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Abstract

Universal primary education is critical for individual academic growth and overall adult pro-

ductivity of nations. Estimates indicate that 25% of 59 million primary age out of school chil-

dren drop out and early grade failure is one of the factors. An objective and feasible

screening measure to identify at-risk children in the early grades can help to design appro-

priate interventions. The objective of this study was to use a Machine Learning algorithm to

evaluate the power of Electroencephalogram (EEG) data collected at age 4 in predicting

academic achievement at age 8 among rural children in Pakistan. Demographic and EEG

data from 96 children of a cohort along with their academic achievement in grade 1–2 mea-

sured using an academic achievement test of Math and language at the age of 7–8 years

was used to develop the machine learning algorithm. K- Nearest Neighbor (KNN) classifier

was used on different model combinations of EEG, sociodemographic and home environ-

ment variables. KNN model was evaluated using 5 Stratified Folds based on the sensitivity

and specificity. In the current dataset, 55% and 74% failed in the mathematics and language

test respectively. On testing data across each fold, the mean sensitivity and specificity was

calculated. Sensitivity was similar when EEG variables were combined with sociodemo-

graphic, and home environment (Math = 58.7%, Language = 66.3%) variables but specificity

improved (Math = 43.4% to 50.6% and Language = 32% to 60%). The model requires fur-

ther validation for EEG to be used as a screening measure with adequate sensitivity and

specificity to identify children in their preschool age who may be at high risk of failure in early

grades.

Introduction

Universal primary education is regarded as the key to the successful development and prosper-

ity of future generations. United Nations Education, Scientific and Cultural Organization

(UNESCO) states that literacy skills are fundamental to informed decision-making, personal
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empowerment, and participation in the local and global social community [1]. Hence, UNES-

CO’s goal in the post Millennium Developmental Goals era was to “ensure equitable and inclu-

sive quality education and lifelong learning for all” [1] and now the Sustainable Development

Goal 4 aims to achieve this outcome by ensuring that all girls and boys complete free, equitable

and quality primary and secondary education by the year 2030 [2].

A report in 2013 found that globally 59 million children of primary-school age (6 to 11

years of age) were out of school [3]. Estimates suggest that 1 in 5 of those children had dropped

out and 2 in 5 of dropped-out children never set foot in school again. Of these, 50% (33 mil-

lion) live in sub-Saharan Africa followed by Central and Southern Asia which has the second

highest number of out-of-school children (11 million) [3]. Pakistan is among the top five

countries which are home to more than one-third of all out-of-school children [3]. Of the esti-

mated total primary school-going population of ages 5–9 years (approximately 21.4 million,),

68.5% are enrolled in school, with a preponderance of boys (56%) as compared to girls (44%)

[4]. Further, only 66.8% of these children continue schooling till grade five and 33.2% drop out

before completing primary education [4]. Overall education indicators in Pakistan are not

very encouraging either. According to Pakistan Demographic and Health Survey 2017–18,

49% of ever-married women and 25% of ever-married men have no education while 16.5% of

women and 20.3% of males have completed primary education [5].

Causes of not achieving primary education include, but are not limited to, the lack of avail-

able school facilities, the inability to afford an education, the lack of importance given to edu-

cation and hence the unwillingness to enroll in or continue with primary education and lack

of school readiness in children [6]. Health concerns such as problems related to hearing and

vision and psychological factors have been found to be more prevalent in students who failed a

grade in school hence affecting their readiness for school [7]. Among psychosocial factors,

poor executive function and lower cognitive ability, which could be due to a multitude of fac-

tors such as malnutrition and recurrent illnesses may affect children’s school readiness leading

to poor academic achievement in primary grades [8]. Additionally, academic struggle in the

early years of education may be indicative of short-term behavioral problems and predictive of

school dropout [9].

While the importance of education and high number of children at risk of not completing

primary education has been taken note of by the system, a challenge arises in early identifica-

tion of these children. Early screening for at-risk children can help professionals in designing

appropriate interventions to ensure greater success rate in early grades of school [10]. In the

past, mechanisms for identification of at-risk children included hearing and visual tests, or

direct cognitive assessment of children [11]. Accurate cognitive testing, as a screening tool, is

time consuming, expensive and requires higher level professional training which may not

always be feasible in resource constrained settings [11].

Recently, the use of the Electroencephalogram (EEG), a test used to record electrical activity

in the brain, has been observed in more than just traditional neurological indications. Thatcher

et al reported that EEG has a discriminant ability of more than 90% in identifying individuals

with high and low IQ [12]. Further, a study conducted in rural Pakistan reported that children

with better cognitive skills and increased executive function had an increase in gamma fre-

quency bands as opposed to those with lower cognitive skills [13]. Tarullo et al. (2017) reported

that EEG can detect differences in a child’s brain maturity and executive functioning at an ear-

lier age than traditional testing [13]. EEG can be a more objective measure for screening as it is

less affected by motivation compared to psychological testing. In high-income countries EEG

is relatively cheap. Experts have suggested that quantitative EEG (which provides digital dis-

plays of EEG unlike paper-EEG) may be one of the solutions to meet demands of EEG in inef-

ficient healthcare systems due to flexible way of recording, reviewing and storing data [14].
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However, a major hurdle in the use of EEG in developing countries, which also have the

greater burden of out of school children, is that it is resource intensive and requires highly

trained personnel for interpretation, thereby limiting its use for mass screening. However,

automating interpretation of these waves using artificial intelligence can help overcome the

hurdle of lack of trained individuals and increase availability of EEG based screening in such

contexts.

Machine-learning (ML), a more defined subset under the umbrella of Artificial Intelligence

(AI), is an effective tool for the efficient analysis of large sets of data, especially those in which

there are recognizable patterns [15] which has also been documented to be advantageous for

analysis of EEG signals due to smaller probability of bias and high sensitivity to pattern recog-

nition [16]. Several studies have used ML models on existing performance scores of students

to predict students school performance with an accuracy of 70–80% and dropout with an accu-

racy of 63–83% [17,18].

Combining the reduced probability of human bias when recording EEG signals with the

ability of a ML algorithm to classify data provides a new avenue with which children at-risk of

failure in early grades may be identified. The objective of this study was to determine the

potential of a ML algorithm to evaluate the power of EEG data collected at age 4 in predicting

academic achievement (Math and Language) at age 8 among rural children in Pakistan.

Materials and methods

Study setting

The study sample included 219 children whose EEG data were collected to examine the links

between EEG gamma power with cognition at age 4 years in an earlier study [13]. These 219

children were a sub-sample of a large trial birth cohort (n = 1489) exposed to early interven-

tions between birth to 2 years of age [19]. The sub-sample had been randomly selected from

the full cohort, stratified by the respective intervention groups at a prospective follow-up at age

4 years [13]. In the previous study, EEG at 4 years was associated with executive functioning at

the same age and in the current study we sought to examine if similar association continued

with academic achievement at age 8 years. An analysis of the sample included indicated no sig-

nificant differences on the academic achievement scores when compared to the full sample at

4 years. The included sample had slightly higher IQ (t = 6.1, p = 0.013) and was younger (t = 6,

p = 0.014) compared to the rest of the sample. EEG was recorded using a 64-channel high-den-

sity Geodesic sensor net (Electrical Geodesics, Inc.; Eugene, OR) and a Net Amps 300 high

input amplifier. Continuous EEG was recorded for four blocks of one minute each with a total

of four minutes. A central fixation cross was presented on a gray background and a brief silent

video with bubbles popping up played between blocks to keep the child engaged [13].

Data collection

Detailed procedures of the data collected at 4 years (sociodemographic, intelligence test scores

and EEG) have been described in the paper published earlier [13]. The demographic data mea-

sures included questions regarding household income, number of family members, parental

education, occupation, household assets and food insecurity. Intelligence test scores were

assessed using an adapted version of Wechsler Preschool and Primary Scales of Intelligence

(WPPSI) III while home environment was measured using the Home Observation for Mea-

surement of Environment (HOME) Inventory. EEG data were collected by trained research

associates. Trained community-based teams obtained data at 8 years of age. The academic

achievement was measured at 8 years using academic achievement test developed according to

framework by USAID for measurement of Mathematics [20] and Language [21]. The test
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items were aligned with provincial curriculum for grade 2 and had sections on English, Mathe-

matics, and local language (Sindhi). For the current analysis, we included only Mathematics

and local language. English was excluded as it is not the mother-tongue of the participants and

may have additional factors contributing toward failure on the test. Children attaining scores

of at least 40% were considered to have passed this test. Ethics approval was obtained from the

Ethics Review Committee of the Aga Khan University in Pakistan. The primary caregivers pro-

vided written consent (or thumb impression) for the assessments at 8 years and could with-

draw from the study anytime. The data received for analysis were fully anonymized.

EEG feature extraction

The 64-channel EEG data were used at the input source and exported in European Data For-

mat (edf). Data were sampled at 500Hz, one second per segment. Out of 64-channels, the data

of 6 channels i.e. frontal (6, 12, 60) and parietal (28, 34, 42) were selected based on literature

available for EEG waveforms in young children [13] and used for preprocessing. The EEG sig-

nal was four minutes long consisting of four baseline events. The start time of each event was

identified. Each baseline event was of 60 seconds in length. The first baseline event was selected

for further analysis as it was present in the majority of the recorded EEG data files. For the

selected EEG baseline event, the 60 seconds epoch data were analyzed and any recording with

bad channel data within the selected channels and epoch was discarded. Afterward the data

was segmented into an array and the power spectral density (PSD) was calculated using the

Welch method [22]. The length of the segment was 1 second and the “Hann” window was

used as an appropriate size of overlap. After calculating the PSD, the mean PSD between the

gamma brainwave frequency (21-45Hz) was extracted for all 6 channels and its log trans-

formed values were used as a feature in the machine learning algorithm. Feature extraction

and preprocessing of EEG was done using the MNE library [23] available in python [24].

Python’s SciPy library [25] was used to calculate the PSD using the Welch method.

Proposed machine learning methodology

Classification is the method of identifying patterns/learning concepts from a dataset and pre-

dicting the label/class of the dataset. For predicting the performance, classification was con-

ducted separately for outcomes in mathematics and language based on the following model

combinations i) EEG features, ii) IQ feature, iii) Sociodemographic (socioeconomic status,

household food security, parent education and parent occupation), home environment and IQ

features combined iv) Sociodemographic, home environment and EEG features. We sought to

examine the predictive power with and without sociodemographic and home environment

variables and also compare the predictive power with traditional IQ testing scores.

We used K Nearest Neighbors (KNN) for classification. KNN is a non-parametric tech-

nique used to classify new instances based on the similarity (distance metric) with its neigh-

bors [26,27]. The KNN classifier was trained using the default parameters as defined in the

scikit-learn implementation of the algorithm [28]. The default settings are n_neighbors = 5,

weights = ’uniform’, leaf_size = 30, p = 2, metric = ’minkowski’. The parameter details can be

reviewed from the official documentation [28].

Validation methods

Supervised machine learning techniques require a considerable amount of data to learn mean-

ingful relationships and validate the results. However, when the dataset is small and imbal-

anced it requires advanced techniques such as resampling the data to model the available

features for extracting useful insights. Also, a simple train-test split in such cases may not
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provide an accurate understanding of the model performance. Hence to overcome this prob-

lem we used 5 Stratified Folds [29] to validate the performance of our machine learning classi-

fier across different distributions of the data. For each fold Synthetic Minority Oversampling

Technique (SMOTE) [30] was applied on the training data to balance the classes. SMOTE is

used to avoid over fitting of the ML model on skewed classes. The performance of the model

trained across each fold was then tested on the remaining unseen data for that fold. The perfor-

mance metrics used were sensitivity and specificity. For all these metrics the average of testing

data for each fold was reported. Fig 1 describes the process of our implemented methodology.

Statistical analysis

Data were examined for normality prior to analysis. Data on the demographic characteristics

of the study participants was reported as percentages and mean +/- standard deviations or fre-

quencies as appropriate. To test the difference between participants by the outcomes, t- test

was applied for continuous variables and chi-square was used for categorical data adjusted

using Fisher exact test. Table 1 indicates the two metrics used to evaluate the performance of

machine learning algorithms.

Results

Out of 219 children, 96 tracings were used in the ML model. Reasons for exclusion included

lost to follow-up at age 8 years (n = 11), data not available due to corrupt EEG files, or no data

for baseline event 1 (n = 34) and bad channel data (n = 78). The analysis of the outcomes of

final sample of 96 children indicated that children had poorer performance on the language

test with ~74% failing the test compared to 55% on test of mathematics test. Demographically

from the final sample of 96 children, 66.7% of mothers and 24% of fathers were illiterate.

Mothers were predominantly housewives (74%) and fathers mainly were skilled workers

(75.3%). Demographics and academic performance characteristics at 7 to 8-year follow-up are

shown in Table 2. The table shows the difference between the groups (either passed or failed

on the mathematics and language achievement test) based on their sociodemographic charac-

teristics. There were significant differences between both groups on paternal education

(χ2 = 4.3, p = 0.039 for Math and (χ2 = 7.4, p = 0.006 for language), maternal education

(χ2 = 11.1, p = 0.001 for Math; (χ2 = 10.8, p = 0.001 for language), socioeconomic status

Fig 1. Framework of pre-processing and classification.

https://doi.org/10.1371/journal.pone.0246236.g001
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(χ2 = 23.8, p<0.000 for Math; χ2 = 15.8, p =<0.003 for language), household food security

(χ2 = 8.7, p<0.003 for Math; χ2 = 7.3, p =<0.009 for language) and home environment

(t = 8.9, p<0.004 for Math; t = 22.6, p =<0.000 for language). IQ scores were significantly dif-

ferent for the group who passed or failed language test (χ2 = 10.0, p = 0.002).

Mean gamma power spectral density was calculated for the groups using the above method-

ology [Figs 2 and 3].

The four different datasets according to the different model combinations were combined

with math pass and fail labels as well as language pass and fail labels separately. This resulted in

eight different experiments the results are shown in Table 3. The results indicated that sensitiv-

ity of EEG only model was similar to the model with addition of SES and home environment

variables for Math (58.7% and 57.8%), Language (66.3% and 62.1%) respectively but specificity

improved for EEG model with addition of sociodemographic variables for both scores: Math

(from 43.6% to 50.6%) and language (from 32% to 60%). The models with IQ scores and socio-

demographic scores had greater sensitivity (64.4% and 67.8%) and specificity (55.6% and 76%)

compared to the EEG models for Math and language respectively.

Discussion

The objective of this study was to use ML techniques as a tool to examine the power of EEG

data to predict failure in early years of school. The study found that the EEG data alone were

not sufficient to use as a screening tool given very low specificity. However, its combination

with sociodemographic and home environment variables considerably increased the specific-

ity. A similar pattern was observed with the models using IQ score as a feature. One reason

could be class imbalance that resulted in a low predictive accuracy [31]. While the findings

may indicate the EEG alone may not be an adequate screening tool, further validation to exam-

ine the predictive power of the combined features model with minimal loss of validity com-

pared to standardized IQ tests may be an interesting avenue to explore.

Factors that predict school performance have been an area of key interest for educationists

and policy makers [32]. In order to improve outcomes of school performance, identification of

high-risk students is critical so that appropriate interventions can be planned to decrease

school dropout rate. In this regard, several standardized intelligence tests have been used to

assess physical, cognitive, communication, social, emotional, and/or adaptive development in

children mostly developed and normed in the US. A significant effort is required to not just

adapt the test culturally but also run psychometric analyses to interpret the scores [33]. The

test for IQ scores used the WPPSI III [34] and went through extensive adaptation efforts [35].

Another challenge is that although useful, these measures of cognition for preschoolers have

shown limited predictive validity regarding academic performance [34]. This can be a major

limitation for use of these cognitive tests in low resource settings. An EEG can also be as

resource intensive as the recording also takes at least 20 minutes and a lot of post-processing

Table 1. Metrics used to evaluate performance of machine learning.

Metric Explanation Formula

Sensitivity It is the ratio of correctly predicted positive samples to all the samples of the class of

interest (failure).

Sensitivity ¼ tp
tpþfn

Specificity It is the ratio of correctly predicted negative samples to all the samples of the class

not of interest (pass).

Specificity ¼ tn
tnþfp

Note: tp, fp, tn and fn represents true positive, false positive, true negative and false negative respectively.

https://doi.org/10.1371/journal.pone.0246236.t001
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Table 2. Sociodemographic characteristics of the study participants.

Variables Passed the Math

test (n = 43)

Failed the Math

test (n = 53)

t/chi P value Passed the language

test (n = 25)

Failed the language

test (n = 71)

t/chi P value Total

Age (years)(Mean, SD) 7.23 (0.43) 7.32 (0.47) 0.903 0.344 7.3 (0.46) 7.3 (0.45) 0 0.987 7.3

(0.45)

Gender

Male 22 (51.2) 31 (58.5) 0.515 0.473 12 (48.0) 41 (57.7) 0.71 0.399 53

(55.2)

Female 21 (48.8) 22 (41.5) 13 (52.0) 30 (42.3) 43

(44.8)

Father’s education

Illiterate 6 (14.0) 17 (32.1) 4.28 0.039 1 (4.0) 22 (31.0) 7.4 0.006 23

(24.0)

Literate 37 (86.0) 36 (67.9) 24 (96.0) 49 (69.0) 73

(76.0)

Mother’s education

Illiterate 21 (48.8) 43 (81.1) 11.14 0.001 10 (40.0) 54 (76.1) 10.82 0.001 64

(66.7)

Literate 22 (51.2) 10 (18.9) 15 (60.0) 17 (23.9) 32

(33.3)

Father’s occupation

Unemployed 2 (4.7) 0 (0) 5.95 0.064 2 (8.0) 0 (0) 6.46 0.040 2 (2.2)

Skilled worker 28 (65.1) 42 (84.0) 16 (64.0) 54 (79.4) 70

(75.3)

Professional 13 (30.2) 8 (16.0) 7 (28.0) 14 (20.6) 21

(22.6)

Mother’s occupation

Housewife 32 (74.4) 39 (73.6) 0.009 0.926 17 (68.0) 54 (76.1) 0.623 0.430 71

(74.0)

Employed/working at

home on wages

11 (25.6) 14 (26.4) 8 (32.0) 17 (23.9) 25

(26.0)

Socioeconomic Status

(percentile Index)

1 2 (4.7) 10 (18.9) 23.8 <0.0004 0 (0) 12 (16.9) 15.78 0.003 12

(12.5)

2 2 (4.7) 8 (15.1) 1 (4.0) 9 (12.7) 10

(10.4)

3 4 (9.3) 16 (30.2) 3 (12.0) 17 (23.9) 20

(20.8)

4 12 (27.9) 12 (22.6) 6 (24.0) 18 (25.4) 24

(25.0)

5 23 (53.5) 7 (13.2) 15 (60.0) 15 (21.1) 30

(31.3)

Food insecuity

Food secure households 37 (86.0) 31 (58.5) 8.72 0.003 23 (92.0) 45 (63.4) 7.33 0.009 68

(70.8)

Food insecure households 6 (14.0) 22 (41.5) 2 (8.0) 26 (36.6) 28

(29.2)

IQ (Mean, SD) 78.8, 7.4 76.2, 5.7 3.82 0.054 82.24, 6.98 75.62, 5.56 22.61 <0.0001 77.4,

6.62

Home environment

(Mean, SD)

34.26, 7.5 29.96, 6.6 8.92 0.004 35.7, 8.3 30.55, 6.45 10.03 0.002 31.9,

7.29

�p<0.001.

Data presented as mean ± sd and n (%). Socioeconomic and household food security data was missing for 1 child.

https://doi.org/10.1371/journal.pone.0246236.t002
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time. However, the advantage is that the EEG could be a more objective biomarker then tests

because the psychological tests might be biased by human factors like subjectivity and induce

bias of the assessor or compliance and motivation at the level of the child whereas rest-EEG is

only biased by artefacts. Additionally, we believe automation of EEG interpretation using arti-

ficial intelligence will be a reality soon thus alleviating the need of highly skilled individuals to

interpret EEG waveform abnormalities.

Predicting students’ academic performance at an early age is critical as appropriate inter-

ventions can be designed for those who may be struggling with school requirements especially

when the government has competing priorities for resource allocation. ML algorithms have

been used in the past to predict educational performance of students. Marquez-Vera et al

reported that using scores of humanities, language and mathematics, their algorithm was able

to accurately identify 98.7% of high school student failures [36]. Ibrahim et al used the stu-

dents’ demographic profile and the grade point average for the first semester of the undergrad-

uate studies to predict students’ academic performance in the enrolled program and found

that ANN appeared to be the best approach to predict the outcome with an accuracy of 80%

[37]. Similar work has been done on university students where pre-university and/or first

semester grade point average was used to accurately identify 80% of freshmen dropout [38]. It

is important to note that all of this work has been done on high school or college students in

high income countries and used school grade scores for prediction. A few studies in North

America and China have looked at correlations between EEG and neuropsychological or aca-

demic status of younger children indicating EEG spectrum to be sensitive to attention-deficit

hyperactive disorder [39,40] and predictive of emergent math skills in preschoolers in another

study [41]. To the best of our knowledge, our study is the first in a developing country to use

EEG data collected on children at the age of 4 years to use ML to predict early school failure in

early primary grades.

Under 5 children in developing countries are exposed to multiple risks, including poverty,

malnutrition, and un-conducive home environments, which affect their cognitive

Fig 2. Mean gamma power spectral density by pass vs fail on math test.

https://doi.org/10.1371/journal.pone.0246236.g002

Fig 3. Mean gamma power spectral density by pass vs fail on language test.

https://doi.org/10.1371/journal.pone.0246236.g003
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development [42]. Children not meeting their developmental potential are not well prepared

for school with a high risk of failure in early grades and subsequent school drop-out. The pro-

posed model has huge implications for the millions of children who may be at risk of failure in

early grades and subsequent drop-out of school. This early development period may identify a

unique window of opportunity to intervene early and hence ensure that human capital is used

to its utmost potential. These interventions include, but may not be limited to, counseling and

family support regarding maximizing the child’s developmental potential, one-on-one atten-

tion, and individual educational plans suited for the child’s unique pace and learning abilities

[43].

In Pakistan, a large portion of children who do not attain primary education are from rural

parts of the country where interventions and screening are limited. In far flung and resource

constrained areas, EEG administration by community health workers (CHWs) with decision

making by the AI model may assist in screening all pre-primary school age children in the

region. Once identified, these high-risk children can receive intervention through trained

early childhood educators also enhancing much needed coordination between health and edu-

cation sectors to help vulnerable children achieve optimal early childhood development

outcomes.

This study has strengths and limitations. To the best of our knowledge, there are no existing

published studies utilizing ML algorithms that have been used to assess failure in early school

grades especially in LMICs. A major limitation of our study was our small population size with

an imbalance of the classes especially the language test scores where about two-thirds of chil-

dren had failed. Though techniques like SMOTE were adopted to deal with this unbalanced

data but such techniques do not alleviate the risk of overfitting or bias of the model towards

the dominant class. Apart from the small population size the loss of a major proportion of data

due to poor quality of data and complete case analysis approach to handle missing data for

drawing inferences from the study is also a limitation. ML models improve in accuracy and

predictive capability as the size of the data pool increases. However, the current study was a

proof of concept and a larger study with prospective data collection specifically targeting the

question of validating the algorithm is needed. Further, EEG waves need to be fairly clean data

for use in ML which may be a challenge in real world situations, especially in resource con-

strained settings.

The findings of this study may not be generalized to other countries with low or no failure

rate for primary school students unlike Pakistan. Despite its limitations, there is potential of

EEG in combination with other variables to predict early grade failure allowing early targeted

Table 3. Mean testing data results of KNN using stratified 5-fold cross validation.

Model Combination Sensitivity Specificity

EEG (l = mp vs mf) 58.7% 43.6%

Sociodemographic + Home Environment + EEG (l = mp vs mf) 57.8% 50.6%

EEG (l = lp vs lf) 66.3% 32.0%

Sociodemographic + Home Environment + EEG (l = lp vs lf) 62.1% 60.0%

IQ (l = mp vs mf) 65.8% 46.4%

Sociodemographic + Home Environment + IQ (l = mp vs mf) 64.4% 55.6%

IQ (l = lp vs lf) 81.5% 48.0%

Sociodemographic + Home Environment + IQ (l = lp vs lf) 67.8% 76.0%

Note: l denotes the label data, mp and mf denotes the mathematics test pass and mathematics test fail and lp and lf
denotes the language test pass and language test fail, respectively.

https://doi.org/10.1371/journal.pone.0246236.t003

PLOS ONE Use of artificial intelligence on Electroencephalogram (EEG) waveforms

PLOS ONE | https://doi.org/10.1371/journal.pone.0246236 February 8, 2021 9 / 12

https://doi.org/10.1371/journal.pone.0246236.t003
https://doi.org/10.1371/journal.pone.0246236


intervention for highrisk children. In the future, AI system needs to incorporate functional

imaging findings that can be applied on children along with EEG findings. The neuroimaging

technique is known as functional near infrared spectroscopy (fNIRS) which can be applied on

children [44]. fNIRS was used in neurobiological feedback in training that could translate to

better educational outcomes such as measures of learning curve by Khoe et al., 2020 [45]. Fur-

thermore, fNIRS can assess hemodynamic changes in the brain when a subject performs cog-

nitive tasks [46].

Acknowledgments

The authors are grateful to the participants of the study who dedicated their time. The authors

would also like to thank Ms. Fariha Shaheen for her valuable statistical inputs to the manu-

script. We express special gratitude for Mr. Muhammad Shahrukh, Mr. Muhammad Azhar

and Mr. Abdul Malik for their support with data management and for Mr. Muhmmad Fahad

Akbani for his advice about analysis of EEG waveforms.

Author Contributions

Conceptualization: Muneera A. Rasheed, Babar S. Hasan.

Data curation: Prem Chand.

Formal analysis: Saad Ahmed, Hamza Sharif.

Funding acquisition: Muneera A. Rasheed.

Investigation: Muneera A. Rasheed, Saad Ahmed.

Methodology: Muneera A. Rasheed, Prem Chand, Saad Ahmed, Hamza Sharif, Babar S.

Hasan.

Project administration: Muneera A. Rasheed.

Resources: Babar S. Hasan.

Software: Saad Ahmed, Hamza Sharif.

Supervision: Babar S. Hasan.

Validation: Prem Chand.

Visualization: Muneera A. Rasheed, Saad Ahmed, Zahra Hoodbhoy, Ayat Siddiqui.

Writing – original draft: Muneera A. Rasheed, Ayat Siddiqui.

Writing – review & editing: Prem Chand, Saad Ahmed, Hamza Sharif, Zahra Hoodbhoy,

Babar S. Hasan.

References
1. UNESCO. UNESCO Education Strategy 2014–2021 2014 [cited 2018 September 9]. http://unesdoc.

unesco.org/images/0023/002312/231288e.pdf.

2. Nations U. Sustainable Development Goal 2015 [cited 2018 September 9]. https://

sustainabledevelopment.un.org/.

3. statistics UIo. Data for sustainable development goals 2018 [cited 2018 September 9]. http://uis.

unesco.org/.

4. UNESCO. “Education for All 2015 National Review Report: Pakistan. 2015.

5. Studies NIoP. Pakistan Demographic and Health Survey 2017–18. 2018.

PLOS ONE Use of artificial intelligence on Electroencephalogram (EEG) waveforms

PLOS ONE | https://doi.org/10.1371/journal.pone.0246236 February 8, 2021 10 / 12

http://unesdoc.unesco.org/images/0023/002312/231288e.pdf
http://unesdoc.unesco.org/images/0023/002312/231288e.pdf
https://sustainabledevelopment.un.org/
https://sustainabledevelopment.un.org/
http://uis.unesco.org/
http://uis.unesco.org/
https://doi.org/10.1371/journal.pone.0246236


6. Project TB. Factors Driving Lack of Access to Education 2016 [cited 2018 September 9]. https://

borgenproject.org/lack-of-access-to-education.

7. Kamal M, Bener A. Factors contributing to school failure among school children in very fast developing

Arabian Society. Oman medical journal. 2009; 24(3):212. https://doi.org/10.5001/omj.2009.42 PMID:

22224188

8. Glewwe P, King EM. The impact of early childhood nutritional status on cognitive development: Does

the timing of malnutrition matter? The World Bank Economic Review. 2001; 15(1):81–113.

9. Crosnoe R. High school curriculum track and adolescent association with delinquent friends. Journal of

Adolescent Research. 2002; 17(2):143–67.

10. Entwisle DR, Alexander KL, Olson LS. First grade and educational attainment by age 22: A new story.

American journal of sociology. 2005; 110(5):1458–502.

11. Maulik PK, Darmstadt GL. Childhood disability in low-and middle-income countries: overview of screen-

ing, prevention, services, legislation, and epidemiology. Pediatrics. 2007; 120(Supplement 1):S1–S55.

12. Thatcher RW, North D, Biver C. EEG and intelligence: relations between EEG coherence, EEG phase

delay and power. Clinical neurophysiology. 2005; 116(9):2129–41. https://doi.org/10.1016/j.clinph.

2005.04.026 PMID: 16043403

13. Tarullo AR, Obradović J, Keehn B, Rasheed MA, Siyal S, Nelson CA, et al. Gamma power in rural Paki-

stani children: Links to executive function and verbal ability. Developmental cognitive neuroscience.

2017; 26:1–8. https://doi.org/10.1016/j.dcn.2017.03.007 PMID: 28436831

14. Ng Marcus C., and Gillis Kara. The state of everyday quantitative EEG use in Canada: a national tech-

nologist survey. Seizure. 49, 2017: 5–7. https://doi.org/10.1016/j.seizure.2017.05.003 PMID:

28501751

15. Ghassemi M, Naumann T, Schulam P, Beam AL, Ranganath R. Opportunities in Machine Learning for

Healthcare. arXiv preprint arXiv:180600388. 2018.

16. Si Y. Machine learning applications for electroencephalograph signals in epilepsy: a quick review. Acta

Epileptologica. 2020 (2).

17. Kotsiantis SB, Pierrakeas C, Pintelas PE, editors. Preventing student dropout in distance learning using

machine learning techniques. International Conference on Knowledge-Based and Intelligent Informa-

tion and Engineering Systems; 2003: Springer.

18. Tan M, Shao P. Prediction of student dropout in e-Learning program through the use of machine learn-

ing method. International Journal of Emerging Technologies in Learning (iJET). 2015; 10(1):11–7.

19. Yousafzai AK, Rasheed MA, Rizvi A, Armstrong R, Bhutta ZA. Effect of integrated responsive stimula-

tion and nutrition interventions in the Lady Health Worker programme in Pakistan on child development,

growth, and health outcomes: a cluster-randomised factorial effectiveness trial. The Lancet. 2014; 384

(9950):1282–93.

20. Platas LM, Ketterlin-Gellar L, Brombacher A, & Sitabkhan Y. Early Grade Mathematics Assessment

(EGMA) Toolkit. 2014. RTI Publications. https://ierc-publicfiles.s3.amazonaws.com/public/resources/

EGMA%20Toolkit_March2014.pdf.

21. Dubeck MM, Gove A. The early grade reading assessment (EGRA): Its theoretical foundation, purpose,

and limitations. International Journal of Educational Development. 2015; 40:315–22.

22. Welch P., “The use of the fast Fourier transform for the estimation of power spectra: A method based on

time averaging over short, modified periodograms”, IEEE Trans. Audio Electroacoust. vol. 15, pp. 70–

73, 1967.

23. Gramfort A, Luessi F, Larson E, Engemann D, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T,
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