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The low-dimensional homology of finite-rank Coxeter groups

RACHAEL BOYD

We give formulas for the second and third integral homology of an arbitrary finitely
generated Coxeter group, solely in terms of the corresponding Coxeter diagram. The
first of these calculations refines a theorem of Howlett, while the second is entirely new
and is the first explicit formula for the third homology of an arbitrary Coxeter group.

20F55, 20J05, 20J06, 55T05

1 Introduction

Given a Coxeter group W with finite generating set S and corresponding system .W; S/,
denote the associated Coxeter diagram by DW (see Definitions 2.1 and 2.6).

In this paper, variations on this diagram are defined, and Theorems A and B below
calculate the second and third integral homology for any finite-rank Coxeter group W ,
in terms of the zeroth and first cellular homologies of these new diagrams, considered
as cell complexes in their own right.

Throughout this paper we will always denote the cyclic group Z=nZ as Zn . Previously,
it was known that the first and second homology groups of a Coxeter group were
isomorphic to Zri2 , where ri D rankZ2.Hi .W IZ// and both r1 and r2 are known.
The computation of H1.W IZ/ is a straightforward computation of the abelianisation.
The computation of H2.W IZ/ is due to Howlett [9]. Ihara and Yokonuma [11] give
results for the second cohomology of certain finite Coxeter groups, with coefficients
in C� . These results agree with Howlett’s theorem for the groups in question.

Theorem A below gives a refinement of Howlett’s theorem by introducing a natural-
ity statement. The method of proof is new and uses a spectral sequence argument.
Theorem B is the first explicit formula for H3.W IZ/ and extends the same method.
This method could be extended to produce computations of higher homologies, the
drawback being that the differentials in the spectral sequence become more difficult
to handle as the homological degree increases. Terms that we use while stating our
results below will be defined in Section 2.
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1.1 Second homology

Given a diagram D, let E.D/ and V.D/ be the set of edges and set of vertices of D,
respectively. Let DW be the Coxeter diagram corresponding to Coxeter system .W; S/.
Then V.DW /D S and to every pair s ¤ t 2 S there is an associated label m.s; t/ 2
N [1.

Definition 1.1 We introduce three new diagrams: Dodd , Deven and D�� .

� Let Dodd be the diagram with V.Dodd/D S and

e.s; t/ 2E.Dodd/ () m.s; t/ is odd:

� Let Deven be the diagram with V.Deven/D S and

e.s; t/ 2E.Deven/ () 2¤m.s; t/ is even:

� Let D�� be the diagram with

V.D��/D ffs; tg j s; t 2 S; m.s; t/D 2g;

e.fs1; t1g; fs2; t2g/ 2E.D��/ () s1 D s2 and m.t1; t2/ is odd.

Theorem A Given a finite-rank Coxeter system .W; S/, there is a natural isomorphism

H2.W IZ/ŠH0.D��IZ2/˚Z2ŒE.Deven/�˚H1.DoddIZ2/;

where in the first and final term of the right-hand side the diagrams are considered as
1–dimensional cell complexes.

Remark 1.2 Computing the rank of the right-hand side recovers Howlett’s theorem [9].

Consider the category where the objects are Coxeter systems and the morphisms are
full inclusions (Definition 2.11); then group homology acts as a functor to the category
of abelian groups. The right-hand side of the isomorphism in Theorem A assigns to a
Coxeter diagram DW the three new diagrams Dodd , Deven and D�� and furthermore
assigns to these diagrams an abelian group. The total outcome is again a functor to
abelian groups. Naturality says that the isomorphism of the statement is a natural
isomorphism of functors.

1.2 Third homology

To state this theorem we introduce four new diagrams.
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Definition 1.3 Let DW be a Coxeter diagram corresponding to the Coxeter system
.W; S/.

� Let DA2 be the diagram with

V.DA2/D ffs; tg j s; t 2 S; m.s; t/D 3g;

e.fs1; t1g; fs2; t2g/ 2E.DA2/ () s1 D s2 and m.t1; t2/D 2:

� Let D 2r be the diagram with

V.D 2r /Dffs; t; ug j s; t; u2S; m.s; t/Dm.s; u/D2; m.t; u/D2r is eveng;

e.fs1; t1; u1g; fs2; t2; u2g/2E.D 2r /() t1D t2; u1Du2; m.s1; s2/ is odd.

� Let DA3 be the diagram with

V.DA3/D ffs; t; ug j s; t; u 2 S; m.s; t/Dm.t; u/D 3 and m.s; u/D 2g;

e.fs1; t1; u1g; fs2; t2; u2g/ 2E.DA3/ () t1 D t2; u1 D u2; m.s1; s2/D 2:

� Let D�
��

be the CW–complex formed from the diagram D�� by attaching a 2–cell
to every square.

Theorem B Given a finite-rank Coxeter system .W; S/, there is an isomorphism

H3.W IZ/ŠH0.DoddIZ2/˚H0.DA2 IZ3/˚

� M
3<m.s;t/<1

Zm.s;t/

�

˚H0.D 2r IZ2/˚

� M
W.H3/�W
W.B3/�W

Z2

�

˚ .H0.DA3 IZ2/H0.D��IZ2//˚H1.D�
��
IZ2/;

where each diagram is viewed as a cell complex. In this equation,  denotes a known
nontrivial extension of H0.DA3 IZ2/ by H0.D��IZ2/ fully described via an extension
matrix XW from Definition 5.40.

We note that the unpublished PhD thesis of Harris [8] contains an independent compu-
tation of the third integral homology of a Coxeter group, which differs from Theorem B
in many cases.

The finite Coxeter groups were classified in the 1930s by Coxeter [3]. This classification
is described in Theorem 2.7. We use Theorems A and B to calculate the second and third
integral homology of the finite Coxeter groups, and give the results in the appendix.
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1.3 Outline of the proof

Given a Coxeter system .W; S/ these results arise from the computation of the isotropy
spectral sequence for a contractible CW–complex upon which the Coxeter group W
acts, called the Davis complex. Cells in the Davis complex correspond to finite Coxeter
groups that appear in W , the spherical subgroups. These have Coxeter systems .WT ; T /,
where WT is a finite Coxeter group and T � S. The set of T � S which generate
spherical subgroups of a fixed Coxeter group W is denoted by S .

The isotropy spectral sequence abuts to the integral homology of W , and the E1 terms
are given by the sums of twisted homologies of the spherical subgroups WT of W for
T a given size:

E1p;q D
M
T2S
jT jDp

Hq.WT IZT /)HpCq.W IZ/:

For the proof of Theorem A the groups on the E1 terms and d1 differential of the
spectral sequence are simple to compute. We see there are no further differentials that
will affect the diagonal corresponding to H2.W IZ/ on the E1 page, so the limiting
terms are equal to the E2 terms. There is only one nonzero term on the diagonal so
there are no possible extension problems and Theorem A follows.

For Theorem B, the computation of the E1 terms relies heavily on a free resolution
for Coxeter groups, described by De Concini and Salvetti [5]. The computer algebra
package PyCox, due to Geck [6], is used (though not strictly necessary) to complete
some of the longer calculations required.

In order to apply the d1 differential to computations using this resolution, a chain map
between resolutions is computed in the required degrees. Using these tools, the E2 page
of the spectral sequence on the diagonal corresponding to H3.W IZ/ is computed.
Following this, we use a variety of techniques to prove that all further differentials to
and from this diagonal are in fact zero. This includes defining a pairing for the isotropy
spectral sequence.

The possible extension problems arising on the limiting page at this diagonal are treated
by considering representing subgroups of W for each class and mapping between the
corresponding spectral sequences. From these computations we note there is only one
nontrivial extension and thus Theorem B follows.
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Organisation of the paper

We start with background on Coxeter groups and an introduction to the Davis complex
†W of W in Section 2. We then introduce the isotropy spectral sequence in Section 3,
and prove some associated desired results. Following this, Section 4 proves Theorem A
and Section 5 proves Theorem B.
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2 Coxeter groups

This expository section follows [4].

Definition 2.1 A Coxeter matrix on a finite set S is a symmetric S � S matrix M
with entries m.s; t/ in N [f1g for s; t 2 S. This matrix must satisfy m.s; t/D 1 if
and only if sD t , and m.s; t/Dm.t; s/ must be greater than 1 when s¤ t . A Coxeter
matrix M has an associated Coxeter group W , with presentation

W D hS j .st/m.s;t/ D ei:

We call .W; S/ a Coxeter system, and we call jS j the rank of .W; S/. We adopt the
convention that .W;∅/ is the trivial group.

Remark 2.2 The condition m.s; s/D 1 implies that all generators of the group are
involutions, i.e. s2 D e for all s in S.

Definition 2.3 Define the length function on a Coxeter system .W; S/ to be the
function `W W ! N which maps w in W to the minimal word length required to
express w in terms of the generators in S. That is, we set `.e/D 0, and if w ¤ e then
there exists a minimal k � 1 such that w D s1 � � � sk for si in S.

Definition 2.4 For k 2N , define �.a; bI k/ to be the word of length k , given by the
alternating product of a and b , i.e.

�.a; bI k/D

length k‚ …„ ƒ
abab : : : :
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Remark 2.5 When m.s; t/¤1, the relations .st/m.s;t/ D e can be rewritten as

�.s; t Im.s; t//D �.t; sIm.s; t//:

Definition 2.6 Given a Coxeter system .W; S/, the associated Coxeter diagram, de-
noted by DW , is a labelled graph with vertices indexed by the generating set S. Edges
are drawn between the vertices corresponding to s and t in S when m.s; t/� 3 and
labelled with m.s; t/ when m.s; t/� 4 (or 1). When the diagram DW is connected,
W is called an irreducible Coxeter system.

Theorem 2.7 (classification of finite Coxeter groups; Coxeter [3]) A Coxeter system
is finite (i.e. gives rise to a finite Coxeter group) if and only if it is the (direct) product of
finitely many finite irreducible Coxeter systems. The following is a complete list of the
diagrams corresponding to finite irreducible Coxeter systems , and therefore classifies
finite Coxeter groups:

Infinite families Exceptional groups

An .n� 1/ : : : F4
4

Bn .n� 2/ : : :4 H3
5

Dn .n� 4/ : : : H4
5

I2.p/ .p � 5/
p

E6

E7

E8

Notation Throughout this paper, for ease of notation we may write I2.2/, I2.3/

and I2.4/ instead of A1 �A1 , A2 and B2 , respectively. Whenever we write I2.p/,
we will specify for which p the result corresponds.

Definition 2.8 We say that a finite irreducible Coxeter group W is of type D if its
corresponding diagram is given by D, and we denote this Coxeter group by W.D/.
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Remark 2.9 The Coxeter group of type An , or W.An/, is isomorphic to the sym-
metric group SnC1 and the Coxeter group of type I2.p/, or W.I2.p//, is isomorphic
to the dihedral group D2p . Similarly, the Coxeter group of type Bn , or W.Bn/, is
isomorphic to the signed permutation group Z2 oSn , and W.Dn/ is isomorphic to an
index 2 subgroup of W.Bn/ such that the signs in each permutation multiply to C1.

2.1 Products and subgroups

Consider two Coxeter systems .U; SU / and .V; SV / and denote by DU t DV the
diagram created by placing DU and DV beside each other, disjointly.

Lemma 2.10 The diagram DU t DV defines a Coxeter group W Š U � V , with
diagram DW D DU tDV and generating set SW WD SU [SV .

Definition 2.11 A map �W DU!DW of Coxeter diagrams is a full inclusion if �W U !
W is injective and m.�.s/; �.t//D m.s; t/ for every s; t 2 U. In this setting we call
DU a full subdiagram of DW .

Definition 2.12 Let .W; S/ be a Coxeter system. For each T � S, denote by WT the
subgroup of W generated by T . We call subgroups that arise in this way parabolic
subgroups.

Proposition 2.13 [4, Theorem 4.1.6(i)] For WT a parabolic subgroup, .WT ; T / is a
Coxeter system in its own right, and defines a full inclusion DWT ,! DW . Similarly, a
full inclusion corresponds to a parabolic subgroup.

The next result concerns cosets of parabolic subgroups. Let .W; S/ be a Coxeter
system, and T and T 0 be subsets of S.

Lemma 2.14 [4, Lemma 4.3.1] There is a unique element of minimal length in the
double coset WTwWT 0 .

Definition 2.15 [4, Definition 4.3.2] We say an element w in W is .T; T 0/–reduced
if w is the shortest element in WTwWT 0 .

Remark 2.16 Given the parabolic subgroup WT in W , w in W is .T;∅/–reduced
if `.tw/D `.t/C `.w/D 1C `.w/ for all t in T . Note that this implies w cannot be
written in such a way that it starts with any letter in T . Likewise we say w in W is
.∅; T /–reduced if `.wt/D `.w/C 1 for all t in T .
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Definition 2.17 A finite parabolic subgroup is called a spherical subgroup.

Since the diagrams of parabolic subgroups appear as full subdiagrams of the Coxeter
diagram, given a Coxeter system .W; S/ we identify its spherical subgroups via occur-
rences of the irreducible diagrams from Theorem 2.7 in DW , and disjoint unions of
such diagrams.

Definition 2.18 Given a Coxeter system .W; S/, we denote by S the set of all subsets
of S which generate spherical subgroups of W , i.e.

S D fT � S jWT is finiteg:

2.2 The Davis complex

In this section we introduce the Davis complex for a Coxeter group.

Definition 2.19 A coset of a spherical subgroup is called a spherical coset. For a
Coxeter system .W; S/ and a subgroup WT , we denote the set of cosets by

W=WT D fwWT j w 2W g:

The poset of spherical cosets is denoted by WS :

WS D
[
T2S

fW=WT g;

where WS is partially ordered by inclusion. The group W acts on the poset WS by
left multiplication and the quotient poset is S .

Lemma 2.20 [4, Theorem 4.1.6(iii)] Given T and U in S and w and v in W , the
cosets wWU and vWT satisfy wWU � vWT if and only if w�1v 2WT and U � T .

Definition 2.21 [4, Section 7.2] One can associate to a Coxeter system .W; S/ a
CW–complex called the Davis complex. This is denoted by †W and is the geometric
realisation of the poset WS . That is, every spherical coset wWT is realised as a vertex
or 0–cell, and for every ordered chain of pC 1 spherical cosets there is a p–cell in
the Davis complex,

w0WT0 � w1WT1 � w2WT2 � � � � � wpWTp ;

where wi is in W and Ti is in S for all 0� i � p . The associated Coxeter group W
acts on the Davis complex by left multiplication on the cosets.
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Definition 2.22 For every finite Coxeter group W with generating set S, one can
define a canonical representation of the Coxeter group W on Rn , where nD jS j (see
[4, Section 6.12] for details). Given this representation we define the Coxeter polytope,
or Coxeter cell, of W to be the convex hull of the orbit of a generic point x in Rn

under the W –action. This polytope has dimension nD jS j, and we denote it by CW .
A detailed definition can be found in [4, Section 7.3].

Proposition 2.23 [4, Lemma 7.3.3] If W is a finite Coxeter group then †W is
homeomorphic to the barycentric subdivision of the Coxeter cell CW .

Definition 2.24 A coarser cell structure can be given to †W : consider only those
spherical cosets which are present as subsets of a chosen coset wWT and denote
this by WS�wWT . The realisation of WS�wWT is a subcomplex of †W . In fact,
jWS�wWT j Š jWT ST j, where ST denotes the set of spherical subsets of T . Since WT
is finite, the realisation of WT ST is homeomorphic to the barycentric subdivision
of its Coxeter cell CWT . Therefore, the realisation is homeomorphic to a disk,
i.e. jWT ST j Š DjT j . The cell structure on †W is therefore given by associating
to the subcomplex WS�wWT its corresponding Coxeter cell: a p–cell where p D jT j.
The 0–cells are given by cosets of the form WS�wW∅ , i.e. the set fwW∅ j w 2W g,
and therefore associated to elements of W (recall W∅ D feg). By Lemma 2.20 a
set of vertices X will define a p–cell precisely when X D wWT for T 2 S and
jT j D p . There is an action of W on the cells of †W given by left multiplication,
and this makes †W into a W –complex in the sense of [2]. The stabiliser of a p–
cell wWT under this action is the finite subgroup wWTw�1 and upon identification of
the cell wWT with CWT this acts by reflections in the usual way.

We use the following results concerning the Davis complex in this paper:

Proposition 2.25 [4, Theorem 8.2.13] For any Coxeter group W , †W is contractible.

Lemma 2.26 [4, Example 7.4.4] Suppose W and S decompose as W D U � V
and S D SU [SV . Then S D SU �SW and †W D†U �†V is an isomorphism of
CW–complexes provided we use the coarser cell structure.

3 The isotropy spectral sequence

We give explicit formulas for the terms on the E1 page of the isotropy spectral sequence
for the Davis complex, as well as the d1 differential, which is induced by a transfer
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map. We also introduce a pairing for the isotropy spectral sequence of the Davis
complex in Section 3.2.

3.1 Isotropy spectral sequence for the Davis complex

We consider the isotropy spectral sequence for a Coxeter system .W; S/ and related †W .
Recall the definition of the isotropy spectral sequence from [2, VII, Equation(7.10)].
For more background see [1] or [2].

Consider the action of W on †W and denote the stabiliser of a cell � by W� . Denote
the orientation module of � by Z� . We consider the isotropy spectral sequence for
integral homology.

Lemma 3.1 Under the W –action on †W , a set of orbit representatives of p–cells is

Op D feWT j T 2 S; jT j D pg:

The stabiliser of a cell � D eWT is W� DWT and the action of an element w of WT
on Z� is the identity if `.w/ is even, or negation if `.w/ is odd.

Proof Recall that each p–cell of †W is represented by a spherical coset wWT ,
where jT j D p and the vertices of the cell are given by the set fvW∅ j v 2wWT g. The
group W acts by left multiplication and so we can choose the orbit representatives of
p–cells to be the cosets eWT DWT , where jT j D p and T is in S . The stabiliser of
a cell represented by WT is WT itself. Every element in the generating set T of WT
acts on the cell by reflection, reversing the orientation of the cell. The action of an
element of WT on the orientation module will therefore be the identity if the element
has even length, or negation if the element has odd length.

Recall that the Davis complex is contractible (Proposition 2.25) and hence acyclic.
Then, under the choices of Lemma 3.1, the isotropy spectral sequence is

E1p;q DHq.W ICp.†W ;Z//D
M
�2Op

Hq.W� IZ� /D
M
T2S
jT jDp

Hq.WT IZT /

)HpCq.W IZ/

since Z� ˝ZŠZ� , which we write as ZT for the orientation module of the cell WT .
This gives E1 page as shown in Figure 1. The zeroth column only has one summand,
since only the empty set satisfies the criteria of generating a spherical subgroup and
having size zero. For the first column, note that all generators in S generate a cyclic
group of order 2. Denote the subgroup generated by s in S by Ws .
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3 H3.W∅IZ∅/
d1
 �

M
t2S

H3.Wt IZt /
d1
 �

M
T2S
jT jD2

H3.WT IZT /
d1
 �

M
T2S
jT jD3

H3.WT IZT /

2 H2.W∅IZ∅/
d1
 �

M
t2S

H2.Wt IZt /
d1
 �

M
T2S
jT jD2

H2.WT IZT /
d1
 �

M
T2S
jT jD3

H2.WT IZT /

1 H1.W∅IZ∅/
d1
 �

M
t2S

H1.Wt IZt /
d1
 �

M
T2S
jT jD2

H1.WT IZT /
d1
 �

M
T2S
jT jD3

H1.WT IZT /

0 H0.W∅IZ∅/
d1
 �

M
t2S

H0.Wt IZt /
d1
 �

M
T2S
jT jD2

H0.WT IZT /
d1
 �

M
T2S
jT jD3

H0.WT IZT /

0 1 2 3

Figure 1: The E1 page of the isotropy spectral sequence for the Davis complex.

We denote the d1 differential component restricted to the Hq.WT IZT / component in
the source and projected to the Hq.WU IZU / component in the target by d1T;U .

Proposition 3.2 The map d1T;U is nonzero only when U � T and is given by the
transfer map

d1T;U W Hq.WT IZT /!Hq.WU IZU /:

On the chain level we compute Hq.WT IZT / as homology of ZT ˝WT FWT for FWT
a projective resolution of Z over ZWT and we compute Hq.WU IZU / as homology
of ZU ˝WU FWT . Let m ˝ x be in ZT ˝ FWT and WU nWT be a set of coset
representatives for WU in WT . Then, on the chain level, the transfer map is

d1T;U W m˝ x 7!
X

g2WU nWT

m �g�1˝g � x:

Proof This proof follows the description of the d1 differential for the isotropy spectral
sequence in [2, Section VII.8]. Recall that an orbit representative for a p–cell is
eWT for T in S and jT j D p . The set FT of cells in the image of the cellular
differential @.WT / is given by cells wWU with jU j D p�1 and wWU �WT . This is
satisfied if and only if U � T and w 2WT by Lemma 2.20. Since WT is the stabiliser
of the cell eWT , the orbit set .FT =WT / is given by fU � T j jU j D p � 1g, which
is a subset of Op�1 . The intersection Stab.WT /\Stab.WU /DWT \WU DWU and
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the action of WU on ZT precisely mimics the action of WU on ZU . Therefore,

d1jHq.WT IZT / D
X

U2FT =WT

tT;U ;

where tT;U is the transfer map tT;U W Hq.WT IZT /!Hq.WU IZU /.

Note that cycles in Hq.WT IZT / are represented by chains in ZT˝FWT . Letting m˝x
be an element on the chain level yields the formula, where the transfer map on the
chain level is computed via [2, Section III.9].

To compute H2.W IZ/ and H3.W IZ/ we consider the E1 groups on the pCq D 2
diagonal and the pCq D 3 diagonal of Figure 1, respectively. Entries on the E1 page
are given by summing over finite Coxeter groups with generating set a certain size, and
the classification of finite Coxeter groups from Theorem 2.7 provides a finite selection
of possible groups for each size of generating set.

Lemma 3.3 Given a Coxeter system .W; S/, let V ,!W be a parabolic subgroup.
Then there is a map of isotropy spectral sequences E.V /!E.W / that is an inclusion
on the E1 page.

Proof The inclusion j W V ,!W induces an inclusion WV SV �WS , hence a map
between the realisations i W †V ,!†W , and therefore a map

Cp.†V ;Z/
i�
�! Cp.†W ;Z/:

We have the diagram

E1p;q.V /
// E1p;q.W /

Hq.V ICp.†V ;Z//
Hq.j�Ii�/

//

Š

��

Hq.W ICp.†W ;Z//

Š

��M
U2SV
jU jDp

Hq.WU IZU / //
M
T2S
jT jDp

Hq.WT IZT /

where the dotted map is induced by the map on p–cells on the central row. Every
spherical subgroup of V is also a spherical subgroup of W , corresponding to a map
between the p–cells represented by these spherical subgroups. Therefore the dotted
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map is an inclusion of summands. Since the d1 differential is defined via the transfer
map on each summand, all d1 differentials in E.V / will map under the inclusion to
the same differential in E.W /. The inclusion on the E1 page therefore induces a map
of spectral sequences on further pages.

3.2 Pairings on the isotropy spectral sequence

We consider a pairing of spectral sequences, for use in Section 5.6. We follow [12],
in particular Section 4 on products. For filtered complexes A, B and C, if a pairing
A˝B ! C is a morphism of filtered complexes, i.e. if FpA �FqB � FpCqC, then
this induces a morphism of spectral sequences

Er.A˝B/!Er.C /:

Combining this with the Künneth map Er.A/˝ Er.B/ ! Er.A˝ B/ (which is
induced by the Künneth map on homology on the E1 page) defines a pairing

�W Er.A/˝Er.B/!Er.C /

which satisfies the Leibniz formula for differentials, i.e. for x in Er.A/ and y in Er.B/
the pairing satisfies

d rC .�.x˝y//D �.d
r
A.x/˝y/C .�1/

deg.x/�.x˝ d rB.y//:

For finite Coxeter groups WU and WV , let WX DWU �WV , where X WDU tV as in
Section 2.1. For the remainder of this section we fix the following notation: Let WI be
the Coxeter group corresponding to I 2 fV;U;Xg. Let SI be the generating set of WI
and let SI be S for the Coxeter system .WI ; I / (see Definition 2.18). Let †I be the
Davis complex †WI and F I be a projective resolution of Z over ZWI . Let E.I /
denote the isotropy spectral sequence for WI . Then E.I / is the spectral sequence
related to the double complex F I ˝C.†I ;Z/ (see [2, Section VII.7]). Denote the
double complex by Ip;q and the associated total complex by TI. Then the spectral
sequence E.I / has corresponding filtration

Fp..TI /n/D
M
i�p

In�i;i :

Lemma 3.4 The product map WU �WV !WX determines a map on chain complexes

Ci .†U ;Z/˝Cj .†V ;Z/! CiCj .†X ;Z/:
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Proof The product map induces a map of posets

WUSU �WV SV !WXSX ; .uWTU ; vWTV / 7! uv.WTUtTV /:

This in turn induces a map on their realisations †U �†V !†X , which is the map
giving the decomposition †X D †U � †V in Lemma 2.26. Consider Ci .†I ;Z/
and note that p–cells of †I are represented by cosets wWT , where T 2 SI . Given
an i –cell of †U represented by uWT1 and a j –cell of †V represented by vWT2 we
use the above poset map and define an .iCj /–cell of †X represented by uvWT1tT2 .
This gives a pairing Ci .†U ;Z/˝Cj .†V ;Z/! CiCj .†X ;Z/.

Proposition 3.5 The map

ˆW Er.U /˝Er.V /!Er.X/

induced by the pairings

FUk ˝F
V
l ! FXkCl and Ci .†U ;Z/˝Cj .†V ;Z/! CiCj .†X ;Z/

gives a pairing of spectral sequences, under which the differentials satisfy the Leibniz
formula.

Proof We apply the hypothesis of [12, Section 4] and show that the map T U˝T V !
TX is a morphism of filtered complexes. We have on the nth level that

Fp..TI /n/D
M
i�p

In�i;i D
M
i�p

F In�i ˝Ci .†I ;Z/

for I in fU; V;Xg. Since WU �WV D WX , there is a pairing FU
k
˝ F V

l
! FX

kCl

(e.g. FX D FU ˝F V [2, V, Proposition 1.1]). Putting this together with the pairing
Ci .†U ;Z/˝Cj .†V ;Z/! CiCj .†X ;Z/ from Lemma 3.4 gives

Fp.T U / �Fq.T V /� FpCq.TX/;

as required in [12].

Theorem 3.6 Under the decomposition on the E1 page of the spectral sequence

E1p;q.I /DHq.F
I
� ˝WI Cp.†I ;Z//Š

M
xI2SI
j xI jDp

Hq.WxI IZxI /
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the pairing of Proposition 3.5 induces a pairing ˆ� , given by the Künneth map when
restricted to individual summands,

ˆ�W Hq.WU IZU /˝Hq0.WV IZV /
�
�!HqCq0.WU �WV IZU ˝ZV /

Š�!HqCq0.WX IZX /:

It follows that the differentials in the isotropy spectral sequence for the Davis complex
satisfy a Leibniz formula with respect to the pairing ˆ� .

Proof We now consider this pairing under the decomposition on the E1 page of the
isotropy spectral sequence,

E1p;q.I /DHq.F
I
� ˝WI Cp.†I ;Z//Š

M
xI2SI
j xI jDp

Hq.WxI IZxI /;

described in [2, Chapter VII]. Under this decomposition the above isomorphism re-
stricted to a single summand on the right is given by the map �� , induced by the
inclusion �W F T� ˝WT Cp.†T ;ZT /! FW� ˝W Cp.†W ;Z/,

Hq.F
T
� ˝WT Cp.†T ;ZT //

�� // Hq.F
W
� ˝W Cp.†W ;Z//

Hq.WT IZT / // Hq.F
W
� ˝W Cp.†W ;Z//

If a Coxeter group WX arises as a product WX DWU �WV , then the pairing ˆ, along
with the E1 decomposition for each group gives the diagram

E1p;q.U /˝E
1
p0;q0.V /

ˆ
//E1.pCp0/;.qCq0/.X/

Hq.F
U
� ˝WUCp.†U ;Z//˝Hq0.F

V
� ˝WV Cp0.†V ;Z//

ˆ
//HqCq0.F

X
� ˝WXCpCp0.†X ;Z//

M
U2SU
jU jDp

Hq.WU IZU /˝
M
V 2SV
jV jDp0

Hq0.WV IZV /

Š˚��

OO

ˆ�
//
M
X2SX
jX jDpCp0

HqCq0.WX IZX /

Š˚��

OO

The isomorphisms are induced by the componentwise inclusions given by �� on each
summand. The map ˆ� is defined so that the diagram commutes, i.e. it is induced
by ˆ and the two vertical isomorphisms. On each summand of the bottom left factor it
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is given by the composite

Hq.WU IZU /˝Hq0.WV IZV /
�
�!HqCq0.WU�WV IZU˝ZV /

Š�!HqCq0.WX IZX /;

where here X WD U tV . Here the first map is given by the homology cross product
[2, Section V.3], and the second map is due the fact that if WU �WV DWX then the
orientation modules satisfy ZU ˝ZV Š ZX . This map is precisely the Künneth map
on homology. Extending this componentwise definition to the tensor product of the
summations gives the map ˆ� that lifts to the map ˆ on the top row.

4 Calculation of H2.W I Z/

From Section 3.1, the isotropy spectral sequence for .W; S/ has E1 page as in Figure 1,
and the E1 page will give filtration quotients of H2.W IZ/ on the pCqD 2 diagonal.
We compute the diagonal on the E2 page and note that no further differentials affect
this diagonal, so the result follows.

In the following, let .W; S/ be a Coxeter system and E1p;q WDE
1
p;q.W / be the E1 terms

of the isotropy spectral sequence for the Davis complex of .W; S/.

Proposition 4.1 The terms E10;2 and E11;1 are zero.

Proof We have E10;2 DH2.W∅IZ∅/D 0, since W∅ is the trivial group. The E11;1
term is given by

E11;1 D
M
t2S

H1.Wt IZt /;

where the nontrivial group element t acts by negation. Then H1.Wt IZt /D 0 follows
from taking the standard projective resolution for a cyclic group of order 2 and these
coefficients.

4.1 Homology at E1
2;0

Recall that

E12;0 D
M
T2S
jT jD2

H0.WT IZT /:
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From Proposition 4.1, this will be the only contributing group to the pCqD 2 diagonal
on the E1 page. We start by computing E22;0 , which is given by the homology of the
sequence M

t2S

H0.Wt IZt /
d1
 �

M
T2S
jT jD2

H0.WT IZT /
d1
 �

M
T2S
jT jD3

H0.WT IZT /:

Recall that the d1 differential is given by the transfer map defined in Proposition 3.2.

Lemma 4.2 For all T in S such that jT j> 0, H0.WT IZT /D Z2 .

Proof The zeroth homology is given by the coinvariants of the coefficient module ZT
under the group action. Since in our case each group generator acts as multiplication
by �1, we compute homology to be the group Z2 .

For X 2 S , let 1X be the generator for the summand H0.WX ;ZX / of E1p;0 .

Lemma 4.3 When U is a subset of T , the transfer map for the bottom row of the
spectral sequence is

d1T;U W H0.WT IZT /D Z2!H0.WU IZU /D Z2;

1T 7!

�
0 if jWT j=jWU j is even,
1U if jWT j=jWU j is odd.

Proof From [2, Section III.9(B)], the transfer map acts on coinvariants as

d1T;U W H0.WT IZT /D Z2!H0.WU IZU /D Z2;

1T 7!
X

g2WU nWT

g � 1U D
X

g2WU nWT

1U ;

since g � 1D˙1 is in the class of 1 in ZU =WU . Noting that we are mapping into Z2
and the number of entries in the sum is jWT j=jWU j completes the proof.

Lemma 4.4 When U has cardinality 1 and T D fs; tg has cardinality 2, the transfer
map d1 restricted to the T summand is given by

d1jH0.WT IZT /.1T /D

�
1sC 1t if m.s; t/ odd;
0 if m.s; t/ even:

Proof Note that jWxj D 2 for all x in S and, since Wfs;tg is isomorphic to a dihedral
group, jWfs;tgj D 2�m.s; t/. Apply Lemma 4.3 to compute the differential.
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Definition 4.5 We say that a Coxeter group with generating set T D fs; t; ug is of
type X if WT DW.I2.p//�W.A1/ and p � 3 is odd, i.e. DWT has the form

s

p odd

t u

Lemma 4.6 If T D fs; t; ug then d1 restricted to the H0.WT IZT / summand is

d1jH0.WT IZT /.1T /D

�
1fs;ugC 1ft;ug if WT is of type X;
0 otherwise.

Proof There are a finite number of Coxeter diagrams that may represent WT , given
by Theorem 2.7. The order of these groups and their rank 2 subgroups is documented
in the table below, where p � 2:

WT DW jWT j jWfs;tgj jWfs;ugj jWft;ugj

W.A3/ s t u
24 6 4 6

W.D3/ s
4

t u
48 8 4 6

W.H3/ s
5

t u
120 10 4 6

W.I2.p//�W.A1/ s

p

t u
4p 2p 4 4

Calculating jWT j=jWT 0 j for T 0 � T in each of these cases and applying Lemma 4.3
completes the proof.

Proposition 4.7 The homology at E12;0 is given by

H0.D��IZ2/˚Z2ŒE.Deven/�˚H1.DoddIZ2/;

where the diagrams are as defined in Definition 1.1 and are viewed as 1–dimensional
complexes.

Proof Consider the calculations of the transfer maps in Lemmas 4.4 and 4.6, and
observe the following splitting:
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M
t2S

H0.Wt IZt /
M
T2S
jT jD2

H0.WT IZT /
d1

oo
M
T2S
jT jD3

H0.WT IZT /
d1

oo

M
TDfs;tg
m.s;t/D2

H0.WT IZT /

˚

M
WT typeX

H0.WT IZT /
d1

oo

?�

OO

M
TDfs;tg

m.s;t/¤2 even

H0.WT IZT /

˚M
t2S

H0.Wt IZt /
M

TDfs;tg
m.s;t/ odd

H0.Wt IZt /
d1

oo

Calculating the homology of the top row in turn gives a splitting

coker
� M
WT typeX

H0.WT ;ZT /
d1
�!

M
TDfs;tg
m.s;t/D2

H0.WT IZT /

�

˚

M
TDfs;tg

m.s;t/¤2 even

H0.WT IZT /˚ ker
� M
TDfs;tg
m.s;t/ odd

H0.WT IZT /
d1
�!

M
t2S

H0.WT IZT /

�
:

We now define an isomorphism "D "1˚ "2˚ "3 from these three groups, to the three
groups in the statement of the proposition,

H0.D��IZ2/˚Z2ŒE.Deven/�˚H1.DoddIZ2/:

The map between the first groups is

"1W coker
� M
WT typeX

H0.WT ;ZT /
d1
�!

M
TDfs;tg
m.s;t/D2

H0.WT IZT /

�
!H0.D��IZ2/;

1fs;tg 7! Œfs; tg�;

where Œfs; tg� is the generator for the summand of H0.D��IZ2/ corresponding to the
connected component containing fs; tg.

Recall from Lemma 4.6 that the transfer map on summands H0.Wfs;t;ugIZT / is
given by d1.1fs;t;ug/ D 1fs;ug C 1ft;ug if WT is of type X. Therefore generators
of H0.WT IZT / for triples of type X get mapped to sums of generators of H0.WT IZT /
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corresponding to commuting pairs. These are exactly vertices of D�� , and a triple of
type X gives the corresponding edge of D�� . Therefore the map "1 is well defined
and, moreover, it is an isomorphism.

For Z2ŒE.Deven/�, let fs; tg be the basis element corresponding to the edge between s
and t , and note that edges only exist if m.s; t/ is even and greater than 2. Then "2 is
the isomorphism defined by

"2W
M

TDfs;tg
m.s;t/¤2; even

H0.WT IZT /! Z2ŒE.Deven/�; 1fs;tg 7! fs; tg:

For H1.DoddIZ2/, note that Dodd has no 2–cells, so H1.DoddIZ2/ is the kernel of
the cellular differential @W C1 ! C0 , where C1 D Z2ŒE.Dodd/�, C0 D Z2ŒS� and
@.fs; tg/D sC t . Recall from Lemma 4.4 that the transfer map is given on summands
H0.Wfs;tgIZT /D Z2 by d1.1fs;tg/D 1sC 1t if m.s; t/ is odd. Therefore we define
a chain map M

TDfs;tg
m.s;t/ odd

H0.WT IZT /! Z2ŒE.Dodd/�; 1fs;tg 7! fs; tg;

and this map induces an isomorphism "3 between homologies.

4.2 Proof of Theorem A

Theorem 4.8 Given a finite-rank Coxeter group W with diagram DW , recall from
Definition 1.1 the definition of the diagrams D�� , Dodd and Deven . Then there is a
natural isomorphism

H2.W IZ/DH0.D��IZ2/˚Z2ŒE.Deven/�˚H1.DoddIZ2/;

where in the first and final term of the right-hand side the diagrams are viewed as cell
complexes.

Proof The pC q D 2 diagonal of the isotropy spectral sequence in Figure 1 gives
filtration quotients of H2.W IZ/ on the E1 page. The E2 page has only one nonzero
term on this diagonal,

E22;0H0.D��IZ2/˚Z2ŒE.Deven/�˚H1.DoddIZ2/:

All differentials d r for r�2 with source or target the E2;0 position either originate at or
map to a zero group. Therefore the pCqD2 diagonal on the limiting E1 page is given
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by the diagonal on the E2 page. Since there is only one nonzero group on the diagonal,
there are no extension problems and this group gives H2.W IZ/, as required.

5 Calculation of H3.W I Z/

Recall the isotropy spectral sequence for the Coxeter group W has E1 page as shown
in Figure 1 in Section 3.1, and the E1 page gives H3.W IZ/ (up to extension) on the
pC q D 3 diagonal.

In Section 5.1 the free resolution for finite Coxeter groups by De Concini and Salvetti [5]
is introduced and the chain map between resolutions is computed in Section 5.2. Using
these tools, we compute the E2 page of the spectral sequence on the p C q D 3

diagonal. Following this, Section 5.6 proves that all further differentials to and from
this diagonal are zero. The possible extension problems arising on the limiting page at
this diagonal are treated and discussed in Section 5.7 and all of these computations are
fed into the proof of Theorem B in Section 5.8.

5.1 Free resolution for Coxeter groups

In [5], De Concini and Salvetti introduce a free resolution of Z over ZW for a finite
Coxeter group W . We use this throughout this section to calculate the low-dimensional
homologies of finite Coxeter groups that appear as summands in the E1 entries of the
spectral sequence.

Definition 5.1 Let .W; S/ be a Coxeter system for a finite Coxeter group W . Let
.C�; ı�/ be the chain complex with Ck the free ZW –module with basis elements e.�/.
Here � is a flag of subsets of the generating set S with cardinality k , that is, � 2 Sk ,
where

Sk WD
n
� D .�1 � �2 � � � � / j �1 � S;

P
i�1

j�i j D k
o
:

For � in �i , let W �inf�g
�i

be the set of minimal left coset representatives of W�inf�g
in W�i . Then ık W Ck! Ck�1 is ZW –linear and defined on basis elements by

(1) ıke.�/D
X
i�1

j�i j>j�iC1j

X
�2�i

X
ˇ2W

�inf�g

�i

ˇ�1�iC1ˇ��inf�g

.�1/˛.�;i;�;ˇ/ˇe.� 0/;
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where the flag � 0 in Ck�1 is given by

� 0 WD .�1 � � � � � �i�1 � .�inf�g/� ˇ
�1�iC1ˇ � ˇ

�1�iC2ˇ � � � � /

and the exponent ˛.�; i; �; ˇ/ is as defined below. The differential is well defined from
Lemma 2.14. We choose an ordering for the set of generators S and let �.ˇ; �k/ be
the number of inversions, with respect to this ordering, in the map �k! ˇ�1�kˇ . We
let �.�i ; �/ be the number of generators in �i which are less than or equal to � in the
ordering on S. Then the exponent is described by the formula

˛.�; i; �; ˇ/D i � `.ˇ/C

i�1X
kD1

j�kjC�.�i ; �/C

dX
kDiC1

�.ˇ; �k/:

During this proof we adopt the convention that the generators are always ordered
alphabetically (e.g. s < t < u). We also denote the generator corresponding to a flag
of length d , .�1 � �2 � � � � � �d /, by ��1��2������d , where we omit the set notation
for each �i , for example �s , �s�s or �s;t�s (which corresponds to � D fs; tg � fsg).

Theorem 5.2 [5] The chain complex .C�; ı�/ from Definition 5.1 is a free resolution
of W over ZW .

Example 5.3 We give an example of the resolution for finite Coxeter groups with one
generator S D fsg, from C3 to C0 :

C3 D h�s�s�si
ı3D.s�1/
������! C2 D h�s�si

ı2D.1Cs/
�������! C1 D h�si

ı1D.s�1/
������! C0 D h�∅i:

The differential from �s to �∅ is given by the following formula, noting that coset
representatives of W∅ in Ws are e and s ; we recall the formula for ık.e.�// from (1):

ı1.�s/D
X
ˇDe;s

.�1/˛.�s ;1;s;ˇ/ˇ�∅ D .s� 1/�∅;

where we compute

˛.�s; 1; s; e/D 1`.e/C

0X
kD1

j�kjC�.s; s/D 0C 0C 1D 1;

˛.�s; 1; s; s/D 1`.s/C

0X
kD1

j�kjC�.s; s/D 1C 0C 1D 2:

Algebraic & Geometric Topology, Volume 20 (2020)



The low-dimensional homology of finite-rank Coxeter groups 2631

Similarly, the differential ı2W C2! C1 is given by

ı2.�s�s/D
X
ˇDe;s

.�1/˛.�s�s ;2;s;ˇ/ˇ�s D .1C s/�s;

where we compute

˛.�s�s; 2; s; e/D 2`.e/C

1X
kD1

j�kjC�.s; s/D 0C 1C 1D 2;

˛.�s�s; 2; s; s/D 2`.s/C

1X
kD1

j�kjC�.s; s/D 2C 1C 1D 4:

Finally, the differential ı3W C3! C2 is given by

ı3.�s�s�s/D
X
ˇDe;s

.�1/˛.�s�s�s ;3;s;ˇ/ˇ�s�s D .s� 1/�s�s;

where we compute

˛.�s�s�s; 3; s; e/D 3`.e/C

2X
kD1

j�kjC�.s; s/D 0C 2C 1D 3;

˛.�s�s�s; 3; s; s/D 3`.s/C

2X
kD1

j�kjC�.s; s/D 3C 2C 1D 6:

Definition 5.4 Define p.s; t I j / to be the alternating product of s and t of length j,
ending in an s (as opposed to �.s; t I j /, which is the alternating product starting in
an s ), i.e.

p.s; t I j /D

length j‚…„ƒ
: : : sts :

Example 5.5 Consider the resolution for finite Coxeter groups with two generators
S D fs; tg, from C3 to C0 and with m.s; t/ finite. Then the formulas for differentials
which do not follow from the previous example are

ı2.�s;t /D

m.s;t/�1X
jD0

.�1/jC1p.s; t I j /�t C

m.s;t/�1X
gD0

.�1/gC2p.t; sIg/�s;

ı3.�s;t�s/D

��
1�p.t; sIm.s; t/� 1/

�
�s�s � .1C s/�st if m.s; t/ is even;

�s�s �p.s; t Im.s; t/� 1/�t�t � .1C s/�st if m.s; t/ is odd;

ı3.�s;t�t /D

��
�1Cp.s; t Im.s; t/� 1/

�
�t�t � .1C t /�st if m.s; t/ is even;

��t�t Cp.t; sIm.s; t/� 1/�s�s � .1C t /�st if m.s; t/ is odd:
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Recall we wish to compute homologies of finite Coxeter groups WT with twisted
coefficients ZT , in which the action of the generators on ZT is given by negation.
To calculate the twisted homologies we tensor the resolution with Z under the group
action. We show this in the case of our two examples.

Example 5.6 We consider the resolution of Example 5.3 tensored with Z under the
group action:

Z˝Ws C3
D h1˝�s�s�si

ı3D.�2/
//

Z˝Ws C2
D h1˝�s�si

ı2D.0/
//

Z˝Ws C1
D h1˝�si

ı1D.�2/
//

Z˝Ws C0
D h1˝�∅i

Here the differentials are calculated as follows:

ı3.1˝�s�s�s/D 1˝..s�1/�s�s/D�2.1˝�s�s/;

ı2.1˝�s�s/D 1˝ ..1C s/�s/ D 0;

ı1.1˝�s/D 1˝ ..s� 1/�∅/ D�2.1˝�∅/:

Example 5.7 We consider the computations of differentials in Example 5.5 and, upon
tensoring with Z under the group action, this gives the differentials

ı2.1˝�s;t /D�m.s; t/.1˝�t /Cm.s; t/.1˝�s/;

ı3.1˝�s;t�s/D

�
2.1˝�s�s/ if m.s; t/ is even,
1˝�s�s � 1˝�t�t if m.s; t/ is odd,

ı3.1˝�s;t�t /D

�
�2.1˝�t�t / if m.s; t/ is even,
�1˝�t�t C 1˝�s�s if m.s; t/ is odd.

5.2 Collapse map

In this section we define a chain map, which we call the collapse map, between
De Concini and Salvetti’s resolution for a finite Coxeter group W and that for a
subgroup WT [5].

Recall that in the isotropy spectral sequence for the Davis complex, the d1 differential
has the form of a transfer map, given in Proposition 3.2. In the following sections we
calculate these twisted homology groups using the De Concini and Salvetti resolution.
Upon applying the transfer map to a generator of H�.WT IZT /, the image will be in
terms of the resolution for the group WT . However, we require the image to be in
terms of the resolution for WU and so we apply the collapse map in the appropriate
degree to achieve this.
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We first recall the following lemmas from [7]. Recall from Definition 2.4 that �.a; bI k/
is defined to be the word of length k , given by the alternating product of a and b .

Lemma 5.8 (Deodhar’s lemma [7, Lemma 2.1.2]) For .W; S/ a Coxeter system, let
WT be a spherical subgroup of a finite Coxeter group W , let v be .T;∅/–reduced
(Definition 2.15) and let s be in S. Then either vs is .T;∅/–reduced or vs D tv for
some t in T .

Lemma 5.9 [7, Lemma 1.2.1] If s and u are in S, m.s; u/ is finite, and w in W sat-
isfies `.ws/ < `.w/ and `.wu/ < `.w/, then it follows that wDw0

�
�.s; uIm.s; u//

�
,

where w0 is .∅; Wfs;ug/–reduced.

Definition 5.10 Denote the De Concini–Salvetti resolution for .W; S/ by .C�; ı�/
and for the subgroup .WT ; T / by .D�; ı�/. We define the collapse map in degree i to
be the WT –equivariant linear map fi W Ci !Di for 0� i � 2 as shown below:

ı3
// C2

ı2
//

f2

��

C1
ı1
//

f1

��

C0
ı0
//

f0

��

Z

ı3
// D2

ı2
// D1

ı1
// D0

ı0
// Z

As a ZŒW �–module, C� has basis given by e.�/, so as a ZŒWT �–module, C� has
basis given by v � e.�/ for v a .T;∅/–reduced element of W . We therefore define fi
on v �e.�/ and extend the map linearly and WT –equivariantly. By Lemma 5.8, for s2S,
vs is either .T;∅/–reduced or vs D tv for some t in T . This gives us the cases, in
each definition,

f0.v�∅/D �∅;

f1.v�s/D

�
0 if vs is .T;∅/–reduced;
�t if vs D tv for t 2 T;

f2.v�s�s/D

�
0 if vs is .T;∅/–reduced;
�t�t if vs D tv for t 2 T;

f2.v�su/D

�
�tr if vs D tv and vuD rv for t; r 2 T;
0 otherwise.

The remainder of this section is devoted to proving that f� is a chain map.
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Lemma 5.11 The following square commutes:

C0
ı0
//

f0

��

Z

D0
ı0
// Z

Proof Let w in W . For each basis element w�∅ , the square is given by

w�∅
ı0

//

_

f0

��

Z

f0.w�∅/
ı0
// Z

Since f0 is defined WT –equivariantly, if w D w0v for w0 in WT and v is a .T;∅/–
reduced element, then, from Definition 5.10,

f0.w�∅/D f0.tv�∅/D t �f0.v�∅/D t�∅:

It follows, since ı0 maps all generators to 1, that the square commutes.

Lemma 5.12 The following square commutes:

C1
ı1
//

f1

��

C0

f0

��

D1
ı1
// D0

Proof Since all maps are WT –equivariant, we need only consider the square on
generators multiplied by a .T;∅/–reduced element v . We recall the image of ı1 from
Example 5.3:

v�s
ı1

//
_

f1

��

v.s� 1/�∅_

f0

��

f1.v�s/
ı1
// f0.v.s� 1/�∅/

Here the two cases for the element vs , given by Lemma 5.8, give the following cases
for f0 , from Definition 5.10:

f0.v.s� 1/�∅/D

�
0 if vs is .T;∅/–reduced;
.t � 1/�∅ if vs D tv:
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This is precisely the image of f1.v�s/ from Definition 5.10 under the differential ı1 .
Therefore the square commutes.

For s and u in S, consider the following three cases, given by Lemma 5.8:

(1) Neither vs nor vu is .T;∅/–reduced, that is, vsD tv and vuD rv for t and r
in T .

(2) One of vs and vu is .T;∅/–reduced; without loss of generality, let vs D tv
and vu be .T;∅/–reduced.

(3) Both vs and vu are .T;∅/–reduced.

Recall from Definition 5.4 that p.s; uIm/ is the alternating product of s and u of
length m ending in s .

Lemma 5.13 We have that

f1

�
v

�m.s;u/�1X
jD0

.�1/jC1p.s; uI j /�uC

m.s;u/�1X
gD0

.�1/gC2p.u; sIg/�s

��

D

8<:
ı2.�tr/ in case .1/;
0 in case .2/;
0 in case .3/:

Proof For case (1), since f1 acts WT –equivariantly,

f1
�
v.p.s; uI j /�u/

�
D f1.p.t; r I j /v�u/D p.t; r I j /.f1.v�u//D p.t; r I j /�r

and similarly f1.vp.u; sIg/�s/D p.r; t Ig/�t : Furthermore, m.t; r/Dm.s; u/ since

�.t; r Im.s; u//v D v�.s; uIm.s; u//D v�.u; sIm.s; u//D �.r; t Im.s; u//v;

and, by right multiplication by v�1 , �.t; r Im.s; u//D �.r; t Im.s; u//, so m.t; r/ is
a divisor of m.s; u/. Applying a similar argument in reverse gives that m.s; u/ is a
divisor of m.t; r/, and so m.s; u/Dm.t; r/. Therefore, since f1 acts linearly,

f1

�
v

�m.s;u/�1X
jD0

.�1/jC1p.s; uI j /�uC

m.s;u/�1X
gD0

.�1/gC2p.u; sIg/�s

��

D

m.t;r/�1X
jD0

.�1/jC1p.t; r I j /�r C

m.t;r/�1X
gD0

.�1/gC2p.r; t Ig/�t D ı2.�tr/:
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For case (2), we first prove that if vs D tv and vu is .T;∅/–reduced, it follows
that v.�.u; sI k// is also .T;∅/–reduced for all 2 � k � m.s; u/ � 1. Note that
since vs D tv , from Lemma 5.8, `.vs/ > `.v/. Suppose v.�.u; sI k// is not .T;∅/–
reduced and choose minimal k for which this is the case. Then, for some q in T , it
follows that v.�.u; sI k//D qv.�.u; sI k� 1// and so w D v.�.u; sI k// satisfies the
hypothesis of Lemma 5.9, that is, `.wu/ < `.w/ and `.ws/ < `.w/. Therefore,

w D w0
�
�.u; sIm.s; u//

�
D v.�.u; sI k//:

By right multiplication by .�.u; sI k//�1 we have v D w0p.s; uIm.s; u/� k/. There-
fore v satisfies `.vs/ < `.v/, but this contradicts vs D tv . Therefore v.�.u; sI k// is
also .T;∅/–reduced for all 2� k �m.s; u/� 1. Computing f1 , it follows that

f1
�
v.p.s; uI j /�u/

�

D

8̂̂̂<̂
ˆ̂:
f1
�
v.�.u; sI j /�u/

�
D 0 if j is even, j ¤m.s; u/� 1;

t �f1.v�.u; sI j � 1/�u/D t � 0D 0 if j is odd, j ¤m.s; u/� 1;
f1
�
v�.u; sIm.s; t/� 1/�u

�
D �t if j Dm.s; u/� 1 and is even;

t �f1
�
v�.u; sIm.s; t/� 2/�u

�
D t � 0 if j Dm.s; u/� 1 and is odd;

and similarly

f1.vp.u; sIg/�s/

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

f1.v�s/D �t if g D 0;
t �f1.v�.u; sIg� 1/�s/D t � 0D 0 if g is even, g … f0;m.s; u/� 1g;
f1.v�.u; sIg/�s/D 0 if g is odd, g ¤m.s; u/� 1;
t �f1

�
v�.u; sIm.s; t/� 2/�s

�
D t � 0D 0 if g Dm.s; u/� 1 and is even;

f1
�
v�.u; sIm.s; t/� 1/�s

�
D �t if g Dm.s; u/� 1 and is odd;

so it follows, in the setting of case (2), that we have

f1

�
v

�m.s;u/�1X
jD0

.�1/jC1p.s; uI j /�uC

m.s;u/�1X
gD0

.�1/gC2p.u; sIg/�s

��

D

�
�t C .�1/

m.s;t/�1C2�t D 0 if m.s; u/ is even;
�t C .�1/

m.s;u/�1C1�t D 0 if m.s; u/ is odd.

For case (3), if both vs and vu are .T;∅/–reduced, then, by the same argument as in
case (2), v.�.u; sI k// and v.�.s; uI k// are also .T;∅/–reduced for 2� k �m.s; u/.
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Computing f1 in the setting of case (3) gives

f1

�
v

�m.s;u/�1X
jD0

.�1/jC1p.s; uI j /�uC

m.s;u/�1X
gD0

.�1/gC2p.u; sIg/�s

��
D 0:

Lemma 5.14 The following square commutes:

C2
ı2
//

f2

��

C1

f1

��

D2
ı2
// D1

Proof Since all maps are WT –equivariant, let v be a .T;∅/–reduced element and
consider the square on generators left-multiplied by v . We recall the image of ı2 from
Example 5.5. We must consider both forms of generators of C2 :

v�s�s
ı2

//
_

f2

��

v.1C s/�s_

f1

��

f2.v�s�s/
ı2
// f1.v.1C s/�s/

v�s;u
ı2
//

_

f2

��

v
�Pm.s;u/�1

jD0 .�1/jC1p.s; t I j /�uC
Pm.s;u/�1
gD0 .�1/gC2p.u; sIg/�s

�
_

f1

��

f2.v�s;u/
ı2
// f1

�
v
�Pm.s;u/�1

jD0 .�1/jC1p.s; uI j /�t

C
Pm.s;u/�1
gD0 .�1/gC2p.u; sIg/�s

��
Computing f1.v.1C s/�s/, we have

f1.v.1C s/�s/D

�
0 if vs is .T;∅/–reduced;
.1C t /�t if vs D tv:

This is precisely the image of f2.v�s�s/ from Definition 5.10 under the differential ı2 .
Therefore the left-hand square commutes.

The bottom right entry of the right-hand square is given in Lemma 5.13. This is precisely
the image of f2.v�s;u/ from Definition 5.10 under the differential ı2 . Therefore the
right-hand square commutes.
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Proposition 5.15 The maps f0 , f1 and f2 in Definition 5.10 form part of a chain
map f�W C�!D� .

Proof This is a consequence of Lemmas 5.11, 5.12 and 5.14, which show that all the
required squares commute.

In the following sections the tools we have developed are utilised to compute the
E2 terms of the isotropy spectral sequence for the Davis complex. When a proof is
omitted, this is due to its being a straightforward calculation of homology. All omitted
proofs can be found in [1, Appendix B].

Lemma 5.16 For r � 1, we have E10;r DHr.W∅IZ∅/D 0.

It follows that the E10;3 term of the diagonal is zero on the E1 page.

5.3 Homology at E1
1;2

We use the De Concini–Salvetti resolution [5] and the transfer (Proposition 3.2) and
collapse (Definition 5.10) maps to compute the differentials for the following section
of the spectral sequence:

0DH2.W∅IZ∅/
d1
 �

M
t2S

H2.Wt IZt /
d1
 �

M
T2S
jT jD2

H2.WT IZT /:

Let Wt and WT be as in the above sequence, and T D fs; tg.

Lemma 5.17 In terms of the De Concini–Salvetti resolution, the homologies in the
above sequence are H2.Wt IZt /D Z2 , generated by 1˝�t�t , and

H2.WT IZT /D

�
Z2˚Z2 if m.s; t/ is even;
Z2 if m.s; t/ is odd;

generated by 1˝�s�s and 1˝�t�t when m.s; t/ is even, and with these generators
being identified when m.s; t/ is odd.

Lemma 5.18 For u in T , d1T;u is given by

d1T;uW H2.Wfs;tgIZT /!H2.WuIZu/; 1˝�s�s 7! 1˝�u�u;

if m.s; t/ is odd, and the zero map if m.s; t/ is even.
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Proof We first apply the transfer map from Proposition 3.2 to the generator(s) of
H2.Wfs;tgIZT /, followed by the degree 2 collapse map f2 from Definition 5.10.

Proposition 5.19 The E21;2 entry of the isotropy spectral sequence for .W; S/ is given
by H0.DoddIZ2/.

Proof On the E1 page we compute homology of the sequence

0 d1
 �

M
t2S

Z2
d1
 �

M
T2S

TDfs;tg
m.s;t/ even

.Z2˚Z2/˚
M
T2S

TDfs;tg
m.s;t/ odd

Z2:

The left-hand map is the zero map and the right-hand map is defined via Lemma 5.18.
Applying the splitting technique as in the proof of the H2.W IZ/ calculation (see
Proposition 4.7) gives homology equal to H0.DoddIZ2/, as required.

5.4 Homology at E1
2;1

The E1 page at E12;1 has the formM
t2S

H1.Wt IZt /
d1
 �

M
T2S
jT jD2

H1.WT IZT /
d1
 �

M
T2S
jT jD3

H1.WT IZT /:

Proposition 5.20 The first homology H1.WT IZT / is as follows for finite WT with
T D fs; t; ug:

WT DWT H1.WT IZT / generator

W.A3/ s t u
Z3 ˛

W.B3/ s
4

t u Z2 ˛ D ˇ

W.H3/ s
5

t u 0

W.I2.p//�W.A1/

p � 2 s

p

t u
Z2˚Z2 if p is even

Z2 if p is odd
˛; ˇ if p is even
ˇ if p is odd

Generators are given by the De Concini–Salvetti resolution for WT ; we set

˛ D .1˝�s/� .1˝�t / and ˇ D .1˝�s/� .1˝�u/:
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Proposition 5.21 When T D fs; tg, H1.WT IZT /DZm.s;t/ with generator in the De
Concini–Salvetti resolution given by  D 1˝�s � 1˝�t .

Proposition 5.22 Let s in S. Then H1.WsIZs/D 0.

We now introduce some notation. If Hi .WT IZT / only has one generator, then we
represent that generator in the E1p;q summation of homologies by drawing the dia-
gram DWT . We represent d1jHi .WT IZT / by drawing a map from the diagram DWT to
the diagrams representing generators in the image of d1jHi .WT IZT / , with signs and
scalar multiplication as required. In some cases Hi .WT IZT / has either zero or two
generators, but in these cases there are no nonzero differentials.

Proposition 5.23 The nonzero differentials on the E1 page at E12;1 are given asM
t2S

H1.Wt IZt /
d1
 �

M
T2S
jT jD2

H1.WT IZT /
d1
 �

M
T2S
jT jD3

H1.WT IZT /;

s t
	
t u

7�!
s t u

s u
˚
t u

7�!
s

p odd

t u

Proof This proof involves calculating the differential d1 via the transfer and collapse
maps. This can be calculated by hand, but we use Python and the PyCox package [6].
These calculations can be found in [1, Appendix B].

Proposition 5.24 Recall from Definition 1.3 the diagrams D�� and DA2 . Then the
E22;1 entry of the isotropy spectral sequence for .W; S/ is given by

H0.D��IZ2/˚H0.DA2 IZ3/˚

� M
m.s;t/>3;¤1

Zm.s;t/

�
:

Proof Consider the d1 differentials at E22;1 , given in Proposition 5.23, and apply the
splitting technique as in Proposition 4.7.
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5.5 Homology at E1
3;0

Lemma 5.25 The nonzero d1 differentials at E13;0 are given by the mapsM
T2S
jT jD2

H0.WT IZT /
M
T2S
jT jD3

H0.WT IZT /
d1

oo
M
T2S
jT jD4

H0.WT IZT /
d1

oo

M
T2S
jT jD2

Z2
M
T2S
jT jD3

Z2
d1

oo
M
T2S
jT jD4

Z2
d1

oo

t u
C
s u s

p odd

t u
�oo

s t u
C
t u v s t u v

�oo

q even

t u v
C
s

q even

u v s

p odd q even

t u v
�oo0BB@

q odd

t u v
C
s

q odd

u v

C
s

p odd

t v
C

s

p odd

t u

1CCA s

p odd q odd

t u v
�oo

Proof Lemma 4.6 gives the image of the left-hand map. To compute the right-hand
map we consider the index of spherical subgroups, by Lemma 4.3. Computing the
index of each subgroup as in Lemma 4.6 gives nonzero maps, as required.

Proposition 5.26 Recall from Definition 1.3 the diagrams D�
��

, D 2r and DA3 .
Then the E23;0 of the isotropy spectral sequence for .W; S/ is given by

E23;0 DH1.D
�
��
IZ2/˚H0.D 2r IZ2/˚H0.DA3 IZ2/˚

� M
W.H3/�W
W.B3/�W

Z2

�
:

Proof Splitting the d1 differentials of Lemma 5.25 as in Proposition 4.7, we can
equate the homology of the sequence in Lemma 5.25 to the components on the right-
hand side above.

5.6 Further differentials are zero

Recall the isotropy spectral sequence for the Davis complex associated to a Coxeter
system .W; S/, given in Figure 1. Then on the pCqD3 diagonal the spectral sequence
has E2 page as shown in Figure 2.
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3 0 � � �

2 0 A ‹ � � �

1 0 0 B ‹ � � �

0 Z ‹ ‹ C ‹

0 1 2 3 4

ADH0.DoddIZ2/;

B DH0.D��IZ2/˚H0.DA2 IZ3/˚

� M
m.s;t/>3;¤1

Zm.s;t/

�
;

C DH1.D�
��
IZ2/˚H0.D 2r IZ2/˚H0.DA3 IZ2/˚

� M
W.H3/�W
W.B3/�W

Z2

�
:

Figure 2: The E2 page of the isotropy spectral sequence for the Davis
complex of a Coxeter system .W; S/ .

The E1 page of this spectral sequence gives us filtration quotients for H3.W IZ/ on
this diagonal. The arguments in this section shows that all possible further differentials
to and from this diagonal are zero. Since the spectral sequence is first quadrant, from
Figure 2 there are only three possible further differentials that may affect the pCqD 3
diagonal:

(1) d2W E23;1! A.

(2) d2W E24;0! B.

(3) d3W E34;0!E31;2 .

We first prove two lemmas which will reduce the cases for which we compute differ-
entials originating at Er4;0 in cases (2) and (3). Let WA and WB be nontrivial finite
groups such that the size of their generating sets SA and SB sum to 4. Denote the
isotropy spectral sequence for WA �WB by E.A�B/. Then the E14;0 term in the
spectral sequence is

E14;0 DH0.WA �WB IZAtB/:

Lemma 5.27 With notation as above, the possible d2 and d3 differentials originating
at Er4;0 for r D 2 or r D 3 in the spectral sequence E.A�B/ are zero.
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Proof By the Künneth theorem for group homology (see e.g. [2]) we have the short
exact sequence

0!
M
iCjDk

Hi .WAIZA/˝ZHj .WB IZB/
�
�!Hk.WA �WB IZAtB/

!

M
iCjDk�1

TorZ
1 .Hi .WAIZA/;Hj .WB IZB//! 0

since ZA˝ZB Š ZAtB . When k D 0 the torsion term is zero, hence

H0.WAIZA/˝ZH0.WB IZB/
Š�!H0.WA �WB IZAtB/:

By Theorem 3.6, there is a pairing

ˆ�W E.A/˝E.B/!E.A�B/

which is given on individual summands of the E1 terms by the Künneth map. Since
E14;0.A�B/ has only one summand, ˆ� is given by the Künneth map above, which
is an isomorphism. Let jSAj D ˛ and jSB j D ˇ and recall ˛CˇD 4. Then, under the
pairing ˆ� , all cycles in E14;0.A�B/ correspond to a pair of cycles:

E1˛;0.A/˝E
1
ˇ;0.B/

Š�!E14;0.A�B/:

It follows that all d1 differentials from E14;0.A�B/ are described via the Leibniz rule by
differentials from E1˛;0.A/ and E1

ˇ;0
.B/. Therefore the kernel of d1 from E14;0.A�B/

is given by a pairing of elements in the kernel of d1 from E1˛;0.A/ and the kernel
of d1 from E1

ˇ;0
.B/, and so the Künneth map is onto on the E2 page:

E2˛;0.A/˝E
2
ˇ;0.B/!E24;0.A�B/;

and the d2 differentials from E24;0.A�B/ are again defined via the Leibniz rule. Since
˛ and ˇ are both less than 4, the d2 differentials in E.A/ and E.B/ arise at E2p;0
where p < 4. But all possible targets of a d2 differential from such an E2p;0 are zero
(consider Figure 2). Thus the further differentials mapping from E24;0.A�B/ are zero.

The d2 differential with target E24;0.A � B/ originates at a 0 group, since the
spectral sequence is first quadrant. Since the d2 with source E24;0.A � B/ is also
zero, E24;0.A � B/ D E34;0.A � B/. By a similar argument, E2˛;0.A/ D E3˛;0.A/

and E2
ˇ;0
.B/DE3

ˇ;0
.B/. It follows that the Künneth map is also onto on the E3 page

and therefore, by the same argument as the d2 case, the d3 differential originating at
E34;0.A�B/ is zero.
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Lemma 5.28 Consider a differential d2 or d3 originating from a summand in Er4;0
for r D 2 or r D 3. If the corresponding cycle at the E14;0 term occurs in a summand
H0.WA �WB IZAtB/ for WA and WB nontrivial subgroups of W , then the d2 or d3

differential is zero.

Proof By Lemma 3.3, the inclusion of groups WA �WB ,! W gives an inclusion
of spectral sequences on the E1 page E1.A�B/ ,!E1.W /: Therefore differentials
mapping from cycles corresponding to the H0.WA�WB IZAtB/ summand at position
E14;0 in E.W / will be induced via this map by differentials in E.A � B/. From
Lemma 5.27, the d2 and d3 differentials originating at the Er4;0 position are zero
in E.A�B/.

We therefore only need to consider differentials originating at the Er4;0 components
for r D 2 or r D 3, which correspond to H0.WT IZT / summands of E14;0 for WT
irreducible groups, namely for WT of type A4 , B4 , D4 , F4 and H4 . As in the
previous sections we denote the generator of H0.WT IZT /D Z2 by DWT .

Lemma 5.29 The d1 differentials on the E1 page at the E14;0 position for the
summands H0.WT IZT / corresponding to Coxeter groups of type A4 , B4 , D4 , F4

and H4 are nonzero in the single caseM
T2S
jT jD3

H0.WT IZT /
d1
 �

M
T2S
jT jD4

H0.WT IZT /
d1
 �

M
T2S
jT jD5

H0.WT IZT /;

s t u
C
t u v

7�!
s t u v

Proof From Lemma 5.25 we have the maps from the central groups to the left. The
finite Coxeter groups with five generators for which the A4 , B4 , D4 , F4 and H4

diagrams are subdiagrams are the groups of type A5 , B5 , D5 and the groups created by
taking the product with A1 . Recall from Lemma 4.3 that in this case d1 is determined
by the index of the subgroup. In the case of the product groups, the index of the 4–
generator subgroup is 2 and hence the transfer map is zero. The remaining computations
we compute using Python and PyCox [6], though formulas for each group size can be
found in [10]. In each case the index of the subgroup is even, hence the transfer map is
zero.

Proposition 5.30 If d1 applied to a generator of a summand Hq.WT IZT / on the
E1 page is identically zero on the chain level, then the higher differentials which
originate at cycles corresponding to this generator on the Er page are also zero.
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Proof The d1 differential of the isotropy spectral sequence is given by the transfer
map on the chain level by Proposition 3.2. In general, higher differentials of the spectral
sequence for a double complex are induced by combinations of the differentials on the
chain level, and lifting on the chain level. Therefore, if the d1 differential is zero on
the chain level for the cycle representing a term Erp;q , then the higher differentials will
also be zero.

Corollary 5.31 The d2 and d3 differentials originating at Er0;4 for r D 2 or r D 3
corresponding to cycles on the E14;0 summands for groups of type B4 , D4 , F4 and H4

are zero.

Proof This is a consequence of Lemma 5.29, and Proposition 5.30, if the transfer
maps from Lemma 4.3 originating at H0.WT IZT / for these groups are identically
zero on the chain level (and not just zero modulo 2). This is satisfied if, alongside
there being an even number of cosets, there are identical numbers of cosets with odd
and even length. We use Python [6] and compute that there are equal numbers of coset
representatives of even and odd length for every 3–generator subgroup of B4 , D4 , F4

and H4 .

The remaining potentially nonzero differentials originating at the Er0;4 position for rD2
or r D 3 correspond to cycles on the E14;0 summand H0.W.A4/IZT /.

Lemma 5.32 The potential d2 and d3 differentials originating at the Er0;4 position
for rD 2 or rD 3 and corresponding to cycles on the E14;0 summand H0.W.A4/IZT /

are zero.

Proof If the further differentials were nonzero then they would also be nonzero
in the spectral sequence for W.A4/ by Lemma 3.3. The E2 page for the Coxeter
group W.A4/ is given by Figure 2 with

AD 0; B D Z2˚Z3; C D Z2:

The computation of this is given in [1, Appendix B]. The third integral homology of
the symmetric group S5 , which is isomorphic to W.A4/, is

H3.W.A4/IZ/D Z12˚Z2 Š Z3˚Z4˚Z2;

which is precisely given if the groups on the pCqD 3 diagonal of the E2 page are the
E1 terms, or filtration quotients, for H3.W.A4/IZ/ (there is a nontrivial extension
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of Z2 by Z2 , which we will discuss in the following section). Therefore no higher
differentials in or out of this diagonal can be nonzero.

Proposition 5.33 The possible d2 and d3 differentials originating at the Er4;0 posi-
tion for r D 2 or r D 3 in the spectral sequence are zero.

Proof This is a direct result of Lemma 5.28, Corollary 5.31 and Lemma 5.32.

Lemma 5.34 Let WT and WV be nontrivial finite Coxeter groups, and the size of
their generating sets sum to 3. Then the potential d2 differential originating at the E23;1
position is zero.

Proof The group WT �WV must be W.I2.p//�W.A1/ for p � 2, by the classifi-
cation of finite Coxeter groups.

When p is even, the E2 page for the Coxeter group W.I2.p//�W.A1/ is given by
Figure 2 with

AD Z2˚Z2˚Z2; B D Z2˚Z2˚Zp; C D Z2;

which is computed in [1, Appendix B]. The third integral homology can be computed
via the Künneth formula for groups to be

H3.W.I2.p//�W.A1/IZ/D Z2˚Z2˚Z2˚Z2˚Zp˚Z2˚Z2:

Similarly, when p is odd, the E2 page is given by Figure 2 with

AD Z2˚Z2; B D Z2˚Zp; C D 0

and the Künneth formula gives the homology to be

H3
�
W.I2.p//�W.A1/IZ

�
D Z2˚Z2p˚Z2:

In both cases, the group homology calculated via Künneth is precisely given if the
groups on the pC q D 3 diagonal of the E2 page are the E1 terms. Therefore no
higher differentials in or out of this diagonal can be nonzero.

Lemma 5.35 Suppose a d2 differential in the isotropy spectral sequence for W
originates at a cycle in E23;1 represented by a homology class in E13;1 of a subgroup
WT �WV of W such that neither WT nor WV is the trivial group. Then this d2

differential is zero.

Proof This proof mimics Lemma 5.28, using Lemma 3.3, and Lemma 5.34.
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Proposition 5.36 The possible d2 differential originating at the E23;1 group in the
spectral sequence is zero.

Proof The E23;1 entry is calculated by computing the homology of the sequenceM
T2S
jT jD2

H1.WT IZT /
d1
 �

M
T2S
jT jD3

H1.WT IZT /
d1
 �

M
T2S
jT jD4

H1.WT IZT /:

Recall the left-hand map from Proposition 5.23. The possible d2 differential acts on
cycles in summands of the form H1.WT IZT / for jT j D 3.

If d2 acts on a cycle in the summand H1.W.A3/IZT /DZ3 (from Proposition 5.20),
it must map to zero, since the target E21;2 DH0.DoddIZ2/ is all 2–torsion.

If d2 acts on a cycle in the summand H1.WT IZT / for WT the group W.B3/

or W.H3/, it will map to zero, as the representing cycles transfer identically to zero
on the chain level by the proof of Proposition 5.23, so we apply Proposition 5.30.

Lemma 5.35 covers the final cases, where the d2 acts on a cycle in the summand
H1.WT IZT / for WT DW.I2.p//�W.A1/ for p � 2.

5.7 Extension problems

Since all further differentials at the pCqD 3 diagonal are zero, the E2 page shown in
Figure 2 gives the limiting, or E1 , terms on this diagonal. The spectral sequence on
this diagonal converges to filtration quotients of H3.W IZ/, so we consider possible
extensions on this diagonal. That is, there is a filtration of H3.W IZ/,

F0 � F1 � F2 � F3 DH3.W IZ/;

where E10;3DF0 , E11;2DF1=F0 , E12;1DF2=F1 and E13;0DF3=F2 . We have F0D0
and so E11;2 D F1 .

Proposition 5.37 The group F1 D ADH0.DoddIZ2/ splits off as a direct summand
of H3.W IZ/.

Proof Consider a homomorphism  from a Coxeter group W with generating set S
to the cyclic subgroup of order 2 generated by t in S, which we denote by Wt . If s1
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and s2 in S satisfy m.s1; s2/ is odd, we require  .s1/D .s2/, whereas, if m.s1; s2/
is even, there is no requirement on  . A summand of

AD F1 DH0.DoddIZ2/D
M

�0.Dodd/

Z2

is represented by a vertex of DW . For the vertex t , denote the corresponding summand
of A by Z2.t/. We define the homomorphism  from W to Wt to be zero on all but
one of the connected components of Dodd , namely the t component:

 W W !Wt ; s 7!

�
t if s and t are in the same component of �0.Dodd/;

e otherwise.

Then the map  induces a map  � which fits into the diagram

Z2.t/
� � //

id
,,

A
� � // H3.W IZ/

 �
// H3.Wt IZ/

Z2

where H3.Wt IZ/ D Z2 is computed by noting that the E1 page of the isotropy
spectral sequence for Wt has only the group H0.DoddIZ2/DZ2.t/ on the pCq D 3
diagonal. The inclusion map A ,!H3.W IZ/ comes from the fact that ADF1 and so
is a subgroup of H3.W IZ/. The identity isomorphism gives us that H3.W IZ/ splits
as

H3.W IZ/D Z2.t/˚ ker. �/

and so there are no nontrivial extensions involving the Z2.t/ summand of A. Repeating
this argument over all summands gives that there are no nontrivial extensions involving
A and so AD F1 splits off in H3.W IZ/, as required.

We therefore have the filtration

0� F1 � F2 � F3 DH3.W IZ/D F1˚F
0
3

and we let F2DF1˚F 02 and F3DF1˚F 03 . It follows that E12;1DB DF2=F1DF
0
2

and E10;3 D C D F3=F2 D F
0
3=F

0
2 , so F 03 fits into the exact sequence

0 // F 02
// F 03

// F 03=F
0
2

// 0

0 // B // F 03
// C // 0

i.e. F 03 is an extension of C by B.
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Lemma 5.38 There exist no nontrivial extensions between the H0.D 2r IZ2/ sum-
mand of C and the groups at B in the spectral sequence of Figure 2.

Proof A summand of H0.D 2r IZ2/ is represented by a vertex in D 2r corre-
sponds to an I2.2p/ tA1 (p � 1) subdiagram present in DW . We compute the
spectral sequence for the Coxeter group V D W.I2.2p// �W.A1/ corresponding
to this diagram, and note that by Lemma 3.3 the inclusion of the subgroup V into
the group W induces a map of spectral sequences. Therefore, if there is a trivial
extension in the spectral sequence for V corresponding to the I2.2p/tA1 summand
of H0.D 2r IZ2/, this extension will be trivial in the spectral sequence for W . This
is because the splitting of the extension sequence in E.V / will give a splitting of the
extension sequence in E.W /, under the map of spectral sequences. The E1 page for
the Coxeter group V is given by Figure 2 with

AD Z2˚Z2˚Z2; B D Z2˚Z2˚Z2p; C D Z2;

which is computed in [1, Appendix B]. Therefore,

H3.V IZ/D F
0
3˚F1 D F

0
3˚ .Z2˚Z2˚Z2/;

where F 03 is an extension of Z2 by Z2˚Z2˚Z2p .

The third integral homology of V can be computed via the Künneth formula for groups
to be

H3
�
W.I2.2p//�W.A1/IZ

�
D Z2˚Z2˚Z2˚Z2˚Z2p˚Z2˚Z2:

Therefore we see that F 03 D Z2 ˚ Z2 ˚ Z2 ˚ Z2p and it follows that there is no
nontrivial extension between the H0.D 2r IZ2/ component of C and B.

Lemma 5.39 The extension between the H0.DA3 IZ2/ summand in C and the
H0.D��IZ2/ summand in B is nontrivial.

Proof A summand of H0.DA3 IZ2/ is represented by a vertex of DA3 , corresponding
to an A3 subdiagram present in DW . The E1 page of spectral sequence for the
subgroup V DW.A3/ corresponding to this diagram is given by Figure 2 with

AD Z2; B D Z2˚Z3; C D Z2;

which is computed in [1, Appendix B]. Therefore,

H3.V IZ/D F
0
3˚F1 D F

0
3˚Z2;
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where F 03 is an extension of Z2 by Z2 ˚ Z3 . Recall that V is isomorphic to the
symmetric group S4 , and H3.S4IZ/D Z12˚Z2 . The unique extension which will
obtain this result is

0! Z2˚Z3! Z4˚Z3! Z2! 0;

giving H3.V IZ/D Z4˚Z3˚Z2 D Z12˚Z2 . By Lemma 3.3 the inclusion of the
subgroup V into the group W gives a map of spectral sequences, under which the
extension sequence above is mapped as follows:

0 // Z2˚Z3� _

��

// Z4˚Z3

��

// Z2� _

��

// 0

0 // B // F 03
// C // 0

Therefore the extension in E.V / corresponding to the A3 summand of H0.DA3 IZ2/

is present in the spectral sequence for W . It follows that there exists a nontrivial
extension from each summand of H0.DA3 IZ2/ to H0.D��IZ2/.

Definition 5.40 For a Coxeter system .W; S/, let I D �0.D��/, J D �0.DA3/, let
the connected component of a vertex fs; ug in �0.D��/ be denoted by Œfs; ug� and the
connected component of a vertex fs; t; ug in �0.DA3/ be denoted by Œfs; t; ug�. We
define the extension matrix XW to be the jI j � jJ j matrix with entries

X.i; j /D

�
1 if i D Œfs; ug� and j D Œfs; t; ug�;
0 otherwise:

Lemma 5.41 The extension of H0.DA3 IZ2/ by H0.D��IZ2/ in the spectral se-
quence is completely determined by the extension matrix XW defined in Definition 5.40.
The extension sequence in question is

0 // H0.D��IZ2/ // Y // H0.DA3 IZ2/
// 0

0 //
M

�0.D��/

Z2 // Y //
M

�0.DA3
/

Z2 // 0

and the entry X.i; j / of XW dictates whether the extension between the i th Z2 on the
left and j th Z2 on the right is trivial (if X.i; j /D 0) or Z4 (if X.i; j /D 1).
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Proof For two finite indexing sets I and J, the extensions of
L
J Z2 by

L
I Z2 are

classified by

Ext
�M

I

Z2;
M
J

Z2

�
D

M
I

M
J

Ext.Z2;Z2/D
M
I

M
J

Z2:

Under this classification, an extension is given by an I�J matrix X with entries X.i; j /
in Z2 . The X.i; j / entry is zero if the restriction to these summands in the extension
sequence is trivial, and 1 if the extension is the nontrivial extension of Z2 by Z2 ,
giving Z4 .

Consider the extension sequence. By Lemma 5.39, we know that the projection on the
right to a Z2 summand Œfs; t; ug� in �0.DA3/ is the nontrivial extension by the Z2
summand Œfs; ug� in �0.D��/. Let I D�0.D��/ and J D�0.DA3/; then the matrix X
is precisely XW from Definition 5.40.

Lemma 5.42 There exist no nontrivial extensions between theM
W.H3/�W
W.B3/�W

Z2

summand of C and the groups at B in the spectral sequence of Figure 2.

Proof We recall that subdiagrams of the form H3 and B3 in DW represent these
summands of C. We compute the spectral sequence for the groups corresponding to
these diagrams, and compare to the third homology of the corresponding group W.H3/

or W.B3/ as computed using the De Concini–Salvetti resolution [5]. Through these
comparisons we observe that there are no nontrivial extensions present, as in the proof
of Lemma 5.38. These calculations are in [1, Appendix B].

Lemma 5.43 A class H1.D�
��
IZ2/ in C exists only when the spectral sequence

is calculated for a Coxeter system .W; S/ for which DW has a subdiagram of the
form Y tA1 , where Y is a 1–cycle in the Coxeter diagram Dodd . That is, a class
in H1.D�

��
IZ2/ is represented in DW by a loop containing only odd edges, along with

a vertex disjoint from this loop.

Proof Suppose vertices ft1; : : : ; tkg of DW represent a 1–cycle in Dodd and the
vertex s is disjoint. Then f.t1; s/; : : : ; .tk; s/g represents a 1–cycle in D�

��
. To

show that all classes in H1.D�
��
IZ2/ are represented by cycles of this form, suppose
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that f.x1; y1/; : : : ; .xp; yp/g represents a 1–cycle in D�
��

. Without loss of general-
ity, suppose x1 D x2 . Since there exists an edge between .x1; y1/ and .x1; y2/

in D�� , m.y1; y2/ must be odd. Now either x1 D x3 or y2 D y3 ; suppose y2 D y3 .
It follows that m.x1; x3/ is odd, so in DW there is a subdiagram of the form

x1

odd odd

x3 y1 y2

It follows that in the diagram D�� there is a subdiagram

.x1; y1/ .x3; y1/

.x1; y2/ .x3; y2/

and since this is a square, it is a 2–cell in D�
��

. Therefore, in H1.D�
��
IZ2/ the

cycle f.x1; y1/; .x1; y2/; .x3; y2/; .x3; y1/g is a boundary. It follows that replac-
ing the subcycle f.x1; y1/; .x1; y2/; .x3; y2/g of f.x1; y1/; : : : ; .xp; yp/g with the
vertex f.x3; y1/g gives representatives of the same class in H1.D�

��
IZ2/, and the

original cycle becomes f.x3; y1/; .x4; y4/ : : : ; .xp; yp/g. Without loss of generality,
we can now assume that x3 D x4 and we return to the start of the analysis of the
cycle. By reiterating this procedure we build a cycle equivalent, via boundaries,
to f.x1; y1/; : : : ; .xk; yk/g and where x1 D xi for all i . This is exactly a subdiagram
of the form Y tA1 in the Coxeter diagram DW , where Y is a loop in Dodd .

Lemma 5.44 Let W DW.Y /�W.A1/ be a Coxeter group such that Y represents a
1–cycle in Dodd ; then , for some 0 < m in N ,

H3.W IZ/ŠH3.W.Y /IZ/˚Zm2 :

Proof By the Künneth formula for group homology,

H3.W IZ/ŠH3.W.Y /IZ/˚Z2˚H2.W.Y /IZ/˚H1.W.Y /IZ/

and since the first and second integral homologies of any Coxeter group are all 2–
torsion the result follows.

Proposition 5.45 When W DW.Y /�W.A1/ is such that Y represents a 1–cycle
in Dodd , there are no nontrivial extensions between the H1.D�

��
IZ2/ component in C

and B.
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Proof We note that should nontrivial extensions exist, the homology H3.W IZ/ would
have at least one more summand with torsion greater than 2–torsion, in comparison to
the homology H3.W.Y /IZ/. This is due to the fact that H1.D�

��
IZ2/ is zero in the

spectral sequence for H3.W.Y /IZ/, so the extension would not occur here. We also
note that transitioning from W.Y / to W does not alter any nontrivial extensions in the
spectral sequence for W.Y / between the summand H0.D��IZ2/ and H0.DA3 IZ2/.
From Lemma 5.44 we have that H3.W IZ/ has no summands with higher than 2–
torsion that do not also appear in H3.W.Y /IZ/.

Lemma 5.46 There exist no nontrivial extensions from the H1.D�
��
IZ2/ component

of C to B.

Proof A class of H1.D�
��
IZ2/ is represented by a subgroup with diagram of the

form DW D Y t A1 such that Y represents a 1–cycle in Dodd , by Lemma 5.43.
By Proposition 5.45 no nontrivial extensions exist between this class and B in the
spectral sequence for the representing subgroup. Therefore, by a similar argument to
Lemma 5.38, there are no nontrivial extensions from this class.

5.8 Proof of Theorem B

Theorem 5.47 Given a finite-rank Coxeter system .W; S/ there is an isomorphism

H3.W IZ/ŠH0.DoddIZ2/˚H0.DA2 IZ3/˚

� M
3<m.s;t/<1

Zm.s;t/

�

˚H0.D 2r IZ2/˚

� M
W.H3/�W
W.B3/�W

Z2

�

˚ .H0.DA3 IZ2/H0.D��IZ2//˚H1.D�
��
IZ2/;

where each diagram is as in Definition 1.3 and viewed as a cell complex. In this
equation,  denotes the nontrivial extension of H0.DA3 IZ2/ by H0.D��IZ2/ given
by the extension matrix XW in Definition 5.40.

Proof The extension problems are solved in Lemmas 5.38, 5.39, 5.42 and 5.46.
It follows that the only nontrivial extension is the extension of H0.DA3 IZ2/ by
H0.D��IZ2/, which is determined by the extension matrix XW of Definition 5.40 by
Lemma 5.41.
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The computation of the pC q D 3 diagonal of the isotropy spectral sequence for the
Davis complex, alongside the solutions to these extension problems, gives the formula
for H3.W IZ/ as stated in the theorem.

Appendix Table of results for finite Coxeter groups

The finite Coxeter groups were classified in the 1930s by Coxeter [3]. This classification
is described in Theorem 2.7. We use Theorems A and B to calculate the second and
third integral homology of the finite irreducible Coxeter groups, and give the results in
Table 1 below. We include H1.W IZ/ for completeness.

W H1.W IZ/ H2.W IZ/ H3.W;Z/

An

n� 1
Z2

0 n� 2

Z2 n� 3

Z2 nD 1

Z2˚Z3 nD 2

Z2˚Z3˚Z4 nD 3; 4

Z22˚Z3˚Z4 n� 5

Bn

n� 2
Z2˚Z2

Z2 nD 2

Z2˚Z2 nD 3

Z2˚Z2˚Z2 n� 4

Z22˚Z4 nD 2

Z42˚Z3˚Z4 nD 3

Z52˚Z3˚Z24 nD 4

Z62˚Z3˚Z24 nD 5

Z72˚Z3˚Z24 n� 6

Dn

n� 4
Z2 Z2˚Z2

Z22˚Z3˚Z34 nD 4

Z22˚Z3˚Z24 nD 5

Z32˚Z3˚Z24 n� 6

I2.p/

p � 5

Z2 p odd
Z2˚Z2 p even

0 p odd
Z2 p even

Z2˚Zp p odd
Z2˚Z2˚Zp p even

F4 Z2˚Z2 Z2˚Z2 Z52˚Z23˚Z4

H3 Z2 Z2 Z32˚Z3˚Z5

H4 Z2 Z2 Z22˚Z3˚Z4˚Z5

E6 Z2 Z2 Z22˚Z3˚Z4

E7 Z2 Z2 Z22˚Z3˚Z4

E8 Z2 Z2 Z22˚Z3˚Z4

Table 1: Homology of finite Coxeter groups.
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