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Root number of twists of an elliptic curve

par Julie DESJARDINS

Résumé. Nous donnons une description explicite du comportement du signe
(root number) dans la famille des tordues d’une courbe elliptique E/Q par
les valeurs rationnelles d’un polynôme f(t). En particulier, nous présentons
un critère pour que la famille ait un signe constant sur Q. Ceci complète
un travail de Rohrlich : nous donnons les détails du comportement du signe
lorsque E a mauvaise réduction sur Qab et nous traitons les cas j(E) = 0, 1728
qui n’étaient pas considérés précédemment.

Abstract. We give an explicit description of the behaviour of the root num-
ber in the family given by the twists of an elliptic curve E/Q by the rational
values of a polynomial f(T ). In particular, we present a criterion for the family
to have a constant root number over Q. This completes work by Rohrlich: we
detail the behaviour of the root number when E has bad reduction over Qab

and we treat the cases j(E) = 0, 1728 which were not considered previously.

1. Introduction

This paper is concerned with the behaviour of the root number in a one-
parameter family of twists of an elliptic curve by the values of a polynomial
f ∈ Z[T ], or equivalently, in the fibres of an isotrivial elliptic surface. We
will see that the root number respects a certain type of periodicity, and we
will give a criterion to predict when it is constant.

Let E be an elliptic curve over Q. The root number W (E) is defined as
the product of the local root numbers Wp(E) ∈ {±1}:

W (E) =
∏
p≤∞

Wp(E),

where p runs through the finite and infinite places of Q. These local factors,
defined in terms of the epsilon factors of the Weil–Deligne representation
of Qp and explained in details by Rohrlich in [14], have the property that
Wp(E) = 1 for all but finitely many p. Rohrlich [13] gives an explicit formula
for the local root numbers in terms of the reduction of the elliptic curve E
at a prime p 6= 2, 3. Moreover, we always haveW∞(E) = −1. The remaining
cases p = 2, 3 are covered by Halberstadt [9] (see also Rizzo [12]).
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Let L(E, s) denote the L-function of E. Then W (E) is equal to the sign
of the functional equation of L by the Modularity Theorem over Q. Note
that over general number fields K 6= Q, such an equality is only conjectural.

The Birch and Swinnerton-Dyer conjecture implies the following state-
ment, known as the parity conjecture

W (E) = (−1)rankE(Q).

A consequence of this conjectural equality is that it suffices to have
W (E) = −1 for the rank of E(Q) to be non-zero, and in particular for
E(Q) to be infinite.

By a one-parameter family of elliptic curves we mean the collection of the
fibres of an elliptic surface over Q (with a section) given by a Weierstrass
equation

E : y2 = x3 +A(T )x+B(T ),
where A(T ), B(T ) are polynomials with coefficients in Z, and the discrim-
inant is denoted by ∆(T ). For t ∈ P1 such that ∆(t) 6= 0, the fibre at t,
Et : y2 = x3 + A(t)x + B(t), is an elliptic curve. In this paper we consider
the case where the family is isotrivial, i.e. when its j-invariant function
t 7→ j(Et) = 4A(t)3

∆(t) is constant. In that case, the curves Et are twists of one
another, and E can be seen as a subfamily of the families of all twists of E1:

(1) (quadratic twists, j(E ) 6= 0, 1728) y2 = x3 + aH(T )2x+ bH(T )3,
(2) (quartic twists, j(E ) = 1728) y2 = x3 +A(T )x,
(3) (sextic twists, j(E ) = 0) y2 = x3 +B(T ),

where a, b 6= 0 andH(T ), A(T ), B(T ) are non-zero polynomials with integer
coefficients.

In a previous article [6], the author proves that the function t 7→ W (Et)
defined by the root number on a non-isotrivial family E is never periodic
(i.e. constant on a congruence class of t). More precisely, she proves that the
sets W± = {t ∈ P1 |W (Et) = ±1} are both infinite, which implies (under
the parity conjecture) the Zariski-density of the rational points E (Q).

For families of twists thought, it can happen that W (Et) takes the same
value for every t ∈ P1 associated to a smooth Et, and (more alarmingly if
one is interested in proving the Zariski-density) equal to +1, as observed
previously in each of the two special cases:

(1) (Cassels and Schinzel [2]) y2 = x3 − (1 + T 4)2x,
(2) (Várilly-Alvarado [15]) y2 = x3 + 27T 6 + 16.

Observe that the first example is a K3 surface and that the second is a
rational elliptic surface. These specific surfaces have however a Zariski-dense
set of rational points - the proof can be found respectively in [10] and in [15,
Example 7.1]. By the time the present article was published, the author and
B. Naskrȩcki [7] released a preprint presenting a simple algorithm to find
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the generic rank of any elliptic surface of the form y2 = x3 + AT 6 + B,
which generalizes Várilly-Alvarado’s result.

It is not possible that all quadratic twists have the same root number,
as observed by Dokchitser and Dokchitser [8]. However, they proved that
the elliptic curve

(1.1) y2 = x3 + x2 − 12x− 67
4

has root number +1 over every extension of K = Q( 4√−37). This curve has
the additional property that any twist by an integer t ∈ N has root number
+1 over Q and any twist by −t has root number −1. Thus, polynomials
f with only positive values (resp. only negative values) define a family of
twists with constant root number +1 (resp. −1). For instance, (T 2 +1)y2 =
x3+x2−12x− 67

4 has constant root number +1. However, the density of the
rational points is proven on every family of quadratic twists of an elliptic
curve by a f with degree ≤ 2 [5, Theorem 4.2.].

In this article, we describe for which elliptic curves E the root number
of a twist by t ∈ Z only depends on the sign of t (Lemma 4.2). Moreover,
for general elliptic curves E we describe the behaviour of the root number
(Theorem 1.2).

1.1. Notation. Throughout the paper we use two non-standard nota-
tions. Given an integer α ∈ Z and a prime number, we denote by α(p)
the integer such that

α = pvp(α)α(p).

Similarly, we define α(d) with d =
∏
pei
i ∈ N as the integer

α =
(∏

i

p
vpi (α)
i

)
α(d).

We will denote by sq(α) and call the square part of α the integer

sq(α) =
∏

i such that ei is even
pi.

Incidentally, sq(α)(p) refers to the integer

sq(α)(p) =
∏
i

pi,

where i ranges on ei even and pi 6= p. We also call sgn(α) the sign of α.

1.2. Main results. We are interested in the behaviour of the root number
in a one-parameter family of twists of elliptic curves, that is, to say in the
fibres of an isotrivial elliptic surface.
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Definition 1.1.
(1) A function f : F ⊆ Z → {±1} is periodic (or N -periodic) if there

exists a positive integer N such that for each t, t′ ∈ F

t ≡ t′ mod N ⇒ f(t) = f(t′).

We denote a congruence class modulo N by [t] (where t ∈ Z is a
representative of the congruence class).

(2) A function f : F ⊆ Z → {±1} is square-periodic (or (N,M)-
square-periodic) if there exist positive integers N,M such that for
t, t′ ∈ F that we write in its factorisation into prime factors t =
pe1

1 · per
r and t′ = q

e′1
1 · q

e′s
s , we have

t ≡ t′ mod N and sq(t) ≡ sq(t′) mod M ⇒ f(t) = f(t′),

where sq(t) =
∏
ei even pi and sq(t′) =

∏
e′i even qi.

We call a square-congruence class [t]sq mod N,M the set of the
integers t′ such that t′ ≡ t mod N and sq(t′) ≡ sq(t) mod M .

Let E be the elliptic curve defined by the Weiestrass equation y2 =
x3 +ax+ b and let t ∈ Q\{0}. Then the twist by t of E is the elliptic curve
Et given by the following Weiestrass equation:

(1) Et : y2 = x3 + at2x+ bt3 if j(E) 6= 0, 1728 (i.e. ab 6= 0),
(2) Et : y2 = x3 + atx if j(E) = 1728 (i.e. b = 0),
(3) Et : y2 = x3 + bt if j(E) = 0 (i.e. a = 0).

Note also the following isomorphisms for all t ∈ Q \ {0}: Et2 ∼= E if
j(E) 6= 0, 1728, Et4 ∼= E if j(E) = 1728, Et6 ∼= E if j(E) = 0. As a
consequence, for any t = p

q ∈ Q \ {0}, the twist Et is isomorphic to Et′ for
t′ = qp if ab 6= 0; t′ = pq3 if b = 0; t′ = pq5 if a = 0. It is thus sufficient to
study the twists by integers.

The results of this article are summarized in the following theorem.

Theorem 1.2. Let E be an elliptic curve and for t ∈ Z denote by Et its
twist by t.

(1) Suppose that j(E) 6= 0, 1728. Define F2 to be the set of square-
free integers, and F+

2 (respectively F−2 ) the subset of t ∈ F2 with
sgn(t) = +1 (resp. sgn(t) = −1). Then
(a) The root number can be written as the following product

W (Et) = −W2(Et)W3(Et)
(
−1
|t(6∆)|

) ∏
p|∆(6)

Wp(Et)


where

( ·
·
)
is the Jacobi symbol.

(b) the function t 7→W (Et) is periodic on F±2 .
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(c) The root number W (Et) is not constant when t runs through
Z \ {0}. However, if E satisfies the properties of Lemma 4.2,
it is constant on Z<0 and Z>0.

(2) Suppose that j(E) = 1728. Define F4 to be the set of fourth-
powerfree integers, and F+

4 (respectively F−4 ) the subset of t ∈ F4
with sgn(t) = +1 (resp. sgn(t) = −1). Then
(a) The root number can be written as the following product

W (Et) = −W2(Et)W3(Et)
(
−2
|t(6)|

)(
−1

sq(t)(6)

)
.

(b) The function t 7→W (Et) is square-periodic on F±4 .
(c) The root number W (Et) is not constant when t runs through

Z \ {0}.
(3) Suppose that j(E) = 0. Define F6 to be the set of sixth-powerfree

integers, and F+
6 (respectively F−6 ) the subset of t ∈ F6 with

sgn(t) = +1 (resp. sgn(t) = −1). Then
(a) The root number can be written as the following product

W (Et) = −W2(Et)W3(Et)
(
−1
|t(6)|

)(
sq(t)(6)

3

)
.

(b) The function t 7→W (Et) is square-periodic on F±6 ,
(c) The root number W (Et) is not constant when t runs through

Z \ {0}.

The article is organised as follows. In the rest of the introduction, we
relate our results to previous work, in particular to Rohrlich’s. In Section 2
we study the monodromy of the reduction on a family of twists in each of
the three cases j ∈ Q \ {0, 1728}, j = 1728 and j = 0, and in Section 3
we use it to describe the variation of the root number between an elliptic
curve and one of its twists. We conclude the paper in Section 4 by proving
Theorem 1.2 in each of the three cases.

1.3. Recollection on Rohrlich’s results. Theorem 1.2 completes the
following result on the variation of the root number of quadratic twists due
to Rohrlich, and extends it to the case ab = 0: the quartic and sextic twists
families.

Theorem 1.3 ([13, Theorem 2]). Let a, b ∈ Z\{0} such that 4a3+27b2 6= 0.
Consider the elliptic curve given by the equation E : y2 = x3 + ax+ b. Let
f(t) ∈ Z[t] and the family of quadratic twists given by the equation

Ef(t) : y2 = x3 + af(t)2x+ bf(t)3.

Then, one of the two properties holds :
(1) The sets W+ and W− are dense in R.
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(2) The sets W+ and W− are {t ∈ Q | f(t) < 0} and {t ∈ Q | f(t) > 0}
(in either order).

Moreover, given E:

As a conclusion of this theorem, one obtains :
(1) if E has good reduction over Qab then Ef(t) has constant root num-

ber if and only if f(t) takes the same sign for all t ∈ Q,
(2) if E has bad reduction over Qab, then

(a) if f(t) does not always take the same sign, then W+ and W−
have infinite cardinality.

(b) if f(t) > 0 (or < 0), then Rohrlich’s theorem does not allow us
to conclude directly. In order to know if the root number of the
fibres is constant or not, the use of Theorem 1.2 is necessary.
Here is how to proceed:

(i) Find N the smallest integer such that for each t, t′ ∈ F2
the congruence t ≡ t′ mod N implies W (Et) = W (Et′),
or in other terms the smallest N for which the root num-
ber function t −→W (Et) is N -periodic. The existence of
this N is given by Theorem 1.2. The value of N depends
on the coefficients of a Weierstrass equation of E and can
be found with the help of Corollary 4.5).

(ii) Then determine in which of the equivalence classes mod-
ulo N are the values of the squarefree factors of f(t).
Take representatives t1, . . . , tn such that each of the f(ti)
represents a class modulo N (that can be obtained). If
the root number of the fibres of Ef(ti) all have the same
value, then the root number function is constant and we
are in Rohrlich’s case 2. Otherwise, it varies and we are
in case 1.

Let us explain this with an example:

Example 1.4. Let a = 2 · 7 · 17 = 238 and b = 23 · 7 · 17 = 952, and
f(t) = t86 + 14. We study the variation of the root number in the fibres of
the family

Ef(t) : y2 = x3 + 238(t86 + 14)2x+ 952(t86 + 14)3.

Note that E : y2 = x3 + 238x + 952 has multiplicative reduction over Qab

(since 173 is a place of multiplicative reduction over Q). Indeed, we have
∆(E) = −29 · 72 · 172 · 173.

First find the integer N for which E is N -periodic. For this, observe that
the bad places are 2, 7 (type II), 17 (type II) and 173 (type I1). Then by
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Corollary 4.5 the root number of Et the twist by t is

W (Et) = −
∏

p=2,3,7,17,173
wp(t),

where wp(t) are local contributions at each p determined as follows:

wp(t) =



sgn(t)D2
(
−1
|t(2)|

)
W2(E) for p = 2

(−1)v3(t)D3W3(E) for p = 3

Dp

(
−1
p

)vp(t)
Wp(E) for p = 7, 17(

t(173)
173

)
DpWp(E) for p = 173,

and the Dp ∈ {±1} are the values depending on t such that Wp(Et) =
DpWp(E). They are given by the Lemmas 3.4, 3.6 and 3.3. Although an
appropriate Dp is not always given by Lemma 3.4 or 3.6 for p = 2, 3 in the
case of a general elliptic curve, as is the case in this example. Example 1.6
explains what to do otherwise.

• For 2: we have (v2(a) + 4, v2(b) + 5, v2(∆)) = (5, 8, 9), b(2) ≡ 3
mod 4 and a(2) ≡ 7 mod 8. According to Lemma 3.4, w2(t) the
local contribution at 2 of the root number of the twists by t takes
the same value for any value of t(2) and of v2(t): w2(t) = +1.
• For 3: we have (v3(a) + 1, v3(b) + 3, v3(∆)) = (1, 3, 0). According to
Lemma 3.4, w3 the local contribution at 3 of the root number of
the twists by t will take the same value for any value of t(3) and of
v3(t): w3(t) = +1.

For primes p 6= 2, 3, Proposition 3.3 gives the value of Dp.
• For 7 and 17, the type of reduction is II and we have:

wp(t) =


(

3
p

) (
−1
p

)
Wp(E) if p | t

Wp(E) if p - t.

Since 7 ≡ 1 mod 6 we have w7(t) = W7(E) = −1 for all t squarefree
integer, and since 17 6≡ 1 mod 6 we have

w17(t) =
{
W17(E) = +1 if v17(t) even
−W17(E) = −1 if v17(t) odd.

• For 173: the reduction is multiplicative, we have

w173(Et) =


(
t

173
)
W173(E) =

(
t

173
)

if 173 - t
−
(−6b(173)

173

) (
t(173)
173

)
W173(E) =

(
t(173)
173

)
if 173 | t

so we have simply w173(Et) =
(
t(173)
173

)
.
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As a consequence, we see that W (Et) takes the same value on the con-
gruence classes modulo 172 · 173, so that the root number of the twists is
N -periodic for N = 172 · 173. It is however somehow more convenient in
this case to observe the more precise fact that it takes the same value for t
and t′ such that t(173) ≡ t′(173) mod 173 and with v17(t) ≡ v17(t′) mod 2.

An easy consequence of Fermat’s little theorem is that f(t) = t86 + 14
takes the values among {13, 14, 15} mod 173. Thus we have

w173(f(t)) =
(
f(t)(173)

173

)
.

This Jacobi symbol is equal to +1 for all squarefree t (since ( 13
173) = ( 14

173) =
( 15

173) = +1).
It is not so hard to check that f(t) takes values among

{1, 5, 6, 10, 12, 13, 15, 16} mod 17,
and in particular that 17 - f(t) for any value of t. Thus w17(f(t)) = +1.

This proves that the root number is constant on the family Ef(t) and
always takes the value +1.

Sometimes, the computation of N is not even necessary since a basic
check proves that the root number varies:

Example 1.5. If we twist E : y2 = x3 + 238x + 952 by the polynomial
g(t) = t86 + 1 instead: we have W (Eg(0)) = W (E) = 1 and W (Eg(1)) =
W (E2) = −1 so the root number is not constant on the family Eg(t). (When
we look in detail, we see that the variation comes from w173: we have
w173(1) = +1 and w173(2) = −1. The other contributions are such that
wp(1) = wp(2).)

In some other cases, it is more convenient to take a shortcut when we
search for N , in particular when the local root number at 2 or 3 is not listed
in Lemma 3.4 or 3.6. Here is an example:

Example 1.6. In our first examples, finding the appropriate N was easy
because the functions w2(t) and w3(t) were constant by Lemma 3.4 and 3.6.
Let us choose another base curve, say E′ : y2 = x3 + 2 · 17x + 22 · 17, and
study the family of twists of E′ by the values of the function h(t) = 8t30 +5:

E′h(t) : y2 = x3 + 34(8t30 + 5)2x+ 68(8t30 + 5)3.

The discriminant of E′ is ∆(E′) = −2817261, so the reduction of E′ at 17
has type II and the reduction at 61 is I1. The root number can be written
as

W (E′t) = −
∏

p=2,3,17,61
wp(t),

with wp(t) as in Corollary 4.5. Let us find them explicitly in this case.
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• For 2: we have (v2(a) + 4, v2(b) + 5, v2(∆)) = (5, 7, 8), and this
triple is not listed in Lemma 3.4 as one with w2(t) constant on the
family E′t. Some additional work must be done here with Rizzo’s
table III [12]. From there we extract the formula (for odd t):

W2(E′t) =


+1 if 6 · 17t2 + 27 · 17t3 ≡ 1 mod 8

or if 27 · 17t3 ≡ 5 mod 8,
−1 otherwise.

In our choice of h(t) = 8t30 + 5, not only is h(t) always positive and
odd, but it is also always such that h(t) ≡ 5 mod 8. Consequently,
102h(t)2 + 459h(t)3 ≡ 59925 ≡ 5 mod 8 and 459h(t)3 ≡ 7 mod 8
for any t. This means that W2(E′h(t)) = W2(E′) = −1 (in particular
D2 = +1 for all t), and thus that

w2(h(t)) = sgn(h(t))
( −1
h(t)

)
D2W2(E′) = −1

for all t ∈ Z.
• By Lemma 3.6, w3(t) = +1 for all t.
• Similarly as in Example 1.4, we have

w17(t) =
{

+1 if v17(t) even,
−1 if v17(t) odd

and

w61(t) =
{
−
(
t

61
)

if 61 - t(
t

61
)

if 61 | t.
As a consequence, the root number W (E′h(t)) is 172 · 61-periodic. We can
be even more precise. A consequence of Fermat’s little theorem is that
h(t) = 8t30 + 5 takes the values among {5, 13, 58} mod 61. We have thus
w61(h(t)) = −

(h(t)
61
)

= −1 for all t. The polynomial h(t) takes values among
{1, 3, 4, 5, 6, 7, 9, 13, 14} modulo 17 and hence we always have w17(h(t)) =
+1 for all t. Thus we have for every t ∈ Z:

W (E′h(t)) = −(−1)(+1)(+1)(−1) = −1.

1.4. More formulae. Birch and Stephens [1] prove formulae for the root
number of y2 = x3−Dx, and for the root number of z3 = x3 +A (this curve
can be rewritten as the equation y2 = x3−432A2). Liverance [11] completes
these results by giving a formula for the root number of y2 = x3 +D in the
general case.

The formulae given in the points (3a) and (2a) of Theorem 1.2 have
a flavor different from that found in those two papers, in particular, it
distinguishes between primes p ≥ 5 according to whether or not p2 | t,
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in a similar way to the formulae of Várilly-Alvarado [15, Propositions 4.4
and 4.8].

Connell [3] computer-implemented the root number formulae from those
of Rohrlich [13], Liverance [11], Birch and Stephens [1].

2. Monodromy of the reduction

2.1. For quadratic twists. Let E be the elliptic curve given by the
Weierstrass equation E : y2 = x3 + ax + b, where a, b ∈ Z \ {0} and
let ∆ be its discriminant, that we suppose minimal. For every t ∈ Z \ {0},
consider the twist of E by t, Et : y2 = x3 + at2x + bt3. Tate’s algorithm
allows us to show the following lemma:

Lemma 2.1. We have:
(1) If vp(t) is even, then E and Et have the same type of reduction at p.
(2) If vp(t) is odd, then the type of Et and E are among the following

possibilities (the order is not important)
(a) I0 and I∗0
(b) Im and I∗m
(c) II and IV∗
(d) II∗ and IV
(e) III and III∗

2.2. For quartic twists. Let E be the elliptic curve given by the Weier-
strass equation E : y2 = x3+ax, where a ∈ Z is a non-zero fourth-powerfree
integer. For every t ∈ Z \ {0}, consider the twist of E by t:

Et : y2 = x3 + atx.

The discriminant is ∆(Et) = −26a3t3. Tate’s algorithm allows us to show
the following lemma:

Lemma 2.2. The reduction at p 6= 2, 3 of Et has type I0, III, I∗0 , III∗ if
vp(at) ≡ 0, 1, 2, 3 mod 4 respectively.

2.3. For sextic twists. Let E be the elliptic curve given by the Weier-
strass equation E : y2 = x3 + b, where b ∈ Z is a non-zero sixth-powerfree
integer. For every t ∈ Z \ {0}, consider the twist of E by t:

Et : y2 = x3 + bt.

The discriminant is ∆(Et) = −2433b2t2. Tate’s algorithm allows to show
the following lemma:

Lemma 2.3. The reduction at p 6= 2, 3 of Et has type I0, II, IV, I∗0 , IV∗,
II∗ if vp(bt) ≡ 0, 1, 2, 3, 4, 5 mod 6 respectively.
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3. Behaviour of the local root number

3.1. Local root number of a quadratic twist. For p 6= 2, 3 a simple
formula gives the local root number of an elliptic curve E according to the
type of its reduction:

Proposition 3.1 ([13, Proposition 2]). Let p ≥ 5 be a rational prime, and
let E/Qp be an elliptic curve given by the Weierstrass equation

E : y2 = x3 + ax+ b,

where (a, b) ∈ Z2 \ (0, 0). Then

Wp(E) =



1 if the reduction of E at p has type I0;(
−1
p

)
if the reduction has type II, II∗, I∗m or I∗0 ;(

−2
p

)
if the reduction has type III or III∗;(

−3
p

)
if the reduction has type IV or IV∗;

−
(

6b
p

)
if the reduction has type Im;

However, it is not as simple when p is 2 or 3. According to [12, 1.1], to
determine the local root number at p = 2, 3 of an elliptic curve, we must
find the smallest vector (α, β, γ) with nonnegative entries such that

(α, β, δ) = (vp(c4), vp(c6), vp(∆)) + k(4, 6, 12)

for k ∈ Z, where c4, c6 and ∆ are the usual quantities associated to a
Weierstrass equation.

Let E : y2 = x3 +ax+ b be an elliptic curve. For every t ∈ Z\{0}, define
Et to be the quadratic twist

Et : y2 = x3 + at2x+ bt3,

with a, b ∈ Z. The Weierstrass coefficients of the twisted curve are:

c4 = −24 · 3 · a · t2 c6 = −25 · 33 · b · t3 ∆ = −24 · (4a3 + 27b2)t6,

whence

(α, β, δ) = (vp(a), vp(b), vp(∆))+(2vp(t), 3vp(t), 6vp(t))+
{

(4, 5, 0) if p = 2
(1, 3, 0) if p = 3

The root number is given by the entry of Rizzo’s Table II (if p = 3) or
Table III (if p = 2) corresponding to (α, β, δ).

3.1.1. Periodicity.

Lemma 3.2. For every prime p, the function t 7→Wp(Et) is periodic.
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Proof. Let t be an integer, and let t = t0t(∆) be a decomposition such
that t0 is a product of prime factors of ∆ (the discriminant of E) and
t(∆) is an integer coprime with ∆. Let ∆Et = ∆t6 be the discriminant
of Et. By Tate’s algorithm, the reduction at p depends only on the triple
(vp(c4), vp(c6), vp(∆t6)).

If p ≥ 5 and vp(t) = 2, we have vp(∆Et) = vp(∆) + 12vp(t(∆)). Since
p - t(∆), then vp(∆Et) = vp(∆). Yet, we know that the root number of a
curve stays the same under a twist by a twelfth-power. Knowing t modulo
p2 suffices thus to know Wp(Et).

For p = 2, 3 and l = 4, 6, let cl,p be the integers such that cl = pvp(t)cl,p.
The formulae found in the tables in [9] depend only of the 2-adic and 3-adic
valuation of c4 and c6 as well as the remainder of c4,2, c4,3, c6,2, c6,3 modulo
a certain power of 2 or 3. �

3.1.2. Variation of the local root number at p ≥ 5 when twisting.
Let p 6= 2, 3 be a prime number, and t ∈ Z \ {0} a squarefree integer. In
the following, we compare Wp(E) and Wp(Et).

Proposition 3.3. Put Dp ∈ {−1,+1} the integer such that Wp(E) =
DpWp(Et). We have

(1) if p - t

Dp =

+1 if E has good or additive reduction(
t
p

)
if E has multiplicative reduction

(2) if p | t

Dp =



+1 if E has type III or III∗(
−1
p

)
if E has type I0 or I∗0(

3
p

)
if E has type II, II∗, IV, IV∗

−
(−6b(p)t(p)

p

)
if E has type Im or I∗m (m ≥ 1)

Proof. The value of Dp depends of the type of reduction at p of E.
(1) If p - t and the reduction of E is not multiplicative, one has Dp =

+1. If the reduction has type Im, then

Dp =
(
t

p

)
,

because

Wp(Et) = −
(
−6b(p)t3

p

)
= −

(−6b(p)
p

)(
t

p

)
= Wp(Et)

(
t

p

)
.

(2) If p | t, one of the following cases occurs, according to the type of
variation of E at p.
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(a) If E has type I0, then Et has type I∗0 . Conversely, if Et has type
I∗0 , then Ept has type I0. The local root number at p changes
from (−1

p ) to +1. We have Dp = (−1
p ).

(b) If E has type II, then Et has type IV∗. Conversely, if Et has
type IV∗, then Ept has type II. The local root number at p
changes from (−1

p ) to (−3
p ). We have Dp = (3

p).
(c) If E has type III, then Et has type III∗ and conversely. The

local root number at p changes from (−2
p ) to (−2

p ). We have
Dp = +1.

(d) If E has type I∗m, then Et has type Im and conversely. The
local root number at p changes from (−1

p ) to −
(−6b(p)t(p)

p

)
. We

have Dp = −
(6b(p)t(p)

p

)
.

I∗0 ↔ I0 II↔ IV∗(
−1
p

) Dp=(−1
p

)
−−−−−−→ +1

(
−1
p

) Dp=( 3
p

)
−−−−−→

(
−3
p

)
III↔ III∗ I∗m ↔ Im(

−2
p

)
Dp=+1−−−−−→

(
−1
p

) (
−1
p

) Dp=−
( 6b(p)t(p)

p

)
−−−−−−−−−−−→ −

(−6b(p)t(p)
p

)
.

�

3.1.3. Local root number at p = 2.

Lemma 3.4. We haveW2(Et) = ε2·sgn(t)
( −1
|t(2)|

)
(for a fixed ε2 ∈ {−1,+1})

for all t ∈ Z if and only if the triple (v2(a) + 4, v2(b) + 5, v2(∆)) is among
the following:

(1) (0, 0, 0) or (2, 3, 6) (then ε2 ≡ −b(2) mod 4); or
(2) (3, 5, 3) or (5, 8, 9) and

(a) a(2) ≡ 3 mod 8 and b(2) ≡ 3 mod 4; or a(2) ≡ 7 mod 8 and
b(2) ≡ 1 mod 4 (then ε2 = −1)

(b) a(2) ≡ 3 mod 8 and b(2) ≡ 1 mod 4; or a(2) ≡ 7 mod 8 and
b(2) ≡ 3 mod 4 (then ε2 = +1)

(3) (≥ 4, 3, 0) or (≥ 6, 6, 6) (then ε2 ≡ b(2) mod 4).

We deduce the following:

Corollary 3.5. The cases listed in Theorem 3.4 are the only one such that
for every t ∈ Z \ {0}, one has

W (Et) = sgn(t)
(
−1
|t(2)|

)
W (E),
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where D2 is the integer depending on t such that W2(Et) = D2W2(E). In
particular, we have D2 = ε2 · sgn(t)

( −1
|t(2)|

)
and so the function w2 defined

in Corollary 4.5 is constant and w2(t) = ε2.

Proof. Let E : y2 = x3 + ax + b be an elliptic curve and let ∆ be its
discriminant. For every squarefree t ∈ Z \ {0}, consider the twist of E by
t, Et : ty2 = x3 + ax+ b.

We list here the conditions of the coefficients a, b and ∆ for the root
number at 2 of the fibres Et to be W2(t) = sgn(t)( −1

t(2)
) for all positive t

and −( −1
−t(2)

) for all negative t. We can classify the curves E by their triple
(v2(a) + 4, v3(b) + 5, v2(∆)): a formula for their local root number at 2 is
given by the table of Rizzo [12, Table III]. (In Rizzo, the notation with the c-
invariants is preferred. Note that (c6)(2) = 3b(2) and that (c4)(2) = 33a(2).).
The first step is to select the surfaces such that W2(Et) = ε · sgn(t)

(−1
|t|
)

when 2 - t, for a fixed ε ∈ {±1}. To find the triples and determine the
additional conditions, we proceed in the following way. (We only give three
examples here, the other cases being treated in a similar manner.)

If (v2(a) + 4, v2(b) + 5, v2(∆)) = (0, 0, 0), then Rizzo’s table gives the
following formula for the root number of the fibres in odd t:

W2(Et) =
{

+1 if b(2)t
3 ≡ 1 mod 4

−1 otherwise.

We want W2(Et) = +1 ⇔ t ≡ 1 mod 4, which is possible if and only if
b(2) ≡ 1 mod 4.

For some triples though, the local root number at 2 of Et does not behave
the way we want. For instance in the case of the triple (v2(a) + 4, v2(b) +
5, v2(∆)) = (3, 3, 0). In this case, the local root number is

W2(Et) =


+1 if a(2)t

2 ≡ 3 mod 4 and if b(2)t ≡ ±3 mod 8,
if a(2)t

2 ≡ 1 mod 4 and if b(2)t ≡ 1, 3 mod 8,
−1 otherwise.

In any case of a(2) mod 4 and b(2) mod 8, there will be values of t mod 8
such that W2(Et) 6= sgn(t)

(
−1
|t|

)
. For instance, if b(2) ≡ 3 mod 4 and

a(2) ≡ 1 mod 16, then W2(Et) = +1 if and only if t ≡ 5 mod 8.
Proceding in a similar manner for all the other triples, we determine

the triple, and the special conditions for which t 7→ W2(Et) behaves like
sgn(t)

(
−1
|t(2)|

)
. We obtain the list given in Table 3.1. We have double checked

every computation with the computation software MAGMA.
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Table 3.1. Cases where W2(Et) = ε · sgn(t) ·
(−1
|t|
)
for every

odd squarefree t ∈ Z− 0.

(v2(a) + 4,v2(b) + 5,v2(∆)) Special conditions ε
(of a minimal model)

(0, 0, 0) b(2) ≡ 1 mod 4 +1
b(2) ≡ 3 mod 4 −1

(≥ 4, 3, 0) b(2) ≡ 1 mod 4, +1
b(2) ≡ 3 mod 4 −1

(2, 3,≥ 4) b(2) ≡ 1 mod 4, −1
b(2) ≡ 3 mod 4, +1

(≥ 4, 4, 2) b(2) ≡ 1 mod 4 +1
b(2) ≡ 3 mod 4 −1

(3, 5, 3) a(2) ≡ 3, 5 mod 8, b(2) ≡ 3 mod 4 −1
a(2) ≡ 1, 7 mod 16, b(2) ≡ 1 mod 4
a(2) ≡ 3, 5 mod 8, b(2) ≡ 1 mod 4 +1
a(2) ≡ 1, 7 mod 16, b(2) ≡ 3 mod 4

(5, 8, 9) a(2) ≡ 5, 7 mod 8, b(2) ≡ 3 mod 4 +1
a(2) ≡ 1, 3 mod 16, b(2) ≡ 1 mod 4
a(2) ≡ 5, 7 mod 8, b(2) ≡ 1 mod 4 −1
a(2) ≡ 1, 3 mod 16, b(2) ≡ 3 mod 4

(≥ 6, 6, 6) b(2) ≡ 1 mod 4 +1
b(2) ≡ 3 mod 4 −1

(4, 6, 7) b(2) ≡ 3 mod 4, a(2) ≡ 7 mod 8 +1
b(2) ≡ 1 mod 4, a(2) ≡ 7 mod 8 −1

(≥ 7, 7, 8) b(2) ≡ 1 mod 4 +1
b(2) ≡ 3 mod 4 −1

(6, 8, 10) a(2)b(2) ≡ 3 mod 4 +1
a(2)b(2) ≡ 1 mod 4 −1

(≥ 7, 8, 10) b(2) ≡ 1 mod 4 +1
b(2) ≡ 3 mod 4 −1

The final step is to retain only the triples such that W2(E2t) = W2(Et).
For every case of the list, we check if the triple (v2(a)+2, v2(b)+3, v2(∆)+6)
(the triple associated to a fibre at 2t for t ∈ Z odd) also gives a local root
number at 2 equal toW2(E2t) = ε ·sgn(t)

(
1
|t|

)
(for the same ε). A list of the

monodromy of the triples, as well as whether or not those pairs figure in
Table 3.1. This way we find the cases listed in the statement of the theorem
(note that for (3, 5, 3) and (5, 8, 9) this only works for specific classes of a(2)
and b(2)). �
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Table 3.2.

Monodromy of (v2(a) + 4, v2(b) + 5, v2(∆)) Are triples in Table 3.1
(0, 0, 0)←→ (2, 3, 6) yes, yes

(0, 0, > 0)←→ (2, 3, > 6) no, no
(3, 3, 0)←→ (5, 5, 6) no, no

(≥ 4, 3, 0)←→ (≥ 6, 6, 6) yes, yes
(2, 4, 0)←→ (4, 7, 6) no, no

(2,≥ 5, 0)←→ (4,≥ 8, 6) no, no
(2, 3, 1)←→ (4, 6, 7) no, no
(2, 3, 2)←→ (4, 6, 8) no, no
(2, 3, 3)←→ (4, 6, 7) no, no

(2, 3,≥ 4)←→ (4, 6,≥ 8) yes, no
(3, 4, 2)←→ (5, 7, 8) no, no
(3, 5, 3)←→ (5, 8, 9) yes, yes
(4, 4, 2)←→ (6, 7, 8) yes, no

(≥ 5, 4, 2)←→ (≥ 7, 7, 8) yes, no
(4, 5, 4)←→ (6, 8, 10) no, yes

(≥ 5, 5, 4)←→ (≥ 7, 8, 10) no, yes

3.1.4. Local root number at p = 3.

Lemma 3.6. We have W3(Et) = ε3 · (−1)v3(t) for all t ∈ Z (for a fixed
ε3 = ±1) if and only if the triple of values (v3(a) + 1, v3(b) + 3, v3(∆)) is
one of the following:

(1) (0, 0, 0), (1,≥ 3, 0), and (1, 2, 0) with a(3)≡2 mod 3 (then ε3 =+1)
(2) (2, 3, 6), (3,≥ 6, 6), and (3, 5, 6) with a(3)≡2 mod 3 (then ε3 =−1)

Corollary 3.7. The cases listed in Theorem 3.6 are the only ones such
that for every t ∈ Z \ {0}, one has

W (Et) = (−1)v3(t)W (E).

In particular, we have D3 = ε3 · (−1)v3(t)W (E) (D3 is the integer de-
pending on t such that W3(Et) = D3W3(E)) and so the function w3 defined
in Example 1.4 or Corollary 4.5 is constant and w3(t) = ε3.

Proof. Let t ∈ Z \ {0} be an integer.
Suppose that t satisfies 3 - t. Then the local root number at 3 is given

by the entry of [12, Table II] corresponding to (v3(a) + 1, v3(b) + 3, v3(∆)).
If v3(t) is odd, then the triple is (v3(a) + 3, v3(b) + 6, v3(∆) + 6) and the
corresponding entry gives the local root number. We double-checked every
computation using the software MAGMA.

We start by selecting the triples such that W3(Et) = W3(E) = ε3 for all
t ∈ Z prime to 3 (for some fixed ε3 ∈ {±1}). The list is given in Table 3.3.
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Table 3.3. Cases where W3(Et) = ε3 for every squarefree
t ∈ Z \ 0 not divisible by 3.

(v3(a) + 1, v3(b) + 3, v3(∆) Special conditions ε3
(0, 0, 0), +1

(1,≥ 3, 0), +1
(1, 2, 0), +1

(2,≥ 5, 3) +1,
(2, 3, 3) if a(3) ≡ 1 mod 3, b(3) ≡ 4, 5 mod 9 +1,
(2, 3, 4) +1,
(2, 3, 6) −1

(2, 3,≥ 7) −1
(2, 3, 4) +1

(2,≥ 5, 3) +1
(≥ 3, 3, 3) b(2) ≡ 1, 8 mod 9 +1
(3, 5, 6) if a(3) ≡ 1 mod 3 +1

a(3) ≡ 2 mod 3 −1
(3,≥ 6, 6) −1
(4, 6, 9) if a(3) ≡ 1 mod 3, b(3) ≡ 4, 5 mod 9 +1,

(4,≥ 8, 9) +1
(≥ 5, 6, 9) b(2) ≡ 1, 8 mod 9 +1

Now, we check among those triples whether they have the property that
W (E3t) = −W (Et), by verifying that both the triple of E and the triple
of a twist by 3 are in Table 3.3 (these facts are listed in Table 3.4) and
comparing the values of ε3. We retain only (0, 0, 0), (2, 3, 6), (1,≥ 3, 0)
(3,≥ 6, 6), and finally (1, 2, 0) and (3, 5, 6) with the additional condition
that a(3) ≡ 2 mod 3. It is important to notice that in the following cases,
although the triple (v3(a)+1, v3(b)+3, v2(∆)) and the triple of a quadratic
twist by 3 are both in Table 3.3, we have W3(Et) = W3(E3t) rather than
W (Et) = −W (E3t) as required: (2, 3, 3) and (4, 6, 9) with the additional
condition that a(3) ≡ 1 mod 3 and b(3) ≡ 4, 5 mod 9, and (≥ 3, 3, 3) and
(≥ 5, 6, 9) with the additional condition that b(3) ≡ ±1 mod 9.

A yes in the second column of Table 3.4 means that the triple is in
Table 3.3, but under special conditions. If there is no special condition to
take account of, they the table tells the value of the function W3(Et). �

3.2. Root number of a quartic twist.

Lemma 3.8 ([15, Lemme 4.7]). Let t be a non-zero integer and define the
elliptic curve Et : y2 = x3 +tx. We denote by W2(t) and W3(t) its local root
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Table 3.4.

Monodromy of (v3(a) + 1, v3(b) + 3, v3(∆)) Are triples in Table 3.3
(0, 0, 0)←→ (2, 3, 6) +1, −1

(0, 0, > 0)←→ (2, 3, > 6) no, −1
(1, 2, 0)←→ (3, 5, 6) +1, yes

(1,≥ 3, 0)←→ (3,≥ 6, 6) +1, −1
(≥ 2, 2, 1)←→ (≥ 4, 5, 7) no, no

(2, 3, 3)←→ (4, 6, 9) yes, yes
(≥ 3, 3, 3)←→ (≥ 5, 6, 9) yes, yes

(2, 4, 3)←→ (4, 7, 9) no, no
.(2,≥ 5, 3)←→ (4,≥ 8, 9) +1, +1

(2, 3, 4)←→ (4, 6, 10) +1, no
(2, 3, 5)←→ (4, 6, 11) no, no

(≥ 3, 4, 5)←→ (≥ 5, 7, 11) no, no

numbers at 2 and 3. Let t(2) be the integer such that t = 2v2(t)t(2). Then

W2(t) =


−1 if v2(t) ≡ 1 or 3 mod 4 and t(2) ≡ 1, 3 mod 8;

or if v2(t) ≡ 0 mod 4 and t(2) ≡ 1, 5, 9, 11, 13, 15 mod16;
or if v2(t) ≡ 2 mod 4 and t(2) ≡ 1, 3, 5, 7, 11, 15 mod16;

+1 otherwise.

W3(t) =
{
−1 if v3(t) ≡ 2 mod 4;
+1 otherwise.

We may reformulate this theorem as follows:

Lemma 3.9. The function of the local root number at 2 on the fourth-
powerfree integers, defined as t 7→W2(Et), is 24-periodic on F4 and it takes
the value −1 if and only if t ∈ [2ka] the congruence class mod 24, where
k = 1, 3 mod 4 and a ≡ 1, 3 mod 8; or k = 0 and a ≡ 1, 5, 9, 11, 13, 15
mod 16; or k = 2 and a ≡ 1, 3, 5, 7, 11, 15 mod 16.

Lemma 3.10. The function of the local root number at 3 on the fourth-
powerfree integers, defined as t 7→W3(Et), is 34-periodic on F4 and it takes
the value −1 if and only if t ∈ [32a] the congruence class mod 34, where
a ∈ Z.

3.3. Root number of a sextic twist.

Lemma 3.11 ([15, Lemma 4.1]). Let t be a non-zero integer and the elliptic
curve Et : y2 = x3 +t. We denote by W2(t) and W3(t) its local root numbers
at 2 and 3. Put t(2) and t(3) the integers such that t = 2v2(t)t(2) = 3v3(t)t(3).
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Then

W2(t) =


−1 if v2(t) ≡ 0 or 2 mod 6;

or if v2(t) ≡ 1, 3, 4 or 5 mod 6 and t(2) ≡ 3 mod 4;
+1, otherwise.

W3(t) =



−1 if v3(t) ≡ 1 or 2 mod 6 and t(3) ≡ 1 mod 3;
or if v3(t) ≡ 4 or 5 mod 6 and t(3) ≡ 2 mod 3;
or if v3(t) ≡ 0 mod 6 and t(3) ≡ 5 or 7 mod 9;
or if v3(t) ≡ 3 mod 6 and t(3) ≡ 2 or 4 mod 9;

+1, otherwise.

We may reformulate this theorem as follows:

Lemma 3.12. The function of the local root number at 2 defined as t 7→
W2(Et) is 26-periodic on F6 and it takes the value +1 if and only if t ∈ [2ka]
the congruence class mod 26, where k ∈ {1, 3, 4, 5} and a ≡ 3 mod 4.

Lemma 3.13. The function of the local root number at 3 defined as t 7→
W3(Et) is 36-periodic on F6 and it takes the values −1 if and only if t ∈
[3ka] the congruence class mod 36, where k ∈ {1, 2} and a ≡ 1 mod 3
mod 4; k ∈ {4, 5} and a ≡ 2 mod 3 mod 4; k = 0 and a ≡ 5, 7 mod 3
mod 4; or k ∈ {1, 2} and a ≡ 2, 4 mod 3 mod 4.

4. Proof of the main theorem

4.1. Families of quadratic twists.

Theorem 4.1. Let E be an elliptic curve such that j(E) 6= 0, 1728. Define
F2 to be the set of squarefree integers. Then

(1) the function t 7→W (Et) is periodic on F2,
(2) the root number W (Et) is not constant when t runs through Z\{0}.

The proof of this theorem is based on the following lemma of independent
interest.

Lemma 4.2. Let E be an elliptic curve.
Suppose that for all positive squarefree integer t ∈ N one has W (Et) =

W (E). This happens if and only if the elliptic curve E has the following
properties:

(a) there is no finite place of multiplicative reduction except possibly at
2 or 3;

(b) for all t non-zero squarefree integers one has W2(Et) = W2(E) ·
sgn(t) ·

( −1
|t(2)|

)
;

(c) for all t non-zero squarefree integers one has W3(Et) = W3(E) ·
(−1)v3(t);
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(d) if there exists p | ∆(6) then:
(i) if the reduction of E at p has type III or III∗, then p ≡ 1

mod 4;
(ii) if the reduction of E at p has type II, II∗, IV or IV∗, then p ≡ 1

mod 6;
(iii) the reduction at p is not additive potentially multiplicative.

Remark 4.3. The elliptic curves E with property (b) or (c) are respectively
given by Lemma 3.4 or 3.6.
Example 4.4. Let E+1 : y2 = x3−91x+182 and E−1 : y2 = x3−91−182.
For any t ∈ N, the quadratic twist of E+1 by t has root number +1 and
the quadratic twist of E−1 has root number −1. Indeed, the discriminant
of these elliptic curves is ∆ = 21272132. So we have:

(a) The only finite place of multiplicative reduction is in 2.
(b) By Lemma 3.4, W2(Et) = W2(E) · sgn(t)

( −1
|t(2)|

)
because the asso-

ciated triple of a minimal model of Et is (v2(c4), v2(c6), v2(∆)) =
(0, 0, 0).

(c) By Lemma 3.6, W3(Et) = W3(E) · (−1)v3(t) because the associated
triple of a minimal model of Et is (v2(c4), v2(c6), v2(∆)) = (1, 3, 0)
and a(3) ≡ 2 mod 3.

(d) The only prime dividing ∆(6) are 7 and 13, for both of them the
reduction has type II and that p ≡ 1 mod 6

Proof of Theorem 4.1. Let Et be the elliptic curve obtained by the twist
by t ∈ Z of the elliptic curve E : y2 = x3 + ax+ b with integer coefficients
a, b ∈ Z. Put ∆ = ∆(E) = 2v2(∆)3v3(∆)∆(6) the discriminant of E that we
suppose minimal.

The root number can be written as
W (Et) = −W2(Et)W3(Et)

∏
p|t;p-6∆

Wp(Et)
∏
p|∆(6)

Wp(Et).

The places at p | t such that p - ∆ have reduction type I∗0 on Et, and thus
by Proposition 3.1 one has Wp(Et) =

(−1
p

)
.

W (Et) = −W2(Et)W3(Et)
(
−1
|t(6∆)|

) ∏
p|∆(6)

Wp(Et)

 .
We have ∆(Et) = ∆t6. Since t is assumed squarefree, the equation of the

twist Et is minimal unless gcd(∆, t) 6= 1.

Proof of the first property. For each prime p, Lemma 3.2 proves that there
exists an integer αp such that Wp(Et) = Wp(Et′) for all t ≡ t′ mod pαp .
Put N = 2α23α3

∏
p|∆(6)

pαp . The global root number is the same for t and
t′, squarefree integers in the same congruence class modulo N .
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Proof of the second property. It is now left to show that this partition is
not trivial, in other words that there exists at least one congruence class
[t+] with root number +1 and one class [t−] with root number −1.

By Lemma 4.2, we know that if E does not satisfy one or more of the
properties (a) to (d), then there exists such t+, t− ∈ N. Suppose then that
E satisfies the properties (a) to (d). Then by Lemma 4.2, W (Et) = W (E)
for any squarefree positive t ∈ N. We compare the twists E1(= E) and E−1,
then by Proposition 3.3 combined with the fact that E has no multiplicative
reduction, for p 6= 2, 3 we haveWp(E−1) = Wp(E). The global root numbers
are thus related as follows:

W (E−1) = −W2(E−1)W (E−1)
∏
p

Wp(E1)

Observe that by assumption of property b),

W2(E−1) = W2(E) · sgn(−1)
( −1
| − 1|

)
= −W2(E)

(by convention,
(−1

1
)

= 1). Moreover by assumption of property c),

W3(E−1) = (−1)v3(−1)W3(E) = W3(E).

Thus

W (E−1) = −W2(E)W3(E)
∏
p6=2,3

Wp(E) = W (E). �

Proof of Lemma 4.2. By Theorem 4.1’s first property, the root number is
periodic on the squarefree integers. In other words there exists a positive
integer N such that for t ≡ t′ mod N we have W (Et) = W (Et′). Hence
in particular any t ≡ 1 mod N will have the same global root number as
W (E).

We look for a congruence class [t−] mod N such thatW (Et−) = −W (E).
Let t be a non-zero squarefree integer. For each prime p, let Dp ∈

{+1,−1} be the integer depending on t such that Wp(Et) = DpWp(E).
In Proposition 3.3, we already computed the values of Dp (for p 6= 2, 3)
according to the reduction of E at p and to whether p divides t.

One has

W (Et) = −
∏
p|∆t

(DpWp(E)) =

∏
p|∆t

Dp

W (E),
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which we can split the following way:

W (Et) = D2D3

 ∏
p|∆(6);p-t

Dp

∏
p|t
Dp

W (E)

= D2D3

 ∏
p-6t

p mult.

Dp


 ∏

p-6t
p add.

Dp


 ∏

p|t
p is I0

Dp


 ∏

p|t
p not I0

Dp

W (E)

and Proposition 3.3 gives

= D2D3

 ∏
p-6t

p mult.

(
t

p

)
 ∏

p|t
p is I0

(−1
p

)
 ∏

p|t
p not I0

Dp

W (E)

so that

W (Et) = D2D3
( t

∆M

)( −1
|t(6∆)|

) ∏
p|t

E has bad red.

Dp0

W (Et),

where ∆M is the product of the prime numbers p 6= 2, 3 at which the
reduction of E has multiplicative reduction. Let t(6∆)′ be the integer such
that

t = sgn(t) · 2v2(t)3v3(t)t(6∆)′t(6∆),

that is to say t(6∆)′ =
∏
p|∆(6)

pvp(t). We can write(
−1
|t(6∆)|

)
= sgn(t)

(
−1
|t(2)|

)
(−1)v3(t)

(
−1
|t(6∆)′ |

)
.

Let

C2 = sgn(t) ·D2

(
−1
|t(2)|

)
, C3 = D3(−1)v3(t), CM =

(
t

∆M

)
,

C0 =
∏
p|t

E has add. red.

Dp, C∆ =
(
−1
t(6∆)′

)

so that
C = C2C3CMC0C∆,

is the integer depending on t such thatW (Et) = C ·W (E). In the remainder
of the proof, we study in more detail the variation of each component in
dependance of t.
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Observe that it is always possible to find t such that C2 = +1 (or C3 =
+1), a trivial example being t = 1. We now look at multiple ways to obtain
C = −1 for a certain positive integer t, depending on the properties of E.

(a). Suppose E admits places of multiplicative reduction, i.e. ∆M 6= 1. Let
t0 be a prime number with the following properties:

• it does not divide ∆(6), (so that C∆ = C0 = +1)
• it is not a square modulo ∆M (so that CM = −1)
• and it is such that C2 = +1 and C3 = +1.

Such a prime exists by the Chinese Remainder Theorem. For this p0, we
have

W (Ep0) = −W (E).
However, in case ∆M = 1, this construction is not possible, since one

has CM = +1 for any squarefree integer t. Suppose thus that E has no
multiplicative reduction at any p 6= 2, 3 and let us look at what we can do
instead.

Suppose that there exists a positive t0 - ∆(6) such that for the twist Et0
one has C2 = −1, then by the Chinese Remainder Theorem we can choose a
positive t - ∆6 (in addition we may assume that it is squarefree) respecting
t ≡ t0 mod 2α2 and such that C3 = CM = C0 = +1. For this t, one has
W (Et) = −W (E). In a similar way, if there exists a positive t′0 - ∆ such
that C3 = −1, then one can find a t′ ∈ N such that W (E′t) = −W (E).

Thus it is necessary for the triple (vp(c4), vp(c6), vp(∆)) to be among
those listed in Lemma 3.4 when p = 2 and among those listed in the
Lemma 3.6 when p = 3, so that they have the property that C2 = +1 and
C3 = +1 for any squarefree t ∈ N.

(d). In the following, we will assume that C2 = C3 = CM = +1 for any
quadratic twist of E. Let us look at Ep0 the twist at a prime p0 6= 2, 3 that
divides ∆. According to the reduction at p0, we have different a value of
C0 = Dp0 given by Proposition 3.3. As for C∆, it is equal to

(−1
p0

)
.

(1) If the reduction is of type III or III∗, then Dp0 = +1 (i.e.Wp0(Et) =
Wp0(E) if p0 | t), so for Ep0 we have C0 = +1 and C∆ =

(−1
p0

)
. Thus

W (Ep0) =
(−1
p0

)
W (E) for all t ∈ Z \ {0}. If p0 ≡ 3 mod 4, then

W (Ep0) = −W (E), otherwise W (Ep0) = W (E).
(2) If the reduction has type II, II∗, IV or IV∗ then Dp0 =

( 3
p0

)
, and

thus W (Ep0) =
( 3
p0

)(−1
p0

)
W (Et) =

(−3
p0

)
W (Et) for all t ∈ Z \ {0}.

If p0 ≡ 5 mod 6, then W (Ep0) = −W (E), otherwise if p0 ≡ 1
mod 6, W (Ep0) = W (E).

(3) If the reduction has type I∗m, then in the summerizing table of Sec-
tion 2 we find that Dp0 = −

(−6b(p0)
p0

)
. Put r ∈ {±1} to be the
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remainder modulo 4 of p0. Then take t such that t ≡ −6b(p0)r
mod p0 and prime to 6∆. We have

W (Ep0) =
(−1
p0

)
D0W (E), since C2 = C3 = CM = +1

=
(−1
p0

)(−6b(p0)t

p0

)
W (E) =

(−r
p0

)((−6b(p0))2

p0

)
W (E)

= −W (E).

(4) If the reduction has type I∗0 , then Dp0 =
(−1
p0

)
, and thus W (Ep0) =

W (E) in any case.
Observe that if we take, rather than a prime, a (positive) squarefree

product t0 =
∏
p0 of primes p0 dividing ∆(6), then C0 =

∏
p0 Dp0 and

C∆ =
(
−1∏
p0

)
. So if each of the condition described in (1), (2), (3) and (4)

hold on the corresponding factor of t0, the root number isW (Et0) = W (E).
Suppose that the hypotheses (a), (b), (c) and (d) in the statement are

verified. Let t be a positive integer. Then by hypotheses (a), CM = +1,
by (b) and (c), w2 = w3 = +1, and by (d), the contributions of a p0 to C0
and C∆ (those are respectively equal to Dp0 and

(−1
p0

)
) are compensating

each other: C0 ·C∆ = +1. ThusW (Et) = W (E). This prove Lemma 4.2. �

As a corollary of the proofs of Theorem 4.1 and of Lemma 4.2, we have the
following decomposition that become handy in the computation of examples
(see Examples 1.4 to 1.6):

Corollary 4.5. Let E be an elliptic curve, and Et the quadratic twist by
t ∈ F. Then the root number can be written as the following product:

W (Et) = −
∏

p=2,3, p bad reduction
wp(t),

where wp(t) are “local contributions” at each p determined as follows:

wp(t) =



sgn(t)D2
(
−1
|t(2)|

)
W2(E) for p = 2

(−1)v3(t)D3W3(E) for p = 3

Dp

(
−1
p

)vp(t)
Wp(E) for p( 6= 2, 3) of additive reduction(

p
t(p)

)
DpWp(E) for p( 6= 2, 3) of mult. reduction,

where Dp are the integers such that Wp(Et) = DpWp(E) (they are given by
Proposition 3.3 for p 6= 2, 3).

4.2. Families of sextic twists. For any t ∈ Z \ {0}, put the curve Et :
y2 = x3 + t.
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Theorem 4.6. Let t ∈ F6 be a sixth-powerfree integer. Then the root
number can be written as

W (Et) = −W2(Et)W3(Et)
(
−1
|t(6)|

)(
sq(t)(6)

3

)
.

Moreover, it is (2636, 3)-square periodic and there exist square-congruence
classes of t such that W (Et) = +1, and another such that W (Et) = −1.

Proof. Let Et : y2 = x3 + t be a family of elliptic curve parametrized by
the variable t.

Suppose t sixth-powerfree. The root number can be written as
W (Et) = −W2(Et)W3(Et)

∏
p|t, p6=2,3

Wp(Et).

As previously, we simplify the notations by writting Wp(t) rather that
Wp(Et). The formulae for the local root number at 2 and 3 are given by [15,
Lemme 4.1]. The local root number at 2 stays the same on a congruence
class modulo 26 as proven in Lemma 3.12 and the local root number at 3
stays the same on a congruence class modulo 36 as proven in 3.13.

Now look at the product in the root number formula, i.e. the quantity
P(t) :=

∏
p|t, p 6=2,3

Wp(Et).

By [13, Proposition 2] (reported in Proposition 3.1), we have

P(t) =
∏

p|t,p 6=2,3


+1 si vp(t) ≡ 0 mod 6;(−1
p

)
si vp(t) ≡ 1, 3, 5 mod 6;(−3

p

)
si vp(t) ≡ 2, 4 mod 6.

Since t is assumed sixth-powerfree, we can write it as t = 2α3βt1t22t33t44t55
where ti are pairwise prime and neither divisible by 2 nor 3. Note that
|t(6)| = t1t

2
2t

3
3t

4
4t

5
5 and sq(t)(6) = t2t4.

Then we split P(t) in two parts, according to whether p | τ1(:= t1t3t5)
or p | τ2(:= t2t4).

P(t) =
∏
p|τ1

Wp(Et)
∏
p|τ2

Wp(Et)

=
∏
p|τ1

(−1
p

)∏
p|τ2

(−3
p

)

=
(−1
τ1

)(−3
τ2

)
=
(−1
τ1

)(
τ2
3

)
We obtain that the root number is

W (Et) = −W2(Et)W3(Et)
(−1
τ1

)(
τ2
3

)
.
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The root number depends of the remainders of t modulo 2737 and of
τ2 modulo 3. Note that it is possible to find a pair of congruence classes
[t+] and [t−] such that W (Et+ = −W (Et−). Indeed, if we take t+ ≡ C

mod 2737, we can (by replacing τ2 by an integer τ ′2 prime to 6τ1 and such
that τ ′2 ≡ −τ2 mod 3) define t− = 2α3βt1τ ′2 whose root number is opposite
to the root number of t+. �

Remark 4.7. In [15], Várilly-Alvarado proved that the root number varies
on a surface of the form y2 = x3 + AT 6 + B except possibly if 3A/B is
a rational square. In [5] the author explicit the conditions on A and B
for the elliptic surfaces on which the root number is constant along the
fibration. In particular, we give here an example that was previously found
by Várilly-Alvarado [15]:

(4.1) y2 = x3 + 27t6 + 16.

Consider the elliptic surface given by (4.1). Every fibre Et at t = m
n ∈ Q

is Q-isomorphic to the curve:

Em,n : y2 = x3 + 27m6 + 16n6.

Remark that −3 ≡ (4m3/3n3)2 mod p and thus
(−3
p

)
= 1 for all p|f(t).

The formula becomes

W (Et) = −W2(Et)W3(Et)
(

−1
(27m6 + 16n6)(2)

)
.

Moreover, for every value of t, the remainder modulo 3 of 27m6 +16n6 is
1. The minimal value ofM2 stays 3. It is possible to find a value ofM1 lower
that the one given by the theorem (which is M1 = 2737). This new value is
M ′1 = 2430 = 16. Observe that 27m6 + 16n6 falls in the congruence classes
1, 11 mod 16. These values correspond to a root number +1. However, the
generic rank can be proven to be equal to 2 on this elliptic surface, so the
set of rational points is Zariski-dense.

4.3. Families of quartic twists. For every t ∈ Z\{0}, let E be the curve
Et : y2 = x3 + tx.

Theorem 4.8. Let t ∈ F4 be a fourth-powerfree integer. Then the root
number Et : y2 = x3 can be written as

W (Et) = −W2(Et)W3(Et)
(
−2
|t(6)|

)(
−1

sq(t)(6)

)
.

Moreover, the function t 7→ W (Et) is (24, 4)-square periodic and there
exists classes for which W (Et) = +1, and other such that W (Et) = −1.
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Proof. Let t ∈ F4 and define the elliptic curve Et : y2 = x3 + tx. The root
number of Et can be written as

W (Et) = −W2(Et)W3(Et)
∏

p|t, p6=2,3
Wp(Et).

By Lemmas 3.9 and 3.10, the local root number at 2 and 3 are periodic.
Look now at the remaining part of the root number, namely

(4.2)
∏

p|t,p 6=2,3
Wp(Et).

By [13, Proposition 2], we have

∏
p|t,p 6=2,3

Wp(Et) =
∏

p|t,p 6=2,3


+1 if vp(t) ≡ 0 mod 4;(−1
p

)
si vp(t) ≡ 2 mod 4(−2

p

)
si vp(t) ≡ 1, 3 mod 4.

Since t is assumed fourth-powerfree, we can write it as t = 2α3βt1t22t33,
where ti are pairwise coprime and not divisible by 2 nor 3. Note that |t(6)| =
t1t

2
2t

3
3 and that sq(t) = t2. We split (4.2) in two parts according to whether

p | t1t3 or p|t2. ∏
p|t
Wp(Et) =

∏
p|t1t3

Wp(Et)
∏
p|t2

Wp(Et)

=
∏
p|τ1

(−2
p

)∏
p|t2

(−1
p

)

=
( −2
t1t3

)(−1
t2

)
.

=
(
−2
|t(6)|

)(
−1

sq(t)(6)

)
.

This implies that the root number can be written as

W (Et) = −W2(Et)W3(Et)
(
−2
|t(6)|

)(
−1

sq(t)(6)

)
.

Its value depends on the remainder of τ1 modulo 2634 and t2 modulo 4. �

Remark 4.9. In [2], Cassels and Schinzel show that the elliptic surfaces
given by the equations

(4.3) y2 = x(x2 − (1 + t4)2)

and

(4.4) y2 = x(x2 − 49(1 + t4)2)
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are such that every fibre at t ∈ Q have the same root number. On (4.3),
the root number is always +1 and on (4.4), always −1.

Remark that it is possible to find a N1 lower than the one given by
Theorem 4.8 such that the function t → W (Ef(t)) is N1-periodic. This
value is N1 = 2432 = 144.

The only remainder values of −(1+t4)2 mod 16 are −1 and −4, and the
only remainder value modulo 9 is −1. By the Chinese Remainder Theorem,
we find a small set of possible remainders modulo 144 for −(1 + t4)2, and
the associated root number on the congruence class they define is +1. It
is not possible to conclude anything on the density of the rational points
from the root number of the fibre of surface (4.3). On the surface (4.4), the
root number is −1 for every possible remainder of −72(1 + t4)2. Assuming
the parity conjecture, the rational points of the surface (4.4) are dense.

In [10] Huang presents a geometric method that proves the density of
rational points for elliptic surfaces defined by the equation y2 = x3−d2(1+
t4)2x, for infinitely many squarefree values of d including d = 1 and 7.
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