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Generating series of a new class of
orthogonal Shimura varieties

Eugenia Rosu and Dylan Yott

For a new class of Shimura varieties of orthogonal type over a totally real number field, we construct
special cycles and show the modularity of Kudla’s generating series in the cohomology group.

1. Introduction

For Hilbert modular surfaces, Hirzebruch and Zagier [1976] showed that certain generating series that
have as coefficients the Hirzebruch–Zagier divisors are modular forms of weight 1. Further inspired by
this work, Gross, Kohnen and Zagier [Gross et al. 1987] showed that a generating series that has Heegner
divisors as coefficients is modular of weight 3

2 . This approach is unified by Borcherds [1999], who showed
more generally the modularity of generating series with Heegner divisor classes as coefficients in the
Picard group over Q.

Kudla and Millson extended the results to Shimura varieties of orthogonal type over a totally real
number field and showed the modularity in the cohomology group in [Kudla 1997a], based on work from
[Kudla and Millson 1986; 1987; 1990]. This is further extended by Yuan, Zhang and Zhang [Yuan et al.
2009], who showed the modularity of the generating series in the Chow group.

In the current paper, inspired by the above work of Kudla and Millson, we construct special cycles on
a different Shimura variety of orthogonal type over a totally real number field F and show the modularity
of Kudla’s generating series in the cohomology group.

We consider the Shimura variety corresponding to the reductive group ResF/Q G, where G=GSpin(V )
is the GSpin group for V a quadratic space over a totally real number field F, [F :Q] = d . We choose V
of signature (n, 2) at e real places and signature (n+ 2, 0) at the remaining d − e places. Kudla, Millson
and Yuan, Zhang, Zhang have treated the case of e = 1, while we allow e ∈ {1, . . . , d}.

If e > 1, there is no simpler divisor case, which makes the analysis much harder. In particular, there is
a very technical convergence issue that does not appear in the work of Kudla and Millson.

We present now the setting of the paper. For F be a totally real field with real embeddings σ1, . . . σd , let
A=AF be the ring of adeles of F and let V be a quadratic space over F of signature (n, 2) at the infinite
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places σ1, . . . , σe and of signature (n + 2, 0) elsewhere. Let G denote the reductive group GSpin(V )
over F. We define the hermitian symmetric domain D corresponding to G to be

D = D1× D2× . . .× De,

where Di is the Hermitian symmetric domain of oriented negative definite 2-planes in Vσi = V ⊗σi R.
Then (ResF/Q G, D) is a Shimura datum and for any open compact subgroup K of G(A f ), this gives

us the complex Shimura variety

MK (C)' G(F)\D×G(A f )/K .

For i = 1, . . . , e we let L Di be the complex line bundle corresponding to the points of Di . We also
define the projections maps pi : D → Di and then the line bundles p∗i L Di ∈ Pic(D) descend to line
bundles L K ,i ∈ Pic(MK )⊗Q.

Let W be a totally positive subspace of V, meaning that Wσi = W ⊗σi R is a positive subspace of
Vσi = V ⊗σi R for all places 1 ≤ i ≤ d. We define VW = W⊥ to be the space of vectors in V that are
orthogonal to W, GW = GSpin(VW ) and DW = DW,1 × · · · × DW,e the Hermitian symmetric domain
associated to GW , where DW,i consists of the lines in Di perpendicular to W. We actually have the natural
identifications

GW = {g ∈ G : gw = w,∀w ∈ VW }, DW = {(τ1, . . . , τe) ∈ D : 〈w, τi 〉 = 0, ∀w ∈W,∀1≤ i ≤ e},

where 〈 · , · 〉 is the inner product corresponding to qi , the quadratic form on Vσi , that extends to Vσi (C)

by C-linearity.
Then (ResF/Q GW , DW ) is a Shimura datum and we have a morphism

(ResF/Q GW , DW )→ (ResF/Q G, D)

of Shimura data. For K ⊂ G(A f ) an open compact subgroup and g ∈ G(A f ), we can define the complex
Shimura variety,

MgK g−1,W = GW (F)\DW ×GW (A f )/(gK g−1
∩GW (A f )).

Moreover, we have an injection of MgK g−1,W into MK given by

MgK g−1,W → MK , [τ, h] → [τ, hg].

We define the cycle Z(W, g)K to be the image of the morphism above. Note that Z(W, g)K is
represented by the subset DW ×GW (A f )gK of D×G(A f ).

Now let x = (x1, . . . , xr ) ∈ V (F)r and let U (x) := SpanF {x1, . . . , xr } be a subspace of V. Then we
define Kudla’s special cycles:

Z(x, g)K =

{
Z(U (x), g)K ((−1)ec1(L∨K ,1) · · · c1(L∨K ,e))

r−dim U if U (x) is totally positive,
0 otherwise.
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Here c1 denotes the Chern class of a line bundle. We will also use the notation Gx := GU (x),
Dx := DU (x), Vx := VU (x). Note that if x = (x1, . . . , xr ) ∈ V (F)r, we have Gx = Gx1 ∩· · ·∩Gxr , as well
as Dx = Dx1 ∩ · · · ∩ Dxr .

Now we will define Kudla’s generating function. For any Schwartz–Bruhat functions φ f ∈ S(V r (A f ))
K

and g′ in S̃p2r (A), where S̃p2r (A) is the metaplectic cover of the symplectic group Sp2r (A), we define
the generating series

Z(g′, φ f )=
∑

x∈G(F)\V r

∑
g∈Gx (A f )\G(A f )/K

r(g′f )φ f (g−1x)WT (x)(g′∞)Z(x, g)K .

Here r is the Weil representation of S̃p2r (A)× O(V r
A), where T (x)= 1

2(〈xi , x j 〉)1≤i, j≤r ∈ Mr (F) is the
intersection matrix of x , and WT (x) is the standard Whittaker function for T (x). Note that when e = 1,
for g f = Id and a careful choice of g′

∞
we recover the generating series presented in [Yuan et al. 2009].

The following is the main theorem of the paper:

Theorem 1.1. Let φ f ∈ S(V r (A f ))
K be any Schwartz–Bruhat function invariant under K. Then the

series [Z(g′, φ f )] is an automorphic form, discrete of parallel weight 1+ n
2 for g′ ∈ S̃p2r (A) and valued

in H 2er (MK ,C).

By modularity here we mean that, for any linear function l : H 2er (MK ,C)→ C, the generating series
obtained by acting via l on the cohomology classes of the special cycles

l(Z(g′, φ f ))=
∑

x∈G(F)\V r

∑
g∈Gx (A f )\G(A f )/K

r(g′f )φ f (g−1x)WT (x)(g′∞)l(Z(x, g)K ).

is absolutely convergent and an automorphic form with coefficients in C in the usual sense.
The case e= 1 was proved by Kudla and Millson in [Kudla 1997a], based on [Kudla and Millson 1986;

1987; 1990]. Yuan, Zhang and Zhang [Yuan et al. 2009] proved further the modularity of Z(g′, φ f ) in
the Chow group. One can further conjecture that for e > 1 the series Z(g′, φ f ) is an automorphic form,
discrete of weight 1+ n

2 for g′ ∈ S̃p2r (A) valued in CHer (MK )C. This is out of reach at the moment, but
one can expect to extend the methods of Borcherds [1999] to show the modularity in the Chow group.

We will present now the ideas of the proof. We prove the cases e > 1 by extending the ideas of Kudla
and Millson. For each cycle Z(x, g) we want to construct a Green current η(x, g) of Z(x, g) in MK (C).
Via the isomorphism H 2er

dR (X K ,C)' H BM
2er(n−1)(X K ,C), where the former is de Rham cohomology while

the latter is Borel–Moore cohomology, we have the identification of cohomology classes

[Z(x, g)] = [ω(η(x, g))],

where ω(η(x, g)) is the Chern form corresponding to the Green current η(x, g).
Let x ∈V (F)r such that U (x) :=SpanF {x1, . . . , xr } is a totally positive definite k-subspace of V. Define

x ′ := (x ′1, . . . , x ′k)

such that x ′1 = xi1, . . . , x ′k = xik with 1≤ i1 < · · ·< ik ≤ r the smallest indices for which U (x ′)=U (x).
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We take the currents defined by Kudla and Millson η0(x ′j , τi ) of Dx j ,i in Di , where 1≤ j ≤ k, 1≤ i ≤ e.
Taking further the ∗-product of the currents η0(x ′j , τi ) for 1≤ i ≤ e, we get a Green current of Dx,i in Di :

η1(x ′, τi )= η0(x ′1, τi ) ∗ η0(x ′2, τi ) ∗ · · · ∗ η0(x ′k, τi ).

Taking the pullbacks via the projections pi : D→ Di and taking the ∗-product, we obtain a Green current
of Dx in D:

η2(x ′, g)= p∗1η1(x ′, τ1) ∗ p∗2η1(x ′, τ2) ∗ · · · ∗ p∗eη1(x ′, τe).

Furthermore, we average the current η2(x ′, g) on a lattice to get

η3(x ′, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

η2(x ′, γ τ )1Gx (A f )gK (γ h),

which is a Green current for G(F)(Dx ×Gx(A f )gK/K ) in D×G(A f )/K. Showing the convergence of
the sum in the definition η3(x ′, τ ; g, h) represents the most technical part of the proof and it is treated in
Section 3G.

As η3(x ′, τ ; g, h) is invariant under the left action of G(F), η3(x ′, τ ; g, h) descends to a Green current
η4(x ′, τ ; g, h) of Z(U (x), g)K in MK . Here G(F)(τ, h)K ∈ MK .

Taking the Chern forms, the ∗-product turns into wedge product and the averages, as well as the
pullbacks, are preserved. ω0(x ′j , τi ) is the Chern form of η0(x ′j , τi ) that is defined by Kudla and Millson
in [Kudla 1997a], based on work from [Kudla and Millson 1986; 1987; 1990]. Furthermore, we have that

ω1(x ′, τi )= ω0(x1, τi )∧ · · · ∧ω0(x ′k, τi ),

ω2(x ′, τ )= p∗1ω1(x ′, τ1))∧ p∗2ω1(x ′, τ2)∧ · · · ∧ p∗eω1(x ′, τe))

are the Chern forms of η1(x ′, τi ) and η2(x ′, τ ) respectively, and that

ω3(x ′, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

ω2(x ′, γ τ )1Gx (A f )gK (γ h)

is the Chern form of the Green current η3(x ′, τ ; g, h). Finally, ω3(x ′, τ ; g, h) descends to ω4(x ′, τ ; g, h)
corresponding to the divisor Z(U (x), g)K in MK and is the Chern form of η4(x ′, τ ; g, h).

We defined above ω2, ω3 and ω4 for x ′ ∈ V (F)k with dim U (x ′) = k. We actually can extend the
definitions of ω2, ω3 and ω4 for x ∈ V (F)r when dim U (x) < r as well. For x ∈ V (F)r, if dim U (x)= k,
we have the equality of cohomology classes [Z(U (x), g)] = [ω4(x ′, τ ; g, h)] in H 2ek(MK ,C) and we
can actually show further that we also have

[Z(x, g)] = [ω4(x, τ ; g, h)]

in H 2er (MK ,C). Plugging in [ω4(x, τ ; g, h)] for the cohomology class of [Z(x, g)], we take the pull-
back p∗ of the natural projection map p : D×G(A f )/K → MK and unwind the sums. Then we get

p∗[Z(g′, φ)] =
∑

x∈V (F)r
r(g′f )φ f (x)WT (x)(g′∞)ω1(x, τ ). (1)
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It is enough to show that (1) is an automorphic form with values in H 2er (D×G(A f )/K ,C). We show
this using the properties of the Kudla–Millson form on the weight of each individual ω0(x, τi ), as we can
rewrite (1) as

p∗[Z(g′, φ)] =
∑

x∈V (F)r
r(g′f )φ f (x)r(g′∞)(e

−2π tr T (x)ω1(x, τ )),

and the right-hand side is a theta function of weight (n+ 2)/2 with values in H 2er (D×G(A f )/K ,C);
thus it is automorphic.

2. Background

2A. Complex geometry. We will recall now some background from complex geometry (see for example
[Chriss and Ginzburg 1997; Griffiths and Harris 1978]).

Let X be a connected compact complex manifold of dimension m. Suppose Y is a closed compact
complex submanifold of codimension d . Then Y has no boundary and is thus a 2(m− d) chain in X. We
can take the class of Y to be [Y ] ∈ H2(m−d)(X,C). Note that we have the perfect pairing

H2(m−d)(X,C)× H 2(m−d)
dR (X,C)→ C,

given by (Y, η)→
∫

Y η. Thus H2(m−d)(X,C)' H 2(m−d)
dR (X,C)∨. We also have the perfect pairing

H 2(m−d)
dR (X,C)× H 2d

dR (X,C)→ C,

given by (η, ω)→
∫

X η∧ω. Thus H 2(m−d)
dR (X,C)∨ ' H 2d

dR (X,C). We can compose these isomorphisms
to get

H2(m−d)(X,C)' H 2d
dR (X,C). (2)

For X noncompact, we similarly can take the isomorphism

H BM
2(m−d)(X,C)' H 2(m−d)

dR,c (X,C)∨ ' H 2d
dR (X,C), (3)

where the first group is the Borel–Moore homology, which allows infinite linear combinations of simplexes,
while the second group is the de Rham cohomology with compact support, which uses closed differential
forms with compact support.

Now for Y a closed submanifold of X, in light of the above isomorphisms, a closed 2d-form ω on X in
H 2d

dR (X,C) represents the class [Y ] in H2(m−d)(X,C) (respectively H BM
2(m−d)(X,C) when X noncompact),

if and only if ∫
Y
η =

∫
X
ω∧ η

for any closed 2(m− d) form η on X.
If X is not connected, we restrict the above to each of the connected components.
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2B. Green currents and Chern forms. We recall some background on Green currents, following mainly
[Gillet and Soulé 1990].

Let X be a quasiprojective complex manifold of dimension m. We define Ap,q(X) and Ap,q
c (X) to be the

spaces of (p, q)-differential forms and (p, q)-differential forms with compact support, respectively. Let
Dp,q(X)= Ap,q

c (X)∗ be the space of functionals that are continuous in the sense of de Rham [1955]. That
is, for a sequence {ωr } ∈ Ap,q(X) with support contained in a compact set K ⊂ X and for T ∈ Dp,q(X),
we must have T (ωr )→ 0 if ωr → 0, meaning that the coefficients of ωr and finitely many of their
derivatives tend uniformly to 0.

We also recall the differential operators

d = ∂ + ∂, dc
=

1
4π i

(∂ − ∂), ddc
=

i
2π
∂∂.

2B1. Currents. We define D p,q
:= Dm−p,m−q the space of (p, q)-currents. Then we have an inclusion

Ap,q(X)→ D p,q(X) given by ω→ [ω], where we define the current

[ω](α)=

∫
X
ω∧α, (4)

for any α ∈ Am−p,m−q
c (X).

For Y ⊂ X a closed complex submanifold of dimension p, let ι : Y ↪→ X be the natural inclusion and
we also define a current δY ∈ D p,p(X) by

δY (α)=

∫
Y
ι∗α,

for any α ∈ Am−p,m−p
c .

Definition 2.1. A Green current for a codimension p analytic subvariety Y ⊂ X is a current g ∈
D p−1,p−1(X) such that

ddcg+ δY = [ωY ] (5)

for some smooth form ωY ∈ Ap,p(X).

This means for η ∈ Am−p,m−p
c , we have∫

X
gddcη =

∫
X
ωY ∧ η−

∫
Y
η.

It implies that for a closed form with compact support η the left-hand side equals 0, and thus∫
X ωY ∧ η =

∫
Y η. Thus for g a Green current of Y in X, we have as cohomology classes in the

isomorphism (3):

[Y ] = [ωY ].
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2B2. Green functions and Green forms. One natural way to obtain Green currents is from Green functions.
For Y ⊂ X a closed compact submanifold of codimension 1, a Green function of Y is a smooth function

g : X\Y → R

which has a logarithmic singularity along Y. This means that, for any pair (U, fU ) with U ⊂ X open and
fU :U → C a holomorphic function such that Y ∩U is defined by fU = 0, the function

g+ log | fU |
2
:U\(Y ∩U )→ R

extends uniquely to a smooth function on U.
This definition can be extended for Y ⊂ X a closed complex submanifold of codimension p of X.

We can define smooth forms gY ∈ Ap−1,p−1(X) of logarithmic type along Y such that the current
[gY ] ∈ D p−1,p−1 given as in (4) by

[gY ](η)=

∫
X
η∧ gY ,

is a Green current. We call such smooth forms Green forms of Y in X . We will occasionally abuse
notation and use gY for both the Green form and the Green current corresponding to gY .

2B3. Chern forms. Now let g be a Green function of Y ⊂ X, for Y a divisor on X. For U ⊂ X let fU = 0
be the local defining equation of U ∩ Y. We define locally

ωU = ddc(g+ log | fU |
2).

By gluing together all ωU we get a differentiable form ωY over X. We call this the Chern form associated
to the Green function g. In general for Y of codimension p in X, for a Green form gY of Y in X we
call ωY the Chern form corresponding to gY .

2B4. Star product. Another natural way to get Green currents is by taking their ∗-product. For Y, Z
closed irreducible subvarieties of a smooth variety X such that Y and Z intersect properly, let gY , gZ

Green forms of Y and Z , respectively. Then the ∗-product [gY ] ∗ [gZ ] is defined by Gillet and Soulé
[1990] to be

[gY ] ∗ [gZ ] = [gY ] ∧ δZ + [ωY ] ∧ gZ , (6)

where [ωY ] ∧ gZ (η) =
∫

X η∧ωY ∧ gZ and [gY ] ∧ δZ = π∗[π
∗gY ], where π : Z → X is the embedding

map. For the definition of pushforwards of currents see [Gillet and Soulé 1990]. We can also define
similarly the ∗-product [gY ] ∗G Z for gY a Green form of Y and G Z a Green current for Z (see [Gillet
and Soulé 1990]).

Moreover, from [Soulé 1992, Theorem 4, p. 50], when Y and Z have the Serre intersection multiplicity 1,
we have that [gY ] ∗ [gZ ] is a Green current for Y ∩ Z and

ddc([gY ] ∗ [gZ ])= [ωY ∧ωZ ] − δY∩Z . (7)
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2B5. Pullback. Also from [Soulé 1992, (3.2, p. 50)] for Z an irreducible smooth projective complex vari-
ety such that f : Z→ X is a map with f −1(Y ) 6= Z , if gY is a Green form of logarithmic type along Y, f ∗gY

is a Green form of logarithmic type along f −1(Y ). We define the pullback of currents f ∗[gY ] := [ f ∗gY ]

and, when the components of f −1(Y ) have Serre intersection multiplicity 1, the current f ∗[gY ] satisfies

ddc f ∗[gY ] + δ f −1(Y ) = [ f
∗ωY ]. (8)

3. Construction of Green currents and Chern forms

In this section we construct a Green current of Z(U, g)K in MK for U a totally positive subspace of V (F).

3A. The Shimura variety. Recall σ1, . . . , σd are the embeddings of F into R and let (V, q) be a quadratic
space such that Vσi = V ⊗σi R, has signature (n, 2) for 1≤ i ≤ e and signature (n+ 2, 0) otherwise. V
has the inner product given by 〈x, y〉 = q(x + y)− q(x)− q(y). This can be naturally extended to Vσi at
each place σi for 1≤ i ≤ d , and we denote by qi the quadratic form corresponding to this inner product.

We defined in the introduction the Hermitian symmetric domain

D = D1× · · ·× De,

where Di consists of all the oriented negative definite planes in Vσi . We can actually write explicitly the
definition of Di as

Di =
{
v ∈ Vσi (C) : 〈v, v〉 = 0, 〈v, v〉< 0

}
/C× ⊂ P(Vσi (C)),

where 〈 · , · 〉 is the inner product corresponding to qi that extends to Vσi (C) by C-linearity, and v 7→ v is
the involution on Vσi (C)= Vσi ⊗R C induced by complex conjugation on C.

We now recall the definition of GSpin(V ). Let (V, q) be a quadratic space over F and C(V, q) =(⊕
k V⊗k

)
/I be the Clifford algebra of (V, q), where we are taking the quotient by the ideal I =

{q(v)− v⊗ v | v ∈ V }.
Then C(V, q) has dimension 2dim(V ) and we have a Z-grading on T (V )=

⊕
k V⊗k . The map V → V,

v→−v naturally extends to an algebra automorphism α : C(V, q)→ C(V, q). Then there is a natural
Z/2Z-grading on C(V, q) given by C(V, q)= C0(V, q)⊕C1(V, q), where

Ci (V, q)= {x ∈ C(V, q) : α(x)= (−1)i x}, i = 0, 1.

We naturally have V ⊂ C1(V, q). Then we can define the GSpin group of V :

GSpin(V )= {g ∈ C0(V, q)× | gV g−1
= V }.

We denote G =GSpin(V ) and note that G acts on V by conjugation. The group ResF/Q G is reductive
over Q and the pair (ResF/Q G, D) is a Shimura datum. For K ⊂ G(AF ) an open compact subgroup, this
gives us the complex Shimura variety

MK (C)' G(F)\D×G(A f )/K .

For more details on the Shimura variety MK see [Shih 1978].
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We also define the complex line bundle L Di to be the restriction to Di of the tautological complex line
bundle on P(Vσi (C)). Then for the projection maps pi : D→ Di , we get the line bundles p∗i L Di ∈ Pic(D),
which further descend to the line bundles L K ,i ∈ Pic(MK )⊗Q over MK , defined to be

L K ,i = G(F) \ (p∗i L Di ×G(A f )/K ).

3B. Green functions of Dx,i in Di . We first recall how to construct a Green function of Dx,i in Di , where

Dx,i = {τi ∈ D, 〈τ, x〉 = 0}.

Let τ ∈ Di . It corresponds to a negative definite 2-plane W in Vσi and we can write any x ∈ Vσi as
x = xτ + xτ⊥ , where xτ ∈W and xτ⊥ ∈W⊥. We define

R(x, τ )=−qi (xτ ), qτ (x)= qi (x)+ 2R(x, τ ).

Note that this implies R(x, τ )= 0 if and only if τ ∈ Dx,i . For x 6= 0 and qi (x) < 0, then Dx,i is empty,
and the statement that R(x, τ )= 0 if and only if τ ∈ Dx,i is void, thus still true.

In terms of an orthogonal basis we can write τ = α+β
√
−1 with α, β ∈ Vσi such that 〈α, β〉 = 0 and

〈α, α〉=〈β, β〉<0. Then τ corresponds to the negative oriented plane Wτ =Rα+Rβ⊂V (R), and we have

R(x, τ )=−
〈x, α〉2

〈α, α〉
−
〈x, β〉2

〈β, β〉
.

Another important property that we use is R(gx, gτ)= R(x, τ ). This is easily seen in the definition
above as the inner product is invariant under the action of g.

Moreover, we show below that − log(R(x, τ )) is a Green function for Dx,i in Di :

Lemma 3.1. For fixed x ∈ V, x 6= 0, and τ ∈ Di\Dx,i , the function − log(R(x, τ )) is a Green function
for Dx,i in Di .

Proof. Recall the line bundle L Di is the restriction to Di of the tautological complex line bundle on
P(Vσi (C)). It has the fiber Lτ = τC⊂ Vσi (C) and we have a map

sx(τ ) : Lτ → C, v 7→ 〈x, v〉.

This defines an element sx(τ ) ∈ L∨τ . As τ varies, we get a map

sx : Di → L∨Di
, τ 7→ sx(τ ).

Then sx is a holomorphic section of the line bundle L∨Di
. This section has a hermitian metric

‖sx(τ )‖
2
=
|〈x, v〉|2

|〈v, v〉|
,

where v ∈ Lτ is any nonzero vector. In terms of an orthogonal basis we can write v = α+β
√
−1 such

that 〈α, β〉 = 0 and 〈α, α〉 = 〈β, β〉< 0. Then

‖sx(τ )‖
2
=
〈x, α〉2+〈x, β〉2

|〈α, α〉+ 〈β, β〉|
= −
〈x, α〉2

2〈α, α〉
−
〈x, β〉2

2〈β, β〉
and xτ =

〈x, α〉
〈α, α〉

α+
〈x, β〉
〈β, β〉

β.
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Computing directly gives us R(x, τ )= 2‖sx(τ )‖
2. It follows by a theorem of Poincaré–Lelong (see

[Soulé 1992, Theorem 2, p. 41]) that − log(R(x, τ )) is a Green function for Dx,i in Di . �

For x ∈ V (F), τ ∈ Di , we have the Green function defined by Kudla and Millson (see [Kudla 1997a]),

η(x, τ )= f (2πR(x, τ )), (9)

where f (t)=−Ei(−t)=
∫
∞

t (e−x/x) dx is the exponential integral. Note that

f (t)=− log(t)− γ −
∫ t

0

e−x
− 1

x
dx,

where γ is the Euler–Mascheroni constant. The function f (t) is smooth on (0,∞), f (t)+ log(t) is
infinitely differentiable on [0,∞), and f (t) decays rapidly as t→∞. Thus using Lemma 3.1 we easily
see that η(x, τ ) is a Green function of Dx,i in Di .

Furthermore, Kudla and Millson have constructed explicitly the Chern form ϕ
(1)
KM(x, τ ) of η(x, τ ). We

recall its definition and properties in the following section.
Note that we can consider η(x, τ ) as a restriction to Di of the Green function f (2π‖sx(v)‖

2) =

f (2π |〈x, v〉|2/|〈v, v〉|) of Px(Vσi (C)) := {v ∈ Px(Vσi (C)) : 〈v, x〉 = 0} inside P(Vσi (C)). Then the theory
of Section 2B, in particular the definition of the ∗-product, hold by restricting to Di .

3C. The Kudla–Millson form ϕKM . We will now recall some results from [Kudla 1997a], based on
previous work of Kudla and Millson [1986; 1987; 1990]. Our goal is to present explicitly the construction
of the form ϕ(1)

KM
.

For this section we will use the notation VR for a quadratic space over R with signature (n, 2),
G = GSpin(VR) and D the space of oriented negative 2-planes in VR. We fix a point z0 ∈ D and let
K = Stab(z0) be its stabilizer in GSpin(VR). Then

D ' G/K ' SO(n, 2)/(SO(n)×SO(2)).

Let g0 = Lie(G) be the Lie algebra of G and k0 = Lie(K ) be the Lie algebra of K. We denote the
complexifications of these lie algebras by g and k, respectively. We also can identify the Lie subalgebra
p0 ⊂ g0 given by

p0 =
{( 0

BT
B
0

)
: B ∈ Mn×2(R)

}
' Mn×2(R).

Moreover, we can give p0 a complex structure using J =
( 0
−1

1
0

)
∈GL2(R) acting as multiplication on the

right. We denote by p+ and p− the ±i eigenspaces of p. Then we have a Harish-Chandra decomposition

g= k+ p++ p−.

Moreover for the space of differential forms of type (a, b) on D we have an isomorphism

�a,b(D)'
[
C∞(G)⊗

∧a,b
(p∗)

]K
,

where on the right-hand side we have the wedge product
∧a,b

(p∗) =
∧ap∗

+
∧
∧bp∗

−
for p∗

+
, p∗
−

the
dual spaces of p+ and p−, respectively.
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Recall that S̃p2m(R) is the metaplectic cover of Sp2m(R), and let K ′ be the preimage under the projection
map S̃p2m(R)→ Sp2m(R) of the compact subgroup{( A

−B
B
A

)
, A+ i B ∈U (m)

}
,

where U (m) is the unitary group. The group K ′ has a character det1/2 whose square descends to the
determinant character of U (m).

Then Kudla and Millson constructed a Schwartz form

ϕ◦,(m)
KM

(x, τ ) ∈ (S(V m
R )⊗�

m,m(D))G,

where S(V m
R ) is the Schwartz space over V m

R , and by invariance under G we mean

ϕ◦,(m)
KM

(gx, gτ)= ϕ◦,(m)
KM

(x, τ ).

We present their result below:

Theorem. There exists an element ϕ◦,(m)
KM

(x, τ ) ∈ (S(V m
R )⊗�

m,m(D))G with the following properties:

(1) For k ′ ∈ K ′ such that ι(k ′)=
( A
−B

B
A

)
under the natural map ι : S̃p2m(R)→ Sp2m(R), we have

r(k ′)ϕ◦,(m)
KM
= (det(k ′))(n+2)/2ϕ◦,(m)

KM
.

(2) dϕ◦,(m)
KM
= 0, i.e., for any x ∈ V m

R , the form ϕ◦,(m)
KM

(x, · ) is a closed (m,m)-form on D which is
Gx -invariant.

We define below ϕ◦,(m)
KM

explicitly following [Kudla 1997a]. The form ϕ(m),◦
KM

is denoted by ϕ(m) in
[Kudla 1997a]. First we will construct ϕ◦,(1)

KM
.

Note that we have an isomorphism

[S(VR)⊗�
1,1(D)]G '

[
S(VR)⊗

∧1,1p∗
]K

given by evaluating at z0. Recall that we identified the Lie algebra p0 =
{( 0

BT
B
0

)
: B ∈ Mn×2(R)

}
'

Mn×2(R). Then we have the differential forms ωi, j ∈�
1(D)=�1,0(D)⊕�0,1(D), 1≤ i ≤ n, 1≤ j ≤ 2,

defined by the function ωi, j ∈ p
∗

0, ωi, j : p0' Mn×2(R)→R given by the map u = (ust)1≤s≤n,1≤t≤2→ ui j .
We first define for x = (x (1), . . . , x (n+2)) ∈ VR the form ϕ(1)

KM
(x) that is also G-invariant:

ϕ(1)
KM
(x)= e−2πR(x,z0)

( n∑
i, j=1

2x (i)x ( j)ωi,1 ∧ω j,2−
1

2π

n∑
i=1

ωi,1 ∧ωi,2

)
. (10)

We further define ϕ◦,(1)
KM

(x) to be ϕ◦,(1)KM (x)= e−2πqz0 (x)ϕ(1)
KM
(x), and finally, for x = (x1, . . . , xm) ∈ V m

we define
ϕ(m)

KM
(x)= ϕ(1)

KM
(x1)∧ · · · ∧ϕ

(1)
KM
(xm), (11)

as well as

ϕ◦,(m)
KM

(x)= e
−2π

m∑
i=1

qz0 (xi )

ϕ(m)
KM
(x).
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Recall the Green function η(x, τ )= f (2πR(x, τ )), where x ∈ V (F) and τ ∈ Di . It has the important
property [Kudla 1997b, Proposition 4.10]

ddc
[η(x, · )] + δDx,i = [ϕ

(1)
KM
(x, · )], (12)

where ϕ(1)
KM
∈ (S(V )⊗�1,1(Di ))

K is the Schwartz form defined above. This implies that ϕ(1)
KM
(x, τ ) is the

Chern form corresponding to the Green function η(x, τ ). Note that (12) is mentioned in [Kudla 2003, Theo-
rem 4.10] for F =Q, but holds in general for F with a fixed real place σi for which Vσi has signature (n, 2).

3D. Averaging of Green currents and their Chern forms. Now let x = (x1, . . . , xr ) ∈ V (F)r such that
U (x) = SpanF {x1, . . . , xr } is a totally positive k-subspace of V (F), k ≤ r . Our goal is to construct a
Green current of Z(U (x), g) in MK and its corresponding Chern form.

We define x ′ = (x ′1, . . . , x ′k) such that x ′1 = xi1, . . . , x ′k = xik and U (x ′)=U (x). To make this uniquely
defined, we pick the smallest indices (i1, . . . , ik) for which this happens. Note further that as U (x)=U (x ′),
we also have Dx = Dx ′ , Vx = Vx ′ and Gx = Gx ′ .

For τi ∈ Di and x ′j ∈ V (F) for 1≤ j ≤ r , 1≤ i ≤ e, we define as in (9):

fi (x ′j , τi ) := f (2πR(x ′j , τi ))

that is a Green function of Dx ′j ,i in Di .
We can further fix z0,i ∈ Di for 1 ≤ i ≤ e and we define the Kudla–Millson forms ϕ(1)

KM
(x ′j , τi ) ∈

(S(V )⊗�(Di )
(1,1))G for τi ∈ Di , x ′j ∈ S(V ), as in Section 3C, that satisfy the equation

ddc
[ fi (x ′j , · )] + δDx ′j ,i

= [ϕ(1)
KM
(x ′j , · )]. (13)

As x ′1, . . . , x ′k are linearly independent, the submanifolds Dx ′j ,i intersect properly inside Di and thus
we can take the ∗-product of the Green functions fi (x ′j , τi ) for 1≤ j ≤ k. Denote

η1(x ′, τi )= fi (x ′1, τi ) ∗ · · · ∗ fi (x ′k, τi ).

Then, from (7), this is a Green current for Dx,i = Dx ′,i = DU (x ′),i =
⋂k

j=1 Dx ′j ,i in Di for 1≤ i ≤ e.
As the star product turns into wedge product when we take the Chern forms (see (7)), the Chern form

associated to η1(x j , τ ) is going to be

ω1(x ′, τi )= ϕ
(1)
KM
(x ′1, τi )∧ · · · ∧ϕ

(1)
KM
(x ′k, τi ).

Note that ω1(x ′, τi )= ϕ
(k)
KM
(x ′, τi ) and thus from the definition (6) of the star product, η1 satisfies

ddc
[η1(x ′, · )] + δDx,i = [ϕ

(k)
KM
(x ′, · )]. (14)

Let pi : D→ Di be the natural projections as before. Then, from (8), p∗i η1(x, τi ) is a Green function
of p∗i Dx,i in D and the form p∗i ϕ

(k)
KM,i
(x ′, τi ) satisfies

ddc
[p∗i η1(x ′, · )] + δDx,i = [p

∗

i ϕ
(k)
KM
(x ′, · )]. (15)
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By taking the ∗-product, for τ = (τ1, . . . , τe) ∈ D \ Dx we define

η2(x ′, τ )= p∗1η1(x ′, τ1) ∗ · · · ∗ p∗eη1(x ′, τe).

This is a Green current of Dx in D. This follows from (8), as the divisors p∗i Dx,i have Serre’s
intersection multiplicity 1 in D. The Chern form of η2(x ′, τ ) is going to be

ω2(x ′, τ )= p∗1ω1(x ′, τ1)∧ · · · ∧ p∗eω1(x ′, τe),

satisfying

ddc
[η2(x ′, · )] + δDx = [ω2(x ′, · )]. (16)

We further take for (τ, h) ∈ D×G(A f ) the average of Green currents:

η3(x ′, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

η2(x ′, γ τ )1Gx (A f )gK (γ h).

Note that this can be rewritten as

η3(x ′, τ ; g, h)=
∑
γ∈0h

η2(γ
−1x ′, τ ),

where 0h = Gx(F) \G(F)∩Gx(A f )gK h−1 is a lattice in G(F). It is clear from the average that η3 has
a singularity along G(F)(Dx ×Gx(A f )gK/K ) in D×G(A f )/K. However, note that it is not obvious
that this function converges. We are actually going to prove in Section 3G the following proposition:

Proposition 3.2. Let x ∈ V (F)k such that U (x) is a totally positive k-subspace of V (F). Then we have
that the defining sum of η3(x, τ ; g, h) is absolutely convergent and η3(x, τ ; g, h) is a Green current of
G(F)(Dx ×Gx(A f )gK/K ) in D×G(A f )/K.

This implies that η3(x ′, τ ; g, h) is a Green current of G(F)(Dx×Gx(A f )gK/K ) in D×G(A f )/K. To
get the Chern form we apply ddc locally and glue all the local forms using again [Soulé 1992, Theorem 4,
p. 50]. This is possible due to the discussion at the end of the proof of Proposition 3.2 in Section 3G.

Then η3 has the Chern form

ω3(x ′, g; τ, h)=
∑
γ∈0h

ω2(γ
−1x ′, τ ),

where 0h = Gx ′(F) \G(F)∩Gx ′(A f )gK h−1 as before.
As η3 is invariant under the action of G(F), it descends to a Green current via the projection map

p : D×G(A f )/K → MK to

η4(x ′, τ ; g, h),

where (τ, h) represent the class G(F)(τ, h)K in MK . The Green current condition (5) is also preserved
under the projection map, and the singularity is given by exactly the cycle Z(U (x), g)K inside the Shimura
variety MK . Thus we get:
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Proposition 3.3. For x ′ defined as above, η4(x ′, τ ; g, h) is a Green current of Z(U (x), g)K in MK .

Note thatω3(x ′, τ ; g, h) descends as well to the Chern formω4(x ′, τ ; g, h) of η4(x ′, τ ; g, h). Moreover,
the Chern form ω3(x ′, τ ; g, h) is the pullback under the projection map p : D × G(A f )/K → MK

of ω4(x ′, τ ):

ω3(x ′, τ ; g, h)= p∗ω4(x ′, τ ; g, h).

3E. Extending notation. In the previous section we have defined the Chern forms ω2, ω3, ω4 for x ′ =
(x ′1, . . . , x ′k) with the coordinates x ′1, . . . , x ′k linearly independent. We want to extend the definition to
x = (x1, . . . , xk) in V (F)k when the coordinates x1, . . . , xk are linearly dependent over F. In order to do
that, we take ω1(x, τi )= ϕ

(k)
KM
(x, τi ), ω2(x, τ )= p∗1ω1(x, τ1)∧ · · · ∧ p∗eω1(x, τe), and

ω3(x, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

ω2(x, γ τ )1Gx (A f )gK (γ h).

We will show in Section 3G in Proposition 3.9 that ω3 is well-defined.
Also note that for U a totally positive k-dimensional subspace of V (F)we can pick any y= (y1, . . . , yk)

such that U (y) = U and η4(y, τ ; g, h) is going to be a Green current of Z(U, g) in MK with its
corresponding Chern form ω4(y, τ ; g, h).

We can actually extend the definition of η2, η3, ω2, ω3 for v∈GLk(F∞)when x= (x1, . . . , xk)∈V (F)k

such that U (x) is a totally positive k-plane inside of V. We define

η2(vx, τ )= p∗1η1(v1x, τ1) ∗ · · · ∗ p∗eη1(vex, τe),

where vi = σi (v) ∈ GLk(R) for 1 ≤ i ≤ e. Note that Gvi x = Gx and Dvi x,i = Dx,i for all 1 ≤ i ≤ e and
η2(vx, τ ) is a Green form of Dx in D.

We define further

η3(vx, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

η2(vx, γ τ )1Gx (A f )gK (γ h),

where η3(vx, τ ; g, h) is a Green form of G(F)(Dx ×Gx(A f )gK/K ) in D×G(A f )/K. The proof of
convergence is similar to the one for η3(x, τ ; g, h).

The Chern forms of η2(vx, τ ) and η3(vx, τ ) are going to be, respectively,

ω2(vx, τ )= p∗1ω1(v1x, τ1)∧ · · · ∧ p∗eω1(vex, τe),

ω3(vx, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

ω2(vx, γ τ )1Gx (A f )gK (γ h).

Propositions 3.2 and 3.9 extend as well for η3(vx, τ ; g, h) and ω3(vx, τ ; g, h), thus they are well
defined. As they are invariant under the action of G(F), η3 and ω3 further descend to the Green current
η4(vx, τ ; g, h) of Z(U (x), g) in MK that has the corresponding Chern form ω4(vx, τ ; g, h).
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Moreover, we extend the notation of ω2, ω3 for x = (x1, . . . , xk) with dim U (x)≤ k by taking

ω2(vx, τ )= p∗1ω1(v1x, τ1)∧ · · · ∧ p∗eω1(vex, τe),

ω3(vx, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

ω2(vx, γ τ )1Gx (A f )gK (γ h).

Proposition 3.9 extends as well, making ω3 well-defined in general.

3F. Chern forms for x = 0. Recall that we defined in Section 3A the line bundles L K ,i ∈ Pic(MK ,i )⊗Q.
For x = 0, we claim that we can still define ωi for 1 ≤ i ≤ 4 and the same relationships hold as in
Section 3D. Moreover, we are going to have

Z(0, g)= ω4(0, τ ).

We define the Chern form ω1(0, τi )= (−1)rϕ(r)
KM
(0, τi ). Here recall

ϕ(1)
KM
(0, τi )=−

1
2π

n∑
j=1

ω j,1 ∧ω j,2(τi )

and ϕ(r)
KM
(0, τi )=

∧r
ϕ(1)

KM
(0, τi ) as defined in Section 3C.

Lemma 3.4. ϕ(1)
KM
(0, τi )=−c1(L∨Di

), for 1≤ i ≤ e.

This is Corollary 4.12 in [Kudla 2003]. Kudla considers F = Q, but the result is unchanged for a
totally real number field F with a fixed embedding σi into R such that Vσi has signature (n, 2).

Thus from Lemma 3.4 we have ω1(0, τi ) = (−1)r c1(L∨Di
)r . Then as before we define ω2(0, τ ) =

p∗1ω1(0, τ1)∧· · ·∧ p∗eω1(0, τe). Note that ω2(0, τ )= (−1)re p∗1c1(L∨D1
)r∧· · ·∧ p∗e c1(L∨De

)r . Furthermore,
as G0 = G, when we average over 0h = G0(F) \ (G(F)∩G0(A f )gK h−1) we get

ω3(0, τ ; g, h)= ω2(0, τ ).

Moreover, we have as before ω3(0, τ )= p∗ω4(0, τ ), and thus

ω4(0, τ )= (−1)re p∗ p∗1c1(L∨D1
)r · · · p∗ p∗e c1(L∨De

)r = (−1)rec1(L∨K )
r ,

where c1(L∨K ) := c1(L∨K ,1) · · · c1(L∨K ,e). Finally, note that ω4(0, τ ) is exactly the cycle Z(0, g)K in MK .

3G. Convergence of η3(x, τ; g, h) and ω3(x, τ; g, h). Now we are ready to show the convergence of
η3(x, τ ; g, h). More precisely, we are going to prove Proposition 3.2.

Before we continue, we mention two short lemmas that tell us about the behavior of R(x, τ ) when τ
varies in a compact set in Di and x varies in a lattice. The first lemma tells us that the quadratic forms qτ
bound each other:

Lemma 3.5. Let Ki ⊂ Di be a compact set. Fix τ0 ∈ Ki . Then there exist c, d > 0 such that

cqτ0(x)≤ qτ (x)≤ dqτ0(x)

for all τ ∈ Ki .
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Proof. Let τ ∈ Ki and x ∈ V, x 6= 0. Consider the function ψ : Ki × {x ∈ V | qτ0(x) = 1} → R,
ψ(τ, x)= qτ (x). Since qτ0 is positive definite, the set of vectors of norm 1 is a sphere and thus compact.
Hence the domain is compact and thus the image is compact, and thus bounded. Since x 6= 0, it must also
be bounded away from 0. Thus we can find constants c, d such that

c ≤ qτ

(
x√

qτ0(x)

)
≤ d

and cqτ0(x)≤ qτ (x)≤ dqτ0(x) as desired. �

The second lemma tells us how R(x, τ ) increases when x varies in a lattice:

Lemma 3.6. For a compact set K0 ⊂ D and a lattice 0 ⊂ G(F), there are only finitely many γ ∈ 0 such
that R(γ−1x, τi )≤ N for any τ = (τ1, . . . , τe) ∈ K0. More precisely, if dim V = n+ 2, we have at most
O(N n/2+1) such γ ∈ 0.

Proof. Fix some τ0 ∈ K0 ∩ Di . If for y ∈ 0x we have R(y, τi ) = (qτi (y)− a)/2 < N, then from the
previous lemma this implies that there exists c > 0 such that qτ0(y) < (a + 2N )/c. Thus y lies in a
(n+2)-dimensional sphere in V of radius

√
(a+ 2N )/c. The result follows. �

Now we want to compute the summands of

η3(x, g; τ, h)=
∑
γ∈0h

p∗1η1(γ
−1x, τ1) ∗ p∗2η1(γ

−1x, τ2) ∗ · · · ∗ p∗eηe(γ
−1x, τe), (17)

where 0h = Gx(F) \ G(F) ∩ Gx(A f )gK h−1. Recall η1(x, τi ) = η0(x1, τi ) ∗ · · · ∗ η0(xk, τi ), where
η0(x, τi )= f (2πR(x, τi )).

We compute first the general formula for the ∗-product of N Green currents:

Lemma 3.7. Let f1, . . . , fN Green forms for the cycles Y1, . . . , YN inside X, chosen such that the star
product [ f1] ∗ · · · ∗ [ fN ] is well-defined. Let ϕ1, . . . , ϕN be their corresponding Chern forms. Then we
have the ∗-product of N-terms:

[ f1] ∗ [ f2] ∗ · · · ∗ [ fN ] =

N∑
j=1

ϕ1 ∧ · · ·ϕ j−1 ∧ [ f j ] ∧ δY j+1 ∧ · · · ∧ δYN .

Proof. We denote δi, j = δi ∧ δi+1 · · · ∧ δ j , ϕi, j = ϕi ∧ · · · ∧ ϕ j for i ≤ j and we take δi, j = ϕi, j = 1 for
i > j. We show the result by induction. For n = 2, we have [ f1] ∗ [ f2] = f1 ∧ δ2+ϕ1 ∧ f2. Assume the
result is true for n. Then we have

[ f2] ∗ [ f3] ∗ · · · ∗ fn+1 =

n+1∑
k=2

ϕ2,k−1 ∧ [ fk] ∧ δk+1,n+1.
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By definition, we have

[ f1] ∗ ([ f2] ∗ [ f3] ∗ · · · ∗ [ fn+1])= [ f1] ∧ δ2,n+1+ϕ1 ∧ ([ f2] ∗ [ f3] ∗ · · · ∗ [ fn+1])

= [ f1] ∧ (δ2,n+1)+

n+1∑
k=2

ϕ1 ∧ϕ2,k−1 ∧ [ fk] ∧ δk+1,n+1.

This is exactly
∑n+1

k=1 ϕ1,k−1 ∧ [ fk] ∧ δk+1,n+1 which finishes the proof.
We want to apply the above lemma to each of the ∗-products summands in (17) that define η3:

p∗1η0(γ
−1x1, τ1) ∗ · · · p∗1η0(γ

−1xk, τ1) ∗ · · · ∗ p∗eηe(γ
−1x1, τe) ∗ · · · ∗ p∗eηe(γ

−1xk, τe).

Denote fi = p∗i η0 and ϕi = p∗i ω0. Then we get the terms

e∑
i=1

k∑
j=1

ϕ1(γ
−1x1, τ1)∧ · · · ∧ fi (γ

−1x j , τ1)∧ · · · ∧ δp∗e Dxk
, (18)

where all the terms before fi are the smooth forms ϕ and all the terms following fi are the operators δ. �

Proof of Proposition 3.2. To show the convergence of η3, we need to show that for µ a smooth form with
compact support, the integral

∫
X η3 ∧µ converges, where X = D×G(A f )/K. Note that we can cover

the compact support supp(µ) of µ by finitely many open sets and in each of them we can write µ in
local coordinates as a linear combination of smooth functions that are bounded inside supp(µ). Thus it is
enough to show that the form η3 converges to a smooth form on compacts.

We are interested in averaging the terms (18):
e∑

i=1

k∑
j=1

ϕ1(y1, τ1)∧ · · · ∧ fi (y j , τ1)∧ · · · ∧ δp∗e Dxk
,

for τ inside a compact set K0 ⊂ D, where the average is taken over y = (y1, . . . , yk) ∈ 0h x . For the
terms containing at least one δ, the terms

ϕ1(γ
−1x1, τ1)∧ · · · ∧ fi (γ

−1x j , τ1)∧ · · · ∧ δp∗e Dxk

are nonzero only for τe ∈ Dγ−1xk ,e. However, this implies R(γ−1xk, τe) = 0 and this only happens for
finitely many γ ∈ 0 when τe ∈ K0 inside a compact from Lemma 3.6. Thus the sum

F1(x, τ )=
k∑

j=1

e∑
i=1

(i, j 6=(e,k))

∑
γ∈0h

ϕ1(γ
−1x1, τ1)∧ · · · ∧ fi (γ

−1x j , τ1)∧ · · · ∧ δp∗e Dxk

is finite. This leaves the last term,

F2(x, τ )=
∑
γ∈0h

ϕ1(γ
−1x1, τ1)∧ · · · ∧ϕe(γ

−1xk−1, τe)∧ fe(γ
−1xk, τe),

which we treat below in Lemma 3.8. We show that the sum F2(x, τ ) converges uniformly on compacts to
a smooth form. This finishes the proof of the convergence in Proposition 3.2.
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Note that F1(x, τ ) is a finite sum of forms, while F2(x, τ ) is the average of wedge products of smooth
forms which converges to a smooth form.

To check the Green current condition (5) is met by η3(x, τ ; g, h), again it is enough to check the
condition on compact sets. Note first that τi ∈ Dyi only for finitely many y ∈ 0h x when τ is inside
a compact set K0. For τi ∈ Dyi then we have a finite sum of terms η2 that satisfy the Green current
condition (5): ddcη2(y, τ )+ δDy,τ = [ω2(y, τ )]. For all the other terms, we do not have singularities, and
as
∑

γ∈0h
η2(γ

−1x, τ ) and all its derivatives converge to a smooth form, we can just take ddc to get

ddc
∑
γ∈0h

η2(γ
−1x, τ )=

∑
γ∈0h

ddcη2(γ
−1x, τ )=

∑
γ∈0h

ω2(γ
−1x, τ ),

giving us the condition (5) for η3. Moreover, note that its Chern form is

ω3(x, τ ; g, h)=
∑
γ∈0h

ω2(γ
−1x, τ ).

This finishes the proof of Proposition 3.2. �

As promised, we show the convergence of F2(x, τ ) below:

Lemma 3.8. The average

F2(x, τ ; g, h)=
∑

y∈0h x

ϕ1(y1, τ1)∧ · · · ∧ϕ1(yk, τ1)∧ · · · ∧ϕe(y1, τe)∧ · · · ∧ϕe(yk−1, τe)∧ fe(yk, τe)

converges uniformly on compacts to a smooth form.

Proof. Let K0 be a compact. We are free to discard finitely many terms from our average of the star
product without affecting the convergence, so we discard the terms for which fe(yk, τe)= 0 on K0. For
y = (y(1),i , . . . , y(n+2),i ) coordinates determined by the point z0,i in Dy,i , we recall the explicit definition
of ϕi (y, τi )= p∗i ϕKM (y, τi ) that we presented in Section 3C:

ϕi (y, τi )= e−2πR(y,z0,i )

( ∑
1≤s,t≤n

y(s),i y(t),i p∗i (ωs,1i ∧ωt,2i )−
1
π

∑
1≤s≤n

p∗i (ωs,1i ∧ωs,2i )

)
.

Thus, in the average, all the terms are of the form

e
−2π

k∑
j=1

e∑
i=1

R(y j ,z0,i )

e2πR(yk ,z0,e) fe(yk, τe)
e∧

i=1

k∧
j=1

(i, j)6=(e,k)

(y(s),ij y(t),ij ) f p∗i ωs,1i ∧ p∗i ωt,2i (τi ).

The forms p∗i ωs,1i , p∗i ωs,2i are smooth on K0 and the values of the smooth functions representing them
in local coordinates are bounded inside a compact. As they are independent of y, the convergence of
F2(x, τ ) reduces to the convergence of

∑
y∈0h x

e
−2π

e−1∑
i=1

k∑
j=1

R(y j ,z0,i )

e
−2π

k−1∑
j=1

R(y j ,z0,e)

fe(yk, τe)P(y).
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Here

P(y)=
e∏

i=1

k∏
j=1

(i, j) 6=(e,k)

∑
1,≤s,t≤n

1∑
f=0

(y(s),ij y(t),ij ) f

is a polynomial of degree 2k(e− 1).
Similarly, for computing the derivatives of F2(x, z) we are reduced to computing averages of the wedge

products

∂

∂ R1,1τ1∂
S1,1τ1

ϕ1(y1, τ1)∧ · · · ∧
∂

∂ R1,kτ1∂
S1,kτ1

ϕ1(yk, τ1)∧ · · · ∧
∂

∂ Re,1τe∂
Se,1τi

ϕe(y1, τe)∧ · · ·

∧
∂

∂ Re,k−1τe∂
Se,k−1τe

ϕe(yk−1, τe)∧
∂

∂ Re,kτe∂
Se,kτe

fe(yk, τe).

We will break the proof in two main steps below:

Step 1: We claim that it is enough to show that the sums∑
y∈0h x

∂

∂ Re,kτe∂
Se,kτe

fe(yk, τe) (19)

converge for any integers Re,k, Se,k ≥ 0.
In order to show this, let us compute first the partial derivatives in τi of the terms ϕ(y j , τi ) with

( j, i) 6= (k, e). We get

∂

∂ Rτi∂ Sτi
ϕ(y j , τi )= e−2πR(y j ,z0,i )

∑
(y(s),i y(t),i ) f ∂

∂ Rτi∂ Sτi
p∗i ωs,1i ∧ p∗i ωt,2i (τi ),

where f ∈ {0, 1} and 1 ≤ s, t ≤ n. Since p∗i ωs,2i ∧ p∗i ωt,2i are smooth forms on compacts, the terms
∂/(∂ Rτi∂

Sτi )p∗i ωs,1i ∧ p∗i ωt,2i (τi ) are smooth as well. Then the problem reduces to showing that the
coefficients

∑
y∈0h x

e
−2π

e−1∑
i=1

k∑
j=1

R(y j ,z0,i )

e
−2π

k−1∑
j=1

R(y j ,z0,e)

fe(yk, τe)P(y)
∂

∂ Re,kτe∂
Se,kτe

fe(yk, τe)

converge on compacts.
We can discard finitely many terms for which we have R(y j , τi )≤ 1 for any pair (i, j) with 1≤ i ≤ e

and 1≤ j ≤ k. Then we can bound

n∑
s,t=1

1∑
f=0

(y(s),ij y(t),ij ) f
≤ (qi (x j )+ R(y j , τ ))

n2
.

Thus we can further bound

|P(y)| ≤ C
e∏

i=1

k∏
j=1

(i, j) 6=(e,k)

(qi (x j )+ R(y j , z0,i ))
n2
.



2762 Eugenia Rosu and Dylan Yott

By discarding finitely many terms from the lattice, we can bound e−2πR(y j ,τi )R(y j , z0,i )
m
≤ 1, for any

1≤ m ≤ n2 and then

e−R(y j ,z0,i )(qi (x j )+ R(y j , z0,i ))
n2
≤ (qi (x j )+ 1)n

2
,

which is a constant. Thus we need to show that the sums

C ′
∑

y∈0h x

∂

∂ Re,kτe∂
Se,kτe

fe(yk, τe)

converge for any integers Re,k, Se,k ≥ 0, as claimed in (19).

Step 2: Now we show the convergence of (19), in two parts.

(1) First we show the case of
∑

y∈0h x fe(yk, τe). We have

fe(yk, τe)≤
e−2πR(yk ,τ )

R(yk, τe)
≤ e−2πR(yk ,τe)

for R(yk, τe)≥ 1, which happens for all except finitely many yk’s from Lemma 3.6. Furthermore, also
from Lemma 3.6, since there are at most O(z(n+2)/2) vectors yk in our sum with z ≤ R(yk, τe)≤ z+ 1,
we are reduced to the convergence of

∞∑
z=1

e−2π zz((n+2)/2),

which converges using the integral test.

(2) Now we show the convergence of (19) for the partial derivatives in τe for the term fe(yk, τe). Note
first that we can compute the derivatives:

∂

∂τe
fe(yk, τe)=

e−2πR(yk ,τe)

2πR(yk, τe)

∂

∂τe
R(yk, τe),

∂

∂τe
fe(yk, τe)=

e−2πR(yk ,τe)

2πR(yk, τe)

∂

∂τe
R(yk, τe).

In general terms we get

∂

∂ Rτe∂ Sτe
fe(yk, τe)= e−2πR(yk ,τe)

∑
i

e−ci R(yk ,τe)

R(yk, τe)di
Pi (∂ai ,bi R),

where the above is a finite sum, Pi (∂R, yk) are polynomials in

∂

∂ai τe∂bi τe
R(yk, τe),

and the constants ci , di are integers that satisfy di ≥ 1, and di > ci ≥ 0. This can be easily shown by
induction.
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Excluding the terms for which R(yk, τe)≤ 1, note that if we fix a basis (e1, . . . , en+2) for Vσe , we have

∂

∂ Rτe∂ Sτe
R(yk, τe)=−

n+2∑
j=1

(y( j),e
k )2

∂

∂ Rτe∂ Sτe
R(e j , τe),

thus we can further bound∣∣∣∣ ∂

∂aτe∂bτe
R(yk, τe)

∣∣∣∣≤ Ma,b(qe(xk)+ R(yk, z0,e)),

where Ma,b is the upper bound of the values

∂

∂aτe∂bτe
R(e j , τe)

for 1≤ j ≤ n+ 2 and τe in our compact.
As di > ci , for R(yk, τe)≥ 1, we have

e−2πci R(yk ,τe)

(2πR(yk, τe))di
< 1

and using the above bound we have more generally∣∣∣∣ ∂

∂ Rτe∂ Sτe
fe(yk, τe)

∣∣∣∣≤ Me−2πR(yk ,τe) Q̃(R(yk, τe)),

where Q̃ is a polynomial in R(yk, z0,e). Let D be the degree of Q̃ and let Q̃0(x) :=
∑
|an|xn if

Q :=
∑

anxn.
Similarly as before, we have at most O(z(n+2)/2) values yk such that z ≤ R(yk, τe)≤ z+1 for τe inside

a compact, and the above convergence is equivalent to the convergence of

∞∑
z=1

e−2π zz(n+2)/2 Q̃0(z+ 1),

which converges by the integral test. �

Now we are also going to show:

Proposition 3.9. For x = (x1, . . . , xk) ∈ V (F)k, the form

ω3(x, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

ω2(x, γ τ )1Gx (A f )gK (γ h)

converges.

Proof. Note that the above statement follows for dim U (x)= k from the proof of Proposition 3.2. For the
general case the proof is similar to that of Lemma 3.8. Using the notation from Lemma 3.8, we can write

ω3(x, τ ; g, h)=
∑

y∈0h x

ϕ1(y1, τ1)∧ · · · ∧ϕ1(yk, τ1)∧ · · · ∧ϕ1(y1, τe)∧ · · · ∧ϕe(yk, τe).
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Using the definition of ϕi (y j , τi ),

ϕi (y j , τi )= e−2πR(y j ,z0,i )

( ∑
1≤s,t≤n

y(s),ij y(t),ij p∗i (ωs,1i ∧ωt,2i )−
1
π

∑
1≤s≤n

p∗i (ωs,1i ∧ωs,2i )

)
,

the terms p∗i ωs,1i∧ p∗i ωt,1i are independent of y, and we are reduced to the convergence of the coefficients:

∑
y∈0h x

e
−2π

e∑
i=1

k∑
j=1

R(y j ,z0,i )

P(y),

where

P(y)=
e∏

i=1

k∏
j=1

∑
1≤s,t≤n

1∑
f=0

(y(s),ij y(t),ij ) f .

As in Lemma 3.8, we can bound

∑
1≤s,t≤n

1∑
f=0

(y(s),ij y(t),ij ) f
≤ (R(y j , z0,i )+ qi (x j ))

n2
.

Moreover, for (i, j) 6= (e, k), by discarding finitely many terms from the lattice we have R(yk, τe)

large enough and we can bound e−2πR(y j ,τi )R(y j , z0,i )
m
≤ 1, for any 1≤ m ≤ n2. Thus the convergence

reduces to showing that ∑
y∈0h x

e−2πR(yk ,z0,e)(R(yk, z0,e)+ qe(xk))
n2

converges, or equivalently that any of the terms∑
y∈0h x

e−2πR(yk ,z0,e)R(yk, z0,e)
m,

converge for 1≤ m ≤ n2. Again we have at most O(z(n+2)/2) values yk such that z ≤ R(yk, τe)≤ z+ 1
for τe inside a compact, thus the above reduces to the convergence of∑

y∈0h x

e−2π z(z+ 1)mz(n+2)/2,

which converges by the integral test. This finishes our proof. �

4. Modularity of Z(g′, φ)

We recall now the definition of the standard Whittaker function. Recall from Section 3C that we
defined S̃p2r (R) to be the metaplectic cover of Sp2r (R), and K ′ the preimage under the projection map
S̃p2r (R)→ Sp2r (R) of the compact subgroup

{( A
−B

B
A

)
, A+ i B ∈U (r)

}
, where U (r) is the unitary group.

We also defined the character det1/2 on K ′ whose square descends to the determinant character of U (r).
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For (V+, q+) a quadratic space over R of signature (n + 2, 0), let ϕ◦
+
(x+) ∈ S(V r

+
) be the standard

Gaussian,

ϕ◦
+
(x+)= e−π tr(x,x)+,

where 1
2(x, x)+ = 1

2((xi , x j ))1≤i, j≤r is the intersection matrix of x = (x1, . . . , xr ) ∈ V r
+

for the inner
product (·, ·) given by q+ on V+.

Then for x ∈ V r
+

and β = 1
2(x, x)+ with β in Symr (R), the group of symmetric r × r matrices, we

define the β-th “holomorphic” Whittaker function

Wβ(g)= r(g)ϕ◦
+
(x),

where g ∈ S̃p2r (R) and r is the Weil representation of S̃p2r (R)× O(V r ).
Using the Iwasawa decomposition of S̃p2r (R), we can write each g in the form

g =
(1

0
u
1

)(
v
0

0
(vT )−1

)
k ′, v ∈ GLr (R)

+, k ′ ∈ K ′,

and we have

Wβ(g)= det(v)(n+2)/4e2π i trβτ det(k ′)(n+2)/2,

where τ = u+ (v · vT )
√
−1 is an element of Hr , the Siegel upper half-space of genus r (see [Yuan et al.

2009] for a reference).
We can extend this definition for F∞. For g′ = (g′j )1≤ j≤d ∈ S̃p2r (F∞)=

∏
σ j :F↪→R S̃p2r (Rσ j ), we take

Wβ(g′∞)=
∏

σ j :F↪→R

Wσ j (β)(g
′

j ).

Moreover, by writing each g′j =
( 1

0
u j
1

)(
v j
0

0
(vT

j )
−1

)
k ′j using the Iwasawa decomposition and taking

τ j = u j + i(v j · v
T
j ) as above, we get

Wβ(g′∞)=
∏

σ j :F↪→R

det(v j )
(n+2)/2e2π i tr σ j (β)τ j det(k ′j )

(n+2)/2.

Recall from the Introduction that we defined T (x)= 1
2(〈xi , x j 〉)1≤i, j≤r to be the intersection matrix

in Mr (F). Note that for 1≤ i ≤ e the intersection matrix T (x) is different from the intersection matrix
1
2(x, x)+ above, for which the inner product ( · , · ) is positive-definite.

We extend the definition of Wβ to σ j (β) /∈ Symr (R) for some σ j , 1≤ j ≤ e, by taking Wβ(g′∞)= 0.
For g′ ∈ S̃p2r (A), φ ∈ (S(V r

A))
K, we defined in the introduction Kudla’s generating series

Z(g′, φ)=
∑

x∈G(F)\V (F)r

∑
g∈Gx (A f )\G(A f )/K

r(g′f )φ f (g−1x)WT (x)(g′∞)Z(x, g)K . (20)

We will show:

Theorem 4.1. The function Z(g′, φ) is an automorphic form parallel of weight 1+ n/2 for g′ ∈ S̃p2r (A),
φ ∈ S(V r

A) with values in H 2er (MK ,C).
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Recall that in H 2er (MK ,C) we have [Z(x, g)] = [ω4(x ′, τ ; g, h)∧((−1)ec1(L∨K ))
r−k
] as cohomology

classes, where c1(L∨K ) = c1(L∨K ,1) · · · c1(L∨K ,e). We are actually going to show in Section 4A that
[Z(x, g)] = [ω4(x, τ ; g, h)] and we will replace in the sum (20) the cohomology class of the special cycle
Z(x, g) with the cohomology class of ω4(x, τ ; g, h). We are going to show first the following expansion
of the pullback of [Z(g′, φ)] to D×G(A f )/K :

Lemma 4.2. The pullback of the cohomology class [Z(g′, φ)] to D×G(A f )/K is the cohomology class

p∗[Z(g′, φ)] =
∑

x∈V (F)r
r(g′)φ f (h−1x)WT (x)(g′∞)ω2(vx, τ ),

where p : D×G(A f )/K → MK is the natural projection map and g′i =
( 1

0
ui
1

)(
vi
0

0
(vT

i )
−1

)
k ′i is the Iwasawa

decomposition of g′i = σi (g′) for 1≤ i ≤ d.

We claim that this will imply Theorem 4.1. We will first discuss the pullback of cohomology classes
in Section 4A and we will show Lemma 4.2 and Theorem 4.1 at the end of the section.

4A. Cohomology classes. First we would like to understand better how we take the pullback of the
cohomology classes [ω3(x, τ ; g, h)] to H 2er (D×G(A f )/K ,C).

Note that for x ∈ V (F)r with U (x) a totally positive k-subspace of V, and g ∈ G(A f ), we have
the equality of cohomology classes [Z(U (x), g)] = [ω4(x ′, g)] in H 2ek(MK ,C) and we can take the
pullback [ω3(x ′, g)] to H 2ek(D×G(A f )/K ,C). The pullback of (−1)ec1(L∨K ) to H 2(D×G(A f )/K ,C)

is ω3(0, τ ).
We are actually going to show that the pullbacks of the Kudla cycles Z(U (x), g)c1(L∨K )

r−k can be
represented by the cohomology class of [ω3(x, g)] in H 2er (D×G(A f )/K ,C) in the lemma below:

Lemma 4.3. In H 2er (D×G(A f )/K ,C) we have the equality of cohomology classes:

[ω3(x ′)∧ω3(0)(r−k)
] = [ω3(x)].

To show this, we first recall from [Kudla 1997a, Lemma 7.3] how the pullback acts on the Kudla–Millson
form ϕ(k)

KM
. For 1≤ i ≤ e, recall that (Vσi , qi ) is a quadratic space of signature (n, 2).

Lemma 4.4. Let U ⊂ Vσi be a positive k-plane. For y ∈ U, let ϕ◦
+
∈ S(U k) be the standard Gaussian

ϕ◦
+
(y)=e−πqi (y). Let ιU :DU,i→Di be the natural injection. Under the pullback ι∗U :�

k(Di )→�k(DU,i )

of differential forms, we then have
ι∗Uϕ

(k),◦
KM
= ϕ◦
+
⊗ϕ(k),◦

KM,VU
,

where ϕKM,VU
(k),◦
∈ (S(U k)⊗�k,k(DU,i ))

K is the Kudla–Millson form for the vector space Vi,U = 〈U 〉⊥

and Hermitian symmetric domain DU,i .

For x ∈ V (F)r such that U (x) is a totally positive k-subspace of V we defined x ′ = (xi1, . . . , xik ). Let
x ′′ = (x j1, . . . , x jr−k ) consist of the remaining components of x .

Just for this section, we will use the notation ω(m)i (x, τ ) for i = 2, 3 when x = (x1, . . . , xm) ∈ V m.
Using the above lemma, we are going to show:
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Lemma 4.5. With the above notation, the pullback of ω(r−k)
3 (x ′′, τ ; g, h) to DU ×GU (A f )gK/K via the

inclusion map ι : DU ×GU (A f )gK/K → D×G(A f )/K equals

ι∗ω
(r−k)
3 (x ′′, τ ; g, h)= ι∗ω(r−k)

3 (0, τ ; g, h). (21)

Proof. From the definition of ϕ(r),◦
KM

we can write

ϕ(r),◦
KM

(x)= ϕ(k),◦
KM

(x ′)∧ϕ(r−k),◦
KM

(x ′′). (22)

Then from Lemma 4.4, for ιU : DU,i → Di the natural embedding, we have

i∗Uϕ
(r−k),◦
KM

(x ′′)= (ϕ◦
+
⊗ϕ(r−k),◦

KM,VU,i
)(x ′′)= ϕ◦

+
(x ′′)ϕ(r−k)

KM,VU,i
(0),

as x ′′ ∈U r−k . Note that this implies

i∗Uϕ
(r−k)
KM

(x ′′)= ϕ(r−k)
KM,VU,i

(0). (23)

We first want to pullback everything to D, via the projection maps pi : D→ Di . We have the maps
ιU : DU ↪→ D, pi : D→ Di . Recall that

DU = DU,1× · · ·× DU,e,

and we can further define the embedding ιU,i : DU,i ↪→ Di and the projection map pU,i : DU → DU,i . It
is easy to see that ιU,i ◦ pU,i = pi ◦ ιU as maps from DU to Di , thus we also have the equality of pullbacks
of differentials �r−k(Di )→�r−k(DU ):

p∗U,i ◦ ι
∗

U,i = ι
∗

U ◦ p∗i .

Then we get the equality

ι∗U p∗i ϕ
(r−k)
KM

(x ′′, τi )= p∗U,i ◦ ι
∗

U,iϕ
(r−k)
KM

(x ′′, τi ).

From (23), the right-hand side equals p∗U,iϕ
(r−k)
KM,VU,i

(0, τi ). Applying the same steps also for ϕ(r−k)
KM

(0),
we get

ι∗U p∗i (ϕ
(r−k)
KM

(0, τi ))= p∗U,i ◦ ι
∗

U,i (ϕ
(r−k)
KM

(0, τi ))= p∗U,i (ϕ
(r−k)
KM,VU,i

(0, τi )).

Thus we have

ι∗U p∗i ϕ
(r−k)
KM

(x, τi )= ι
∗

U p∗i (ϕ
(r−k)
KM

(0, τi )). (24)

Note that we can further take the wedge product of ι∗U p∗i ϕ
(r−k)
KM

(x, τi ) for 1≤ i ≤ e to get

ι∗Uω
(r−k)
2 (x ′′)= ι∗U

∧e
i=1 p∗i ϕ

(r−k)(x, τi )=
∧e

i=1ι
∗

U p∗i ϕ
(r−k)(x, τi ),

and using (24) this gives us ι∗U (ω
(r−k)
2 (0, τ )). Note that this implies

ι∗Uω
(r−k)
2 (x ′′)= ι∗U (ω

(r−k)
2 (0, τ )) (25)
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Finally, we are interested in the pullback of ω(r−k)
3 (x ′′, τ ; g, h) to DU×GU (A f )gK/K via the inclusion

map ι : DU ×GU (A f )gK/K → D×G(A f )/K. We have

ι∗ω
(r−k)
3 (x ′′, τ ; g, h)=

∑
γ∈GU (F)\G(F)

ι∗Uω
(r−k)
2 (x ′′, γ τ )1GU (A f )gK (γ h),

and using the pullback above for the right-hand side we get∑
γ∈GU (F)\G(F)

ι∗Uω
(r−k)
2 (0, γ τ )1GU (A f )gK (γ h),

which equals ι∗ω(r−k)
3 (0, τ ; g, h). Thus we have ι∗ω(r−k)

3 (x ′′, τ ; g, h)= ι∗ω(r−k)
3 (0, τ ; g, h), which is the

result of the lemma. �

Note that using (23) and (14) one can actually show that

[ϕ(r)
KM
(x)] = [ϕ(k)

KM
(x ′)∧ϕ(r−k)

KM
(0)]

as cohomology classes in H 2r (Di ,C).
Moreover, using (25) and (16), one can further show that

[ω
(r)
2 (x)] = [ω(k)2 (x ′)∧ω(r−k)

2 (0)]

as cohomology classes in H 2r (D,C).
The proof of Lemma 4.3 below is based on the same principle.

Proof of Lemma 4.3. To show the equality of cohomology classes, we need to show that for a closed
(l−r, l−r)-form µ with compact support, where l is the complex dimension of D×G(A f )/K, we have∫

D×G(A f )/K

µ∧ω
(r)
3 (x)=

∫
D×G(A f )/K

µ∧ω
(k)
3 (x ′′)∧ω(r−k)

3 (0). (26)

From (5), for a closed form µ, as µ∧ω(r−k)
3 is a closed (l − k, l − k)-form we have∫

D×G(A f )/K

µ∧ω
(r)
3 (x)=

∫
DU×GU (A f )gK/K

ι∗(µ∧ω
(r−k)
3 (x ′′)).

From (21), we have ι∗(µ∧ω(r−k)
3 (x ′′))= ι∗(µ∧ω(r−k)

3 (0)), thus we get∫
D×G(A f )/K

µ∧ω
(r)
3 (x)=

∫
DU×GU (A f )gK/K

ι∗(µ∧ω
(r−k)
3 (0)). (27)

Using (5) for µ∧ω(r−k)
3 (0) we also get∫

D×G(A f )/K

µ∧ω
(k)
3 (x ′)∧ω(r−k)

3 (0)=
∫

DU×GU (A f )gK/K

ι∗(µ∧ω
(r−k)
3 (0)). (28)

Combining the two equations (27) and (28) we get (26). �
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Remarks on ω3(vx) and ω4(vx). We follow up with some remarks regarding ω3(vx, τ ; g, h) and
ω4(vx, τ ; g, h) when v∈GLr (F∞) and x ∈V (F)r with U (x) totally positive definite k-subspace of V (F).
We have defined them in Section 3E. Lemma 4.3 extends easily for ω3(vx, τ ; g, h) and ω4(vx, τ ; g, h)
and we have, as cohomology classes in H 2er (D×G(A f )/K ,C),

[ω3(vx, τ ; g, h)] = [ω3((vx)′, τ ; g, h)∧ω(r−k)
3 (0, τ )].

As actually ω3((vx)′) represents the same cohomology class as the preimages of Z(U (vx), g) in
D×G(A f )/K, and as Z(U (x), g)= Z(U (vx), g), we have:

Lemma 4.6. (i) As cohomology classes in H 2er (D×G(A f )/K ,C), we have

[ω3(vx, τ ; g, h)] = [ω3(x, τ ; g, h)]. (29)

(ii) Noting that (29) descends to MK , we also have, as cohomology classes in H 2er (MK ,C),

[ω4(vx, τ ; g, h)] = [ω4(x, τ ; g, h)]. (30)

Proof of modularity: We will finish below the proofs of Lemma 4.2 and Theorem 4.1.

Proof of Lemma 4.2. The pullback to D×G(A f )/K of ω4(x ′, τ ) is ω3(x ′, τ ) and ω3(0, τ ) is the pullback
of (−1)er cr

1(L
∨

K )= Z(0, g). Then in (20) we can write

p∗[Z(g′, φ)] =
∑

x∈G(F)\V (F)r

∑
g∈Gx (A f )\G(A f )/K

r(g′, g)φ f (x)WT (x)(g′∞)[ω3(x ′, τ ; g, h)∧ω(r−k)
3 (0)].

Furthermore, from Lemma 4.3 we have [ω3(x ′, g; τ, h)∧ω(r−k)
3 (0, τ )] = [ω3(x, τ ; g, h)] as classes in

H 2er (D×G(A f )/K ,C). From (29) we also have the equality of cohomology classes [ω3(x, τ ; g, h)] =
[ω3(vx, τ ; g, h)]. Thus we get

p∗[Z(g′, φ)] =
∑

x∈G(F)\V (F)r

∑
g∈Gx (A f )\G(A f )/K

r(g′, g)φ f (x)WT (x)(g′∞)[ω3(vx, g; τ, h)].

By plugging in the definition

ω3(vx, τ ; g, h)=
∑

γ∈Gx (F)\G(F)

ω2(vx, γ τ )1Gx (A f )gK (γ h),

we get the cohomology class p∗[Z(g′, φ)] equal to the cohomology class of∑
x∈G(F)\V (F)r

∑
g∈Gx (A f )\G(A f )/K

r(g′f , g)φ f (x)WT (x)(g′∞)
∑

γ∈Gx (F)\G(F)

ω2(vx, γ τ )1Gx (A f )gK h−1(γ ).

We will unwind the sum below to get the result of the lemma. We interchange the summations to get∑
x∈G(F)\V (F)r

∑
γ∈Gx (F)\G(F)

∑
g∈Gx (A f )\G(A f )/K

r(g′f , g)φ f (x)WT (x)(g′∞)ω2(vx, γ τ )1Gx (A f )gK (γ h).
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Note that 1Gx (A f )gK (γ h) 6= 0 if and only if γ h ∈ Gx(A f )gK, or equivalently if g ∈ Gx(A f )γ hK, and
since we are summing for g ∈ Gx(A f ) \G(A f )/K, we can replace g by γ h everywhere and get

p∗[Z(g′, φ)] =
∑

x∈G(F)\V (F)r

∑
γ∈Gx (F)\G(F)

r(g′f , γ h)φ f (x)WT (x)(g′∞)ω2(vx, γ τ ).

Since the action of G(A f ) on φ is given by r(g′f , γ h)φ f (x) = r(g′f )φ f (h−1γ−1x) and ω2(vx, γ τ ) =
ω2(γ

−1vx, τ )= ω2(v(γ
−1x), τ ), then we have

p∗[Z(g′, φ)] =
∑

x∈V (F)r
r(g′f )φ f (h−1x)WT (x)(g′∞)ω2(vx, τ ),

which gives us the result of the lemma. �

Proof of Theorem 4.1. We would like to rewrite the sum of Lemma 4.2,

p∗[Z(g′, φ)] =
∑

x∈V (F)r
r(g′)φ f (h−1x)WT (x)(g′∞)ω2(vx, τ ),

and show that this sum is automorphic with values in H 2er (D×G(A f )/K ,C).
We recall the Iwasawa decomposition of g′ = (g′i )1≤i≤d ∈ S̃p2r (F∞) to be g′i =

( 1
0

ui
1

)(
vi
0

0
(vT

i )
−1

)
k ′i ,

where vi ∈ GLr (Rσi )
+, k ′i ∈ K ′i .

Recall that, for 1≤ i ≤e, we have ω1(x, τi )=ϕ
(r)
KM
(x, τi ) and ω2(x, τ )= p∗1ω1(x, τ1)∧· · ·∧p∗eω1(x, τe).

From property (1) of the theorem of Kudla and Millson we presented in Section 3C, we have

r(k ′i )ϕ
(r),◦
KM
= det(k ′i )

(n+2)/2ϕ(r),◦
KM

,

where ϕ(r),◦
KM

(x, τi )= e−2π tr σi (T (x))ϕKM (x, τi ). Using the Weil representation this easily extends to

r(g′i )ϕ
(r),◦
KM

(x, τi )= det(vi )
(n+2)/2 det(k ′i )

(n+2)/2e−2π tr T (σi (x))(ui+ivi ·v
T
i )ϕ(r)

KM
(vi x, τi ).

We take the pullback to D via the projection maps pi : D→ Di . We denote ϕi (x, τi )= p∗i ϕ
(r)
KM
(x, τi )

and ϕ◦i (x, τi )= e−2π tr σi (T (x))ϕi (x, τi ) and thus we also have

r(g′i )(ϕ
◦

i (x, τi ))= det(vi )
(n+2)/2 det(k ′i )

(n+2)/2e−2π tr T (σi (x))(ui+ivi ·v
T
i )ϕi (vi x, τi ).

Note that on the right-hand side we got Wσi (T (x))(g
′

i )ϕi (vi x, τi ), thus

r(g′i )(ϕ
◦

i (x, τi ))=Wσi (T (x))(g
′

i )ϕi (vi x, τi ).

Furthermore, as we can rewrite

WT (x)(g′∞)ϕ1(v1x, τ1)∧ · · · ∧ϕe(vex, τe)

= (Wσ1(T (x))(g
′

1)ϕ1(v1x, τ1)∧ · · · ∧Wσe(T (x))(g
′

e)ϕe(vex, τe))

d∏
i=e+1

Wσi (T (x))(g
′

i ),

we get
WT (x)(g′∞)ϕ1(v1x, τ1)∧ · · · ∧ϕe(vex, τe)= r(g′

∞
)φ◦(x, τ ),
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where

φ◦(x, τ )= ϕ◦1(x, τ1)∧ · · · ∧ϕ
◦

e (x, τe)

d∏
i=e+1

ϕ0,i (x).

Recall that for i ≥ e+1, we have WT (σi (x))(gi )= r(gi )ϕ0,i (x). Here ϕ0,i (x)= e−π tr T (σi (x)) is the standard
Gaussian, as (Vσi , qi ) is positive definite for i ≥ e+ 1.

Going back to the sum of Lemma 4.2, we thus get

p∗[Z(g′, φ)] =
∑

x∈V (F)r
r(g′f )φ f (h−1x)r(g′

∞
)φ◦(x, τ ),

and this is a theta function of weight (n+2)/2 with values in the cohomology group H 2er(D×G(A f )/K,C).
This means that for any linear functional l : H 2er (D×G(A f )/K ,C)→C acting on the cohomology part
of φ◦(x, τ ), the generating series

l(p∗[Z(g′, φ)])=
∑

x∈V (F)r
r(g′f )φ f (h−1x)r(g′

∞
)l(φ◦(x, τ ))

is a theta function of weight (n+ 2)/2. Note that this series is obtained by unwinding

p∗[Z(g′, φ)] =
∑

x∈G(F)\V (F)r

∑
g∈Gx (A f )\G(A f )/K

r(g′, g)φ f (x)WT (x)(g′∞)l(ω3(x, g)).

Denote

Z0(g′, φ)=
∑

x∈G(F)\V (F)r

∑
g∈Gx (A f )\G(A f )/K

r(g′, g)φ f (x)WT (x)(g′∞)ω3(x, g).

For the natural projection p : D×G(A f )/K → MK , recall the pullback

p∗ :�2er (MK )→�2er (D×G(A f )/K ),

which further descends to the cohomology groups p∗ : H 2er
dR (MK )→ H 2er

dR (D×G(A f )/K ) and the map
is an injection.

We denote by SC2er (MK ) the subspace of H 2er
dR (MK ) generated by the classes [ω4(x, g)] and by

SC2er (D×G(A f )/K ) the subspace of H 2er
dR (MK ) generated by the classes [ω3(x, g)]. Then the above

pullback map restricts to p∗ : SC2er (MK )→ SC2er (D×G(A f )/K ) and it is an injection.
Then for any linear functional l of SC2er (MK ), we are able to just define the linear functional l̃ on

SC2er (D×G(A f )/K ) given by l̃(p∗[ω])= l̃([ω]), and thus l̃(Z0(g′, φ))= l([Z(g′, φ)]) is automorphic.
Thus [Z(g′, φ)] is a theta function valued in H 2er (MK ).

We can also easily check the weight of the theta function by computing

r(k ′)φ◦(x, τ )= r(k ′1)ϕ
◦

1(x, τ1)∧ · · · ∧ r(k ′e)ϕ
◦

e (x, τe)

d∏
i=e+1

r(k ′i )φ0,i (x),

which gives us the factor det(k ′i )
(n+2)/2 at each place i . �
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