United States Military Academy
USMA Digital Commons

West Point Research Papers

Spring 4-22-2020

REBUF: Jam Resistant BBC based Uncoordinated Frequency
Division
Jaemin Ashley CDT'20

United States Military Academy, jaemin.ashley@westpoint.edu

Joshua Groen
United States Military Academy, joshua.groen@westpoint.edu

Mike Collins
Laboratory for Advanced Cybersecurity Research, mdcolli@tycho.ncsc.mil

Follow this and additional works at: https://digitalcommons.usmalibrary.org/usma_research_papers

b Part of the Information Security Commons, Signal Processing Commons, and the Systems and
Communications Commons

Recommended Citation

J. Ashley, J. Groen and M. Collins, "REBUF: Jam Resistant BBC based Uncoordinated Frequency Division
Multiplexing,' 2020 Wireless Telecommunications Symposium (WTS), Washington, DC, USA, 2020, pp. 1-6,
doi: 10.1109/WTS48268.2020.9198716.

This Conference Proceeding is brought to you for free and open access by USMA Digital Commons. It has been
accepted for inclusion in West Point Research Papers by an authorized administrator of USMA Digital Commons.
For more information, please contact thomas.lynch@westpoint.edu.

https://digitalcommons.usmalibrary.org/
https://digitalcommons.usmalibrary.org/usma_research_papers
https://digitalcommons.usmalibrary.org/usma_research_papers?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.usmalibrary.org%2Fusma_research_papers%2F408&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thomas.lynch@westpoint.edu

REBUF: Jam Resistant BBC based Uncoordinated
Frequency Division Multiplexing

Joshua Groen
EECS Department

Jaemin Ashley
EECS Department

United States Military Academy United States Military Academy

West Point, NY
jaemin.ashley @westpoint.edu

West Point, NY

Abstract—One of the central tenants of information security is
availability. One common form of attack against the availability of
information in wireless networks is jamming. Currently, the most
common techniques to provide jam-resistant communication,
such as frequency-hopping spread spectrum (FHSS), are based
on the use of a symmetric shared secret. However, there are
theoretical approaches to jam resistance without a pre-shared
secret. One theoretical approach using concurrent codes, called
the BBC algorithm, was developed at the United States Air Force
Academy.

We developed and tested the effectiveness of REBUF, a Jam
Resistant BBC based Uncoordinated Frequency Division Multi-
plexing (FDM) system. REBUF is the first known implementation
of the BBC algorithm in a simultaneous frequency division
multiplexing system. The contributions of this paper include:
demonstrating the practical use of a BBC based FDM system, the
ability of such a system to jam traditional orthogonal frequency
division multiplexing (OFDM) systems, and the resilience of such
a system to some common forms of jamming.

Index Terms—Spread Spectrum, Jam resistant, Random ac-
cess, MAC Layer, FDM, BBC

I. INTRODUCTION
A. Challenges of Using Preshared Identical Secrets

Wireless networks have traditionally relied on spread spec-
trum techniques to ensure the availability of network resources
[1]-[4]. A common example of this is the military’s use of
frequency-hopping spread spectrum (FHSS) where the trans-
mitter and receiver rapidly hop from one frequency channel
to another in a synchronized and unpredictable matter. In
order for successful FHSS communication to be achieved,
an initial secret of a pseudo-random sequence of frequencies
must be shared between the communicating devices and must
be unknown to all other devices [5], [6]. The sharing of an
initial secret is the defining aspect of all currently implemented
spread spectrum communication techniques. This need for an
initial secret for successful communication in spread spectrum
communication systems can be problematic.

Systems based on shared keys have poor scalability. Com-
munication systems with a large user-group must either pro-
vide a single-shared secret to every user or give each user a
unique shared key [7]. If large user-groups rely on a single
shared key, the attacker only needs to obtain one such key to
be able to jam the whole system [2]. If each member of a
large-user group had their own unique-shared key, the system

978-1-7281-4695-9/20/$31.00 ©2020 IEEE

Michael Collins
Laboratory for Advanced Cybersecurity Research
Annapolis Junction, MD
mdcolli@tycho.ncsc.mil

joshua.groen @ westpoint.edu

requires storing every shared key and listening on millions of
channels simultaneously, which is impractical.

There is little flexibility in re-establishing jam-resistant
communication if the secret key is compromised. In order to
re-establish jam-resistance, a new key must be shared between
the system users, typically requiring an out of band communi-
cation method. Integration of the REBUF system into military-
grade communication devices would allow users an additional
method of establishing jam-resistant communication. REBUF
requires no initially shared key in order to establish jam-
resistant communication.

B. Concurrent Codes and the BBC Algorithm

The BBC algorithm allows for a jam-resistant communi-
cation system without the need for an initial shared secret
[6], [8]. The BBC algorithm is the first efficient algorithm
utilizing concurrent coding to achieve this [8]. Concurrent
coding theory is quite complex; an in-depth description of
concurrent codes can be seen in the Concurrent Coding Theory
section of [9]. REBUF implements concurrent codes through
the BBC algorithm through a form of frequency division
multiplexing, originally described as Simultaneous Frequency
Hopping in [8]. The BBC algorithm consists of two sub-
algorithms: an encoding algorithm and a decoding algorithm.

The BBC encoding algorithm is based on the ability to
create indelible marks [8]. For a given message, the actual
locations of the marks are found by taking the hash of each
prefix of the message. For example, the word “1011” will
have four hashes. The prefixes to be hashed from “1011” are
“17, “107, “101”, and “1011”. The hashing function used in
REBUF is the Glowworm hash [10]. The locations of these
marks determine the specific frequencies that will be turned
on to create that packet’s signal. In this way, a packet can
be visualized as a string of 0’s and 1’s, where the value of 1
represents the location of the indelible marks and value of 0
represent no mark.

The BBC decoding algorithm is responsible for deriving all
possible messages from a packet. An efficient implementation
of the decoding algorithm is a depth-first search of the message
space utilizing the locations of the indelible marks within the
packet [8], [11]. As the BBC decoding algorithm progresses,
it will search through a binary tree representing the message

being constructed. Each node in the tree represents a “prefix.”
The decoding algorithm has three available actions at a node:
append a 0, append a 1, or drop the current message because
it is not valid. Both appending options symbolize constructing
the next potential prefix. The newly constructed prefix will
then be hashed to obtain a location. The validity of the prefix
constructed so far is determined by the presence or lack of an
indelible mark in the location [9]. Schweitzer does a fantastic
job visualizing the decoding process in [7].

C. Indelible Mark Density

An underlying assumption of the BBC algorithm is that
all marks are indelible. An indelible mark is defined as
the inability for attackers or external influences to delete
existing marks within a packet. An attacker has two options
to effectively attack a packet: remove marks or add marks. To
completely erase a mark, an attacker must send the inverse
of the transmitted signal at the correct time to cancel out the
original sine wave. This is assumed to be too sophisticated for
an attacker to achieve in real time. A more detailed discussion
of indelible marks can be found in [8].

Mark density is the ratio of the number of marks to the
total packet size. The encoding algorithm used for the current
system allows the option to choose a certain mark density.
Each packet can only transmit a message up to size z, which
is determined by the number of possible marks and the
mark density. If the total message size, n, is larger than the
specified size, x, the message is fragmented into % fragments
of size z and a packet is devoted for each fragment. During
a transmission, there are two ways the mark density of a
packet can increase: environmental noise and jamming. Both
factors introduce energy at some given frequency, which has
the potential to turn certain locations in a packet into a mark.

D. Hallucinations and BBC Vulnerabilities

The consequences of high mark density include halluci-
nations and overwhelming the decoder. Hallucinations are
defined as messages decoded by the receiver that were never
intentionally encoded by the transmitter [8]. There are three
classifications of hallucinations: working, terminal, and real-
ized. Working hallucinations only exist during the decoding
process and are commonly generated and eliminated. Terminal
hallucinations are those that survive the decoding process.
These hallucinations can be eliminated at an exponential rate
by adding known checksum bits to the end of each packet.
Realized hallucinations are those that survive the decoding
process and the checksum bit validation [12].

The greater consequence of high mark density is decoding
overload. BBC can always successfully decode the message
even with high mark density, though there may be Realized
hallucinations as well as the original message. It can be shown
that as long as the packet density remains below a critical
density (around 50%), the hallucination density remains steady
and the decoding time stays linear. However, the time to
decode increases exponentially above this critical density point
[91, [12], [13].

E. Related Works

There are numerous works on the BBC algorithm including
[6]-[12], [14]-[16]. In particular, Baird describes a hashing
function specifically designed for the BBC algorithm, the
Glowworm Hash [10]. A good visual demonstration of the
effectiveness of BBC in decoding messages in a noisy environ-
ment can be seen in [14]. Bahn studies the effect of extending
the critical mark density in BBC encoded packets through the
use of checksum bits [12]. This work found that checksum
bits enabled critical mark density to be increased to a higher
level.

There is also a wide array of studies conducted on jamming
and jam-resistant radio networks outside of the BBC algo-
rithm. Mpitziopoulous introduces the jamming vulnerabilities
of many Wireless Sensor Networks (WSNs) and performed
an analysis on the performance of traditional jam-resistant
techniques [1]. Press explores the theory of using “hypercarrier
parallelism,” a concept similar to the FDM implementation of
BBC [17]. This work builds some theoretical foundations to
analyze the non-symmetic properties of binary on/off keying.
Popper created a communication technique called Uncoordi-
nated Direct-Sequence Spread Spectrum that would establish
jam-resistance within broadcast communication without the
need for a shared secret [3], [18], [19]. Di Benedetto proposed
a MAC layer protocol that provides uncoordinated, wireless
medium access for Ultra Wide Band (UWB) radio networks
[20] without a shared secret. Xio proposes a system using
collaborative broadcast and uncoordinated frequency hopping
without a shared secret [21], [22].

II. DESIGN OF REBUF

A. BBC based Uncoordinated FDM

While different implementations of the BBC algorithm are
possible, there is currently no known use of the BBC algorithm
for frequency division multiplexing. REBUF is a form of
Jam Resistant BBC-based Uncoordinated Frequency Division
Multiplexing simulated and implemented in a laboratory en-
vironment using GNU-Radio and USRP Software Defined
Radios (SDRs). The indelible marks of REBUF are pure
sinusoidal signal’s at a given frequency with random phase.
The total frequency bandwidth is split into a fixed number of
sub carriers. Each sub carrier represents the possible location
of a mark.

BBC is fundamentally an uncoordinated coding scheme,
meaning there is no time synchronization required between
the sender and receiver [8]. This property holds for REBUF.
A sender can initiate a message at any time. The sender must
create the marks in a given packet for some finite amount
of time, ¢, but that amount of time can change. This can be
expressed as a packet sending rate of % As long as the receiver
collects samples of the spectrum at a rate greater than % all
the packets can be recovered with no need to synchronize the
sending and receiving clocks.

B. Signal Space Description

REBUF can also be thought of as a system that maps the
input message to a signal space consisting of all possible
signals of dimension IV, where N is the maximum BBC code
word size. We further restrict the code word to have a certain
maximum density, as discussed in section I-C. The receiver
must decide what was most likely sent, given what it received.
REBUF is built on the underlying assumption that no marks
are lost (no 1’s become 0’s). Instead of using a traditional
maximum likelihood decoder to find the nearest valid signal
to what was received, the receiver returns all possible code
words that are subsets of what was received.

As an illustration, let N = 3 with maximum density of %
The set of valid code words that could be transmitted for this
example are shown in equation 1.

00 1
Svatia =40 10 (D
100

However, the set of possible code words that could be received
include all possible signals of dimension 3, as shown in
equation 2.

0 0 1
01 0
1 0 0
Spossible =4q1 0 1 (2)
1 1 0
01 1
1 1 1

In this example, if the receiver detected {1 0 1} it would
return all valid code words that are subsets of what was
received: ie, those shown in equation 3.

0 0 1
Sreceive - {1 0 O}

As long as the received packet density is below the critical
mark density threshold, the original message can always be
decoded in a reasonable amount of time [12].

3)

C. Implementation

We used USRP N310 software defined radios (SDR) to
implement the new physical layer and allow for rapid devel-
opment and testing. The USRPN310 SDR has a maximum
instantaneous bandwidth of 100 MHz. However, the limiting
factor for the bandwidth was the network connection speed *
between the computer and the SDR which provided us 5 (
MHz of usable bandwidth. We used a center frequency of
2.452 GHz. While any frequency could be used, we chose
this frequency because it is the center frequency of 802.11 \j
WiFi channel 9. This allowed us to directly compare the jam
resistance of REBUF to OFDM based WiFi. 12

i3
D. Transmitter "
We used GNU Radio to interface with the SDR which
allowed us to write our code in Python. REBUF is configured '°
to use BBC to encode messages into vectors of 1024 bits

3 vectorSig

8§ ind2 =

with a mark density of 11 percent. This bit vector is used to
generate the frequency tones transmitted by taking the IFFT
of the bit vector. We designed our system to avoid a DC tone
in the base-band. In order to accurately create the tones, the
IFFT must include both the positive and negative frequency
components. This required us to duplicate the original vector,
flip the order of the bits, and prefix it to the original vector.
Figure 1 illustrates the bit positions of the final vector that is
passed to the IFFT function. The output of the IFFT is a sum
of cosines at the specified frequencies. This is then shifted
to the transmission center frequency of 2.452 GHz and sent
to the SDR via a GNU Radio sink. The GNU Radio block
diagram for the sender can be seen in figure 2.

mirrored vector |DC

1024]...]3| 21

original vector
1|2]z]... | 1024

Fig. 1. Creating the bit vector that is used by the IFFT

E. Receiver

The receiver uses the SDR as the source in GNU Radio.
The input is passed through a FFT to extract the frequency
components. We utilized the magnitude squared of the FFT
to detect the energy peaks present. The GNU Radio block
diagram for the receiver is shown in figure 3. To determine
which energy peaks represent a mark, we used a two pass
detection logic. First we used a global threshold to separate
peaks from the background noise. Then we used a sliding
window average to ensure any identified peaks are actually
higher than the local noise threshold. We also eliminated any
peaks that are not at a legitimate frequency. The detection
logic can be seen in listing 1. The result of the peak detection
algorithm is a vector of 1’s (mark present) and 0’s (no mark).
This bit vector is then passed to the BBC decoder which
produces a list of all possible code words as the output. If
a peak is missed during the detection portion of REBUF, it is
essentially violating BBC’s underlying assumption that marks
cannot disappear. A single missed peak is enough to corrupt
the packet and the decoding algorithm will fail to produce the
original code word.

import numpy as np

= Queue.get ()

vectorPos = vectorSig[8191:]

Global threshold

ind = np.where(vectorPos > np.mean (vectorPos) /20)
list (ind[01])

Sliding threshold
peak = []
for 1 in ind2:
if 1%7
11 =1 + 8191
if valPos[l] == np.max(vectorSig[ll-6:11+7]) and
valPos[1l] > np.max (vectorSig[11-82:11+82]/17):
peak.append (1)

Listing 1. Detection Logic

Variable Options
ID: samp_rate 1D: ifft_transmitter
Value: 5M Generate Options: OT GUI

FFT)
vﬁ‘:’:::'ng i'n['; ree FFT Size: 16.384k TSE tag name:
Tags: o H Forward/Reverse: Reverse Vector to Stream
Re:!:at: Yag Window: window.blackmanhar... Num Items: 16.384k QT GUI Sink
Vec Length: 16.384k Shift: Yes FFT Size: 16.384k
- Num. Threads: 1 Center Frequency (Hz): 0

UHD: USRP Sink
Device Address: add...658.10.2
[Sync: PC Clock
Samp Rate (Sps): 5M
ChO: Center Freq (Hz): 2.45G
Chi: Gain Value: 30

Bandwidth (Hz): 5M
Update Rate: 10

Fig. 2. GNU Radio block diagram for the sender

Function Probe
1D: variable_function_probe 0

Function Name: |evel
Poll Rate (Hz): 1k

Value: 0
P Block ID: probe
Variable 1D: usrp_reciever_test
ID: samp_rate Title: usrp_reciever_test
Value: 5M Generate Options: OT GUI

Probe Signal Vector

UHD: USRP Source
Device Address: add...68.10.2
Samp Rate (Sps): 5M
ChO: Center Freq (Hz): 2.45G
ChO: Gain Value: 30

Stream to Vector
Num Items: 16.384k

Shift: Yes

FFT Size: 16.384k
Forward/Reverse: Forward
Window: window.rectangular...

Num. Threads: 1

Vec Length: 16.384k

FFT

QT GUI Vector Sink
Vector Size: 16.384k
X-Axis Start Value: 0
X-Axis Step Value: 1
X-Axis Label: x-Axis

Complex to Mag~2
Vec Length: 16.384k

Y-Axis Label: y-Axis
X-Axis Units:
Y-Axis Units:

Ref Level: 0

Fig. 3. GNU Radio block diagram for the reciever

The receiver waits until it detects a typical REBUF packet.
The receiver then records all received packets as raw signal
vectors into a queue. After the receiver detects an end of
transmission signal, it begins decoding every packet in the
queue in order of receipt. Throughout our experimentation
we found that the encoder was significantly faster than the
decoder. We manually reduced the sending rate to ensure
the decoder had enough time to process the packet. Future
work should focus on improving the decoder and eliminating
this manually imposed throttle. While these solutions are far
from optimal, our main focus was to test the packet loss rate
of the system in the presence of jamming. Future work for
optimization of the system is discussed further in section V.

F. BBC as a MAC Layer Protocol

REBUF is implemented as a physical and MAC (or Data
Link) layer protocol within the network stack. The MAC layer
is primarily responsible for providing node-to-node connection
and addressing, and providing bit level error detection and/or
correction. REBUF uses the BBC algorithm at the MAC layer
to provide a jam-resistant node to node connection. The current
BBC implementation has an elementary addressing protocol in
place. Messages encoded by the BBC algorithm are prefixed
with BBC header that includes the packet ID, next hash, and
current hash information. An opportunity for future work is
the implementation of unique check bit patterns for each pair

of nodes. This would simultaneously solve packet addressing
and further protect against terminal hallucinations. The BBC
algorithm also provides error detection and correction of data
against noise and jamming, which is primarily handled in the
decoding algorithm at the receiver.

III. EXPERIMENTATION RESULTS
A. Testing

BBC is a provably jam-resistant algorithm, given the con-
ditions outlined in section I-C [6], [8], [9], [11]. However, the
validity of the conditions listed in section I-C in a real system
are less well known. To test the effectiveness of REBUF, we
created a test environment that consisted of: a laptop connected
via Ethernet to single WiFi access point, a WiFi client, a
REBUF transmitter and receiver pair, and a malicious jamming
source. We repeatedly sent a 10.3 KB text file from the sender
to the receiver.

We wanted to compare the jam resistance against WiFi, so
first we focused on finding an effective signal for jamming
WiFi. We tried several possible signals, including AWGN
noise spread across 20MHz, pure frequency tones at the
OFDM sub-carriers, and a REBUF transmitter sending random
data with a mark density of 5%. We ran IPERF3 between a
laptop and WiFi client to observe the throughput and effect of
jamming. There was little to no effect for the WiFi throughput

TABLE I
PACKET LOSS PERCENTAGE

Trial No Jamming With REBUF Jamming
1 .035% .043%
2 148% .031%
3 .064% 179%
4 .028% .038%

for the first two jamming methods. However, the REBUF
transmitter sending random data stopped all transmission, even
causing the WiFi client to look for a new access point.

Next we tested the REBUF system in the presence of WiFi
traffic. Unsurprisingly, the WiFi client was totally jammed and
disconnected from the access point. REBUF did not suffer
any performance degradation. Then we tested REBUF in the
presence of each of the jamming signals. REBUF did not
suffer any performance degradation for any of the signals. We
conducted the most thorough testing for the random REBUF
jamming signal because that was the most effective at jamming
OFDM. Table I depicts the throughput and error rates of eight
runs (4 runs in the presence of jamming and 4 runs without
the presence of random REBUF jamming) of the system.

IV. ANALYSIS
A. Error Rate

Out of the 8 tests runs shown in table I, the average packet
loss percentage in the presence of no jamming was .06875%
and the average packet loss percentage in the presence of
jamming was .07275%. We determined packet error rate by
comparing the known file to the received file. Interestingly
enough, there is an instance in trial 2 above where there was
higher packet loss in the presence of no jamming than that in
the presence of jamming.

The reason for the packet loss lies within the detection logic
of the receiving SDR. As described in section II-E, if a peak
is missed during the detection portion of REBUF it is enough
to corrupt the packet and the decoding algorithm will fail to
produce the original code word. Ironically, the presence of
noise can help our system. Noise can add energy to a real
mark that would otherwise fall below the detection threshold,
giving that frequency enough energy to be correctly detected.
While the packet loss percentage is extremely low, there are
several possible methods to correct this issue. For example,
we can further reduce the energy thresholds in one or each of
the detection logic passes. While this would reduce the chance
of not detecting a peak, it could also increase the decode time.

B. Throughput

The full encoding and transmission took an average of 29.5
seconds to send the 10.3KB file while the receiver took an
average of 30.1 seconds to gather all packets. This gives
a throughput of about 2.75 Kbps. While this data rate is
extremely low, we discuss several optimization ideas in section
V. Even after further optimization, the throughput of REBUF
will not be able to compete with the traditional jam resistant
means of communication discussed in section I-A. However,

even low data rates are sufficient to exchange a new shared
secret and move back to traditional jam resistant techniques.

V. FUTURE WORK

REBUF demonstrates that jam resistant communication
without a pre-shared secret is both possible and practical to
implement. However, there are numerous areas for further
research and optimization of the REBUF system.

A. Optimization

A large opportunity for future work is the optimization
of REBUF. The current implementation does not allow for
multi-threading or multi-processing so the receiver has to
gather all encoded packets of a transmission before it can
decode any packets. The implementation of multiprocessing
would drastically cut down the decoding time by enabling
parallel processing. Through the use of multiple cores the
compilation of packets and the decoding of packets can occur
simultaneously.

The underlying assumption that a mark is indelible is
largely determined by the peak detection algorithm. We chose
to implement a minimum threshold detection which worked
well in experimentation. However, other detection thresholds
are described in [8], [17]. Further study is required to fully
quantify the energy costs required for an enemy to invalidate
this assumption.

A more effective decoding algorithm would be able to
logically separate the code words produced from packets with
more than one code word. There is also a need for a better
addressing system for the BBC algorithm as a whole in order
to support multiple users or superimposed concurrent coding.
Decoding packets with multiple code words introduces a new
problem of ordering. Effective addressing of code words will
be essential in order to know where to place them. A potential
solution for addressing is the implementation of check bit
patterns specific to each pair of nodes. This would enable
identification of code word ordering within all those decoded
from the super-imposed packet.

Future work should also explore increasing the systems
total bandwidth. Using a larger frequency range would have a
multitude of benefits, including increasing the necessary power
requirements of a malicious attacker.

B. Higher Layer Networking Services

In our current experimental setup REBUF does not utilize
any networking layers above Data Link layer. There is great
value in implementing higher layer protocols, specifically
those of the Network and Transport layers. Such an implemen-
tation could potentially improve the reliability, accuracy, and
throughput of the current system. Implementing higher layers
would also enable a greater expansion of the current system to
include a larger communication network. It should be possible
to implement higher layers using existing protocols, though
more study of any cross-layer effects is needed.

1) Network Layer: The purpose of the network layer is the
routing of packets from source to destination within a network.
In the current system, there is no need for the network layer
because we only have two nodes. The addition of more nodes
into the current system will create a greater need for routing
functionality from the network layer, especially in multiple
hop scenarios. Using ad-hoc networks with multiple hops may
actually help REBUF stay within the constraints discussed in
section I-C. The current experimental set up does not support
any of this type of functionality.

2) Transport Layer: The purpose of the transport layer is to
enable end-to-end communication over a network. Functions
of the transport layer include the following: reliable end-to-
end transmission, ordered end-to-end transmission, and flow
control. The current system does not have reliable or ordered
end-to-end transmission and does not have any measures for
flow control. Utilizing TCP at the transport layer would allow
us to remove the manual sending rate on the transmitter.
It would also allow us to trade off occasional packet loss
for a higher average throughput. Using TCP to implement
flow control would also decrease the probability of internal
jamming within the network. However, more work would be
needed to quantify the full effects of using existing congestion
control algorithms within TCP.

C. Security Services

REBUF addresses a serious need in wireless communica-
tions for availability. However, the current implementation
made no effort to address other security services such as
confidentiality or integrity. These services are needed in many
real world scenarios and should be addressed in future work.

VI. CONCLUSION

In this paper we presented REBUF, a Jam Resistant BBC
based Uncoordinated Frequency Division Multiplexing sys-
tem. Early implementation of REBUF demonstrates the suc-
cessful transmission of data using the system as well as a
significantly higher resilience to jamming than existing OFDM
wave forms. While further work is required to determine the
maximum throughput and further quantify the resilience to
jamming, the implementation of REBUF presented in this
paper is proof of concept for a jam resistant form of unco-
ordinated communication requiring no pre-shared secret.

ACKNOWLEDGMENT

The views expressed in this article are those of the authors
and do not reflect the official policy or position of the
Department of the Army, Department of Defense, or the U.S.
Government.

REFERENCES

[11 A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou,
“A survey on jamming attacks and countermeasures in wsns,” /[EEE
Communications Surveys & Tutorials, vol. 11, no. 4, pp. 42-56, 2009.

[2] J. T. Chiang and Y.-C. Hu, “Cross-layer jamming detection and mit-
igation in wireless broadcast networks,” IEEE/ACM Transactions on
Networking (TON), vol. 19, no. 1, pp. 286-298, 2011.

[3]

[4]

[5]
[6]

[7]

[8

[t

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

C. Popper, M. Strasser, and S. Capkun, “Anti-jamming broadcast com-
munication using uncoordinated spread spectrum techniques,” [EEE
Journal on Selected Areas in Communications, vol. 28, no. 5, pp. 703—
715, 2010.

A. Liu, P. Ning, H. Dai, Y. Liu, and C. Wang, “Defending dsss-
based broadcast communication against insider jammers via delayed
seed-disclosure,” in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 367-376.

L. Milstein, “Interference rejection techniques in spread spectrum com-
munications,” vol. 76, no. 6, 1988, pp. 657-671.

W. L. Bahn, L. C. Baird III, and M. D. Collins, “Jam resistant communi-
cations without shared secrets,” in Proceedings of the 3rd International
Conference on Information Warfare and Security (ICIWO0S), 2008, pp.
24-25.

W. B. Dino Schweitzer, Leemon Baird, “Visually understanding jam
resistant communication,” US Air Force Academy, Academy Center for
Cyberspace Research, Tech. Rep. USAFA-TR-2009-ACCR-01, 2008.

L. Baird, W. Bahn, and M. Collins, “Jam-resistant communication
without shared secrets through the use of concurrent codes,” United
States Air Force Academy, Tech. Rep. USAFA-TR-2007-01, 2007.

W. L. Bahn, Concurrent code spread spectrum: theory and performance
analysis of jam resistant communication without shared secrets. Uni-
versity of Colorado at Colorado Springs, 2012.

L. C. Baird, M. C. Carlisle, W. L. Bahn, and E. Smith, “The glowworm
hash: Increased speed and security for bbc unkeyed jam resistance,”
in MILCOM 2012-2012 IEEE Military Communications Conference.
IEEE, 2012, pp. 1-6.

L. C. Baird and B. Parks, “Exhaustive attack analysis of bbc with
glowworm for unkeyed jam resistance,” in MILCOM 2015-2015 IEEE
Military Communications Conference. 1EEE, 2015, pp. 300-305.

W. L. Bahn and L. C. Baird III, “Extending critical mark densities in
concurrent codecs through the use of interstitial checksum bits,” US Air
Force Academy, Academy Center for Cyberspace Research, Tech. Rep.
USAFA-TR-2008-ACCR-02, 2008.

M. D. Collins and W. B. Johnson, “Impulsive noise immunity of multidi-
mensional pulse position modulation,” arXiv preprint arXiv:1805.08120,
2018.

L. C. Baird III and W. L. Bahn, “Parallel bbc decoding with little
interprocess communication,” US Air Force Academy, Academy Center
for Cyberspace Research, 2009.

W. L. Bahn and L. C. Baird III, “Hardware-centric implementation
considerations for bbc-based concurrent codecs,” United States Air Force
Academy, Academy Center for Cyberspace Research, Tech. Rep. USAFA-
TR-2008-ACCR-03, 2008.

W. Bahn, L. Baird, and M. Collins, “The use of concurrent codes in
computer programming and digital signal processing education,” Journal
of Computing Sciences in Colleges, vol. 23, no. 1, pp. 174-180, 2007.
W. Press, W. Dallyy, D. Eardley, R. Garwin, and
P. Horowitz, “An unconventional, highly multipath-resistant,
modulation scheme,” MITER, Tech. Rep., 1997. [Online]. Available:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a331647.pdf

C. Popper, M. Strasser, and S. Capkun, “Jamming-resistant broadcast
communication without shared keys.” in USENIX security Symposium,
2009, pp. 231-248.

M. Strasser, C. Popper, S. Capkun, and M. Cagalj, “Jamming-resistant
key establishment using uncoordinated frequency hopping,” in 2008
IEEE Symposium on Security and Privacy (sp 2008). IEEE, 2008,
pp. 64-78.

M.-G. Di Benedetto, L. De Nardis, M. Junk, and G. Giancola, “(uwb)
2: uncoordinated, wireless, baseborn medium access for uwb communi-
cation networks,” Mobile networks and applications, vol. 10, no. 5, pp.
663-674, 2005.

L. Xiao, H. Dai, and P. Ning, “Jamming-resistant collaborative broadcast
using uncoordinated frequency hopping,” IEEE transactions on Informa-
tion Forensics and Security, vol. 7, no. 1, pp. 297-309, 2011.

, “Mac design of uncoordinated fh-based collaborative broadcast,”
IEEE Wireless Communications Letters, vol. 1, no. 3, pp. 261-264, 2012.

	REBUF: Jam Resistant BBC based Uncoordinated Frequency Division
	Recommended Citation

	tmp.1590079357.pdf.whzWs

