
1558

Schizophrenia Bulletin vol. 46 no. 6 pp. 1558–1566, 2020 
doi:10.1093/schbul/sbaa069
Advance Access publication 20 May 2020

© The Author(s) 2020. Published by Oxford University Press on behalf  of the Maryland Psychiatric Research Center.
All rights reserved. For permissions, please email: journals.permissions@oup.com

Impairments in Probabilistic Prediction and Bayesian Learning Can Explain 
Reduced Neural Semantic Priming in Schizophrenia

Victoria Sharpe*,1,  Kirsten Weber2,3, and Gina R. Kuperberg1,4

1Department of Psychology, Tufts University, Medford, MA; 2Department of Neurobiology of Language, Max Planck Institute for 
Psycholinguistics, Nijmegen, The Netherlands; 3Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, 
The Netherlands; 4Department of Psychiatry, Massachusetts General Hospital, Boston, MA 

*To whom correspondence should be addressed; 490 Boston Ave. Medford, MA 02155; tel: +1 (617)-627-2198, fax: 617-627-3181, e-mail: 
victoria.sharpe@tufts.edu 

It has been proposed that abnormalities in probabilistic 
prediction and dynamic belief updating explain the mul-
tiple features of schizophrenia. Here, we used electroen-
cephalography (EEG) to ask whether these abnormalities 
can account for the well-established reduction in semantic 
priming observed in schizophrenia under nonautomatic 
conditions. We isolated predictive contributions to the 
neural semantic priming effect by manipulating the 
prime’s predictive validity and minimizing retroactive se-
mantic matching mechanisms. We additionally examined 
the link between prediction and learning using a Bayesian 
model that probed dynamic belief updating as participants 
adapted to the increase in predictive validity. We found that 
patients were less likely than healthy controls to use the 
prime to predictively facilitate semantic processing on the 
target, resulting in a reduced N400 effect. Moreover, the 
trial-by-trial output of our Bayesian computational model 
explained between-group differences in trial-by-trial N400 
amplitudes as participants transitioned from conditions of 
lower to higher predictive validity. These findings suggest 
that, compared with healthy controls, people with schizo-
phrenia are less able to mobilize predictive mechanisms to 
facilitate processing at the earliest stages of accessing the 
meanings of incoming words. This deficit may be linked to 
a failure to adapt to changes in the broader environment. 
This reciprocal relationship between impairments in prob-
abilistic prediction and Bayesian learning/adaptation may 
drive a vicious cycle that maintains cognitive disturbances 
in schizophrenia.
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Introduction

Prediction plays a crucial role in efficient, flexible cogni-
tion.1,2 Sensory inputs that match our prior probabilistic 

predictions are easier to process than unpredictable in-
puts. Moreover, we are able to seamlessly adapt to 
changes in the statistical structures of our environments, 
learning from new inputs so that our predictions remain 
optimal.3,4 It has been proposed that abnormalities in pre-
diction can explain multiple features of schizophrenia, 
including positive and negative symptoms,5–7 perceptual 
abnormalities,8,9 impairments of proactive cognitive con-
trol,10,11 and abnormalities of language comprehension 
and production.12,13 Here we used event-related potentials 
(ERPs), a direct measure of neurocognitive processing, to 
show that abnormalities in probabilistic semantic predic-
tion can account for the well-established reduction of the 
neural semantic priming effect in schizophrenia observed 
under non-automatic experimental conditions and that 
this, in turn, is linked to impaired learning/adaptation.

Semantic priming is a classic paradigm that can tease 
apart the different mechanisms by which we use long-
term semantic knowledge, together with context, to 
facilitate semantic processing of incoming words. The se-
mantic priming effect describes the facilitated processing 
of target words that are preceded by semantically asso-
ciated prime words.14,15 In the brain, semantic priming 
manifests as a reduction of the N400—a negative-going 
ERP component that peaks around 400 ms post-stimulus 
onset and indexes lexico-semantic processing.16 Target 
words that are semantically associated with their primes 
elicit smaller N400 amplitudes than unrelated targets.17,18

In schizophrenia, both behavioral19 and neural20 se-
mantic priming effects are reduced under experimental 
conditions that encourage controlled processing (in con-
trast with the preserved, or increased, semantic priming 
effect observed in some patients under more automatic 
conditions).21–23 In the present study, we asked whether 
this reduced neural priming effect results from impair-
ments in predictive processing.
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Previous semantic priming studies in schizophrenia 
have been unable to address this question because they 
were carried out under conditions that encouraged not 
only predictive processes but also retroactive matching 
processes. For example, many behavioral24–26 and ERP27,28 
studies used a lexical decision task, which encourages a 
retrospective evaluation of the semantic relationship be-
tween target and prime to bias the decision about whether 
the target is a word or nonword.15,29,30 Moreover, in these 
previous behavioral24–26,31,32 and ERP22,27,28 studies, the 
proportion of directly associated word-pairs was less than 
30% (sometimes because of the inclusion of nonwords), 
which discourages prediction.15 One previous behavioral 
study used a high relatedness proportion (50%), but com-
bined this with a pronunciation task, which does not re-
quire deep semantic processing.33

Here, we examined neural semantic priming in schizo-
phrenia under experimental conditions that specifically 
probed prediction. We also examined the computational 
mechanisms underlying prediction and learning (the ability 
to adapt to the statistical structure of a new environment) in 
schizophrenia. To this end, we used a paradigm developed 
by Lau et al,34 which manipulated the predictive validity 
of the prime, within-subjects, by varying the proportion of 
semantically associated prime-target pairs. Healthy parti-
cipants saw a lower predictive validity block (10% associ-
ated pairs) and then a higher predictive validity block (50% 
associated pairs). Crucially, participants were not told that 
the proportion of associated trials would change halfway 
through. Throughout the experiment, participants moni-
tored for animal words, which appeared in random filler 
trials. This task discouraged retrospective matching mech-
anisms (as there was no lexical decision to be made) but en-
couraged deep semantic processing. We found that healthy 
adults were able to take advantage of the increased predic-
tive validity of the second block to generate stronger pre-
dictions, enhancing the neural semantic priming effect—a 
finding we replicated using magnetoencephalography35 
and functional magnetic resonance imaging.36

Because participants were not alerted to the change 
in predictive validity halfway through the experiment, 
these findings suggest that predictive semantic priming, 
even under non-automatic experimental conditions, 
can engage mechanisms that are more probabilistic and 
less strategic than had previously been assumed37–39 (see 
supplementary material, section 1). This finding also 
highlighted the bidirectional relationship between prob-
abilistic prediction and learning/adaptation. Specifically, 
to generate stronger predictions in the second block, par-
ticipants needed to adapt to the change in the statistical 
structure of the environment—that is, they needed to dy-
namically update their estimate of the prime’s predictive 
validity. In a follow-up study, we used a Bayesian model 
to formalize this link between prediction and learning/
adaptation. We showed that in healthy adults, Bayesian 

principles could explain trial-by-trial variance in the 
N400 as participants adapted to the higher predictive va-
lidity of the second block.40

In the present study, we used this paradigm to test the 
hypothesis that people with schizophrenia would be less 
likely than healthy control participants to use the prime 
to predictively facilitate semantic processing of the target 
under conditions of higher predictive validity. That is, 
we hypothesized a significant Group by Relatedness in-
teraction, driven by a smaller N400 semantic priming ef-
fect in the patients than in the controls. We also used our 
Bayesian adaptor model to explore the computational 
principles underlying abnormalities in probabilistic pre-
diction and its relationship with learning/adaptation in 
schizophrenia.

Methods

Participants

Here, we report data from 18 outpatients with schizo-
phrenia and 19 control participants (we excluded 5 ad-
ditional datasets based on a priori exclusion criteria, 
see supplementary material, section 3). Patients were 
recruited from the Lindemann Mental Health Center 
in Boston, MA, and met DSM-IV criteria for schizo-
phrenia or schizoaffective disorder (confirmed using the 
Structured Clinical Interview for DSM-III-R).41 All par-
ticipants gave written informed consent to participate, 
approved by the Massachusetts General Hospital Human 
Subjects Research Committee. Patients’ symptoms were 
assessed using the Scale for the Assessment of Positive 
Symptoms42 and the Scale for the Assessment of Negative 
Symptoms.43 Premorbid verbal IQ was assessed using the 
North American Adult Reading Test.44 All participants 
were right-handed,45 monolingual English speakers, with 
normal/corrected-to-normal vision, no history of neu-
rological impairment, and no substance abuse or de-
pendence within 6 months. All patients were taking stable 
doses of antipsychotic medication (see supplementary 
material, section 3 for details).

The final schizophrenia and control groups were 
matched for age, gender, race, parental socioeconomic 
status,46 and years of education (table  1). Premorbid 
verbal IQ was lower in the schizophrenia group than in 
the control group (t(32.568) = 2.847, P < .05). However, 
adding premorbid verbal IQ as a covariate in our ana-
lyses did not change the pattern of results (supplemen-
tary tables 4–6).

Stimuli and Task

Details of the design have been previously reported34,48 
and are described in supplementary material, section 2. 
Briefly, we crossed Relatedness and Predictive Validity 
in a 2  × 2 design. Relatedness was operationalized as 
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Forward Association Strength (FAS)49 between the prime 
and the target. To manipulate the Predictive Validity, 
we added different numbers of associated word-pairs 
(FAS > .32) and unrelated word-pairs (FAS = 0) to the 
2 blocks. In the lower predictive validity block, 10% of 
word-pairs (40/400) were associated; in the higher pre-
dictive validity block, which always followed the lower 
predictive validity block, 50% of word-pairs (200/400) 
were associated. The experiment was divided into 8 runs 
of 100 trials. Participants were allowed breaks between 
runs and were not told that the relatedness proportion 
would change. Participants’ task was to press a button as 
quickly as possible upon seeing an animal word, which 
appeared as either prime or target in 80 unrelated filler 
trials in each block. These fillers were not included in any 
analyses. See figure 1 for the trial structure.

EEG Recording and Preprocessing

Electroencephalography (EEG) data were acquired 
using a 70-electrode cap (BrainProducts): sampling rate: 

600 Hz; impedance: <10 k Ohms; bandpass: 0.1–30 Hz, 
referenced to the left mastoid. During preprocessing 
using EEGLab,50 the EEG was segmented around the 
prime and target separately and artifact-corrected 
using Independent Components Analysis (infomax al-
gorithm).51 The remaining artifacts were rejected using 
standard algorithms. Slightly more trials were rejected in 
the patients than in controls (patients: 15.04%, controls: 
10.00%, F(1, 144)  =  15.845, P < .05), but this did not 
differ by Predictive Validity or Relatedness (Fs < 3.02, 
Ps > .08).

Analysis

Following our previous study using these materials,34 we 
visualized the ERP grand-averaged plots using a matched, 
counterbalanced subset of stimuli (figure 2A). However, 
to maximize power, and to examine trial-by-trial adap-
tation, we carried out linear mixed-effects regressions 
(LMERs) on the N400 evoked by targets in all trials (ex-
cept animal probe filler trials) using R52 (lme4 version 1.1-
2153 and lmerTest version 3.1–054). To explore nonspecific 
attentional effects, we also carried out analyses on the 
N400 evoked by primes. For all analyses, we operational-
ized the N400 as the average voltage across all sampling 
points between 300 and 500 ms, across 7 central-posterior 
electrodes (CP3, CP1, CP2, CP4, P1, PZ, and P2). This 
spatiotemporal region was selected a priori based on 
Lau et  al.34 Voltages were extracted for each trial using 
ERPLab.55 Outliers were rejected using quantile trimming.

Predictors of interest were Group and Relatedness 
(FAS). “Nuisance” variables were log-transformed 
frequency,57 orthographic length, concreteness,58 se-
mantic neighborhood size (number of unique word 
association responses49), and orthographic neighbor-
hood size (Coltheart’s N59). Continuous predictors were 
z-transformed. Significance was assessed using a type-
III sums of squares estimation, with P-values estimated 
using the Satterthwaite approximation.60 Random inter-
cepts for items and subjects were included in all models, 
as were random slopes for all predictors of interest that 
varied by item or by subject (see supplementary material, 
section 5, for full model specifications).

Finally, we used our Bayesian model40 to output a log-
transformed probability of  encountering each target in 
each participant in the higher predictive block (figure 3A). 
In this model, the probability of  encountering an asso-
ciated target is updated using Bayes’ rule on each trial, 
assuming a beta-binomial distribution over associated/
unrelated trials. The model then uses this probability es-
timate to weight prime-target FAS and target frequency 
to yield a probability estimate on each target, which is 
converted to the information-theoretic measure surprisal 
(see supplementary material, section 4, supplementary 
figure 1). The model output for a given trial is calculated 
as follows:

Table 1.  Demographic information and clinical characterization 
of patients

Control Group Schizophrenia Group

N 19 18
Gender (M | F) 15 | 4 14 | 4
Race (C | AA | Other)a 9 | 9 | 1 15 | 3 | 0
Age 45.63 (6.20) 42.84 (9.21)
Parental SESb 2.84 (1.02) 2.78 (0.88)
Education (years) 12.58 (1.04) 12.78 (1.80)
Premorbid Verbal IQc 109.68 (8.10) 100.52 (10.78)
CPZ Equivalent (mg)d N/A 592.35 (300.70)
Duration of illness  
(years) 

N/A 18.28 (8.99)

Age of illness onset  
(years) 

N/A 23.78 (6.98)

SAPSe N/A 3.44 (3.58)
SANSf N/A 5.06 (3.81)

Note: Standard deviations in parentheses. aC, Caucasian; 
AA, African American; bSocioeconomic Status46; cNAART44; 
dChlorpromazine Equivalents47; esummed global scores43; fsummed 
global scores.42

Fig. 1.  Structure of each trial. Prime: “cheddar”; target: “cheese.” 
See supplementary material, section 2 for details. 
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Model output  =  −log2[µ*p(word|prime) + (1−µ)*p 
(word|average context)], where µ is the expected proba-
bility of encountering an associated target.

To test our hypothesis that, compared with healthy con-
trols, the schizophrenia group would be less likely to adapt 
to the higher predictive validity of the second block, we car-
ried out another regression analysis in which we included 
the trial-by-trial output of this model as a predictor.

Results

The schizophrenia group was less accurate in detecting an-
imal probes than the control group (controls: 81.31%; pa-
tients: 68.99%, F(1, 102) = 6.595, P < .05). However, both 
groups detected the majority of probes, with few false 
positives (controls d′ = 5.09, SD = .74; patients d′ = 4.34, 
SD = .92). There was no main effect of Predictive Validity 

Fig. 2.  (A) Grand-average ERPs, shown at Pz, time-locked to target word onset, from a subset of the data matched on lexical variables. 
(B) Predicted N400 amplitude as a function of Group, Relatedness (FAS14), and Predictive Validity. Using the effects package in R,52,56 
we used the coefficients from the LMER (tables 2A and 2B) to generate a “predicted” N400 over a range of FAS values, with nuisance 
variables held constant at their means. Gray ribbons represent one standard error. Negative is plotted up. ERP, event-related potentials; 
FAS, Forward Association Strength; LMER, linear mixed-effects regressions.
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and no interaction between Predictive Validity and Group 
(Fs < 1.5, Ps > .2).

Confirming our first a priori hypothesis, we found a 
significant Group by Relatedness interaction in the higher 
predictive validity block (table 2A, figure 2B). Follow-ups 
showed that Relatedness significantly predicted N400 
amplitude in controls (Est. = .487, t = 4.132, P < .05), but 
not in patients (Est. = .10, t = .795, P = .427). In the lower 
predictive validity block, there was only a main effect of 
Relatedness (table 2B).

In contrast to the N400 evoked by targets, there was no 
significant difference between groups in the amplitude of 
the N400 evoked by the primes in the higher predictive 
validity block (Est. = .45, P = .13), providing an impor-
tant control for nonspecific attentional effects.

Finally, confirming our second hypothesis, in the higher 
predictive validity block, the trial-by-trial output of our 
computational model40 interacted with Group (table 2C, 
figure  3B). Importantly, this interaction accounted for 
variance in trial-by-trial N400 amplitude beyond the vari-
ance accounted for by the interaction between Group and 
Relatedness (FAS). Follow-ups showed that trial-by-trial 
Model Output significantly predicted N400 amplitude in 
the controls (Est. = −.587, t = −2.618, P < .05) but not in 
patients (Est. = .408, t = 1.591, P = .112).

Discussion

We used EEG to show that people with chronic schizo-
phrenia were impaired in their use of single word contexts 
to predictively facilitate neural processing of incoming 
words. While many previous studies have reported re-
duced behavioral and neural semantic priming effects in 

schizophrenia, our findings are the first to show (a) that 
this reduction is evident under experimental conditions 
that isolate prediction and (b) that it is linked to impair-
ments in Bayesian trial-by-trial adaptation to changes in 
the statistics of the broader environment.

As expected, both patients and controls showed min-
imal semantic priming in the lower predictive validity 
block where there was a little utility in predicting the 
upcoming target based on the prime (predictions would 
have been incorrect on most trials). However, in the 
higher predictive validity block, where there was a sub-
stantial chance of generating a correct prediction about 
the target, people with schizophrenia showed a signif-
icantly smaller N400 semantic priming effect than the 
control participants.

One possibility is that the reduced predictive N400 ef-
fect in the schizophrenia group was driven by a failure to 
attend to the prime words or to engage in the task at all. 
To address this possibility, we compared the amplitude 
of the N400 evoked by the primes across the 2 groups 
in the higher predictive validity block. This analysis re-
vealed no difference between patients and controls. Given 
that the amplitude of the N400 is known to decrease to 
non-attended words,61 and when participants engage in 
shallow non-semantic processing,62 this suggests that, like 
controls, patients attended to the meaning of the primes. 
Moreover, although patients’ performance on the behav-
ioral task was worse than controls, they performed well 
above chance, and their performance did not worsen 
across the 2 blocks. Thus, rather than reflecting a general 
disengagement from semantic processing, we suggest that 
people with schizophrenia were less likely than controls 
to use the prime to predict the meaning of the target.

Table 2.  The results of LMERs Examining Modulation of the N400 Evoked by Target Words

A. Higher Predictive Validity Block: Group * Relatedness

Estimate (mV) Std. Error t-value P-value Sig.
Group 0.53 0.41 1.27 .21  
Relatedness 0.48 0.11 4.53 .00 ***
Group*Relatedness −0.38 0.15 −2.50 .02 *

B. Lower Predictive Validity Block: Group * Relatedness

 Estimate (mV) Std. Error t-value P-value Sig.
Group 0.14 0.42 0.34 .73  
Relatedness 0.28 0.12 2.37 .02 *
Group*Relatedness −0.21 0.16 −1.27 .21  

C. Effects of Bayesian Adaptor Model Output * Group (controlling for Relatedness * Group)

 Estimate (mV) Std. Error t-value P-value Sig.
Group 0.12 0.44 0.28 .78  
Model Output −0.57 0.22 −2.60 .01 **
Relatedness −0.06 0.23 −0.27 .79  
Group*Model Output 0.93 0.31 3.02 .00 **
Group*Relatedness 0.52 0.33 1.55 .12  

Note: Fixed effects of predictors of interest are Shown. See supplementary tables 1–3 for the effects of nuisance variables. *.05 > P > .01, 
** .01 ≥ P > .001, *** .001 ≥ P. 
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This interpretation links the large semantic priming 
and N400 literatures to more general theories of im-
paired prediction in schizophrenia, which have thus far 
mainly focused on perception5,8,63 and executive func-
tion.10,11 It also has general implications for the interpreta-
tion of previous findings of abnormal N400 modulation 
in people with chronic schizophrenia. In healthy adults, 
there is a large body of evidence that the N400 during 
language comprehension is driven by probabilistic pre-
dictive mechanisms.37,64 One possibility, therefore, is that 
reduced N400 effects seen in schizophrenia during sen-
tence and discourse processing reflect impairments in 
proactively using the broader context to generate proba-
bilistic semantic predictions about upcoming words (see 
supplementary material, section 1).

Our findings also highlight the link between proba-
bilistic prediction and learning/adaptation. As healthy 
controls transitioned from conditions of lower to higher 
predictive validity, despite never being explicitly told that 
the statistical structure of the environment had changed, 
they implicitly learned that there was utility in using the 
prime to predict the target as they saw more and more 
associated pairs. Mathematically, we formalized this trial-
by-trial learning using a dynamic Bayesian model.40 We 
found that, within the higher predictive validity block, 
the trial-by-trial output of this model interacted with 
Group, and that this interaction explained more variance 
than the interaction between Group and Relatedness 
alone. This suggests that patients were less likely than 
controls to dynamically track their uncertainty about the 
statistical structure of the environment and use this un-
certainty to (a) modulate their rate of learning and (b) 
weight the associative strength of the prime to generate 

predictions about the upcoming target, as specified by 
our model.40

These findings are in keeping with previous studies and 
modeling frameworks.63,65,66 In many of these previous 
studies, however, learning was indexed by the changes 
in behavior in response to explicit trial-by-trial feed-
back,65,66 and/or participants provided subjective confi-
dence ratings after each trial.67 An important feature of 
the present study, and our computational model, is that 
it indexed implicit trial-by-trial learning at a neural level, 
without any overt learning task. Moreover, because the 
N400 is itself  a neural index of semantic probability, no 
explicit ratings of probability were required. This type 
of implicit learning is, of course, highly relevant to the 
ability to adapt to different statistical environments in the 
real world.3

The present study has several limitations. First, the 
patient group was limited to people with chronic schizo-
phrenia who were taking medication, so we cannot gen-
eralize our findings to people with more recent onsets of 
schizophrenia, and we cannot separate out the effects of 
schizophrenia itself  from the effects of medication. Our 
sample size was relatively small and so we did not have 
the power to assess the relationships with specific symp-
toms (although, based on previous studies of controlled 
semantic priming, we did not have specific hypotheses 
about such relationships, see supplementary material, 
section 6, for discussion and exploratory analyses).

Second, while we provide evidence that the schizo-
phrenia group was less likely than the control group to 
use Bayes’ Rule to dynamically adapt to the change in 
predictive validity, our computational model was unable 
to distinguish between 2 possible reasons for why this 
was the case. One possibility is that, at the beginning of 
the higher predictive validity block, patients did not ex-
pect the environment to change (holding an overly rigid 
prior that the environment was stationary). On this ac-
count, unexpected inputs, including those arising from 
a true change in the environment, were inappropriately 
attributed to noise, and so patients downweighted their in-
fluence on belief  updating, leading to a reduced rate of 
learning. A  second possibility is that patients had little 
faith in their prior model of the lower predictive validity 
block, expecting the environment to continuously change 
(an overly strong prior expectation of environmental vol-
atility). On this account, unexpected inputs, including 
those arising from the inherent stochasticity of the envi-
ronment, were inappropriately attributed to true change, 
leading the patients to upweight the influence of unpre-
dicted input during belief  updating. Although this would 
initially drive up the learning rate in the higher predic-
tive validity block, it would explain why patients failed to 
converge on its correct statistical structure.67

To distinguish between these possibilities, it will 
be important to expand our computational model by 
incorporating hyperparameters that specify participants’ 

Fig. 3.  Predicted N400 amplitude in the higher predictive 
validity block as a function of Group and Model Output. Using 
the effects package in R,52,56 we used the coefficients from the 
LMER (table 2C) to generate a “predicted” N400 over a range 
of FAS values, with nuisance variables held constant at their 
means. Gray ribbons represent one standard error. Negative is 
plotted up. Note that Model Output indexes Bayesian surprisal 
(the unexpectedness of the target, given the prime); thus, greater 
surprisal elicits larger (more negative) N400 amplitudes in healthy 
controls. FAS, Forward Association Strength; LMER, linear 
mixed-effects regression.
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prior beliefs about environmental instability.68,69 What the 
present set of findings do suggest is that patients were un-
able to distinguish between inputs that were unexpected 
because of their uncertainty about the statistical structure 
of the current environment (expected uncertainty) and in-
puts that were unexpected because of a true change in the 
environment (unexpected uncertainty).70 These findings, 
therefore, extend previous proposals that impairments in 
inferring the precision of  prediction error lead to abnor-
malities in perception and belief  in schizophrenia6,71 by 
raising the possibility that the same computational im-
pairments might underlie impairments in learning.

The Bayesian model used in the present study was spe-
cified at Marr’s first level of analysis72 (see supplementary 
material, section 4). While this approach has the advan-
tage of being able to explicitly specify the computational 
principles of the problem to be solved in probabilistic 
mathematical terms, it does not specify the algorithmic 
or neural mechanisms used to solve the computational 
problem. It will, therefore, be important for future 
studies to specify process-level inference algorithms to 
explain why patients failed to adapt73–75 and to link these 
algorithms with precise neural mechanisms (see Yu and 
Cohen76 for an example of work that bridges across 
Marr’s computational, algorithmic, and neural levels of 
explanation).

In sum, our findings suggest that people with chronic 
schizophrenia are less likely than healthy participants to 
engage in prediction to facilitate lexico-semantic proc-
essing, resulting in reduced modulation of the N400 
ERP component and that this may be linked to a failure 
to adapt to changes in the broader environment. Thus, 
impairments in prediction might drive impairments in 
learning, while impairments in learning might drive im-
pairments in prediction, thereby perpetuating the per-
ceptual and cognitive disturbances that characterize 
schizophrenia.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
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