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1 Introduction

1.1 ITER as a fusion device
A large international project, the ITER tokamak [1], currently under construction
in France, aims to demonstrate a significant amount of fusion power, with a goal of
achieving significantly more fusion power than injected power for the first time. This
will create new challenges, both for technology and physics, which we need to be able
to understand and to predict in order that the project will be a success and lead to the
DEMO project as the final step towards a commercial fusion reactor.
In this section, we shall introduce ITER, and tokamaks more generally, and in the

next, we shall discuss the particular plasma scenario evaluated in this work, currently
envisaged as the scenario in which said fusion demonstration should occur.

A tokamak is a magnetic torus built to confine a plasma using a helical magnetic field.
We begin by defining some quantities relative to the torus, which can be thought of as
a cylinder bent onto itself. We typically use coordinates to describe the torus, namely
radial (as in the cylinder), as well as the poloidal angle (the angle in the cylinder, or
the short way around the torus), and a toroidal angle (the long way around the torus).
These coordinates are sketched in figure 1.1. The externally applied magnetic field is
purely toroidal. In order to create the poloidal field, a current is driven through the
conducting plasma, which can be viewed as the secondary winding of a transformer.
This current induces a poloidal magnetic field, giving rise to the total helical magnetic
field. It should also briefly be mentioned that there is another way of obtaining a helical
magnetic field, namely by providing such a field externally. This approach is known
as the stellarator, but is not the focus of this work. This twist of the magnetic field
lines varies across the plasma, and is known as the safety factor (q). The safety factor
is the number of times a magnetic field line travels around the tokamak toroidally for
each poloidal transit. The profile of the safety factor across the plasma (minor) radius
depends on the profile of the plasma current. To prevent certain plasma instabilities, it
is normally necessary to have q & 1 in the core of the plasma and q & 3 at the edge of
the plasma.
ITER will be the world’s largest tokamak, and the first to demonstrate significant

fusion power. One of ITER’s design goals is to demonstrate Q = 10, where Q is the ratio
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R0 a

r

θφ

Figure 1.1: Basic coordinates in toroidal geometry. Radius r and poloidal angle θ are in the
plane, whereas the toroidal angle ϕ is shown moving into the page. On the left, we mark the
axis of symmetry. The major (R0) and minor (a) radii are labelled.

between fusion power and externally applied heating power, eclipsing the current record
of Q ∼ 0.67 set at the Joint European Torus (JET) [2]. JET and the Tokamak Fusion
Test Reactor (TFTR, a former US tokamak) [3] are, to date, the only two tokamaks
which have operated with the D-T plasma mixture and the aim of demonstating the
feasibility of fusion power. Of all of the various potential fusion reactions, 2D + 3T has
the largest fusion cross section, and is therefore the fusion reaction which ITER will
pursue. The reaction in question is

2D + 3T −−→ 4He + 1n

where the helium ion (also known as an alpha, or α particle) takes 3.5MeV and the
neutron takes 14.1MeV of the total 17.6MeV released. This neutron, unaffected by
magnetic fields, leaves the plasma without further interaction with the confined plasma,
but the alpha particle is confined by the magnetic field, and should heat the background
plasma as it slows down by collisional processes with the background. Due to the
very high energy of the alpha particle with respect to the background plasma (with
thermal energies up to ∼ 25 keV), they have velocities comparable to, or larger than,
the phase velocities of various magnetic waves. It is therefore possible for resonant
interactions between these alpha particles and the waves, opening the possibility of
driving instabilities, in particular Alfvén eigenmodes. Such instabilities could have a
detrimental effect on the confinement of the alpha particles, reducing the efficiency of
their heating the plasma, or, in the worst case, causing damage to the tokamak wall.
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1.2 The 15MA ITER scenario

There can also be a positive effect, transporting or removing the slowed down helium
particles (or ash) which would otherwise dilute the fusion fuel. It is therefore important
to understand the interactions between alpha particles (or energetic particles (EPs)
in general) and electromagnetic waves and instabilities and the consequences for the
overall confined properties of a burning plasma.

1.2 The 15MA ITER scenario
The scenario intended to demonstrate Q = 10 fusion in ITER is one with 15MA of total
plasma current, based upon transport simulations [4]. It features a q profile slightly
below 1 at the plasma axis with a very low radial gradient (or shear, s = r

q
dq
dr ) in the

inner region, qedge ≈ 4. This profile is shown in figure 1.2b, with the detail of the inner
region more clearly shown in figure 1.2c. The background plasma ions, equal densities
of 2D and 3T are assumed to be equal in temperature, they have very flat density
profiles, with the exception of the steep gradient close to the edge of the plasma, or even
hollow. On the other hand, the temperature of the ions is peaked, with Ti at r = 0,
Ti(0) ≈ 21 keV (we typically absorb the Boltzmann constant into temperatures, such
that 1 eV ≈ 11.6× 103 K, therefore this temperature is approximately 243× 106 K).
The electron temperature profile follows almost the same shape as the ion temperature
profile, but is slightly larger (Te(0) ≈ 25 keV), as the alpha particles primarily heat the
electrons, which in turn heat the ions. The electron density profile is similarly flat, but
slightly peaked. As the plasma should be macroscopically quasineutral, the difference
in the densities of the ions and the electrons (where the charge on the ions qi = −qe) is
accounted for by impurity ions in the plasma, namely beryllium (one of the materials
of the plasma facing wall), helium ash, and the energetic alpha particles.
These plasma profiles are shown in figure 1.2d. We note the nominal parameters of

ITER, the magnetic field strength on axis (in vacuum) B0 = 5.3T; major radius (the
distance from the centre to the magnetic axis) R0 = 6.2m; minor radius (distance from
the magnetic axis to the edge of the plasma on the outside of the tokamak) a =2m;
aspect ratio (ratio between major and minor axis) A = R0/a ≈ 3 with the inverse
aspect ratio ε = a/R0 = 0.32. The plasma is elongated, and somewhat triangular (or
D-shaped), and seen in figure 1.2a. The Alfvén frequency (characteristic frequency for
Alfvén waves) on axis ωA = 167.5 kHz.

In figure 1.2e, we plot the alpha particle density profile, showing also a double
alpha particle density profile. It is this artificially increased density profile which
we shall primarily evaluate in this work for several reasons. Firstly, considering the
double density case is chosen in line with previous work in order to allow comparison.
Secondly, we wish to be pessimistic with respect to the available drive of the modes,
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1 Introduction

preferring to err on the side of increased instability, and also to consider the question
of where (relative to nominal parameters) threshholds for transitions between different
EP transport regimes will occur. It is only by demonstating our ability to handle such
regimes that we can be able to know that this possibility was properly considered. This
was the reason that some previous work also considered double density. Thirdly, we
consider the possibility that the flat density profiles of this scenario are unrealistic,
with some predictions suggesting also peaked density profiles as well as temperature
profiles [5–7]. Given that we know that the local fusion power (the source of alpha
particles) depends on the square of the deuterium and tritium density, such profiles
would deliver steeper gradients in the alpha particle density. We shall later show that
what drives the instabilities investigated in this work unstable is the radial gradient of
the energetic alpha particle pressure.

Finally, in chapter 4, we shall also consider a modified scenario, in which we have an
even flatter safety factor profile in the plasma core. This is shown as an additional line
in figure 1.2b.

1.3 Observation of energetic particle driven physics
on current experiments

Although current experiments do not operate with tritium, and therefore do not have
fusion born alpha particles (except for the now old experiments of JET and TFTR
already alluded to), they do have sources of energetic particles. These are found as a
consequence of some of the plasma heating methods, in particular neutral beam injection
(NBI) and ion cyclotron resonance heating (ICRH). It should be remarked that ITER
will also have these heating methods as auxilliary heating to start the discharge, and
for control purposes. Due to the nature of these two heating systems, the distribution
functions are very different from each other, and from the alpha particle distribution
function seen from fusion reactions, but can still be capable of driving instabilities.
However, as the energetic ions in most current tokamaks are sub-Alfvénic (the

characteristic velocity of the waves, we shall discuss in more detail later), the drive
is by a slightly different resonance mechanism. There have been a few exceptions to
this, for example, JT-60U, a tokamak previously operating in Japan, had relatively
high energy NBI injection energy (300 keV) compared to most machines (. 100 keV).
Also in spherical tokamaks, a type of tokamak with a very small aspect ratio, the
beams are often super-Alfvénic, although other properties of these devices give rise
to substantial differences in behaviour. As mentioned above, radial gradients in the
EP pressure gradient can act as a source of free energy in the system, able to drive
the instabilities via resonant interactions via inverse Landau damping, which we shall
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1.4 Previous modelling efforts

explain in chapter 2.
Even though the modes detected by experimental observations are in nonlinear

quasi-saturated states, many linear properties of the modes persist. Although direct
measurements of energetic particle driven modes are difficult, signal frequency, and
some spatial information can be detected. Transport due to these instabilities is rarely
directly observed, but can sometimes be inferred by discrepancies between other signals.
In the cases where the instabilities cause losses from the plasma, the energy and position
of the ejected particles can be measured [9].

Various experimental observations of Alfvénic instabilities have demonstrated quasi-
linear behaviour (where mode properties such as frequency and spatial structure are
preserved from the linear modes, and experimental amplitudes can be predicted by
scaling arguments) [10]; nonlinear coupling between modes (where, for example, mores
are excited via wave-coupling, which has been demonstrated by performing bicoherence
analysis) [11]; non-perturbative nonlinear features such as frequency chirping (where
measured frequencies may repeatedly sweep up, down, or symmetrically up and down
as a consequence of the formation of phase-space structures [12]); and nonlinear
transport modifications, such as the enhancement of losses in the presence of multiple
instabilities [13], or highly nonlinear avalanche-like events in which particles are lost as
a large amount of plasma is ejected.
A particularly notable example are the so called Abrupt Large amplitude Events

(ALEs) [14, 15], observed on the aforementioned JT-60U tokamak. During these short
lived events, very large amplitude instabilities were observed, at amplitudes far larger
than achievable without strong nonlinear coupling.

1.4 Previous modelling efforts
The problem of Alfvén eigenmodes in the ITER 15MA scenario has been modelled
extensively in the past. Even for linear physics not all models agree, with differences
attributable largely to the different damping mechanisms. Models applied to the
problem include initial value simulations from perturbative MHD-hybrid [16–19] and
gyrokinetic-hybrid [20], non-perturbative MHD-hybrid [21], and local gyrokinetic [22]
codes, and eigenvalue calculations using a linear gyrokinetic [8, 23] code. In particular
for nonlinear perturbative hybrid models, all linear discrepancies are carried over to
nonlinear predictions. These models will be explained in the next chapter.
On the other hand, global initial value electromagnetic fully-gyrokinetic codes have

until recently been unable to address the parameter regimes needed for simulating
Alfvén eigenmodes in the ITER scenario. Electromagnetic models are those in which
the (parallel) fluctuations of the electromagnetic potential are solved as well as the
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fluctuations in the electrostatic fields, necessary for considering finite plasma pressure
and for retaining Alfvén waves. Global models are those which retain parameter variation
across the simulated domain, with local models performing an expansion around a single
radial position. Here, we define fully-gyrokinetic as treating all the plasma species,
including electrons, kinetically. Previous works in simpler (with respect to plasma
parameters such as ε, β or ρ∗, see definition below) scenarios include references [24–29].
These models are also capable of (and original designed for) studying electrostatic and
electromagnetic turbulence and anomalous transport.

The difficulty in addressing the ITER 15MA scenario with global gyrokinetic models
is related to the large size, tight aspect ratio, and high pressure. The expected
plasma parameters of ITER far exceed the parameter space occupied by present
machines. The relevant quantities, present in the equations solved, normalize the
physical quantities. For example, the ratio between the plasma pressure to the magnetic
pressure (β = nT

B2/2µ0
, which can be evaluated for a particular plasma species or for

the total plasma); and the ratio between the equilibrium scale and the ion sound
Larmor radius (ρ∗ = ρs/a, we shall explain the Larmor radius in the next chapter).
Taking parameters for the plasma core, we obtain βthermal ∼ 6.8%, βα ∼ 1.15%, and
ρ∗ ∼ 1/470.
Finally, we briefly mention relevant modelling done neither of the ITER 15MA

scenario, nor with fully-gyrokinetic models, but exhibiting strong nonlinear or non-
perturbative features. These include demonstrations of frequency chirping of Alfvén
modes [30], nonlinear enhancement of losses [31], and simulations of the previously
mentioned nonlinear bursting ALEs [32, 33].
In this work, we go beyond the previous work by applying a more complete model

(which forms a superset of the various different models previously used) to the ITER
15MA scenario.

1.5 Aims and Structure of this thesis
The scope of this work is as follows. Given the importance of predictive capabilities
for alpha particle physics in ITER, one of the issues which we cannot directly study
on present day experiments, and the discrepancies found linearly and nonlinearly by
various reduced models, in this work we exploit a hierarchy of models to gain the
understanding necessary to tackle this important issue with the most advanced model
available. These results can then inform the community about the expected behaviour,
and can also be used to help to understand when reduced models will be applicable.
The structure of this thesis is as follows. In chapter 2, a theoretical background of

the important physical mechanisms and how they can be treated is introduced, before a
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1.5 Aims and Structure of this thesis

more detailed description of the models implemented in the numerical tools, and their
features is presented in chapter 3.
Then we present the findings of this work, with linear and nonlinear results from

perturbative modelling presented in chapter 4, the first application of a global gyrokinetic
model to this question in chapter 5, with nonlinear results in chapter 6, we are able to
make predictions based on nonlinear global non-pertubative gyrokinetic results.

Finally, we conclude the thesis with a summary of the results and major achievements
of this work in chapter 7, and a discussion about the missing pieces to this story, open
issues, and how they can be addressed.
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Figure 1.2: Scenario parameters for the ITER 15MA scenario. We show: in (a) the outline
of the equilibrium and the magnetic field strength; (b) and (c) the safety factor profile across
the full radius and a zoom of the inner part of the radius respectively, in (b) we also plot
the safety factor of an alternate ‘flat’ profile; (d) plasma density and temperature profiles
for the background thermal plasma species (temperatures are shown with solid lines and
densities with dashed lines); and (e) the alpha particle density profile, showing both nominal
and double parameters. The image in (d) is modified from reference [8]. The radial coordinate
in figures (b-e) is the square root of the normalized poloidal flux (s =

√
ψ/ψedge), and ψ is

the poloidal magnetic flux.
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2 Theory

In this chapter, we introduce the theoretical properties and methods used in this work.
We do not attempt to provide a complete introduction, or formal derivations for the
methods used, for these are better served by existing references, for example refer-
ences [34–38]. We aim, however, to provide an overview.

2.1 Particle motion in a magnetic field

In the core of fusion plasmas, we deal with fully-ionized gases following strong magnetic
guide-fields. The most important behaviour for us to consider is therefore the Lorentz
force, perpendicular to the velocity of a particle and to the magnetic field (we neglect
for now the contribution from an electric field),

F = qv× B (2.1)

Separating the motion parallel to the magnetic field from that perpendicular to the
magnetic field, we see that the perpendicular motion of a particle circles (or gyrates)
around a magnetic field line. The frequency associated with such motion is the particle
gyrofrequency,

ωc = |q|B/m (2.2)

and for ions in the ITER 15MA scenario is ≈ 30MHz, and the Larmor radius associated
with this gyration depends on the perpendicular component of the velocity,

ρL = v⊥/ωc (2.3)

As the force acts perpendicular to the motion of the particle it performs no work,
and we separate the fast gyration motion from the slower motion of the centre of the
gyration. The motion of the centre of this helical motion is known as the guiding centre
motion, and it approximately follows the magnetic field. The deviations of the motion
away being parallel to the magnetic field are know as drifts.

In the case of a general drift, due to a force F applied to a particle, the drift velocity
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2 Theory

is therefore,
vdrift = F × B/(qB2) (2.4)

noting as a result of the dependence on the charge q, that forces which are independent
on the sign of the charge lead to opposite drifts for electrons and ions.
We know that the adiabatic invariant,

µ = mv2
⊥/(2B) (2.5)

is conserved. This tells us that as the total field strength changes, the perpendicular
velocity must change to conserve µ. However, as the total kinetic energy of the particle
in a static magnetic field should also be conserved, any change to the perpendicular
velocity must also change the parallel velocity. For sufficient changes in the magnetic
field strength, relative to the initial parallel and perpendicular components of a particle’s
velocity, the particle may have its parallel motion reversed. This leads us to the concept
of the magnetic mirror, or particle trapping.

Since in a tokamak, the particles follow the helical magnetic field lines, they transit
from the inside to the outside of the tokamak (i.e. changing R at approximately constant
r). We also know that the magnetic field strength in a tokamak decays with the radius
from the symmetry axis (B ∼ 1/R), a particle can become trapped (or mirrored) when
following a field line.

2.2 Wave-particle resonant interaction
Waves propagate at a phase velocity vphase = ω/k. Any particle also moving around
this velocity will see a constant phase of the wave. Therefore, any forces of the wave
felt by the particle will be felt for enough time for the particle to become accelerated
or deccelerated. We discuss this process in the case of Landau damping [39] in a
one-dimensional system [40].

The force experienced due the potential of a wave is the electric field E(x) = −∇φ(x).
In the frame of the co-moving frame of the wave, this field is constant. Considering
three particles initially centered in the well of a small electric field, with velocities
vphase− ε, vphase, and vphase + ε (where ε indicates a small variation). The particle with
v = vphase is not accelerated by the wave. The particle with v = vphase − ε initially
moves in the negative x direction in wave frame. This particle then experiences a force
due to the electric field in the positive direction, gaining energy from the wave. The
particle with v = vphase + ε initially moves in front of the wave, and is deccelerated by
the electric field, transferring energy from the particle to the wave. Therefore, the net
energy transfer depends on the gradient of the distribution function locally around the

10
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0vth vb

f(v
)

(b)

Figure 2.1

Figure 2.2: Left: a simple representation of Landau damping. Three particles (green, red,
and blue in order of increasing velocity) are initially in the centre of the wave’s potential
well (see bottom axis). Net transfer depends on the gradient of the distribution function (see
left axis). Right: Bump-on-tail distribution. Unlike the Maxwellian distribution (left), this
distribution is unstable over a range of wave-numbers.

phase velocity. In the typical case of a Maxwellian distribution, the gradient of the
distribution is negative for all (positive) values of v. Therefore such a mechanism will
always damp the pertubation. This effect is known as Landau damping.
However, in the case where the distribution function has a reversal, such as that in

the bump-on-tail distribution shown in figure 2.1b, there exists a range over which a
wave’s phase velocity would lead resonant drive of the pertubation (through the same
mechanism as was present in Landau damping). This effect is known as inverse Landau
damping, and corresponds to a linearly unstable system.

2.3 Modelling collective plasma behaviour
To model a plasma by considering the dynamics of every particle, for which we might
have N ∼ 1022–1023 particles in a fusion reactor, is impossible. Therefore, we instead
consider a distribution function as our fundamental representation, from which other
quantities can be extracted by evaluating moments.
At our most general level, for a fully-ionized, confined plasma, we assume that the

behaviour of a plasma can be described by the collisionless non-relativistic Vlasov
equation [41], describing the evolution of the six-dimensional phase space of a plasma

11



2 Theory

species s,
∂fs
∂t

+ v · ∇fs +
qs
ms

(E + v× B) · ∂fs
∂v

= 0 (2.6)

where the right hand side can have a collision operator or sources or sinks added as
appropriate.
This must be coupled to a the Maxwell equations for solving the electromagnetic

fields.
∇× B = µ0

(
J + ε0

∂E
∂t

)
(2.7)

∇× E = −∂B
∂t

(2.8)

∇ · E =
ρ

ε0
(2.9)

∇ · B = 0 (2.10)

where the charge density (ρ) and current density (J) are themselves built from the
distribution function f .
These equations, six-dimensional, and retaining the fast gyration of the particles

around a magnetic field, are impractical to solve for fusion plasmas (although are indeed
used for astrophysical plasmas). For our problem, we need to use a theoretical framework
in which the fast time scales have been removed, and in which the dimensionality has
been reduced.

2.3.1 Gyrokinetics
The first such method is to take the Vlasov-Maxwell system of equations in the presence
of a strong magnetic field, and to recast it in terms of variables in which, by ordering,
we can ignore the gyro-phase. This allows us to remove the fast gyration from the
system as well as reducing the dimensionality of phase space from six-dimensional to
five-dimensional. This process yields the gyrokinetic model [42], traditionally performed
by Lie transforms (but which can also be performed by an averaging method [43, 44])
amounts to an averaging of the particle motion around the gyromotion, giving the
equations in terms of a gyrocenter, parallel velocity (or momentum) and magnetic
moment (representing the perpendicular velocity as described above). We can therefore
think of a series of slowly moving charge rings, instead of point charges. Below, we
discuss the models of gyrokinetics, as well as discuss the difficulties of electromagnetic
simulations (the cancellation problem as we shall see below), following the work of [45].

When deriving equations for use in numerical models in tokamaks, we must perform
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2.3 Modelling collective plasma behaviour

an expansion in terms of small parameters [45, 46], the two most important of which
correspond to the ratio between the thermal Larmor radius and the equilibrium variation
scale (εB = ρth/LB, where LB = |∇B/B|−1); and to the relative electromagnetic
fluctuation amplitudes (εδ = ω/ωc ∼ k‖/k⊥ ∼ qδφ/T ∼ δB/B � 1)
We assume that the perturbed electromagnetic potential is purely parallel to the

magnetic field, setting A⊥ = 0, and by constructing a perturbed Poincaré-Cartan
form [42, 45],

γ = qA∗(R) · dR +
m

q
µdθ−

mv2
‖

2 + µB

 dt+ q
[
A‖(x)b · dx− φ(x)dt

]
(2.11)

we observe that as x = R + ρ(θ), the perturbed fields depend on the gyro-phase θ, with
R the guiding-centre position, and ρ the gyroradius, B the background magnetic field,
A∗ = A + (mv‖/q)b is the extended magnetic potential, A is the magnetic potential
corresponding to B, and b = B/B is the unit vector of the background magnetic field.
By using the aforementioned Lie transform methods Γ = eĜγ + dS (as detailed

in reference [42]), there is some freedom as to how to treat the perturbed magnetic
potential. The two standard methods are the p‖ (Hamiltonian) formulation,

Γ = qA∗ · dR +
B

Ω
µdθ−

mp2
‖

2 + µB + q〈φ− p‖A‖〉

 dt (2.12)

and the v‖ (symplectic) formulation,

Γ = qA∗ · dR +
B

Ω
µdθ+ q〈A‖〉b · dR−

mv2
‖

2 + µB + q〈φ〉

 dt (2.13)

In the v‖ formulation, a partial derivative ∂〈A‖〉/∂t appears in the equation for v̇‖,
requiring implicit solvers (impractical for Lagrangian methods). On the other hand,
the p‖ formulation has no such problem in the equations for the trajectories. However,
in the p‖ formulation, the field equations take the following form,

∑
s6=e

∫ q2
sF0s
Ts

(φ− 〈φ〉) δgyd6Z =
∑
s
qsn1s (2.14)

∑
s

βs
ρ2
s
〈A‖〉s −∇2

⊥A‖ = µ0
∑
s
j‖1s (2.15)

noting that additional skin terms appear in the Ampère’s law (equation 2.15) propor-
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tional to βe/ρ2
e and βi/ρ2

i . As the electron mass features, A‖βe/ρ2
e = µ0n0e2A‖/me,

these terms (which are unphysical) can be very large, and must be accurately cancelled
by the (also unphysical) contribution of the parallel current.
This is the origin of the so-called “cancellation problem” in gyrokinetics [47–49],

especially limiting global fully kinetic electromagnetic particle-in-cell codes. Although
a “control variate” method, based upon an iterative scheme [46, 50] made simulations
possible, recent methods [45, 51–54], based on a new formulation, the mixed-variables
formulation offer a significant improvement over the “control variate” method. It is this
mixed-variables formulation that is used for the gyrokinetic simulations with ORB5 in
this work. The equations solved are detailed in chapter 3.

2.3.2 Magnetohydrodynamics (MHD)

In the above section, we have shown how one can arrive at a kinetic model using an
ordering which makes it suitable for fusion parameters. Another method is to reduce
the dimensionality of the problem by taking moments of the distribution function, and
casting the equations in terms of these moments. This will allow us to arrive [55] at a
fluid model for the behaviour of the plasma.
By writing macroscopic quatities in terms of moments of the distribution function,

e.g. particle number density,

ns(r, t) =
∫
fs(r, v, t)d3v

flow velocity,
us(r, t) = 1

ns(r, t)

∫
vfs(r, v, t)d3v

and the sources for Maxwell’s equations, charge density,

ρc =
∑
s
esns

and current density,
j =

∑
s
esnsus

We note, however, that moments of order k are coupled to those of order k− 1 and
k+ 1, thus creating the problem of closing the model. To do this, we require a closure,
using the adiabatic equations of state.
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2.4 Alfvén waves and eigenmodes

2.4 Alfvén waves and eigenmodes

Starting from the MHD equations, and following reference [56],

∂ρ

∂t
+∇ · (ρv) = 0

ρ
∂v
∂t

+ ρv · ∇v +∇P − j× B = 0

∂P

∂t
+ v · ∇P + γP∇ · v = 0

E + v× B = 0

∇ · B = 0

∇× B− µ0j = 0
∂B
∂t

+∇× E = 0

(where P is the pressure, and γ is the adiabatic index), we split quantities into a
constant background part and a small time varying part, Q(r, t) = Q0(r) +Q1(r, t),
assuming that Q1 � Q0. We therefore linearize the MHD equations, assuming also
that v0 = 0.

∂p1
∂t

+∇ · (ρ0v1) = 0

ρ0
∂v1
∂t

+∇P1 − j1 × B0 − j0 × B1 = 0

∂P1
∂t

+ v1 · ∇P0 + γP0∇ · v1 = 0

∇ · B1 = 0
∂B1
∂t

+∇× E1 = 0

∇× B1 − µ0j1 = 0

E1 + v1 × B0 = 0

We introduce a displacement vector ξ(r, t), such that v1 = ∂ξ
∂t . By elimination of j1

and E1 from the above equations, we arrive at,

ρ0
∂2ξ

∂t2
+∇P1 +

1
µ0

(
B1 × (∇× B0) + B0 × (∇× B1)

)
= 0
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P1 + ξ · ∇P0 + γP0∇ · ξ = 0

B1 +∇× (B0 × ξ) = 0

By eliminating P1 and B1, we arrive at the force-operator equation of linearized MHD,

ρ0
∂2ξ

∂t2
= F(ξ) (2.16)

with

F(ξ) ≡ ∇(ξ ·∇P0 +γP0∇· ξ)+
1
µ

[(
∇×∇× (ξ × B0)

)
× B0 + (∇× B0)×

(
∇× (ξ × B0)

)]

Assuming that the time dependent quantities can be written as Q1(r, t) = Q1(r)e−iωt,
we can write the force-operator equation as an eigenvalue problem,

−ω2ξ =
1
ρ0

F(ξ) (2.17)

As F(ξ) is Hermitian [57], the eigenvalues ω2 are real, and therefore the solutions ω
are purely real or imaginary, growing exponentially or oscillating at constant amplitude.
It also follows that the discrete modes forming the eigenvectors are orthogonal. In the
case of a purely real frequency ω, the addition of other effects (e.g. an energetic particle
species) may modify the MHD eigenvalues, giving weakly growing or weakly damped
modes.
In the limiting case of a homogeneous plasma, we can perform the analysis of the

solutions to the MHD wave equation. By Fourier transform of the operator, we arrive
at,

ω2ρ0ξ + γP0(k · ξ)k +
1
µ0

(
k×

[
k× (ξ × B0)

])
× B0 = 0 (2.18)

with k the wave vector.
Aligning B0 = B0ẑ and k = k⊥ŷ + k‖ẑ, we arrive at the matrix equation,


ω2 − k2

⊥v
2
A 0 0

0 ω2 − k2
⊥v

2
s − k2v2

A −k⊥k‖v2
s

0 −k⊥k‖v2
s ω2 − k2

‖v
2
s


ξxξy
ξz

 = 0 (2.19)

with vA =
√
B2

0/µ0ρ0 the Alfvén speed and vs =
√
γP0/ρ0 the adiabatic sound speed.

Finding solutions by setting the determinate of the matrix to zero,

(ω2 − k2
‖v

2
A)
[
ω4 − (v2

s + v2
A)k

2ω2 + (kk‖vsvA)
2
]
= 0 (2.20)
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2.4 Alfvén waves and eigenmodes

we find this affords three solutions. The first solution forms the Alfvén branch, ω2 =
k2
‖v

2
A, independent of k⊥, incompressible, with v1 and B1 both perpendicular to B0.

The other two branches include coupling between the sound and Alfvén compressions,
the fast and slow magnetosonic waves. Due to the stronger coupling between energetic
particles and the shear Alfvén wave in tokamak plasmas, we consider only this first
branch, the shear Alfvén wave (SAW).
Although in a homogeneous plasma, the waves oscillate without dispersion, in an

inhomogeneous plasma, however, the dispersion relation depends on position, ω(r) =
k‖(r)vA(r), and therefore a wave packet will disperse, a property known as phase
mixing. This effective damping is proportional to the radial derivative of the dispersion
relation,

γd ∼ −
∣∣∣∣∣ d
drk‖(r)vA(r)

∣∣∣∣∣ (2.21)

In a periodic cylindrical system, we can apply a decomposition in radius, and poloidal,
and z-direction wavenumbers.

ξ(r, θ, z, t) =
∑
m
ξm(r)ei(mθ+kzz+ωt)

where m is the poloidal mode number. In the case that this cylinder is bent into a
torus, we add now also periodicity in the toroidal (previously z) direction, introducing
the toroidal mode number n.

ξ(r, θ,ϕ, t) =
∑
n

∑
m
ξn,m(r)ei(mθ+nϕ+ωt)

However, due to the toroidal bending, and because the equilibrium magnetic field
strength is now a function of the poloidal angle, we find that the poloidal harmonics m,
previously independent, are now coupled to m± 1, with the strength of the coupling
proportional to the inverse aspect ratio ε = a/R0.
Now, at the position where the continuum spectrum for m and m+ 1 should have

crossed according to the expressions for the cylinder, due to the coupling, we see a
gap appear in the spectrum. This gap is known as the toroidicity-induced Alfvén
eigenmode [58] (TAE, also referred to as the toroidal Alfvén eigenmode). We find
this position by identifying the points at which the wave vectors of m and m+ 1 are
opposite,

k‖m =
1
R

(
n− m

q(r)

)
(2.22)

k‖m+1 =
1
R

(
n− m+ 1

q(r)

)
(2.23)
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Figure 2.3: (a) The continuum spectrum for m and m+ 1 for a cylinder. (b) In black
the continuum spectrum due to coupling of poloidal harmonics due to toroidicity, with the
TAE gap visible. (c) A sketch of poloidal harmonics m and m+ 1 of a TAE (red and blue
respectively). (a) and (b) are based on figure 1 in reference [58].

by setting k‖m − k‖m+1 = 0, we arrive at,

q(r) =
2m+ 1

2n =
m+ 1/2

n
(2.24)

noting that the TAE is not located at a rational surface for n, but rather between
rational surfaces.

Substituting the expressions for q and k‖ back to the dispersion relation, we recover
the TAE frequency,

ωTAE =
ωA
2q

where ωA = vA/R.
Although the TAE is the most well known of such gap Alfvén eigenmodes, by analogy,

asymmetries in the equilibrium of higher order (e.g. ellipticity, triangularity) create
coupling between other pairs of harmonics, (e.g. (m,m+ 2), (m,m+ 3)). These gaps
occur at higher frequency, and are known as the ellipticity-induced Alfvén eigenmode
(EAE) [59–61], triangularity-induced Alfvén eigenmodes (NAE, as its also known as
the non-circularity induced Alfvén eigenmode). Gaps of higher coupling exist, but are
typically of little importance and are not named.

As these modes are oscillatory eigenmodes of ideal MHD, we cannot calculate the mode
drive and damping without moving to a kinetic framework. This can be gyrokinetics,
which has been shown to include MHD physics [62], or a hybrid treatment, in which the
modes are defined by MHD, and only the energetic particles are added for their kinetic
effects. Hybrid treatments include perturbative [63–68], in which the MHD eigenvalue
problem is solved, and this eigenvalue and eigenfunction is added to a hybrid code, or
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2.4 Alfvén waves and eigenmodes

non-perturbative, in which the MHD equations are solved throughout the simulation,
with a contribution from the kinetically modelled EPs [69–71].

2.4.1 TAE drive and damping

As discussed, we need to move to a kinetic treatment in order to include the driving
and damping mechanisms. For the mode drive, as we discussed for the case of (inverse)
Landau damping, only the particles which see approximately constant phase are able
to exchange energy with the mode. Therefore the resonance condition for a particle is
that the the phase Θ should on average be constant.

〈Θ̇〉 ≈ 0

We know that passing particles orbit the plasma approximately according to the field
lines. However, they deviate from this with a width,

∆b,α =

v2
‖ +

v2
⊥
2

 q

v‖ωB,α

expanding this, we find the resonance becomes,

n

R
v‖ −

m+ l

qR
v‖ − ω = 0

which gives us the parallel resonant velocity,

v‖ =
qRω

nq−m− l

Assuming that a TAE the mode is primarily localized in the region around q = m+1/2
n ,

then we find
v‖ =

vA
|2l− 1|

The main resonance occuring for l = 0, namely v‖ = vA with sideband resonances at
v‖ = vA/3 the only resonances available on machines with sub-Alfvénic particles.

For an isotropic alpha particle distribution, reference [72] shows that the growth rate
comes from the radial gradient of the distribution function,

γ/ω0 ≈
9
4

βα
(
ω∗,α
ω0
− 1

2

)
F − βe

vA
ve


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where ω∗,α = −kθ Tα
eαB0

d ln βf
dr

In addition to the mode drive, there are also additional mode damping mechanisms [35].
These include the coupling of the TAE to small-scale kinetic Alfvén waves which
propagate radially, thus carrying energy from the mode in a process known as radiative
damping [73]; Landau damping of the electrons (primarily the trapped electrons as
discussed in reference [74]) which occurs away from the TAE position on rational
surfaces; Landau damping of the ions [61] (primarily the passing ions in the tail of
the distribution); continuum damping [75], the aforementioned phase mixing from the
radial derivative of the dispersion relation; and collisional trapped electron damping [76,
77], an effect which is neglected in this work as the collision frequency is very small.
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3 Numerical tools

In order to study the physics of Alfvén eigenmodes in a future experiment, we need to
use theoretical tools and numerical models. The assumptions of such models will vary,
and we can create a hierarchy of different models for studying different phenomena at
different levels of fidelity, with different speed and cost. Firstly, we know that we need
to use electromagnetic models, necessary for the study of Alfvénic physics. We shall
also want to represent either the entire plasma or at least the energetic particles using
a kinetic model, in order to capture the resonant interactions between Alfvén modes
and EPs.

3.1 Nonlinear perturbative drift-kinetic hybrid
code HAGIS

HAGIS is a nonlinear perturbative model for evolving a system of energetic particles
and linear eigenfunctions using a wave-particle interaction model. It is formulated by
creating a separation of the fast (mode frequency, particle motion) and slow (amplitude,
phase evolution) time scales. Only the wave-particle nonlinearity is retained. Here, we
outline the model used in the HAGIS code [56], closely following reference [65].
The starting point is the total system Lagrangian

Lsys = LEP +Lint +Lbulk +Lem (3.1)

where the terms with subscripts EP, int, bulk, and em correspond to the motion
of the energetic particles in the equilibrium, the effect of the Alfvén waves on the
particle motion, the background plasma contribution to the Alfvén waves, and the
electromagnetic component of the Alfvén waves. The first two terms sum to give the
particle Lagrangian, the last two to give the wave Lagrangian Lw and the last three
terms together describe the wave equations.
The model is cast in terms of spatial coordinates (ψ, θ, ζ), corresponding to the

poloidal flux (the radial coordinate), generalized poloidal angle, and toroidal angle
respectively.
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3 Numerical tools

For a single particle, the guiding centre Lagrangian can be written as

L = eA∗ · ẋ +
(
m

e

)
µξ̇ −H (3.2)

with the particle Hamiltonian,

H =
1
2mv

2
‖ + µB + eφ (3.3)

with φ(x, t) the electrostatic potential and ξ the gyrophase.

Writing the perturbed electromagnetic potential,

Ã(x, t) = Ãψ∇ψ+ Ãθ∇θ+ Ãζ∇ζ (3.4)

and the perturbed electrostatic potential φ̃(x, t), we can write the energetic particle
Lagrangian,

L =
(
ρ‖I + χ+ Ãθ

)
θ̇+

(
ρ‖g− ψ+ Ãζ

)
ζ̇ + µξ̇ −H+

(
δρ‖ + Ãζ

)
ζ̇ (3.5)

with ρ‖ = v‖/ωci the ‘parallel gyroradius’, χ the toroidal flux, and g the metric tensor.

Therefore the canonical coordinates can be identified,

Pθ = ρ‖I + χ+ Ãθ (3.6)

Pζ = ρ‖g− ψ+ Ãζ (3.7)

Pξ = µ (3.8)

The particle guiding centre equations can therefore be derived, giving,

θ̇ =
1
D

[
ρ‖B

2(1− ρ‖g′ − Ã′ζ) + g
{
(ρ2
‖B + µ)B′ + φ̃′

}]
(3.9)

ζ̇ =
1
D

[
ρ‖B

2(ρ‖I
′ + q+ Ã′θ)− I

{
(ρ2
‖B + µ)B′ + φ̃′

}]
(3.10)

ψ̇ =
1
D


I ∂Ãζ

∂θ
− g∂Ãθ

∂θ

 θ̇+
I ∂Ãζ

∂ζ
− g∂Ãθ

∂ζ

 ζ̇ + gṖθ − IṖζ

 (3.11)
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3.1 Nonlinear perturbative drift-kinetic hybrid code HAGIS

ρ̇‖ =
1
I

Ṗθ − ∂Ãθ
∂θ

θ̇− ∂Ãθ
∂ζ

ζ̇ − ∂Ãθ
∂t
−

q+ ∂Ãθ
∂ψ

+ ρ‖I
′

 ψ̇
 (3.12)

with D = ρ‖[gI
′ − Ig′] + I + qg − IÃ′ζ + gÃ′θ, having chosen to use equations for ψ̇

and ρ̇‖ instead of Ṗθ and Ṗζ . These four equations are then solved for each marker.
The equations for the markers must also be coupled with equations for the fields,

calculated by evaluting the equations for the time derivatives. To study low-β shear
Alfvén waves, we can choose the ordering to neglect δB‖ and use the MHD assumption
E‖ = 0. Later work [78] has dropped the restriction of E‖ = 0 when taking eigen-
functions from a gyrokinetic model, although that is not used in this work. These
restrictions constrain Ã⊥, and Ã can be rewritten as

Ã = α̃(x, t)B (3.13)

This allows the field perturbations to be described using only a single scalar field, using,

E‖ = −∇‖φ̃−
∂

∂t
(α̃B0) = 0 (3.14)

For each Alfvén mode, k, there remain two degrees of freedom, the slowly varying
real amplitude (Ak) and mode phase (σk). The spatial structure can be decomposed
poloidally into a series of poloidal Fourier harmonics,

φ̃k = Ak(t)e−iσk(t)
∑
m
φ̃km(ψ)ei(nkζ−mθ−ωkt) (3.15)

where Ak(t)e−iσk(t) evolves slowly compared to the wave frequency.
Writing the interaction Lagrangian for a series of particles and some perturbed fields,

Lint =
Np∑
j=1

(Ãj · vj − φ̃j) (3.16)

By reformulating the perturbed amplitude from amplitude and phase to real and
imaginary parts,

Ak(t)e−iσk(t) = X (t)− iY(t) (3.17)

The perturbed electrostatic potential at the position of the jth particle,

φ̃j =
Nw∑
k=1

∑
m
[Xk(t)Cjkm + Yk(t)Sjkm] (3.18)
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with Cjkm ≡ <(φ̃km(ψj)eiΘjkm) and Sjkm ≡ =(φ̃km(ψj)eiΘjkm), Θjkm ≡ nkζj −mθj −
ωkt.
Therefore we may write the integration Lagrangian,

Lint =
Np∑
j=1

Nw∑
k=1

1
ωk

∑
m
(k‖mv‖j − ωk) (3.19)

Now, using also the wave Lagrangian,

Lw =
Nw∑
k=1

Ek
ωk

[A2
kσ̇k] (3.20)

with Ek = 1/(2µ0)
∫
V

∣∣∣∇⊥φ̃k∣∣∣2 /v2
Ad

3x we can vary Lint + Lw with respect to Xk and
Yk, we can come to the wave equations,

Ẋk =
1

2Ek

Np∑
j=1

∑
m
(k‖mv‖j − ωk)Sjkm (3.21)

Ẏk = −
1

2Ek

Np∑
j=1

∑
m
(k‖mv‖j − ωk)Cjkm (3.22)

where we can clearly see the importance of the wave-particle resonances (k‖mv‖j − ωk)
for the evolution of the mode amplitude.
HAGIS then evolves the mode amplitudes using equations 3.21 and 3.22 together

with the marker information, and the markers are evolved nonlinear using equations 3.9–
3.12. For numerical efficiency, HAGIS employs an optional δf method, in which the
distribution function is split into a constant background F0 and a fluctuating part δf .
This reduces numerical noise, as only the fluctuating part (typically small) needs to
be discretized with markers. This entails some minor modifications to the equations
solved. The full-f model is recovered by setting F0 = 0, which gives δf = f .
We note also that the Lagrangian structure easily provides a scheme with energetic

conservation.

3.2 Linear gyrokinetic eigenvalue solver LIGKA
The linear gyrokinetic eigenvalue solver LIGKA solves the linearized gyrokinetic equa-
tions to find the eigenvalues (frequency and damping) and eigenfunctions (mode struc-
ture) of the system. The model [79, 80] is concisely presented in reference [81], which
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3.2 Linear gyrokinetic eigenvalue solver LIGKA

we briefly follow here.
We start with the linear gyrokinetic quasi-neutrality condition (QNE),

0 =
∑
s
es

∫
d2v {J0δf}s +mi∇⊥ ·

ni∇⊥δφ
B2 +

3Pi⊥
4B2Ω2

i
∇4
⊥δφ (3.23)

and the linear gyrokinetic momentum equation (GKM),

− ∂

∂t

[
∇ · ∇⊥δφ

v2
A

]
+ B · ∇

∇× (∇× δA‖b)
B

+ (b×∇δA‖) · ∇
µ0j‖
B

= −
∑
s
µ0

∫
d2v es {vd · ∇J0δf}s +

∑
s

b×∇
(
βs⊥
2Ωs

) · ∇∇2
⊥δφ

+
∑
s

3βs⊥
8Ω2

s
∇4
⊥
∂φ

∂t
+ B · ∇ 1

B

∑
s

βs
4 ∇

2
⊥δA‖ (3.24)

By splitting off the adiabatic part of the distribution function, and separating the
equilibrium part and a perturbed part

δfs = δhs +
∂feq,s
∂E

esJ0(ρk⊥)

[
δφ− δψ−

v‖k‖
ω

δψ

]
+
∇feq,s
iωB

· (b×∇)J0δψ (3.25)

We can then write the linear gyrokinetic equation (GKE),

∂δh

∂t
+ (v‖b + vd) · ∇δh =

[
b×∇feq

eB
· ∇− ∂feq

∂E

∂

∂t

]
J0

δφ−(1− vd · ∇
iω

)
δψ

 .

(3.26)
with vd = −b/(eB)×

(
mv2
‖(b · ∇)b + µ∇B

)
the drift velocity, φ the electrostatic

potential, ψ the electromagnetic superpotential (∂tδA‖(x) = −b · ∇δψ(x)), and J0 =
J0(ρk⊥) the gyroaverage operator.

By solving these equations, and integrating over the particle orbits as necessary, it is
possible to solve the eigenvalue problem for linear global gyrokinetic treatment of modes
with frequencies spanning from zero-frequency MHD-type global modes such as kink
instabilities to all types of shear Alfvén waves (SAW), but excluding high frequency
compressional Alfvén eigenmodes.

The system of equations are discretized radially with finite elements, and decomposed
via Fourier representation into a toroidal mode number n and a summation of poloidal
harmonics m.
Here, as in reference [81], we primarily use the “analytical version” of LIGKA

25



3 Numerical tools

unless otherwise stated, namely approximating the integration along the orbits of
particles by analytical expressions. This leads to the fast-circulating approximation,
namely neglecting effects of the trapped particles. In the case of the electron Landau
damping, for example, where the damping comes primarily from the particles close
to the trapped-passing boundary, this can lead to underestimations away from the
rational surfaces and overestimations close to the rational surfaces. This analytical
version has demonstrated that it is able to reproduce the results from the analytical
dispersion relation of reference [82] in reference [83] without finite Larmor radius effects,
and including these effects it has reproduced the dispersion relation of reference [84] in
reference [80].

3.2.1 Limits
It is possible to solve the equations in the limit of reduced MHD where the non-
adiabatic part of the distribution function is neglected (h = 0), the electrostatic and
electromagnetic potentials are set equal (δφ = δψ), E‖ = 0, and the gyroaveraging is
neglected. This allows us to compare the effects of a kinetic treatment with an MHD
treatment.
Whereas the global calculations provide the radial structure of each of the poloidal

harmonics, one can also run the code in the local limit. Here, the system is solved only
at a single radial position. This is very fast, and gives a relatively accurate estimate for
the mode drive (if included), and for the Landau damping. The continuum damping is
neglected, which we know becomes weak for modes localized in the gap. Whilst one
can also apply a model which allows the radiative damping to be estimated [80], this is
not included in this work.

3.2.2 Workflows with HAGIS and LIGKA
Before we can perform simulations with HAGIS, we need to obtain a mode structure,
frequency, and damping, all of which we take from LIGKA. As previously mentioned,
there are different models available within LIGKA. We therefore outline here the three
workflows which we shall use with HAGIS and LIGKA. In all cases, as the interaction
with EPs is included in HAGIS, we run LIGKA without any EPs present. The two
global workflows are sketched in figure 3.1.

Global kinetic (antenna) The highest fidelity mode structure calculation that we
use from LIGKA for use in HAGIS is calculated using the global gyrokinetic model
of LIGKA, the main working model of the code. In this case, we run automatically
the following chain of calculations with LIGKA, the output of each step acting as a
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3.2 Linear gyrokinetic eigenvalue solver LIGKA

Global MHD +
local damping

Global
kinetic

local
kinetic

global

global
MHD

local MHD

kinetic

Figure 3.1: Global workflows used for providing mode structure, frequency, and damping
from LIGKA for use in HAGIS.

starting point for the next. First, we run the local ideal MHD solver, which returns
the crossing point of the continuum in the ideal limit. Next, we run the local kinetic
solver, which returns the complex frequency of the tip of the continuum. Finally, we
run the global kinetic solver, which returns the global eigenfunction and the complex
mode frequency, obtained by first scanning the frequencies across the gap to find any
peaks in the response, before refining the scan around any peaks found. In cases where
multiple eigenmodes are found, we sort the modes by damping, and select the mode
with the weakest damping. Note that as the method for the kinetic solver is based
on the response to a frequency sweep, this method is also referred to as the antenna
method.

Global MHD A somewhat reduced model is to run LIGKA in its MHD limit. In
this case, we first run the local ideal MHD solver, before running the global MHD
eigenvalue solver. This is solved by means of a full matrix inversion, which returns all
eigenvalues and eigenfunctions of the matrix. The eigenvalues are then sorted according
to frequency and we select the most appropriate candidate, the mode with the closest
frequency with the correct mode properties. The eigenvalue (the real frequency) and
the eigenfunction are then returned. As the MHD model does not include any damping,
we therefore also run the local kinetic solver, which we take as the imaginary part of
our frequency. As these steps are relatively fast, we have modified HAGIS to directly
make these calls to the library version of LIGKA, creating a directly coupled interface.
If the mode structure or damping calculations have already been performed, then we
use the cached versions to save computational resources.
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3 Numerical tools

Local The simplest model is to run LIGKA only in its local limits. We first run the
local ideal MHD solver, before running the local kinetic solver. Using an analytical
estimate for the mode structure width [85], we then use as an eigenfunction two poloidal
harmonics with Gaussian radial structure. Again, this model is implemented in a
directly coupled interface.

3.3 Nonlinear initial value gyrokinetic code ORB5

The nonlinear global electromagnetic gyrokinetic code ORB5 [46, 86, 87] implements the
most complete physical model outlined. It uses the Monte Carlo Lagrangian Particle-
in-Cell (or PIC) method for evolving the distribution function, sampled using markers,
and the fields (electrostatic and electromagnetic potentials) are solved on a grid using
finite element representation.
The model of the code, constructed from a nonlinear global electromagnetic gyroki-

netic Lagrangian [88], is covered in detail in references [46], [54], and [89], however we
here outline some of the key parts, focussing on the details most relevant for this work,
following those references.

The distribution function for each species s is first split into a constant background
part, F0s and a varying part, δfs. By representing only the time varying part of
the distribution with Monte Carlo markers, the quality of the signal with respect to
numerical noise is greatly improved.

δfs(R, v‖,µ, t) =
Np∑
i=1

ws,i(t)δ(R− Ri)δ(v‖ − v‖,i)δ(µ− µi) (3.27)

The perturbed part of the distribution function is then evolved according to the
gyrokinetic Vlasov equation

∂δfs
∂t

+ Ṙ · ∂δfs
∂R

∣∣∣∣∣
v‖

+ v̇‖
∂δfs
∂v‖

= −Ṙ · ∂F0s
∂R

∣∣∣∣∣
ε

− ε̇∂F0s
∂ε

(3.28)

according to the equations for the particle equations of motion

Ṙ(0) = v‖b− v2
‖
cms
qB∗‖

G + µ
Bcms
qB∗‖

b× ∇B
B

(3.29)

Ṙ(1) =
b
B∗‖
×∇

〈
φ− v‖As

‖ − v‖A
h
‖
〉
− qs
ms
〈Ah
‖〉b
∗ (3.30)
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v̇
(0)
‖ = µB∇ · b + µv‖

cms
qsB∗‖

G · ∇B (3.31)

v̇
(1)
‖ = − qs

ms

[
b∗ · ∇

〈
φ− v‖A

(h)
‖

〉
+

∂

∂t
〈A(s)
‖ 〉

]
− µb×∇B

B∗‖
· ∇〈A(s)

‖ 〉 (3.32)

µ̇ = 0 (3.33)

ε̇(0) = 0 (3.34)

ε̇(1) = v‖v̇
(1)
‖ + µ∇B · Ṙ(1) (3.35)

with
B = ∇× A (3.36)

b = B/B (3.37)

B∗‖ = b× A∗ (3.38)

A∗ = A +

(
msc

qs
v‖ + 〈A

(s)
‖ 〉

)
b (3.39)

b∗ =
∇× A∗

B∗‖
= b−

 cms
qB∗‖

v‖ + 〈A
(s)
‖ 〉

G (3.40)

G = b× (b× (∇× b)) (3.41)

and with the gyroaveraged potential 〈φ〉 =
∮
φ(R + ρ)dα/(2π) with ρ the gyroradius

of the particle and α the gyro-phase.

These equations are coupled to the field equations, the gyrokinetic quasineutrality
equation and the parallel Ampère’s law. Firstly the gyrokinetic quasineutrality equation,

−∇ ·


∑

s

q2
sns
Ts

ρ2
s

∇⊥φ
 =

∑
s
qsn1s (3.42)

The perturbed magnetic potential A‖ is split in to the symplectic part A(s)
‖ , which is
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found from
∂

∂t
A
(s)
‖ + b · ∇φ = 0 (3.43)

and the Hamiltonian part A(h)
‖ , solved using the mixed-varible parallel Ampère’s law,

(∑
s

βs
ρ2

s
−∇2

⊥

)
A
(h)
‖ = µ0

∑
s
j‖1s +∇2

⊥A
(s)
‖ (3.44)

with n1s =
∫
d6Zδfsδ(R + ρ− x) the perturbed gyrocenter density, ρs =

√
msTs/(qsB)

the thermal gyroradius, qs the particle charge, d6Z = B∗‖dRdv‖dµdα the phase space
volume, j1s =

∫
d6Zv‖δfsδ(R + ρ− x) the perturbed parallel gyrocenter current. Note

that due to the scale separation between ion and electron Larmor radii, electrons are
treated differently from ion species, and terms with ρe are neglected.

The particular method of using the mixed-variables formulation, and then applying
a pullback procedure to the particle weights (for linear simulations), is detailed in
reference [54]. The idea is that by splitting A‖ into the symplectic part and the
Hamiltionian, and using the fact that we can make a good prediction for the evolution
of the symplectic part using Ohm’s law (equation 3.43), that we can significantly
improve the behaviour of the electromagnetic part of the field solution, thus allowing
us to take larger steps at the same error, or much smaller error for the same step size.
At the end of the timestep, the total of the A‖ is moved to the symplectic part, and
the Hamiltonian part is set to zero. Then, the particle weights are modified according
to the “pullback” transformation such that the distribution function is not modified by
this change of representation.

δf
(m)
s(new) = δf (s)s = δf

(m)
s(old) +

qs〈A
(h)
‖(old)〉
ms

∂F0s
∂v‖

(3.45)

where the superscripts (m) and (s) on the distribution function refer to the mixed and
symplectic representations respectively.
For nonlinear simulations, the transformation is slightly different, thus we apply

v
(m)
‖(new) = v

(s)
‖ = v

(m)
‖(old) −

qs
ms
〈A(h)
‖ 〉 (3.46)

f
(m)
1s(new)

(
v
(m)
‖(new)

)
= f

(m)
1s(old)

(
v
(m)
‖(old)

)
(3.47)

instead of equation 3.45.
A set of straight field line coordinates are used, with radial coordinate s =

√
ψ/ψedge
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3.3 Nonlinear initial value gyrokinetic code ORB5

(where ψ is the poloidal flux), toroidal angle ϕ, and poloidal angle

χ =
1

q(s)

∫ θ

0

B · ∇ϕ
B · ∇θ′

dθ′

(where θ is the geometric poloidal angle).

Linear and nonlinear models The model above is a nonlinear model. However,
the terms labelled with superscript ‘(1)’ are nonlinear terms which depend on the
perturbed fields. Therefore, by neglecting these terms, we allow a species to follow only
the unperturbed particle trajectories.

As we discussed before, the wave-particle (WP) nonlinearities are retained by allowing
the energetic particles to perturb their trajectories.
One can draw a distinction between the roles of different nonlinearities present in

the system. The nonlinear interaction between the wave and the energetic particles
present in the system is referred to as the wave-particles (WP) nonlinearity [90]. To
capture this effect, it is sufficient to retain the nonlinearity only on the energetic particle
species. This is the same nonlinearity as is present in HAGIS. The other nonlinearity
present in the system is associated with the nonlinearities of the bulk plasma species,
and corresponds to the nonlinear interaction of waves with each other (in particular
via three-wave coupling) and is therefore known as the wave-wave (WW) nonlinearity.
The most important effect of WW nonlinearities is to couple different modes together,
creating a channel to drive (stable) low n modes, especially the zonal n = 0 mode.
We note here the difficulties associated with low mode number global electromagnetic
simulations of high-β plasmas, which prevent us from retaining low (n . 5) toroidal
mode numbers in the ITER studies. We note some progress on this subject has recently
been made [91], but this issue is still outstanding for the parameters involved in this
study. Inclusion of these effects will likely have the effect of reducing the saturation
amplitude of the modes.

Given that performing simulations with WP nonlinearities enabled are not significantly
more difficult in ORB5 than linear simulations, it is of course also reasonable to analyse
the linear behaviour of a system by using the nonlinear model, during the linear phase
where the nonlinear terms are small. The results presented later for the ITER cases
with shaped profiles will be based on analysis of the linear phase of simulations retaining
the WP nonlinearity.

Discretization As previously mentioned, the perturbed distribution function (δfs =
fs − F0s) is discretized with markers. The fields are discretized with B-Splines (in this
work cubic). Once the density (and current) deposition from the markers to the grid

31
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has been performed, Fourier transforms in toroidal and poloidal angles are applied, and
the fields are filtered according to a radially dependent filter for each toroidal mode
number n, the poloidal modes kept, mn(r) ∈ bnq(r)c ± ∆m, with ∆m typically 5.

Parallelization ORB5 is a massively parallel code, and has long been parallelized
with MPI using domain decomposition and domain cloning. Recent work [92] has
extended this to also include hybrid MPI/OpenMP or MPI/OpenACC parallelization.
Due to the large radial and poloidal resolution used in this work, this extension is
immensely useful, and allows us to obtain good performance when scaling the code
beyond the domain decomposition, which is limited by the number of toroidal points.
Typical simulations in this work use OpenMP parallelization with the number of threads
of order 2 – 6, depending on the case and the configuration of the computer where the
simulation is performed. For presented simulations with many toroidal mode numbers,
where we use very large numbers of markers, the parallelization is increased up to cases
with 24 threads.

Normalization Various quantities, both in the input and output of the code are sub-
ject to normalizations. Therefore these must be calculated when setting up simulations
of a particular scenario, and when interpreting simulations results. These quantities are
based on the ion mass mi, ion charge qi = eZi, magnetic field on axis B0, the electron
temperature at a reference radius (in this work always chosen to be on axis) Te(0), and
the average electron density ne .
Time scales are normalized to the ion cyclotron frequency, ωci = qiB0/mic. When

measuring frequencies of Alfvénic modes simulated with ORB5, we shall convert these
frequencies to units of the Alfvén frequency, ωA = vA/R, noting that for ITER
parameters, the factor ωci/ωA . 200. Length scales are normalized to the ion sound
Larmor radius, ρs = cs/ωci, with cs =

√
eTe(0)/mi, noting that for ITER parameters

the horizontal equilibrium dimension 2a ≈ 850ρs.

Diagnostics The majority of the analyses presented in this work, will be based on the
electrostatic and electromagnetic potentials. During this work, the diagnostic output of
the code has been improved, and now in addition to poloidal and toroidal slices, the
fields are also output in their full Fourier representation. Because the field solvers apply
Fourier filtering, this reduces significantly the amount of data required to completely
represent the three dimensional fields, allowing us to perform diagnostics on the full field
data, necessary to be able to simultaneously resolve toroidal and poloidal mode numbers.
For many diagnostics, we prefer to keep the analysis in the Fourier representation,
for example when plotting poloidal harmonic amplitudes. The real space signal is
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reconstructed if we, for example, wish to plot the potential on a poloidal cross-section.
Frequency analysis (unless otherwise stated) is performed on the electrostatic potential
at the outer mid-plane (poloidal angle χ = 0).
An interesting diagnostic development is the ability to calculate the species and

phase space resolved power exchange [93]. However, the meaning of such a method
depends on the coordinates used, and therefore this needs to be reformulated for use in
electromagnetic simulations using the mixed-variables fomulation. Progress on this has
been made [89], but the extension to real or phase space resolved data is outstanding.

3.4 Discussion of numerical tools
In this chapter, we have introduced a hierarchy of models for performing linear and
nonlinear simulations of Alfvénic physics. The most complete numerical model available
is the nonlinear, non-perturbative global electromagnetic gyrokinetic code ORB5, which
has, however, prior to this work never been applied to studies of Alfvén eigenmodes in
scenarios with parameters as challenging as those in this work. Simulations using such
a model are difficult, and a methodical validation procedure is therefore performed as
we begin to run linear simulations for the ITER scenario.

On the other hand, linear results from the gyrokinetic eigenvalue code LIGKA are
relatively robust, and the code has previously been extensively validated through
benchmarks and experimental comparisons. However, its applicability is restricted to
linear physics.

The nonlinear perturbative HAGIS model, coupled with eigenfunctions from LIGKA
is able to evaluate linear stability calculations (in the drift-kinetic limit), and assess
mode saturation due to wave-particle nonlinear saturation. In this case, its applicability
is limited by the perturbative assumption, and, as the modes must be prescribed a
priori, one must already predict which modes will be relevant. As an example, as we
shall see later, it is not obvious from the linear studies, in chapters 4 and 5 that one
should retain odd-parity TAE modes. However, as we find in chapter 6, these modes
may nonlinearly become significant.
Numerically, linear, single-mode simulations with ORB5 can cost ∼ 104 core-hours,

with the most expensive multi-mode nonlinear simulations costing ∼ 106 core-hours,
whereas linear hybrid simulations can be performed in a few minutes, and nonlinear
simulations can run in a few hours. Also multi-mode hybrid simulations can become
very numerically demanding, with an estimate in the scaling with respect to number of
modes ∼ n2

modes.
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4 Perturbative hybrid-kinetic
modelling of TAEs in ITER

4.1 Introduction
In this chapter, we aim to address the issue of the TAEs in the ITER scenario, which we
do using the fast and automated workflows previously introduced. We revisit a scenario
which has been previously studied [20], although we perform a systematic study with
many modes, spanning a broad range of toroidal mode numbers, TAE gaps, and we
additionally include also the odd-parity TAEs, and look at also the subdominant modes.
In addition to the regular scenario, we also include an additional scenario, based on a
flat q profile, taking a slightly different approach to investigating the profile sensitivity
as was performed in reference [94]. We also appreciate the issue of understanding the
limitations and sensitivity of any results, which is why we include a systematic scan
of the effects of the number of poloidal harmonics. Finally, we also perform tests of
a purely local workflow, which we might expect to work for cases with very localized
mode structures, such as those seen for large toroidal mode numbers.

4.2 Linear results
Taking the standard ITER scenarios, as well as an additional flat profile scenario, we
investigate the linear properties of the TAE modes. We perform a systematic study of
multiple TAE gaps, scanning the toroidal mode number n, and the mode parity.
For the standard scenario, as q is close to 1, we take the ‘zeroth’ gap, where m =

(n,n+ 1), as well as the next (‘first’) gap, m = (n+ 1,n+ 2). For the flat q scenario,
we take the ‘zeroth’ and ‘first’ gaps, and as well as the previous (‘minus-oneth’) gap,
m = (n− 1,n), due to the lower values of the q-profile.

Figure 4.1 (left) shows the mode drive, frequency, damping, and total growth rate for
the two gaps using both workflows for the standard scenario. In the case of the global
kinetic workflow, this is performed for both even and odd mode parity, and shown
against the global MHD workflow (even parity). One can observe a good agreement
between the workflows in the drive for large n. We also note a good agreement for
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Figure 4.1: Linear TAE properties for (left) the standard ITER equilibrium and (right) the
flat q ITER equilibrium. The dashed lines in the left figure correspond to the global MHD
workflow and the solid lines (and points) refer to the global kinetic (antenna) workflow. In the
standard case (left), the “zeroth” gap (m = (n,n+ 1)) and the “first” gap (m = (n+ 1,n+ 2))
are presented (labelled ‘m0’ and ‘m1’ respectively). In the flat q case (right) the “zeroth”,
“first”, and “minus-oneth” gaps (m = (n− 1,n), labelled ‘m-1’) gaps are presented. In both
cases, the suffices ‘e’ and ‘o’ refer to the even or odd parity of the TAE mode.
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Figure 4.2: The TAE drive measured using the MHD workflow for varying numbers of poloidal
sidebands included in the calculation. The number of sidebands (sb) indicated in the legend
are both above and below the main pair of poloidal mode numbers, n− sb ≤ m ≤ n+ sb+ 1.

n & 15 in the damping rates between that from the local kinetic calculation, as used in
the MHD workflow, and the global kinetic eigenvalue.
Overall, we note that the even-parity ‘zeroth’ gap exhibits the largest total growth

rates, although for lower mode numbers n ≈ 10, we observe that the most unstable
modes correspond to the (even) ‘first’ gap. We also see for medium mode numbers,
(n ≈ 15 → 40) that the odd ‘zeroth’ gap modes are also weakly unstable, owing
primarily to their weak damping rates.
Figure 4.1 (right) shows the linear properties of the TAEs for the flatter ITER

scenario, showing the drive, frequency, damping, and total growth rate for three gaps
(‘zeroth’, ‘first’, and ‘minus-oneth’), all calculated using the global kinetic workflow.

For this scenario, we see that the ‘zeroth’ gap is most unstable, and along with the
‘first’ gap, is unstable over a wide range of mode numbers (10 . n . 45). However, for
higher mode numbers (25 . n . 40), also the ‘minus-oneth’ branch is unstable.

For this scenario as with the standard scenario, the largest drive is seen in the ‘zeroth’
gap, however, when compared with the standard scenario, the most unstable toroidal
mode numbers are reduced, with large drive seen already for n = 12. Also, for n & 15,
the damping rate is comparable for the ‘zeroth’ gap between the scenarios, however for
the ‘first’ gap, the damping is much reduced compared with the standard scenario. We
explain this due to a reduction in the ion Landau damping. As the modes are located at
larger radial position, this corresponds to a position where the ion temperature is lower.
As the ion Landau damping occurs primarily in the tail of the Maxwellian distribution,
this term is exponentially sensitive to the ion temperature. This leads to the total
growth rates being comparable for larger n between the ‘zeroth’ and ‘first’ gaps.
In the case of lower n (. 15), we see a large deviation in the drive between the
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Figure 4.3: Radial TAE eigenfunctions from the MHD workflow calculated with different
numbers of poloidal harmonics (left: 0 sidebands, 2 harmonics; middle: 2 sidebands, 6
harmonics; right: 4 sidebands, 10 harmonics) for toroidal mode numbers (top: 10, middle: 20,
bottom: 30).
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Figure 4.4: TAE eigenfunctions calculated with global MHD workflows (blue) and global
kinetic workflows (green) for (a) n = 20 and (b) n = 30. The MHD eigenfunctions were
calculated with 2 sidebands, corresponding to the central column of figure 4.3.
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MHD and kinetic workflows. In these cases, we experienced also difficulty in resolving
these MHD workflow calculations. For lower n, it is necessary to increase the number
of poloidal harmonics significantly for the solution to converge. Figure 4.2 shows the
measured TAE drive as a function of the toroidal mode number n, for varying numbers
of poloidal harmonics included in the global MHD workflow. We note that for n & 25,
this converges readily with respect to the number of sidebands. Due to the increased
expense of solving the eigenvalue problem, we solve this up to 5 sidebands (12 poloidal
harmonics), although we note that even in this case, strict convergence is not reached
for all low mode numbers (n . 20). As the MHD workflow is not the main focus of this
work, we do not pursue this further, but instead restrict our attention for this workflow
to n & 20.
Figure 4.3 shows the MHD eigenfunctions for different numbers of sidebands, for a

range of n. It can be seen that for larger n (for example n = 30), the mode structure
is narrow, without radially extended interaction of the TAE with the continuum. As
a result, the mode structure is very simple, and can be accurately represented even
with few harmonics retained. For lower n, the mode structures are more global, with
features present in more harmonics, therefore a larger number of harmonics are needed
to represent the mode structures accurately.

We shall find in the next chapter that these global, lower nmodes are indeed confirmed
by global gyrokinetic simulations to be weakly damped, and stress the importance of
retaining their effects, in contrast to previous works which used local models [22] or
neglected the global low n modes [95].

4.2.1 Influence of the energetic particle distribution function
on the drive

In light of work to be shown in the next chapter, we take the opportunity to compare
the drive between cases with the nominal distribution function for the alpha particles,
an isotropic slowing down distribution with birth energy of 3.5MeV, and a Maxwellian
distribution with temperature of 900 keV [22, 96]. We choose two representative modes
from the main gap, n = 20, and n = 30. The results, calculated in the absence of
damping, including only the drive, are in table 4.1.

Table 4.1: Measured drive for TAEs driven by alpha particles with Maxwellian or slowing
down distribution functions.

Maxwellian Slowing Down
n=20 3.55·104 s−1 4.42·104 s−1

n=30 3.73·104 s−1 4.14·104 s−1
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This confirms that the error in the TAE drive is relative small, which justifies the
simplification of the EP distribution function in the next chapter. This will also allow us
to contextualize the growth rates measured with the Maxwellian distribution function
in the next chapter, and can in principle be used to renormalize the observed growth
rates for a comparison with those from a slowing down distribution.

4.3 Nonlinear saturation
Taking the standard ITER scenario from the above section, we now run longer sim-
ulations of the even parity zeroth gap (the gap with the largest linear growth rates),
allowing the mode growth to saturate due to nonlinear wave-particle trapping, akin to
what is seen in a one-dimensional bump-on-tail model [40]. Note that these simulations
are still performed for single TAEs. We measure the saturation amplitude (Amax) as the
first maximum after the linear growth phase, measured in units of relative perturbed
radial magnetic field (δBr/ |B|). We perform this exercise for both MHD and kinetic
workflows and the results are plotted in figure 4.5.

In figure 4.5a, we observe a peak in the saturation amplitudes at n = 25 for the
global kinetic workflow (maximum amplitudes ∼ 3.5 · 10−3), and a similar but broader
peak for the global MHD workflow at somewhat lower amplitude (∼ 2 · 10−3). In
figure 4.5b, we plot the saturation amplitude from figure 4.5a against the normalized
linear growth rates from the previous section. Here we observe a scaling for both
workflows which looks approximately quadratic, as one might expect from analytical
theory [97]. Such analytical calculations, however, employ several simplifications, most
noticeably assuming that the nature of the resonance is not changing as γ/ω changes,
which is virtually fulfilled in the case of varying γ by varying the energetic particle
density. On the other hand, we here change the linear drive and damping by changing
the modes themselves, therefore both the mode numbers and the resonance properties
are changing as well. For this reason, we do not expect any exact agreement with
quadratic scaling. In figure 4.5c, we plot the coefficient of proportionality between the
saturation amplitude and a quadratic scaling assumption as a function of the toroidal
mode number.

The first conclusion to be drawn is that the coefficients differ for the two workflows.
A possible reason for this would be the kinetic upshift of the frequencies as compared to
the MHD results (seen in the second panel of figure 4.1), even though the measured drive
and growth rates are broadly similar. An additional effect of the increased frequencies
is a change in the population of energetic particles which are resonant with the mode.
The next conclusion is that for the MHD workflow, the coefficient is close to constant
(∼ 0.3), implying that a quadratic scaling is indeed a reasonable approximation of the
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relationship between the saturation amplitude and the linear mode properties. In the
case of the the kinetic workflow, the coefficients are larger (∼ 0.8) and show a weak
positive correlation with n. Finally, we notice that other than at n = 20, where the
reduced damping was barely sufficient to saturate the mode, the cases with significantly
reduced damping in the MHD workflow show very similar scaling coefficients to the
cases with nominal damping.
To summarize, we observe that, even though the quadratic scaling is not perfectly

recovered in the case of the kinetic workflow, the deviation from it is smooth and
therefore the entire range of saturation amplitudes can easily be predicted from the
linear mode properties and from a small number of cases run nonlinearly and used to
fit the quadratic scaling coefficient. These results can be used as input in the view of
further development of reduced quasilinear EP transport models (e.g. in reference [98]).

4.4 Towards non-perturbative nonlinear saturation

Nonlinear results observed with non-perturbative hybrid models exhibit mode structure
variation associated with frequency chirping [30], we shall also show results in a later
chapter obtained with nonlinear non-perturbative models where non-perturbative effects
on the mode structure will be evident. These effects are become likelier to be seen the
further the modes are far from the linear stability threshold (in the later chapter, we
observe such effects for γ/ω ∼ 3%). We note that the workflows used in the previous
section do not include such features, however they are sufficiently flexible to allow us
to study the effect of non-self-consistent mode structure modification. We note that
chirping using the HAGIS model has been previously demonstated [99].
To this end, the HAGIS code was extended to support a time dependent mode

structure in a simple fashion. On the intermediate time scale in the code, the following
procedure is performed. For each mode i, we calculate the energy of mode i; then we
update the mode structure of mode i, in this case by updating the parameters according
to an analytical expression; then we calculate the energy of mode i after the change
in the structure, and we rescale the mode amplitude to keep the energy in the mode
constant; finally, if applicable, we proceed to the next mode i+ 1.

Moving away from the standard ITER 15MA scenario, we perform an exercise based
upon the HAGIS/FAC ITER benchmark outlined in reference [65]. We simplify this
somewhat by taking a single toroidal mode, and keeping only a single poloidal harmonic,
which we parameterize by fitting a radial Gaussian function, using the expression in
equation 4.1, with µ and σ representing the mode radial position and the double square
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Figure 4.5: Mode saturation amplitude from nonlinear simulations plotted as a function
of toroidal mode number (a) and normalized linear growth rate (b) obtained using both
the global MHD and global kinetic workflows. Additionally plotted are also points with
significantly reduced (by factor ∼ 6) damping rates, to demonstrate the sensitivity of the mode
saturation to exaggerated uncertainties in the damping rate. In (c), we plot the coefficient
calculated by normalizing the saturation amplitude to the square of the normalized growth
rate as a function of the toroidal mode number.
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width respectively.

A(r) = A · exp
−(r− µ)2

σ

 (4.1)

We then define a time dependent function for the width term, a smoothed step
function, as in equation 4.2.

σ(t) = σ0 + ∆σ ·

 1
π

arctan
(
t− t′

∆t

)
+ 1/2

 (4.2)

We then perform the following experiment, for various values of ∆σ, ∆t and t′,
we perform nonlinear simulations and measure the saturation amplitude. We choose
parameters according to all combinations of, ∆σ = {0.4, 0.2,−0.2,−0, 4}σ0, ∆t =
{1, 5, 10} · 105, t′ = {1.0, 1.5, 2.0, 2.5} · 106, with t in units of the wave period. Some
examples of these are plotted in figure 4.6.
The results of this experiment are plotted in figure 4.7. The simplest conclusion is

drawn by looking at the solid line. This tells us that the saturation amplitude does
indeed weakly depend on the mode width, decreasing by ≈ 25% for σ = σ0/2, and
increasing by ≈ 5% for σ = σ0 · 3/2. The next conclusion is that most points lie
close to the solid line. This implies that the saturation amplitude is most strongly
affected by the width at the time during the saturation process. We also note that
four cases deviate significantly from the solid line. We also note that these points all
correspond to t′ = 2.5 · 106 (the latest time), and all correspond to ∆t = 105 (the
fastest transition). We also note that the other points with furthest deviation from the
line correspond to late times and fast transitions. There are two possible explanations
for the deviation. Firstly, from the lower panel of figure 4.6, we see that the deviation
from the linear phase has clearly started before t = 2 · 106, therefore any case where
the transition is centered around t = 2.5 · 106, especially cases where the transition
takes place quickly, will have already begun the nonlinear saturation process before any
significant modification to the mode structure has taken place. A second possibility
is that these fast transitions are too fast for the intermediate time scale implemented
in the model. This seems unlikely as the earlier time fast transition cases are closer
to the line, however it should be reminded that we apply a piecewise constant width,
which only approximates the smooth function in equation 4.2. This introduces some
additional uncertainty in the width at the saturation time, therefore the actual width
may have been narrower than reported. However, as this is such a large, rapid transition
of the mode structure relative to the saturation time scale, we do not consider this to
be worth pursuing in more detail.
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Figure 4.6: In the upper and middle panels, some example functions of σ(t) for t′ = 106

(upper) and t′ = 2.5 · 106 (middle). In the lower panel, we plot the amplitude evolution for
the simulation with the reference mode width (σ(t) = σ0), noting that the saturation occurs
at t = 2.58 · 106 (marked with the vertical line).
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Figure 4.7: Mode saturation amplitude plotted against σ(tsat) for 48 combinations of
parameters in the time dependent width equation 4.2. The point type denotes the value of ∆t
and the point colour denotes the value of t′. The solid line shows the values of saturation
amplitude obtained when performing a scan of mode widths σ (constant in time). The
vertical line corresponds to the nominal case σ(t) = σ0, the value shown in the lower panel of
figure 4.6.
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5 Initial value global gyrokinetic
simulations of energetic particle
driven modes in ITER

5.1 Starting with a reduction of the problem
In order to start simulating the TAE case of ITER, we start by simplifying the problem.
We shall then assess the effect of the simplifications and, if necessary, move in the
direction of the more complete case. These simplifications have been performed in the
interest of numerical stability; numerical cost; to aid comparisons; or to simplify the
setup of the study.
The first simplification we perform is to treat the alpha particles as a Maxwell-

Boltzmann distributed species with temperature of 900 keV [22, 96]. The next simplifi-
cation is that instead of treating the background plasma ions as a half-half mixture
of deuterium and tritium ions, we can instead treat the background plasma ions as a
single species of a hypothetical hybrid isotope, with atomic mass 2.5. The effect of this
approach was quantified in [8]. Although the mass ratio between 2.5DT ions and elec-
trons is approximately 4500, if one increases the mass of electrons in simulations, which
affords a numerical saving, the physical results do not necessarily change. Therefore,
we start by considering heavy electrons, giving a reduced mass ratio of 200. We also
neglect impurity ion species, such as (cold) helium ash and beryllium. The effect of
these species is also studied in [8] and will be discussed later. Even though collisional
processes are present in plasmas, the physical processes we are investigating are princi-
pally collisionless and short in time scale. Therefore, we neglect any collisions, as well
as any particle and energy sources and sinks. For long time scales, of the order of the
plasma transport time scales, these effects would need to be included. We are interested
in core-plasma phenomena, however in this ITER scenario, the background plasma
density profiles include large temperature and density gradients in the edge. These
exceptionally steep gradients cause problems for the model, which was not intended
for studying such profiles. Therefore, we start by considering flattened profiles for the
background plasma, taking values for the electron and ion temperatures approximately
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equal to their values at the mid-radius. We shall then later keep the effect of the profile
variation by removing the gradients only from the steep region of the profiles in the
edge. As we are interested in the discrete toroidal mode number eigenmodes, we set the
filter in each simulation to include only a single n (unless explicitly stated otherwise),
and the corresponding band of poloidal harmonics according to the field-aligned filter
m(r) = bn · q(r)c±∆m, with ∆m chosen as 5. Finally, since a gyrokinetic code is used,
it is possible to neglect the averaging of the gyromotion and consider a species as if
drift-kinetic. This is always done in the case of the electrons, but can also be done in
the case of ions. This slightly reduces the cost of simulations, but also increases the
growth rate of the mode and also allows a comparison with hybrid drift-kinetic results.

From hybrid modelling, we expect the TAE drive to be largest in the range of n = 20–
30. From eigenvalue calculations, we also expect that for n & 20, the TAE structure
should become localized. Also for larger mode numbers, both toroidally and poloidally,
we will require more points to accurately represent such a perturbation. When we take
all of these factors together, we shall start by studying mode numbers between 20 and
30, starting with the n = 24 TAE.

5.2 Initial simulations of n=24 AEs
To initialize a simulation, it is necessary to apply a small initial perturbation. Here,
one has several choices as to the nature of such a perturbation. Most of the simulations
presented here will be initialized by applying some knowledge of the TAE physics. In
this case, we expect that the mode structure primarily comprises two relatively narrow
poloidal harmonics (in this case, m = (n,n+ 1)), only narrowly separated, and centred
at the location where the safety factor is approximately q = m+1/2

n , which in this case is
q = 24+1/2

24 ≈ 1.02, corresponding to a radial position of s ≈ 0.4. We therefore initialize
two radial Gaussian perturbations with the corresponding m and n. This gives the
same final results as an alternative initialization, but enables the simulation to establish
the linear mode structure faster. An alternative initialization is used when we do not
have a good estimation of the linear mode structure, which has a much broader radial
envelope, and initializes many poloidal harmonics according to the local safety factor.
Finally, we can also initialize an initial perturbation with a random radial structure,
according to a range of poloidal mode numbers. This is not conducive to obtaining
clean, well defined modes, but can be useful for probing the continuum spectrum.

In figure 5.1, we show snapshots of poloidal cross sections of the simulation domain,
showing the electrostatic and electromagnetic potential perturbations due to the mode
obtained via a simulation of the n = 24 TAE mode structure with double the nominal
EP density. This simulation has been done according to the most simplified case
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above. We see that the two quantities show broadly similar shapes, but whereas the
electrostatic potential shows a maximum on the low field side (right of the figure), the
electromagnetic potential has a maximum on the high field side (left). This observation is
in line with analytical expectations. To facilitate more detailed analysis and comparisons
of mode structures however, it is convenient to look at the radial structures of the
different poloidal harmonics of the mode. We therefore show in figure 5.2 the poloidal
decomposition of figure 5.1a, plotting the absolute value of each harmonic. We typically
only plot harmonics whose peak is at least 5% of the peak harmonic. This forms our
primary method for evaluating the spatial structure of the modes. By also looking at
the time evolution of the electrostatic potential (taking points on the low field side at
poloidal angle of 0), we can measure the frequency and growth rate of the mode. This
analysis is shown in figure 5.3.

We here take the opportunity to introduce the diagnostic method presented here for
the frequency and growth rate analysis. In the upper part of figure 5.3, we see the
signal envelope. This signal envelope is in fact the magnitude of the nth component
of the toroidal Fourier component of the signal. The growth rate of this envelope is
fitted in the shaded region, giving the growth rate of the mode. The signal (at a fixed
point in space) is then divided by the exponential fit of the envelope. This normalized
signal is then Fourier transformed in time, shown in the lower part of the figure. The
peak of the Fourier transform is then fitted to give the real frequency of the mode. In
general, this procedure is performed at all radial positions independently. Figure 5.4
shows the measurements of the growth rate and real frequency at all radial positions.
The fitting of the envelope can be performed using different methods. Here, we take
the fit obtained by taking the points which are local extrema. The fit in figure 5.3 is
evaluated at the position of the maximum of the mode and corresponds to s = 0.4 in
figure 5.4b.

If we simulate instead the full radial domain, we can test the validity of running this
simulation on a reduced annulus. The mode structure, shown in figure 5.5, matches
closely that of the annular simulation, as do the frequency and growth rate, which are
shown in figure 5.6.
We can also run the same simulation without energetic particles present. By doing

this, we can see the initial perturbation decay, showing us two interesting phenomena.
To do this, we use the alternative initialization described at the beginning of this section.
Firstly, we note that we no longer only see the most strongly driven mode, but now
a mixture of all the weakly damped modes with n = 24. By looking at the radial
frequency plot in figure 5.7a, we see that also other modes such as the ellipticity induced
Alfvén eigenmodes (EAEs) and triangularity induced Alfvén eigenmodes (NAEs) are
present at higher frequency. The second feature is that as the initial perturbation is
decaying away, we also see in the radial frequency spectrum the nature of the continuum.
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(a) Perturbed electrostatic potential. (b) Perturbed electromagnetic potential.

Figure 5.1: (a) Electrostatic and (b) electromagnetic potential perturbations in the poloidal
plane, showing n = 24 TAE simulated on an annulus with reduced mass ratio.

We include in this figure also the Alfvén continuum calculated using both the ideal
MHD and the kinetic versions of the eigenvalue solver LIGKA. Figure 5.7b shows the
same exercise, but with the noisy, random, initialization also described at the beginning
of this section. In this case, we can see the nature of the continuum in both cases,
although the modes are more clearly visible in figure 5.7a. In that case, we plot the
radial harmonic structure in figure 5.8. Here, we can see that the radial harmonic
structure is a superposition of different modes, demonstrating that weakly damped
sub-dominant stable modes exist.

5.2.1 Ellipticity induced Alfvén eigenmode (EAE)

In simulations with no energetic particles, for example as shown in figure 5.7, we can
observe the n = 24, m = (24, 26) EAE mode at a higher frequency (ω ≈ ωA) and at a
slightly larger radial position (s ≈ 0.52) as compared to the TAE. In figure 5.8, we can
see the corresponding peak of the mode structure. In order to study this mode further,
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Figure 5.2: Mode structure for an n = 24 TAE simulated with flat background profiles,
double the nominal EP density, reduced mass ratio of mi/me = 200, simulated on an annulus
of s = 0.2–0.7. The labels refer to different poloidal harmonics of the electrostatic potential.
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Figure 5.3: Frequency and growth rate analysis performed for the same n = 24 simulation
as shown in figure 5.2. In the upper part of the figure, we show the envelope evolution and
the fit for the growth rate, which is written in the label of the figure. In the lower part, we
plot the amplitude of each frequency bin (in units of the Alfvén frequency) of the normalized
signal after applying a Fourier transform. For the purpose of interpolating the frequency, we
also fit a Lorentzian function to the values in the bins of the Fourier transform.
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Figure 5.4: Measurements of the frequency and growth rate at different radial positions,
applying the same procedures as in figure 5.3, which equates to a cut of these figures at radial
position s = 0.4. On the left, we plot the frequency spectrum, noting that each radial position
is normalized independently based on its fit in the right figure.
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Figure 5.5: Mode structure for an n = 24 TAE simulated with flat background profiles,
double the nominal EP density, reduced mass ratio of mi/me = 200, simulated on the entire
radial domain. The labels refer to different poloidal harmonics of the electrostatic potential.
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Figure 5.6: Frequency and growth rate analysis performed for the same n = 24 simulation
as shown in figure 5.5.

(a) (b)

Figure 5.7: Radial frequency spectrum for n = 24 simulated with zero EP density. Initial-
ization is based on (a) broad radial structure and poloidal mode numbers chosen to be field
aligned and (b) random radial structure and a fixed range of poloidal mode numbers. On the
left, we overplot the Alfvén continuum from the ideal MHD version of LIGKA in white and
the Alfvén continuum from the analytical kinetic version of LIGKA in yellow.
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Figure 5.8: Radial harmonic structure for n = 24 simulation without EPs present. The
simulation corresponds to figure 5.7a.
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Figure 5.9: Radial harmonic structure (left) and damping and frequency measurements
(right) for an n = 24 EAE simulation without EPs present.

it is possible to create a simulation specifically tailored to this mode. We initialize now
a narrower envelope with harmonics m = 24 and 26 located close to the q = 25/24
rational surface, as expected from analytical theory, and we can further decrease the
simulation domain for this exercise given the locality of the EAE eigenfunction to help
us to exclude other modes. In figure 5.9a, we show the radial mode structure of this
EAE, with the frequency and damping measured in figure 5.9b. With a damping rate of
only 0.6% of the mode’s real frequency, this mode is only weakly damped. However, as
we only see this mode in simulations without energetic particles present, it is reasonable
to infer that these modes are at most weakly driven by the energetic particles we
consider. This conclusion is in agreement with previous studies of EAEs [61].

5.2.2 Odd-parity TAEs

Within the TAE gap, there can exist eigenmodes with frequencies close to the lower
part of the gap, in which case the poloidal harmonics of the electrostatic potential have
the same sign and are said to be even-parity, or having a ballooning structure. This
includes the TAE modes found so far in this section. In addition to these modes, there
can also be eigenmodes with frequencies close to the top of the gap, which lead to
odd-parity modes, which possess anti-ballooning structures. Here, we modify slightly
the initialization, by multiplying the upper harmonic of the TAE by a prefactor of −1.
If we then perform this simulation without energetic particles, then after some time,
we can see both the even and the odd parity TAEs. In figure 5.10a, we see the splitting
of the frequency close to ωA/2 into the even TAE and the odd TAE at the lower and
higher frequencies respectively. An analysis of the frequency close to the mode position
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Figure 5.10: Analysis of the frequency for n = 24 TAEs without energetic particles, initialized
with odd parity. In (a), the radial frequency spectrum, with the Alfvén continuum, as calculated
from the ideal MHD version of LIGKA, overplotted in white. In (b), the frequency analysis
performed at s = 0.35 showing the fit of the twin frequency peaks.

(at s = 0.35) reveals peaks of the frequency at 0.55 and 0.45 ωA (which is shown in
figure 5.10b). In the figure, we overplot the ideal Alfvén continuum obtained from the
ideal MHD version of LIGKA, and we see that, as expected, the mode frequencies are
close to the upper and lower extrema of the TAE gap. We note by their absence in
simulations with EPs present, although we see that they are not heavily damped, that
the odd-parity TAEs are not effectively driven by the EPs considered.

5.3 Dependence on the electron mass
As previously mentioned, it is convenient to increase the electron mass, (in other words
reduce the mass ratio (m.r. = mi/me)), in order to reduce the difficult and cost of
initial value simulations. For a fixed energy, the electron velocities scale inversely with
the square root of the electron mass. The increased cost associated with large mass
ratios comes due to the reduction on the time step (dt) needed to resolve the faster
electron motion. If there were to be no further change in the plasma dynamics, we
would therefore expect to require a time step which scales with the square root of the
electron mass.
In addition to the numerical considerations outlined above, there is also a physical

consequence of changing the electron mass. As one of the physical damping mechanisms
of the mode, electron Landau damping, is dependent on velocity space resonances,
typically located close to the trapped-passing boundary of the thermal electrons. There-
fore, we expect this term to be affected by any changes to the electon mass. From
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previous analytical theory (e.g. equation 34 of reference [74]), we can estimate that the
electron Landau damping should be proportional to vA/ve, and therefore proportional
to m1/2

e . We expect, therefore, that for an artificially large electron mass, we would
see an increased electron Landau damping. However, in the presence also of other
damping contributions, some reduction in the mass ratio should not significantly affect
the mode’s damping rate.

To estimate the damping of a mode using an initial value method, we can remove the
drive (i.e. setting the EP density to zero), and measure the growth rate. However, there
are a number of issues with such a method which complicate measuring the growth
rate of decaying simulations. Firstly, there is no guarantee that the observed mode
(assuming that we observe a single mode) is exactly the same mode as in the driven
case. Incidentally, this statement can also be applied to cases with a significant increase
in the EP density. Secondly, there is an additional numerical problem associated with
accurately measuring strongly decaying modes. As the amplitude of the mode decreases,
the signal to noise ratio decreases, decreasing the quality of the simulation. Therefore,
particularly if we want to exclude the initial phase, fitting only the time frame with
a well established eigenfunction, then we are typically left to only a relatively short
time window for analysis. An alternative method, which can help in such cases is to
measure the damping as the offset to the linear relation between EP density (i.e. drive)
and growth rate. This method of course can only be used when the energetic particles’
contribution to the eigenmode is non-perturbative.

Here, we run a series of n = 26 TAEs, much like the n = 24 examples earlier in this
section. In this case, to aid quantitive comparisons, all simulations are run with the
equilibrium scaled such that the on-axis value of the safety factor, q0, is 0.985 (previous
results in this section used the very similar value of 0.99). All of the following cases
use the experimental profiles, simulated mostly in annulus corresponding to a radial
domain of s = 0.2 to 0.7. We perform these simulations without EPs, with the nominal
EP density, and with double the nominal EP density, performing simulations with
ion-to-electron mass ratios ranging from very low (50), up past realistic (4557), up to a
few examples with a super-realistic (8000) mass ratio. For each case, we also perform a
convergence test with respect to the time step, in order to see the effect of the electron
mass on the time step convergence.
For each of these cases, we perform the following analyses. We fit the growth rate

of each case, by fitting to the absolute values of extrema point of the 26th toroidal
fourier component of the potential, measured at s = 0.453 (the location of q = 26+1/2

26 ).
We also perform a frequency analysis, by taking the temporal fourier transform of the
potential at a single point (φ = χ = 0, s = 0.453), normalized to the previously fit
growth rate. This frequency and growth fitting is performed within a time window,
namely t = 0 to 20000 ωci for the cases without EPs, and t = 20000 to 40000 ωci for
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the cases with EPs. Within such a window, it can be difficult, particularly in decaying
cases to measure the growth (decay) rate, but as we perform the same analyses for all
mass ratio and time step combinations, we can still perform a fair relative comparison.
Additionally, we shall perform a more detailed analysis for an individual example, which
allows us to put the decaying results in the context of an absolute comparison. As
a secondary method for measuring the growth rate, we perform the fit not on the
extrema, but on all values. By comparing the growth rate measured with the primary
and secondary methods, we can approximate an uncertainty range of the fit of our
measured growth rate, which is shown in figure 5.12. We observe that the decaying
cases have a non-negligible error, understandable because of the shorter fit range, the
weaker signal, and the coexistence of multiple decaying oscillations.

The results of these studies are shown in figure 5.11. Here, we plot the measured
quantities (frequency or growth rate) against the time step, normalized by multiplying
by the mass ratio.

From these results, we draw the following conclusions. Firstly, as we increase the ion
to electron mass ratio, we must decrease the time step almost proportionally in order to
see the same rate of convergence on the measured frequency or growth rate. This is an
interesting numerical result as, as we discussed earlier, one may expect that the time
step convergence would go only with the square root of the mass ratio. However this
expectation was made only if there is no modification to the mechanisms involved. We
also know that the spatial scale over which the interaction is taking place is reduced in
addition to an increase in the velocity and hypothesize that these effects combine to
cause the observed behaviour of the time step. The effect of a change in the size of
the spatial scales can be observed by looking at results obtained from an eigenvalue
code. We propose that the generality of this observation should be further investigated.
Secondly, the physical observation is that the growth rate is reduced in cases with
artificially heavy electrons. This is consistent with our previous expectation regarding
the increased electron Landau damping. From the figure 5.11a, we note that the lines
are approximately parallel, therefore it is a reasonable estimate that the error in the
growth rate measured with a well converged mass ratio of 200 would differ from a well
converged mass ratio of 4557 by approximately the width between the two lines in the
middle of the figure. This would suggest that an extrapolated value for the converged
growth rate with mass ratio of 4557 of ≈ 0.02ωA, or ≈ 4% of ω. Combining these two
observations, the motivation for using reduced mass ratios is confirmed, however when
wanting to do quantitive comparisons, we must choose a sufficiently small electron mass
such that the error due to any increased electron Landau damping is small compared
to the growth rates. Later results with mass ratio of 200 will use the value for the time
step of 1.875, corresponding to the third point from the left of the line labelled “200”
of figure 5.11a.
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Figure 5.11: Growth rates (a, c, e) and frequencies (b, d, f) taken from simulations of an
n = 26 TAE run with shaped profiles on an annular (0.2 ≤ s ≤ 0.7) domain for different
values of the electron mass and numerical time step. The alpha particle densities are double
(a, b), nominal (c, d), or zero (e, f). The legend refers to the ratio between ion and electron
mass, which also normalizes the values of the horizontal axis.
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Figure 5.12: The uncertainty on the fit of the growth rates, as per figure 5.11, approximating
the uncertainty by taking the discrepancy between measuring the growth rate by fitting the
entire signal or by fitting only the extrema of the signal. For double (top), nominal (middle),
and zero (bottom) alpha particle density.
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Figure 5.13: Damping rates as a function of mi/me, calculated with LIGKA, measured
in units of the mode real frequency. Data range from realistic mass ratios (4557) down to
heavy electrons (50). The red points, labelled ‘analytical’ were calculated using the analytical
version of LIGKA (as the rest of this work), whereas the blue points used the full numerical
orbits for integrations.
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Regarding the cost of the study, to run a simulation to t = 40000ωci requires ≈ 21000
steps with ∆t = 1.875. Each time step has a cost, depending on particle resolution and
parallelization, of approximately 0.5 core-hours. However, a similarly converged point
with realistic mass ratio would require 486000 steps, or 0.25 million core-hours, which is
beyond what can reasonably be performed for a single short linear single-n simulation.

As we compare the frequencies measured in cases without EPs, and with single and
double EP density, we observe that the energetic particle pressure gradient reduces the
real frequency, pushing the TAE frequency closer to the lower continuum. This result
is in line with the expected behaviour [100–102].

For a comparison regarding the dependence of the damping rate on the electron mass,
LIGKA was modified to allow the use of unrealistic mass ratios. These results are
shown in figure 5.13. Here, we observe qualitatively the same behaviour, although for
small mass ratios there are some quantitive discrepancies that are not fully understood.
The agreement over a large range close to realistic mass ratios is, however, satisfactory.

We also note that the decay rate of the cases without energetic particles is not the
same as the decrease in growth rate between the double and single EP density cases.
However, due to the difference in the fitting window, we do not yet infer a conclusion
from this. As discussed before, there are some difficulties associated with measuring
damping rates from decaying simulations, in particular due to the presence of additional
oscillations. Therefore it is difficult to accurately extract the damping rate in the late
period of simulations.

5.4 Stability of Toroidal Alfvén Eigenmodes in
ITER

Having demonstrated the capability of simulating Alfvén eigenmodes in parameters
similar to the those in ITER, we focus on the TAEs in cases with shaped background
plasma profiles, cutting only the gradients from the edge, the on-axis safety factor value
q0 = 0.985, and looking at the effects of mode globality, the linear spectrum of modes
present, and whether nonperturbative features in the modes are apparent. These are
evaluated at double EP density.

To this end, we shall focus in particular detail on a few example modes (high n, low
n), exhibiting varying behaviours, before summarizing the linear mode spectrum with a
scan over toroidal mode number.
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Figure 5.14: n = 30 TAE simulated in a global domain. (a) radial structure of poloidal
harmonics, (b) growth rate and frequency fit at mode position, (c) radial frequency spectrum
of mode.
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Figure 5.15: n = 12 TAEs simulated over a global domain. (a) radial structure of poloidal
harmonics, (b) temporal evolution of peak values for each poloidal harmonic, (c) growth rate
and frequency fit at mode position, (d) radial frequency spectrum of mode.

5.4.1 High toroidal mode numbers

Our first example is that of a high toroidal mode number, n = 30, similar to the
n = 24 and n = 26 cases shown previously. The basic analysis of this mode is shown in
figure 5.14. From the plot of the poloidal harmonics, we see that the mode structure is
well localized close to s = 0.42, the position where q = 30+1/2

30 . Looking at the plot
of the mode evolution, we measure a growth rate, γ ∼ 0.174 ωA, and a frequency of
ω = 0.5, corresponding to a normalized growth rate, γ/ω ∼ 3.5%. From the plot of the
frequency spectrum, we see that not only is the mode well localized, but also that it is
single frequencied.
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5.4.2 Low toroidal mode numbers

Our next example is a case with a lower toroidal mode number, n = 12. The analysis
of this mode is shown in figure 5.15. In contrast to the case with n = 30, this mode
has a radially extended mode structure. In figure 5.15b, we observe that the relative
peak amplitudes of the harmonics oscillate on a slow time scale as well as growing. In
figure 5.15d, we see a splitting of the frequencies present across a large radial domain.
If one were to look at the time evolution of the radial structure, one would see a
beating pattern of the m = 12, 13 peaks close to s ∼ 0.5 with respect to the outer
harmonics. Coupled together, these signatures provide evidence of multiple n = 12 TAE
modes with global structures and similar frequencies and similar growth rates. Because
of the interaction of these modes, it is difficult to obtain an accurate measurement
for the growth rates, which are approximately γ/ω ∼ 0.75% – 1.2%. For this case,
LIGKA also found three n = 12 global TAE eigenmodes with similar frequencies. These
eigenfunctions are shown as a comparison in figure 5.16, noting here that the weakly
damped outer TAEs are found in both gyrokinetic models. These were found to be
important for multi-mode nonlinear treatments in reference [20], and play a significant
role in chapter 6.

Noting that this mode exhibits global features, we consider a simulation of n = 12 in
a reduced annular domain. The results of this are shown in figure 5.17. We note that,
in comparison to figure 5.15, the mode structure is cut at s = 0.7 according to the
boundary condition. Interestingly, the mode growth rate is broadly similar, however
there is now no evidence of a beating of different modes, and only a single peak in the
frequency is observed.
These observed effects highlight the importance of using global models as well as

motivate the retention of linearly subdominant unstable and weakly damped modes in
hybrid simulations.

5.4.3 TAE linear spectrum

Now that we have shown some examples of local and global TAE mode structures at
low and high toroidal mode numbers, we present results from a scan across a broad
range of mode numbers. These results are shown in figure 5.18. We make the following
observations. Firstly, we observe a peak in the mode growth rates in the range of
toroidal mode number n ≈ 25 – 32. Secondly, for large mode numbers, where, as
discussed previously, the mode structure is relatively well localized, a reduction of
the simulation domain has no significant effect on the linear properties of the TAEs.
However, for lower mode numbers, we observe larger discrepancies in the linear growth
rates, particularly in the range n = 12 – 18. Finally, global results for n = 6 and n = 8
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Figure 5.16: Radial harmonic structure for three TAE eigenfunctions found for n = 12
with LIGKA, plotting the real part of the electrostatic potential. These eigenfunctions
were calculated for use in reference [20]. The legend refers to the frequencies of the modes,
normalized to ωA.
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Figure 5.17: n = 12 TAE simulated in an annular domain (0.2 ≤ s ≤ 0.7). (a) radial
structure of poloidal harmonics, (b) temporal evolution of peak values for each poloidal
harmonic, (c) growth rate and frequency fit at mode position, (d) radial frequency spectrum
of mode.
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were performed but are omitted as the modes are very close to marginal stability, and
the uncertainty on the fit is significant.

We also include on the figure some points showing the effect of finite Larmor radius
(FLR) effects on the EP distribution. Here we see that for large n, this provides a
significant reduction in the effectiveness of the mode drive. This shifts the peak in
the mode growth rates to n ≈ 20 – 25. This stabilization occurs as the gyro-radius
approaches the scale of the mode structure. The offset between cases with zero Larmor
radius (ZLR) and FLR is broadly inline with previous results [20], which reported a
decrease in the linear drive of approximately 1% of the linear frequency for cases with
nominal EP density for 20 ≤ n ≤ 30. However, a quantitive comparison is left open for
future work, as this should also consider non-perturbative effects.
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Figure 5.18: Scan of the mode growth rates (a) and frequencies (b) over a range of toroidal
mode numbers n. These are calculated for simulations on both annular (crosses) and global
(circles) domains. An additional point is added for reference, showing the results for n = 26
with nominal EP density on the annular domain (as in figure 5.11c). In (a), we also add
growth rates measured with finite Larmor radius (FLR) effects enabled in the EPs (black
crosses), simulated on annular domains.
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6 Nonlinear global gyrokinetic
simulations of energetic particle
driven modes

Following on from the previous chapter, we can consider the nonlinear behaviour of the
TAE spectrum shown in figure 5.18. Here, we run simulations with the wave-particle
nonlinearity enabled, such that the energetic particles are free to become trapped in
the perturbed fields, and therefore locally flatten the distribution function close to the
resonances. This flattening removes the mode drive and therefore the mode saturates.
This flattening also causes some amount of EP transport, and the local flattening can
potentially create a localized steepening either side of the flattened region that can
possibly lead to enhanced drive of the other weakly damped or linear subdominant
modes.

6.1 Nonlinear single-mode simulations
The linear results discussed in §5.4 were, in fact, analyses of the linear phase of runs
using the nonlinear equations of motion for the EPs in ORB5. It is therefore possible,
by running the simulations longer, to observe mode saturation due to wave-particle
nonlinearities. Given the results of §5.4, we focus initially on the most unstable modes,
starting with mode numbers 20 ≤ n ≤ 30.

In figure 6.1, we show the nonlinear evolution of the poloidal harmonics of the n = 30
case, initialized with m = (30, 31), m = (31, 32), m = (32, 33) perturbations at radial
positions s ≈ {0.42, 0.55, 0.59} respectively. Here, we see the subdominant TAEs,
associated with m = 32–39, remain present, but saturate later at a lower amplitude
than the TAE of the main gap, m = (30, 31), although m = 32 has by this point become
masked by the harmonic of the main TAE. We measure that the peak amplitudes
for the m = 30, 31 harmonics are approximately 0.025, 0.0205, with other harmonics
approximately an order of magnitude or more smaller, with the largest harmonics
which saturate later than the main gap, m = 33–36 with maximum amplitudes of
approximately 0.001. Measuring the toroidal envelope, obtained by summing all the
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Figure 6.1: Nonlinear evolution of the poloidal harmonics of the electrostatic potential for
n = 30 TAEs, run on an annular domain. In black, the peak value of the toroidal envelope is
shown.
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poloidal components for n = 30 on the outboard midplane of the low field side (LFS,
poloidal angle χ = 0), we observe a peak value of 0.05. These values of the saturation
amplitude (|φn| or |φmn|) are measured in arbitrary units, but in figure 6.2a, we see
how this maps to the physical quantity of perturbed density δn/n, for which we see
extrema of −1.9 · 10−3 and 2.5 · 10−3.

In figure 6.2a, we show the initial and final profiles of the EP density, normalized to
the volume averaged electron density. Close to the mode position (s = 0.42), we do
not observe any significant change in the density profile caused by transport of EPs.
Only a closer look at the perturbed density, shown in figure 6.2b, reveals that there is a
small flattening in the EP density profile, as expected by the wave-particle saturation.
We notice non-perturbative features in the mode structure and frequency, noting

the splitting of the main peaks of the harmonics in the frames of figure 6.3. From this
pattern, we infer frequency chirping, the downward and upward frequency shifting of
the inner and outer harmonic respectively.
We compare this result to the same case run on the full radial domain, noting a

different initialization, here initializing only the TAE of the main gap, m = (30, 31) at
s ≈ 0.42. When we look at the evolution of the poloidal harmonics of the potential,
shown in figure 6.4, we see very similar behaviour. A quantitative comparison shows that
peak values for m = 30, 31 are 0.025, 0.0204, with m = 29 the next largest harmonic at
approximately 0.003. In this case, the peak value of the toroidal envelope is also 0.05.
This close match justifies the use of reduced radial domains for simulations of high n
modes.
We also consider the case of n = 20, recalling from figure 5.18 that the global and

annular results for n = 20 showed good linear agreement, whereas n < 20 showed
significant discrepacies. We therefore compare the behaviour for annular and global
n = 20 simulations in the nonlinear phase. This comparison is presented in figure 6.5.
We see a reasonable agreement between the two cases, but note that some differences
are can be seen.

6.2 Nonlinear multi-mode simulations
Having shown in the previous section reasonable agreement for the somewhat global
TAE (n = 20), and excellent agreement for the well localized TAE (n = 30) between
global and annular simulations, we justify the use of an annular domain for a multi-mode
investigation into this range of mode numbers. Here, we run simulations with multiple
modes present, keeping n = {20, 21, . . . , 30} in the filter when solving the field equations.
We show the evolution of the peak envelope for each toroidal mode in figure 6.6. The
values are calculated in the same way as the black line shown in figure 6.1. Here, we see
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Figure 6.2: Initial and final profiles of the (a) total and (b) normalized perturbed EP density
for the simulation shown in figure 6.1.
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Figure 6.3: Snapshots of the radial structure of the poloidal harmonics of the electrostatic
potential of the n = 30 case shown in figure 6.1, taken at times: (a) 100000, (b) 110000, (c)
120000, (d) 130000, (e) 140000, (f) 150000 ω−1

ci .
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Figure 6.4: Nonlinear evolution of the poloidal harmonics of the electrostatic potential for
n = 30 TAEs, run on an full radial domain. In black, the peak value of the toroidal envelope
is shown.
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Figure 6.5: Nonlinear evolution of the toroidal envelopes (LFS) of the electrostatic potential
for n = 20 TAEs, simulated on full radius and annular domains.
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that the modes initially saturate at values of ≈ 2–5 · 10−2, before undergoing another
growth phase, and reaching values almost an order of magnitude larger, noting that
n = 20 and n = 23 appear to show the largest values.
To investigate this, we look at the evolution of the poloidal harmonics of some of

the modes. In the upper panels of figure 6.7, we show the evolution of the n = 20 and
n = 24 components of the potential from this multi-mode simulation, plotting in each
case various poloidal harmonics. In the lower panels, we plot the same, but for the cases
with n = 20 or n = 24 only in the simulation, in these cases also overlaying the peak of
the toroidal envelope in black. In the nonlinear phase there are some clear differences
between top and bottom figures. In the linear phases of all the simulations, we see
the potential is dominated by the m = (n,n+ 1) main gap TAE. In the single-mode
simulations, this mode saturates and dominates, just as we saw in figure 6.1 for n = 30.
These saturate at comparable amplitudes in the single and multi-mode cases. However,
in the upper panels, we see that the higher harmonics, belonging to the outer TAE
gap(s) in the system continue to grow after the initial saturation of the main gap TAE.
These modes are then responsible for the overall increase in the envelopes, as shown in
figure 6.6.

These features are confirmed in the panels of figure 6.10, where for n = 20 and n = 24,
we plot the radial structure of the poloidal harmonics during the linear phase, close to
peak saturation, and in the late time. In the linear phase (upper panels, t ≈ 80000ω−1

ci ),
where we see the dominant peak is due to the m = (n,n+ 1) harmonics of the main
TAE gap at s ≈ 0.49 and s ≈ 0.47 for n = 20 and n = 24 respectively. In black we
overlay the toroidal envelope on the low field side (LFS, poloidal angle, χ = 0) in solid,
and on the high field side (HFS, χ = π) in dashed. We observe, as before, that the even
parity TAE, peaked on the LFS is dominant. Close to the peak saturation (middle
panels, t ≈ 200000ω−1

ci ), we see that for both n = 20 and n = 24, we observe the
peak further outside, s & 0.55, on the LFS. These are the perturbations which exhibit
enhanced saturation in figure 6.7. In the late time (bottom panels, t ≈ 390000ω−1

ci ), we
see that the outside peaks are still relatively large, although smaller than in the middle
panels, but we also see that in the main gap, the harmonics m = (n,n+ 1) exhibit
odd parity, peaked on the HFS. This observation reminds us of the behaviour shown
in §5.2.2, where we observe that, even though the odd parity TAE is not effectively
driven linearly by the EPs, it is weakly damped.

We also plot in figure 6.9 the contributions to the electrostatic potential in the poloidal
plane of n = 20, 24, 30, and the total poloidal plane. In particular, in the total poloidal
plane image, figure 6.9e, we observe triangular, or boomerang-like features [103] in the
mode structure, associated with the mode symmetry breaking due to radial propagation
caused by a difference in the radial position of mode drive and damping [104].

We perform a type of frequency analysis, different here from the previous frequency
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6.2 Nonlinear multi-mode simulations

analyses because of both the multi-mode simulation nature and the mixed LFS/HFS
peaking at different times. In this analysis, shown in figure 6.11, we plot the evolution
of the instantaneous frequency, as measured by evaluating the time derivative of the
phase of the Fourier component of the potential. This method can give an accurate
measure of the frequency if the signal contains only a single frequency. This evaluation
is performed at s = 0.489, the peak of the linear mode structure. Here we clearly
observe a change in the frequency during the late nonlinear time, with an emerging
dominant frequency at late time of 0.64ωA, consistent with the odd TAE sitting at the
top of the gap in the continuum.

As we see in figures 6.9, 6.10, 6.11, and 6.12, there are clear signs of non-perturbative
modifications to the mode structure and the frequency. Such features cannot be
described as a superposition of m = (n,n+ 1), m = (n+ 1,n+ 2), . . . gap modes. A
key observation is that such non-perturbative behaviour is observed in cases relatively
close to marginal stability (γlin,max/ωlin ≈ 3%).
The energetic particle transport, i.e. the modification to the EP density profile,

is shown in figure 6.8. We see a significant amount of redistribution in the region
0.5 . s ≤ 0.7, and evidence of significant losses (relative to our domain) at the outer
boundary (smax = 0.7). The maximum change in the EP density is observed at s ≈ 0.55,
where we observe δnEP/nEP = −0.34.

Although the single-mode nonlinear saturation for n = 30 matched closely between
annular and global domain simulations, and that the linear growth rates matched
well for n = 20–30; in the multi-mode case, given the increased transport at the
edge of the domain, non-local to the linearly most unstable modes, it is an open
question as to how these results would be modified in the case of considering a global
simulation domain. The multi-mode simulation presented in this section was particular
numerically expensive, being run with 10× the number of markers as the single-mode
cases Np = {320, 1280, 320} · 106 for the main ion, electron and energetic particle species
respectively. This makes it very difficult to perform a detailed sensitivity study, in
particular ruling out global runs at this time.

We do, however, attempt to evaluate sensitivity with respect to the retained modes
in the system by simulating the same case, but keeping only every second mode
(n = {20, 22, . . . , 30}), which we run with half the number of markers as the previous
case. The evolution of the toroidal envelopes is shown in figure 6.13a. Here, we
see qualitatively similar behaviour. We compare also the EP transport, plotting in
figure 6.13b in blue the EP density profile at the end of the simulation (t ≈ 200000ωci),
which we compare to the thin black line, which shows the EP density of the case
in figure 6.8 as measured at the same time as the blue line. Here we see that the
redistribution matches almost exactly in the case of with only even n as compared to
that when we keep all n. This increase redistribution is observed to be a robust feature

79



6 Nonlinear global gyrokinetic simulations of energetic particle driven modes

0 50000 100000 150000 200000 250000 300000 350000 400000
t [ 1

ci ]

10 5

10 4

10 3

10 2

10 1

Am
pl

itu
de

 (a
.u

.)

20
21
22
23
24
25

26
27
28
29
30

Figure 6.6: Nonlinear evolution of the peak values of the toroidal envelope of each toroidal
mode n, simulated on an annular domain.

of multi-mode nonlinear simulations.
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Figure 6.7: Nonlinear evolution of the poloidal harmonics of (a) n = 20 and (b) n = 24 from
the n = {20 . . . 30} simulation shown in figure 6.6. (c) and (d) show the nonlinear evolution
of the poloidal harmonics of n = 20 and n = 24 respectively in single mode simulations. In
black, the toroidal peak is plotted.
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Figure 6.8: Initial and final profiles of the EP density for the simulation shown in figure 6.6.

82



6.2 Nonlinear multi-mode simulations

(a)

0.2 0.3 0.4 0.5 0.6 0.7
s

0.000

0.005

0.010

0.015

0.020

0.025

Am
pl

itu
de

 (a
.u

.)

18
19
20
21
22

23
24
25
n=20 (LFS)
n=20 (HFS)

(b)

(c) (d) (e)

Figure 6.9: Contributions to the electrostatic potential at the late nonlinear phase (t =
387675ω−1

ci ). (a) shows the poloidal plane, showing n = 20, and (b) shows the poloidal
harmonic structure, also for n = 20, overlaid with a solid black line showing the toroidal
envelope at the low field side (LFS) (as was done in e.g. figure 6.1), and with a dashed black
line showing the toroidal envelope caluclated at the high field side (HFS), (poloidal angle
χ = π). (c) shows the n = 24 contribution to the poloidal plane, (d) the n = 30, and (e) the
contributions from all n. These data are taken from the n = {20 . . . 30} simulation shown in
figure 6.6.
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Figure 6.10: Poloidal harmonics of the electrostatic potential for (left) n = 20 and (right)
n = 24. These are plotted at (top) t = 79987.5ω−1

ci , (middle) t = 199987.5ωci
−1, and (bottom)

t = 387675.0ω−1
ci . In solid black, we overlay the LFS toroidal envelope at χ = 0, and in

dashed black the HFS toroidal envelope (χ = π). These data correspond to the simulation in
figure 6.6.
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Figure 6.11: Instantaneous frequency, measured as the absolute magnitude of the time
derivative of the phase of the Fourier coefficient of the potential for n = 20, calculated using
(a) m = 20 and (b) m = 21. The frequencies are fit in the shaded regions, shown in black
and grey lines for the linear and late nonlinear regimes respectively. The orange and green
lines show the moving average of the instanteous frequency averaged over T = 2π/ωav for
ωav = 0.463 and 0.64 ω−1

A respectively, changing at t = 200000ωci (the dashed vertical line).
Data from the simulation shown in figure 6.6.
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Figure 6.12: Short time Fourier transform (STFT) of the n = 20 signal on the LFS measured
at s = 0.45, 0.489, and 0.53 (top to bottom). Data from the simulation shown in figure 6.6.
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Figure 6.13: Time evolution of toroidal envelopes (a) and the initial and final EP density
profiles (b) for a nonlinear annular simulation with n = {20, 22, . . . , 30}. In (b), we overlay
the EP density profile from the case with n = {20, 21, . . . , 30} (as shown in figure 6.6), as
measured at the same time.
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7 Discussion and summary
During this thesis, we have shown a numerical study of the impact of TAE modes in the
15MA scenario for ITER, with double the nominal scenario value for the EP density.

This has been performed in chapter 4 using various flavours of a hybrid model, based
on the linear gyrokinetic eigenvalue solver LIGKA and the nonlinear perturbative wave-
particle hybrid initial value code HAGIS. Considerable effort was put into automation
of the hybrid model, as well as evaluating the sensitivity with respect to the model used
for the eigenvalues, with view to performing automatic evaluation of plasma scenarios,
or even embedding into a future EP transport model. We find that for well localized gap
modes (in the considered ITER scenario, this means n > 20), the linear behaviour is
not particularly sensitive to the model, with the global kinetic eigenfunctions delivering
similar behaviour to those calculated in the MHD limit combined with local kinetic
damping rates. We found that the TAE gaps in which modes are driven unstable depend
on the equilibrium, with a flat q scenario showing also modes in the ‘minus-oneth’
gap and the ‘first’ gap in addition to the ‘main’, ‘zeroth’ TAE gap. For the main
scenario, we see the unstable linear spectrum is dominated by the even parity modes
of the main gap, although other branches may be less damped. For intermediate n
(10 ≤ n ≤ 15), the growth rates for multiple TAEs gaps may be comparable. These
results are similar to previous works, but we developed automated workflows, which
allowed a more systematic evaluation of the results.

For the modes of the main TAE gap of the regular scenario, we performed nonlinear
single-n simulations using the different models and compared the saturation amplitudes.
Comparing the saturation amplitudes between global kinetic and MHD workflows,
we observed a slightly higher saturation amplitude for intermediate n, 20 ≤ n ≤ 35,
with both workflows peaking around n ≈ 25. In order to be able to easily predict
the saturation amplitude, it would be convenient if possible to ascertain the scaling
between linear properties such as growth rate or frequency and nonlinear saturation
amplitude. Some analytical work predicts a scaling of Amax = C(γ/ω)2 (depending on
saturation mechanism), however these works typically look at the effect of changing the
linear drive or damping of a single mode, where resonance properties will not change,
rather than the scaling of many different modes with respect to their individual growth
rates. Therefore deviations from this scaling are to be expected. We find that even
under these assumptions, the scaling coefficient is constant (MHD workflow) or varies
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smoothly (kinetic workflow). A difference of ≈ factor 2 between the coefficients with the
two workflows is noted, and further work could investigate this discrepancy. However,
due to the smoothness, it would be possible to simulate only a few cases nonlinearly
and interpolate the coefficient between them to predict the saturation of all cases. This
fast predictive ability could therefore be combined with a future transport model.

Finally we performed a numerical test designed to mimic the effect of mode structure
modification as a result of non-perturbative nonlinear behaviour. We implemented the
mechanisms for handling time dependent mode structures, and evaluate this by taking
an analytical mode structure (Gaussian), with a smoothed step function for the width
term. Performing this procedure with many different parameters (amount, time, and
speed of the transition), we found that the peak saturation amplitude would follow the
amplitude of a static case with the same width as the width at the time of the peak.
This gives us confidence that we would be able to mimic non-perturbative nonlinear
behaviour, even with a perturbative model. It also demonstrates the mechanisms by
which we could update the mode structure as the simulation evolves leading to a more
self-consistent coupled non-perturbative HAGIS/LIGKA model.
In chapter 5, we started evaluating the possibility of running the ITER scenario

with a global gyrokinetic initial value code. An important step of the process was the
extensive convergence tests performed, necessary for faith in numerical predictions,
in particular given the extremely large numerical cost of running electromagnetic
simulations with kinetic electrons. To begin, we made a reduction of the problem
(Maxwellian EP distribution function, neglecting gyroaverage on EPs, hybrid background
isotope, flattened temperature and density profiles for the background plasma, reduced
mass ratio). We demonstated that we can observe AEs with correct linear physics
properties, including higher frequency modes such as EAEs in decaying plasmas. We
demonstated also subdominant modes, the odd-parity TAE, and agreement with the
MHD/kinetic continuum spectrum. Moving then towards more realistic cases, we
restored the temperature and density profiles (but removed the gradients in the steep
edge region) and assessed the impact of the mass ratio on linear physics and numerical
properties. Physically, we found a slight increase in electron Landau damping for
cases with heavy electrons, and numerically we found the interesting result that the
convergence with respect to the time step scales ≈ (me/mi).
We performed a systematic linear scan of the toroidal mode numbers for both a

full radial domain as well as running on a reduced annulus. For low mode numbers
such as n = 12, the coupling of the outer poloidal harmonics leads to two or more
similar eigenfunctions with slightly different mode structures, frequencies, but very
similar growth rates. This phenomenon was observed clearly when running on the full
radial domain, but not when the outer harmonics are cut when running on an annulus.
For higher mode numbers (n ≥ 20) growth rates and frequencies agree. We add for
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comparison a case with nominal EP density, and some cases with the gyroaverage
applied for the EPs (FLR effects). FLR effects reduce the linear drive for n > 20, such
that n = 40 is fully stabilized. These linear studies demonstrate that we are able to
reproduce the linear properties, thus validating the code to linear eigenvalue calculations.
This gives us confidence in our predictive abilities when performing simulations of TAEs
with ORB5.

In chapter 6, we performed nonlinear continuations of the annular cases from the
previous chapter. As an example, n = 30 was run to nonlinear saturation, and we
observe that the EP redistribution is small. We compared this case with a nonlinear full
radius case, with complete agreement. We observed clear indications of non-perturbative
features in the mode structure and the frequency.
We then showed the impact of nonlinear interaction of multiple TAEs, running a

nonlinear multimode simulation with n = 20, . . . , 30. We saw a significant increase in
the total amplitude, with a ‘second saturation phase’ not seen in single-n simulations.
These correspond to an enhancement of the drive of the outer gap TAEs caused by
redistribution from the linearly dominant TAEs of the main gap. In the late (decaying)
phase, we observed the presence of odd-parity TAEs, reminding us of the previous
observation in decay experiments. In this case, we observed a significant redistribution
of EP density.
Finally, a similar simulation was performed, but keeping only every second mode.

The total redistribution was very similar to the dense case.
These nonlinear simulations with ORB5 show some agreement with previous nonlinear

hybrid works, for example the transition to regimes where we observe nonlinear excitation
of linearly subdominant modes leading to an overall enhancement in the total EP
transport, but also demonstrate features not observed in perturbative hybrid modelling,
such as the mode structure perturbation and frequency chirping.
We stress that we do not predict any danger for ITER with nominal parameters as

the findings showing enhanced nonlinear redistribution were evaluated at doubled EP
density. Instead, we demonstrate that it is possible to observe an enhancement due to
multi-mode effects, in contrast to some previous claims that such a threshhold may be
more than an order of magnitude larger [18].

To the best of our knowledge, no global gyrokinetic initial value code has previously
been applied to the TAE problem in ITER, either linearly or nonlinearly. This work
therefore goes beyond linear eigenvalue, linear and nonlinear hybrid-kinetic, and linear
local gyrokinetic treatments applied to this problem in the past and therefore offers a
quantitative improvement in our abilities to predict the transition between different EP
transport regimes.
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7.1 Outlook
Unfortunately, this work is not the end of the story. It does, however, provide the
foundation upon which to address the open issues which still remain.

As was mentioned in numerical introduction of the ORB5 code, small toroidal mode
numbers (especially n = 0) are particularly difficult to handle in global electromagnetic
simulations with large β. In this work, we have been able to run cases with n = 6, and
even then only after some improvements had been made.

The nonlinear wave-wave coupling effects require the retention of small n in order for
three-wave coupling to be evaluated for similar n, and n = 0 in order to include the
self-coupling. Therefore the impact of wave-wave nonlinearities was not investigated in
this work. In cases with small plasma β, studies including the effect of n = 0 recently
been performed using the ORB5 code.
We believe that the issues related to the handling of n = 0 with large β in a global

EM model will require a more careful handling of the equilibrium and the profiles, and
the distribution functions must be exactly consistent with the equilibrium.

Another limitation of our work was the restriction to Maxwellian distribution functions.
Although this is not a fundamental limitation of the model or the code, quantitative
predictions for ITER TAE stability should follow the implementation of a more realistic
distribution function, although the comparisons of the mode drive calculated using
HAGIS provides a context for our quantative study.

While we showed results of multi-mode simulations for the modes n = 20 . . . 30, other
choices could have been made. Hybrid multi-mode simulations have previously shown
the influence of the choice of included modes when performing multi-mode nonlinear
studies.
For longer time simulations, the lack of sources and collisions begin to play a role.

These effects could be included, although for the time scales included in this work, their
effects are small.
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