a data base of fragments that were
mapped to Martini dimers. The results indicated that AGyy_, ) correlated well
with the number and type of functional groups found on a carbon scaffold. We
therefore tested the extent to which the HTCG approach could be optimized by
developing models that covered the AGyy_, ) axis at varying resolutions. We
had further noted that most of the apolar compounds were grouped into two clus-
ters only, which was at odds with the total number of apolar bead types used in
Martini (C1 through C5). Indeed, we saw that the number of apolar bead types
could be reduced to two while maintaining the overall accuracy of the model for
apolar compounds, as was done for the five-bead-type model in this work. At the
same time, the non-polar and polar bead types mapped to a much wider range

197



5 Conclusions and Future Outlook

of compounds, which also correlated with the results from the previous chapter,
in which the unsupervised learning results indicated that these chemistries were
prevalent in far more than three clusters.

It was also evident from this work that only accounting for the correlation be-
tween the number/type of heavy atom substitutions and AGyy_, ) would be in-
sufficient to easily identify specific functional groups for inverse molecular design
without also drastically increasing the number of bead types. Even with sixteen
neutral bead types, the number of functional-group pairs with significant backmap-
ping probability was greater than twenty-five. This resolution limit stems from de-
liberately ignoring the structural information encoded in the low-dimensional maps
in the previous chapter and determining how much chemical specificity could be
preserved when only using this 1-D approach. While the relative entropy has been
previously utilized for optimizing the quality of bottom-up CG models[258], this
is the first study to use this metric to both optimize and quantitatively assess the
chemical transferability of top-down CG models.

5.4 Bottom-Up Chemically-Transferable
Coarse-Grained Models that Preserve Structure

In Chapter 4, we present a new workflow for obtaining chemically-transferable
coarse-grained models that preserve the liquid-phase structure of organic small
molecules. This method couples unsupervised learning techniques with a tradi-
tional coarse-graining approach. We initially ran gas-phase MD simulations of
all of the 3441 compounds in our input data set. Using the aSLATM molecular
representation, we then represented each compound as the set of conformationally-
averaged, unique local environments obtained from its gas-phase trajectory. we
then used HDBSCAN, a graph-based clustering technique, to identify the clusters
of local environments that were shared across all compounds in the input data set
[98]. The clusters were organized according to multiple hierarchies of increasing
resolution, which corresponded to the many-body types encoded in the aSLATM
representations. Furthermore, it was clear that the clusters were differentiated
based on the types of functional groups that were shared across compounds, which
invited using these functional groups in our coarse-grained mapping scheme. We
then identified nineteen compounds whose local environments were found in the
greatest number of clusters. We hypothesized that these representative compounds
were therefore the most likely to share conformational similarities with the remain-
ing compounds in the data set. We then performed extensive bulk liquid-phase
simulations of these compounds as well as all possible binary mixtures between
these compounds. These simulations formed the extended ensemble which was
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used to calculate the transferable coarse-grained potentials. Specifically, we ap-
plied the extended-ensemble Multi-Scale Coarse Graining (MSCG) method, us-
ing these liquid-phase trajectories as input, to obtain the transferable potentials
[40, 77]. We note that, as far as we know, there has been no bottom-up coarse-
graining study performed on such a large extended-ensemble up to this point.
We then validated our results by running coarse-grained simulations of the pure
(i.e., single-component) liquid systems using both the transferable coarse-grained
potentials as well as coarse-grained potentials derived using only the atomistic
trajectory of that specific thermodynamic state point, and comparing the radial
distribution functions (RDFs) using both models to the atomistic reference RDFs.
Astonishingly, our transferable model outperformed the state-point specific models
on average, even though the extended ensemble used to parameterize our model
mainly consisted of binary mixtures. We also tested the transferability of the
model by simulating five test compounds and found that our model performed
as well, if not better than, the state-point specific models for three out of five
of these test compounds. By examining a specific system for which the trans-
ferable model showed significantly better structural agreement in greater detail,
we have formed a tentative hypothesis as to why the transferable model yields
better results. By averaging across the extended ensemble, certain sharp features
in the mean force—which would otherwise dominate the coarse-grained potentials
resulting from a single state point—are smoothened, while key features that per-
sist across multiple state points are preserved. This results in a regularization-like
effect that restricts the space of force fields that can optimize the force-matching
functional to those that are more likely to also correctly reproduce the atomistic
structure. However, we also found that certain chemical fragments that have sig-
nificantly different interactions depending on where they are placed on a carbon
scaffold. Specifically, neither the hydrogen-bonding behavior of carboxylic acid
groups nor the delocalized m-orbital behavior that results from conjugated small
molecules were accounted for. Because systems that included these interactions
were grouped with systems that did not include these interactions, averaging the
correlations and the mean forces for these bead types resulted in potentials that
could not accurately capture either case. Furthermore, we hypothesized that com-
pounds that are symmetric require a symmetric coarse-grained mapping in order
for our transferable model to be fully applicable. We believe these two anomalies
explain why our model was unable to reproduce the structures for the two remain-
ing test compounds. We are currently investigating these cases in more detail so
as to prove these hypotheses, as well as running additional test systems so as to
statistically validate our model.

Both UMAP and HDBSCAN are unsupervised learning methods that represent
high-dimensional data as a graph and re-weight the edges of the graph so as to
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either construct a low dimensional representation or to easily identify stable clus-
ters. In both cases, the re-weighting is not applied globally, but is unique to each
point in the data set, and is dependant on the nearest neighbor distances for each
point. Here, we demonstrate that this unsupervised learning approach provides a
viable route to developing bottom-up coarse-grained models with chemical trans-
ferability. As mentioned above, the transferability stems from two factors: the
choice of representative molecules obtained through unsupervised learning meth-
ods and the smoothening of the force field basis correlations and mean forces that
results from the extended ensemble approach. While other studies that examine
chemical transferability of bottom-up coarse-grained models have been recently
published, none of these studies have tested the limitations of their respective ap-
proaches [243, 257]. Furthermore, the number of compounds used in our study
(3441) greatly exceeds the number studied in other works, and we expect to use
the increased statistics provided by our large data set size to further validate our
approach and its limitations.

5.5 Outlook

Future work pertaining to the coarse-graining of chemical compound space and
investigating the chemical transferability of coarse-grained models will proceed
along two main avenues of research. The first of these research goals is to obtain
further understanding of the results reported here. For example, data-mining
techniques are currently being applied to the permeability database that we created
using the HTCG approach in order to further generalize this structure—property
relationship. We are also working on better understanding the SLATM KRR model
used to predict AGyy_ ) by tuning the parameters of the model (Gaussian vs.
Laplacian kernel, choice of Euclidean vs. Manhattan norm) as well as investigating
the effect of increasing the number of configurations when training the model.
Further comparisons with ALOGPS, in which we measure the accuracy of each when
predicting AGyy_, o for larger and more-varied databases, are also underway. In
addition to the ongoing work described in Chapter 4, it would be interesting to
perform a sensitivity analysis with respect to the amount of “training” data used in
the extended-ensemble MSCG method. This would allow us to better understand
which of the 703 atomistic simulations were crucial in ensuring the transferability
of the resulting coarse-grained model, allowing us to reduce the computational cost
when building these types of models in the future. While we did not rigorously
connect our clustering results to our coarse-grained mapping scheme, a recent study
has linked the optimization of a coarse-grained mapping to spectral clustering
techniques, which is the foundation for the HDBSCAN algorithm [250]. As this and
other studies have been conducted only on single molecules or on small groups of
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chemically similar compounds, it would be interesting to see how these approaches
change when optimizing mappings across several different compounds [81, 259].
These approaches may also serve as a benchmark for modifying the parameters
of the aSLATM vector (sigma values, grid spacing, cutoff) such that the resulting
clusters could be directly linked to a coarse-grained mapping scheme.

The other avenue of research deals with extending the methods proposed here
and applying them to new systems. For example, further work is currently under-
way to apply the HTCG approach in order to construct structure-property rela-
tionships for other target properties as well as screening for specific compounds
or chemical moieties. One of these projects is using the five-bead coarse-grained
model reported in Chapter 3 and extended to be compatible with the refined po-
larizable Martini force field [222]. The results from Chapter 4 also point to several
studies that can extend the transferability and screening efficiency of the bottom-
up coarse-grained model. For example, we have always used Direct Boltzmann
Inversion on the bulk liquid-phase trajectories to obtain intramolecular coarse-
grained potentials. This is an unfeasible approach if we wish to implement this
transferable model in a high-throughput screening scheme. We are therefore test-
ing the accuracy of our model when using intramolecular potentials obtained by
performing Direct Boltzmann Inversion on the gas-phase trajectories. This also
motivates the creation of a supervised machine-learning model that can predict
coarse-grained intramolecular potentials in the bulk-liquid phase given an input
molecular structure and its coarse-grained gas-phase intramolecular potentials.
Successfully being able to translate gas-phase trajectories into liquid-phase in-
tramolecular potentials would allow us to construct an efficient, generalized map-
ping algorithm like AUTO-MARTINI, but with our structurally-accurate model. As
was done with Martini in Chapter 3, it would also be useful to determine how the
accuracy of the bottom-up transferable model changes as a function of the number
of bead types. For example, it is possible that the certain chemistries (for example
the aliphatic fragments) could all be treated as a single interaction type, which
could greatly increase the screening efficiency of the model, with an HTCG imple-
mentation in mind. We are also applying a pressure-matching method to ensure
that our model also has thermodynamic consistency with the atomistic references.
This will allow us to compare our coarse-grained model to the Martini model, and
further increase the range of problems to which our model can be applied. Addi-
tionally, the large error due to the emergence of w-stacking or hydrogen bonding
in our training set can potentially be mitigated by introducing additional bead
types or by implementing a force-field surface-hopping scheme recently proposed
by Rudzinski and Bereau, in which a liquid-crystal coarse-grained force field can be
“hopped” onto when certain conditions are met [243]. Future avenues of research
may involve testing the transferability of this model for molecules larger or smaller
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than the nine-heavy-atom compounds used here, or expanding the training set to
include other chemistries. In conclusion, we firmly believe that this first exam-
ination of the chemical transferability of coarse-grained models and their ability
to reduce chemical compound space will eventually lead to significant advances
in computational high-throughput screening and the discovery and design of new,
better-performing materials.
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Contributions

The first half of Chapter 2, as well as the entirety of Chapter 3 have been
previously published as articles in peer-reviewed scientific journals. Chapter 4 is
currently in preparation to be submitted as an article. All of the work specified
in these publications was carried out in the Max Planck Institute for Polymer
Research in Mainz. We now state the individual contributions for each Chapter
in detail.

Chapter 2:

Roberto Menichetti, Kiran H. Kanekal, Kurt Kremer, and Tristan Bereau

In silico screening of drug-membrane thermodynamics reveals linear
relations between bulk partitioning and the potential of mean force
The Journal of Chemical Physics 147(12):125101, 2017.

DOI: 10.1063/1.4987012

The original idea was developed by Tristan Bereau, Roberto Menichetti, and Kurt
Kremer. The simulation setups were conceived by Tristan Bereau and Roberto
Menichetti. Roberto Menichetti ran and analyzed all simulations. Kiran Kanekal
ran the AUTO-MARTINI algorithm to construct the transfer free energy databases
and quantified the reduction of chemical space. The paper was written by Roberto
Menichetti, Kiran Kanekal, and Tristan Bereau, incorporating critical comments
from Kurt Kremer.

Roberto Menichetti, Kiran H. Kanekal, and Tristan Bereau
Drug—membrane permeability across chemical space
ACS Central Science 5(2):290, 2019.

DOI: 10.1021/acscentsci.8b00718

The original idea was developed by Roberto Menichetti, Kiran Kanekal, and Tris-
tan Bereau. The simulation setups were conceived by Roberto Menichetti and
Tristan Bereau. The simulations were run and analyzed by Roberto Menichetti.
The database construction and the functional group analysis was done by Kiran
Kanekal. The paper was written by Roberto Menichetti, Kiran Kanekal, and Tris-
tan Bereau.

Christian Hoffmann, Roberto Menichetti, Kiran H. Kanekal, and Tristan Bereau
Controlled exploration of chemical space by machine learning of
coarse-grained representations

Physical Review E 100(3):033302, 2019.

DOI: 10.1103/PhysRevE.100.033302
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The original idea was conceived by Roberto Menichetti, Kiran Kanekal, and Tris-
tan Bereau. The simulation setups were conceived by Roberto Menichetti and
Tristan Bereau. The simulations were run by Christian Hoffmann and Roberto
Menichetti. The kernel ridge regression models were constructed and optimized
by Christian Hoffmann. The database construction was done by Kiran Kanekal.

The ideas for the remaining machine learning and hierarchical screening sections
were conceived by Kiran Kanekal and Tristan Bereau, and implemented by Kiran
Kanekal.

Chapter 3:

Kiran H. Kanekal and Tristan Bereau

Resolution limit of data-driven coarse-grained models spanning
chemical space

The Journal of Chemical Physics 151:164106, 2019.

DOTI: 10.1063/1.5119101

The original idea was developed by Kiran Kanekal and Tristan Bereau. The im-
plementation and data analysis were carried out by Kiran Kanekal. The paper
was written by Kiran Kanekal, with critical commentary from Tristan Bereau.

Chapter 4:

Kiran H. Kanekal, Joseph Rudzinski, and Tristan Bereau

Bottom-Up Chemically-Transferable Coarse-Grained Models that
Preserve Structure

In Preparation.

The original idea was developed by Kiran Kanekal, Joseph Rudzinski, and Tristan
Bereau. The simulation setups and coarse-graining protocols were developed by
Kiran Kanekal and Joseph Rudzinski. The implementation and data analysis
were carried out by Kiran Kanekal. The paper was written by Kiran Kanekal,
with critical commentary from Joseph Rudzinski and Tristan Bereau.
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