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ABSTRACT

The World Trade Web (WTW) contains a wealth of information that upon rigorous

analysis can aid governments in public policy decision-making. In my attempt to provide

this valuable input, this dissertation uses two main methods: weighted network analysis

and machine learning. First, the topology of the WTW is explored, described, and

analyzed. Secondly, the relationship between countries’ trade network characteristics and

their income is modeled. Lastly, deep learning is used to predict trade interactions between

countries using quantitative, dyadic binary, and categorical variables. Insightful remarks

are obtained: countries with higher PCGDP tend to associate with more neighbors that

are themselves weaker, reciprocate fewer of their trade links, and trade more strongly

with countries that are themselves stronger, and have a higher export to GDP Ratio. The

improved trade forecasting model obtained can result in better GDP forecasts, which can

aid with the optimization of tariffs, quotas, and subsidies.

Keywords: World Trade Web; Weighted Network Analysis; Machine Learning; Public

Policy
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Chapter 1

Introduction

The World Trade Web (WTW) has been studied widely in the field of economics, and

there is vast literature that attempts to describe its topology. The importance of studying

the WTW underlies in the fact that trade plays a crucial role in countries’ economies,

where to date 20% of the Global World Product comes from trade. Furthermore, for some

countries trade is even more predominant within their Gross Domestic Product (GDP),

where it could even surpass 100% of their GDP in like it does for Luxembourg, Hong

Kong, Singapore, and a couple dozen other countries [1]. This phenomenon occurs given

GDP is only the value that was added to products and services domestically, so small

countries’ exports can exceed the production within the country, as well as their imports

can exceed national consumption. It’s with a high degree of confidence that one can state

that trade plays a crucial role in increasing interactions between countries, which in turn

has been previously shown to accelerate globalization and increase interdependence [2].

Studying the WTW using network analysis has proven to be insightful in, but not limited

to, the following cases: the analysis of globalization and regionalization in international

trade [3]; understanding the potential and risks of economic systems [4]; empirically derive

the structure of the world economy [5]; understand global interdependencies [6]; better

understand the role of network characteristics in countries’ incomes [7, 8].
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Due to the aforementioned importance of the WTW, as well as the dependence of

countries on others for raw materials, finished products, labor, technology transfers, and

numerous other items, studying the WTW has become an attractive way for economist

to better understand how trade shapes countries. Additionally, the recent COVID-19

pandemic has shown how supply chains are highly interdependent and countries prioritize

the distribution of their supplies based on the diplomatic relationships they have with

other countries. Hence, this could add to the importance of understanding the commercial

connections between countries to understand this behavior. The bulk of the available

literature pertaining to the study of the WTW from the network analysis perspective has

been made without taking into account the magnitude of trade between the countries, and

instead just take into account trade links in a binary way, where a trade flow either exists

or does not, commonly referred to as unweighted network analysis. The metrics to study

unweighted networks have been widely studied (see [9, 10]). Using unweighted network

analysis to study the WTW can lead to a massive loss of information, hence there has

been a recent movement towards using weighted network analysis when analyzing the

WTW, i.e. including the volume of trade. However, metrics for the study of weighted

networks are more novel, and a vast variety of them with different uses have been proposed

(see [11–20]).

The motivation for this dissertation arises from the lack of in-depth weighted network

analysis in the literature, where the bulk of it focuses on describing its topology and not on

the impact of countries’ trade network characteristics in their development. Furthermore,

other authors have used a less comprehensive database of just 159 countries, neglecting

numerous African countries and small island developing states, hence not finding the

true topology of the WTW when analyzing it. I have a found a more comprehensive

database, reported by UN Comtrade [21], which includes most of these African countries

and small countries that were neglected in previous studies, for a total of 238 countries
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and territories.

In this dissertation, unweighted and weighted network analysis are used as a tool

to address several concerns pointed out by Faioglo, Reyes, and Schiavo [7], such as the

lack of in-depth analysis into the topological characteristics of individual countries and

regions from the cross-sectional perspective, as well as the lack of studies in the role of

geographical proximity in shaping the WTW to determine how fragile the network is.

Stemming from this void, an attempt is made to answer the following questions: How do

the WTW’s trading communities look like? Which continents are more susceptible to

instability originating from their trade partners that could spread through trade? Which

countries are the most central? Which countries have a high dependency on others?

Do countries trade with partners similar to them? Does geographical proximity and

trade agreements influence the relative intensity of trade among countries? What actions

(pertaining to trade) can countries take to improve their GDP? What continents are the

major players in trade? How do continental flows look like?

Finally, machine learning is used in an attempt to predict trade flows in the World

Trade Web using a feed forward deep neural network (DNN), and building on the gravity

model of trade, as defined by Isard [22]. The reasoning behind the use of a DNN is to

improve upon the prediction accuracy and lowering variance. This is another contribution

of this thesis when compared to the work by Rose [23] and Head [24]. The same datasets

and variables are used, with the difference being the methodology, where they use Ordinary

Least Squares Regression (OLS) and in this thesis a a feed forward DNN is used instead.

This thesis is structured as follows: Chapter 2, section 2.1 explains the definition and

measurement of the distinct unweighted and weighted network metrics used in section 3

(Chapter 3). Section 2.2 goes through the basics of machine learning and the reasoning

behind the model chosen for section 4. Chapter 3 analyzes the WTW using both unweighted

and weighted network analysis, and then finds the impact of countries’ topologies on their
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income in order to match network trends with income levels. In chapter 4, deep learning

is used to predict trade magnitudes in the WTW more accurately than the current status

quo models. Chapter 5 summarizes and concludes the thesis, supported by a discussion in

section 5.1 and the limitations and future work in section 5.2.
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Chapter 2

Research Methodologies

2.1 Network Analysis

Networks are structures that surround our everyday lives and shape the way we live.

Simply put, a network is a collection of nodes that have relationships with other nodes,

and these relationships are represented via edges. Some examples of networks that are

around us are: the internet, where a computer or router is the node and a cable or wireless

data connection is an edge; the world wide web, where a web page is a node and hyperlinks

are edges that connect web pages with one another; citation networks, where a node could

be a legal case, patent or an article, and the edge is the citation, that refers one resource

to another; a friendship network, where people are nodes and friendships are the edges;

airports, where a node is an airport and the edges are the flights that connect the airports.

Networks are studied in numerous fields: in mathematics, networks are known as graphs;

in physics, nodes and edges are called sites and bonds respectively; in sociology, nodes and

edges are referred to as actors and ties. In the introductory portion of this section, the

mathematics and unweighted metrics of networks are presented, based on Newman [10].

It is relevant to be familiar with the notation used in the mathematics of networks,

where n denotes the number of nodes in a network, and m for the number of edges. The
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Figure 2.1 Example of Adjacency Matrix.
Retrieved from Networks in Oxford University Press, available in [10]

basic mathematical representation of networks is known as an adjacency matrix. Adjacency

matrices are of dimensions n x n, where each element of the matrix is represented by Aij,

where the value is equal to 1 if there is an edge between nodes i and j, and 0 otherwise.

An example of a network and its corresponding adjacency matrix can be seen in figure 2.1.

The most common representation of networks is using binary edges between nodes,

where the connection either exists or doesn’t. This is commonly referred to as unweighted

network analysis in the literature. This type of network is useful for cases where it proves

challenging to assign a magnitude to a relationship. For example, in a social network of

friends, people are the nodes, and edges represents whether two people have met before or

not, it’s challenging to assign a weight to the edge or connection. The edges either exist

or they don’t because there are only two possible cases: two people have either met or

they haven’t.

For the cases where it’s relevant to represent a weight, intensity or magnitude in the

edges or connection between nodes, weighted network analysis comes into play. In the

context of this thesis, in chapter 3.1, the World Trade Web is analyzed, and given that

countries have trade relationships of varying magnitudes, it’s relevant to include them

in the analysis, hence using the weighted network analysis approach. Failing to include

the weights in the analysis could be detrimental to the quality of the analysis due to loss
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of information. In this case, the user would be assuming that the trade flows between

the USA and China are equally as important as the ones between Lithuania and Estonia,

which could easily be argued inadequate.

Another important aspect of networks to understand is that they can be either directed

or undirected. There are some cases where representing the direction of the flow could add

important information to the network and allow for a more comprehensive analysis. In a

directed network, edges have directions or flows, where the relationship flows from one node

to another one. An example of directed network would be a network of people comprising

of investors and entrepreneurs, and the edges between them represent investments. In

that case, the edges will be flowing from the investors to the entrepreneurs, which in

graphs is represented as an arrow that points from the investor that invests the money to

the entrepreneur that is receiving it. In the case of the work presented in chapter 3, the

network is directed and weighted, given that trade flows go from an exporting country to

an importing country, and there’s a magnitude associated to the value of the goods that

are flowing between the territories.

Different types of networks require distinct approaches in order to be properly analyzed,

hence there are two main distinctions between networks that need to be made to determine

how the analysis is to be performed, and they are: whether the analysis is more adequate by

doing an unweighted network analysis or a weighted network analysis. While the metrics to

analyze unweighted networks are well documented (see [9, 10]), weighted network analysis

metrics have been developed and discussed by numerous authors (see [11, 15–20]) who

have attempted to create homologous metrics to those in unweighted network analysis.

The complexity of weighted network analysis metrics allows for discussions to arise on

the adequacy of distinct metrics, see for example work around the development of the

weighted clustering coefficient [11–14].

In unweighted network analysis, one of the most common centrality metrics is the
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degree centrality of a node. Centrality refers to which are the most important nodes in a

network, however, importance can be defined in numerous ways. The degree centrality

of a node is simply defined as the number of edges that are connected to the node. In a

network of academic citations, the nodes would be researchers, the edges would be the

citations, and the degree would be the amount of citations that each researcher has. Using

degree, it would be rather simple to determine which authors are more "important" or

more "central" to the network by looking at their degrees. It’s common to denote the

degree of a node i with ki. The degree of a node that is part of a network that contains n

nodes can be denoted as seen in equation 2.1. Keep in mind that for directed networks,

each node will have two degrees assigned to it: outdegree and indegree, where the former

refers to the edges that flow out of it into other nodes, and the latter to the ones that flow

into itself. Degree centrality is a very standard and useful method, however, one of its

main drawbacks is that it gives every single connection the same importance, and here is

where eigenvector centrality comes into play.

ki =
n∑

j=1

Aij (2.1)

Eigenvector centrality is formed from the notion that a node’s importance in a network

is increased if it has connection to other nodes that are themselves more important, central,

or powerful. For example, you might just know one person in the world, but if that person

is Jeff Bezos (Amazon’s CEO), then you are in a more influential position than any other

mortal (arguably). Hence, eigenvector centrality assigns a score to a node proportional to

the centrality scores of its neighbors. Eigenvector centrality’s computation is shown in

equation 2.2, where the metric is denoted by xi for node i, where the centrality of this

node is proportional to the sum of the centralities of its neighbors. The term k-1 denotes

the constant of proportionality, and y stands for the nodes j that are neighbors of i. With

this metric, nodes can have a higher centrality either by having many neighbors with a
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low centrality, or few neighbors with a high centrality.

xi = k−1
∑
y

xj (2.2)

PageRank is another widely used centrality metric, where the score that a node receives

by having an incoming edge from the neighbors is proportional to the centrality of the

neighbor divided by their out-degree. This prevents the type of problem that could happen

where an important node points to numerous nodes and they all receive a very high score

just by being pointed at by an important node. The centrality can be defined as shown in

equation 2.3

xi = α
∑
j

Aij
xj
koutj

+ β (2.3)

Betweenness centrality is another measure of node importance, which measures to

what extent a node lies on the path between other nodes. In other words, it measures the

number of shortest paths that go through a node. The reason why betweenness centrality

is relevant, is because those nodes can exert some level of power or control over the network

given the amount of information that has to pass through them to reach other nodes. The

formula to measure betweenness centrality is shown in equation 2.4 where nsti is 1 if node

i is in the shortest path from node s to t and 0 if it does not.

xi =
∑
st

nist (2.4)

Clustering coefficient is another metric of importance. It allows to quantity network

transitivity, where if person "a" is friends with person "b", and person "b" is friends with

person "c", then person "a" and "c" have a higher likelihood of becoming friends than

other two random nodes. In the cases where person "a" is actually friends with person

"c" as well, we say that there is a closed triad, otherwise it’s an open triad. In order to
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Figure 2.2 Reciprocity, available in [10]

calculate the clustering coefficient, the proportion of closed triads over the number of open

triads is computed, as seen in equation 2.5

C =
(closed triads)

(open triads)
(2.5)

Clustering coefficients quantify the loops of length three, however, in directed networks

there can be paths of length two, whose frequency is measured by reciprocity, which is the

chance that a node you are directing to, is directing towards you as well. Figure 2.2 shows

a network where 4 out of 7 edges are reciprocated, hence reciprocity r is 0.57.

Homophily and assortative mixing are another notion of networks worth taking into

consideration when analyzing a network. The fact that people tend to assimilate with

others who are similar to them is known as homophily or assortative mixing in the context

of network analysis. Disassortative mixing is also prevalent in social networks, and a

good example of this is a marital network, where the majority of the partners are of

opposite sex, so they are assimilating with someone who isn’t like them. This can also

be extrapolated to other networks like academic citation networks, where a paper in

network analysis is more likely to cite other papers within the same field. When discussing

assortative mixing, an important issue to take into consideration is that mixing can happen

based on unordered characteristics (non-numerical characteristics where mathematical

operations can’t be performed) like nationality, gender, race, etc. or it could happen with
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ordered characteristics like income or age, which are mathematically treated differently.

Modularity is the measure to quantify the extent to which, in a network, similar nodes are

connected to other similar nodes with unordered characteristics, and is calculated as shown

in formula 2.6, where δgigj is the Kronecker delta. For the computation of assortative

mixing by ordered characteristics, one can refer to Chapter 7, section 7.7.2 from Newman’s

"Networks" book [10].

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δgigj (2.6)

As mentioned earlier in the chapter, weighted network metrics aren’t as standard as

the unweighted counterparts, hence sometimes there are various accepted metrics for the

same notion of measure, proposed by various authors. In the remainder of the present

chapter, the weighted network metrics used in chapter 3 are presented.

Weighted out-degree is the sum of the magnitude of all the outgoing edges from a

node, and weighted in-degree is homologous but for incoming edges. In the context of the

World Trade Web (WTW), the weighted out-degree of a country is its total exports, and

the weighted in-degree is its total imports.

Random walk betweenness centrality (RWBC) is a homologous measure to betweenness

centrality in unweighted networks. RWBC was developed by Newman [25] and Fisher

and Vega-Redondo [26] and its computation can be explained intuitively with the use of

signals. Random signals are sent though all the edges of the network, and each one of

these has a target node. The signals then perform a random walk, where nodes with a

higher weighted degree have a higher likelihood of being chosen as a route to the final

destination. The algorithm keeps a track of how many signals go through each node, so

the ones with the highest count will be the ones with the highest RWBC.

Random walk closeness centrality (RWCC) is a homologous measure to closeness

centrality in unweighted networks. RWCC was developed by Stephenson and Zelen [27].
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After its original proposal and development, it was reworked and improved by Brandes

and Fleischer [28] by reducing its computational demand. The higher the RWCC, the

more important the node is.

The weighted clustering coefficient is the weighted homologous to the unweighted

clustering coefficient, and the one we use in chapter 3 is developed by Fagiolo [14]. This

coefficient is the geometric average of the subgraph edge weights, which ultimately measures

how likely a network is to create neighborhoods that are tightly connected.

In order to get an approximate measure of weighted assortativity, average nearest

neighbor strength (sum of weighted out-degree and weighted in-degree of neighbors) is

correlated to neighbor strength, in line with the approach of Fagiolo, Squartini, and

Garlaschelli [29], and Fagiolo, Reyes, and Schiavo [7, 30].
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2.2 Machine Learning

Machine learning (ML) refers to algorithms that enable computers to learn complex

patterns from data, usually those that wouldn’t be possible to model with other multivariate

techniques. The study of ML can be traced to 1959 with the developments made by Arthur

Samuel, who was a pioneer in the fields of artificial intelligence (which ML is a subset

of) and computer gaming [31]. Recently, ML has developed closer ties to optimization,

where the ultimate goal is to minimize a loss function, which can be defined in many ways

depending on the use case, such as mean average percentage error, root mean squared

error, accuracy, recall, among many others.

The general workflow of an ML algorithm is as follows: there is a training set that

contains the true attributes of the variable (the object of prediction), as well as features

that will serve as an input to generate that prediction. For example, if one wants to

predict the price of a house using characteristics of the house such as its size in squared

meters, latitutde, longitude, number of bathrooms, and other similar features, the data

could be arranged in a relation similar to an ordinary least squares (OLS) regression. In

this sample dataset, we could think as the price of the house as the dependent variable

that we are trying to predict, and the independent variables would be the aforementioned

features. The goal would be to minimize a loss function, where the optimal choice depends

on the type of dependent variable under scrutiny, which in this case would be any loss

function that allows the user to determine how far off you are from the prediction, such

as root mean squared errors, mean squared logarithmic errors, mean average percentage

error, and so forth. The user could experiment with different loss functions to see what’s

appropriate for the use case.

The above example falls under the subcategory within machine learning, known as

supervised learning, which is used in this thesis. Supervised learning refers to those ML
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applications where there is a true, known value on what the user is trying to predict,

in other words, there is a value for a dependent variable, a label for classification, or

something of similar nature, that would allow the ML algorithm to determine how good

its predictions are and fine tune its parameters to minimize the error. Additional examples

on cases where supervised learning has proved its usefulness are: classification problems,

such as identity fraud detection, image classification, object detection, medical diagnostics;

and regression problems, such as weather forecasting, trade flow prediction, estimation of

life expectancy, and a much longer list. An illustration of the process of classification of

emails as spam or not spam using supervised learning is shown in figure 2.3

Figure 2.3 Example of Supervised Learning.

Another subcategory of ML algorithms that isn’t used in this thesis, but is worth

noting for a better context, is unsupervised learning, where the objective isn’t prediction,

given there is no ground truth, so data is unlabeled and uncategorized. Examples of use

cases are: clustering algorithms (K-means clustering, non hierarchical algorithms, and

the like), such as recommender systems and customer segmentation; and dimensionality

reduction (principal component analysis, factor analysis, and the like) such as creation of

indices, structure discovery, big data visualization, and numerous others. An illustration

of the process of clustering for circles based on their color scale is shown in figure 2.4
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Figure 2.4 Example of Unsupervised Learning.

A last subcategory of machine learning that is worth noting is reinforcement learning.

In such a structure, the algorithm learns by interacting with the environment, and there

is a reward/penalty system that allows the ML algorithm to know whether it’s doing well

or not. A simple use case of such an algorithm, would be in a classic Mario Bros game,

the computer is trying to learn how to beat a level, and to do so, it can perform certain

actions (use all the buttons in a controller) and its results can be measured by either the

final score, the time it took to complete the level, the health-points left, or any mix logical

or weighted mix of the previous. Some industry use cases include robot navigation, AI in

games, among various others. An illustration of a robot making decisions based on reward

and penalty is shown in figure 2.5
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Figure 2.5 Example of Reinforcement Learning.

A helpful resource that aids in visualizing all of the 3 mentioned subcategories of ML:

supervised learning, unsupervised learning, and reinforcement learning, as well as their

use cases, are shown in figure 2.6.
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Figure 2.6 Machine Learning Categories.

Neural networks (NN) are the main tools used by ML algorithms for prediction. They

have numerous key elements, but the most basic ones are neurons, weights, and biases,

which would allow one to construct a simple NN. The first element, neurons, are functions

that encapsulate the biases and weights within them, and when they receive inputs, they

will process the data and very commonly use an activation function as well in order to

limit the data to a particular range. The second element, weights, could be thought

as the most fundamental elements of NNs, they are learned through trial and error in

cycles called epochs, where the algorithm attempts minimizing the error of prediction

through iteration. Once weights are assigned through learning (sometimes it can take

very long through model training), they can be saved and loaded into a NN with the same

architecture to predict with inputs. The third element, biases, are what the NN considers

should be modified after finding the product of the weights with the data. The biases will

be wrong, but through trial and error the model is able to learn the optimal biases [32].

If we think of a NN as a trivial linear function, the slope could be considered the

weight of the model, the Y-intercept would be the bias, and the whole function would be
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the neuron. The previously mentioned elements can be observed in figure 2.7. It can be

appreciated that the output layer has 4 neurons, which are represented by the circles, the

lines connecting the neurons are the weights, and the bias is usually encapsulated within

the neuron itself. Another important element that should be mentioned is that neurons

are arranged in layers, where in figure 2.7 5 layers are present. One of them is the input

layer, there are 3 hidden layers, and an output layer where the user gets the results.

Going back to the house prediction example. In this case, the input layer will have

as many neurons as we have features for the prediction. So, if we have squared footage,

number of bathrooms, latitude, and longitude, we will have 4 neurons in our input layer.

The decision around number of hidden layers as well as the number of neurons, commonly

known as hyper parameters is assigned via trial and error. The reason being, there is no

way of knowing beforehand what values are appropriate hence the trial and error approach.

Larger number of hidden layers and nodes allow for training of more complex models, but

the trade-off is that it increases computational demand. The output layer, in this case,

will consist of just one neuron, given we are making one house price prediction for every

set of features. The edges in the NN will carry the weights, which will be automatically

adjusted through trial and error with the objective of minimizing prediction error and

maximizing accuracy. These can be measured because the data is labeled, so the model

knows how far it is from making the right predictions, and the fact that the data is labeled

makes the machine learning model one within the supervised learning category.

A term very often heard within ML is the tuning of hyper parameters. These parameters

are adjusted through trial and error. This is achieved through either the modeler’s prior

experience or use case from literature or a mixture of both. It is common practice in ML

algorithms to divide a dataset into training and validation data, usually a 75%-25% split

is done. This allows to tune the hyperparameters using the training data, and then see

the algorithms accuracy at generalizing the data that the model hasn’t seen, using the
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Figure 2.7 NN Architecture.
Retrieved from "Probabilistic Deep Learning with Python" in Manning, available

in [33]

validation dataset.

Epochs is a hyperparameter that tells the model how many times the training data

will pass through the neural network. In order to decide how many epochs to use in a

model, it’s common to use a method called early stopping, where you will train your model

using the number of epochs that minimizes the error of the validation set. If training

isn’t stopped at this point, the validation error will start increasing, while the training

error is still decreasing, a problem known as overfitting, where the model isn’t good at

generalizing anymore [34].

Batch size is a way of dividing the dataset into sub batches that the network is going

to use to pass them and adjust the weights and biases. The learning rate will tell the

model how big the adjustments will be every time it adjusts the weights and biases based

on the loss function and the batch that is being passed. Having a very high learning rate

could make the accuracy of the model vary greatly, given the model is "taking higher

risks" when making the parameter adjustment during training. The aforementioned effect

can be seen in figure 2.8

19



Figure 2.8 Learning Rate.
Retrieved from "Introduction to Neural Networks and Their Key Elements

(Part-B)" in Manning, available in [34]

Activation functions are hyperparameters that transform the output of the neuron by

constraining them to a set of values, because otherwise they could range all the way from

negative infinity to positive infinity, thus complicating the training of the model. There

are numerous activation functions, amongst which the most common ones we find: tanh,

that constrains values between -1 and 1; sigmoid function, constraining values between 0

and 1; softmax function, which is used when dealing with a classification problem and

constrains the classes into a probability distribution, where the sum of the probabilities is

equal to 1; relu (rectified linear units), which increases in a linear fashion for all positive

values, and is zero for any negative values [35].

Lastly, another important topic in ML and NNs, is preventing the model from overfitting.

The first thing to know is how to detect overfitting, and it’s quite simple. In order to

do so, monitor the errors of your validation set, and they will usually tend to increase

during the first epochs of training. Once the model has been trained through numerous
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epochs, there will be a point where the error will start increasing instead of decreasing,

which means that the model is getting worse at generalizing. One should be cautious,

because the error of the training set will always tend to decrease no matter the number of

epochs, hence the importance of monitoring the validation set. See for example figure 2.9,

where the model starts overfitting after around 100 iterations, where the accuracy starts

trending downwards indefinitely. Arguably the easiest method to avoid overfitting is to do

what is referred to as "early stopping", where training is stopped once the validation set

accuracy starts decreasing indefinitely or the error starts increasing indefinitely.

Another common method of avoiding overfitting is L1 and L2 regularization, which

works by adding an extra element to the loss function, which disincentivizes the model

from using very high weights. L1 regularization is usually preferred over L2, because it

tends to reduce the weights of features that are deemed as less important, converging

to zero or sometimes even excluding them from the computations. The main difference

between L1 and L2 regularizations, is that the noise introduced to the model with L1 is

linear, whereas in L2 it’s quadratic. The parameter that is introduced should be fine tuned

through trial and error, hence being another hyperparameter of the model. Dropout is

the last regularization method to be discussed, where overfitting is prevented by randomly

dropping neurons with a determined probability, thus preventing the model from learning

the noise in the training data and resulting in weights that generalize better [36].
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Figure 2.9 Learning Rate.
Retrieved from "Preventing Deep Neural Networks from Overfitting" in Towards

Data Science, available in [36]
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Chapter 3

The World Trade Web: Countries’

Topologies and Their Effect on Income

Level

Network analysis and machine learning have been reviewed in the previous two chapters,

respectively. The former, will serve as the main tool of analysis for chapter 3 of this

dissertation, titled "The World Trade Web: Countries’ Topologies and Their Effect on

Income Level"; the latter, for chapter 4, titled "The World Trade Web: A Deep Learning

Approach to Link Weight Prediction". In the following chapter the topology of the world

trade web is explored and analyzed, and relationships between network characteristics

and income level are identified.

3.1 Introduction

Studying the world trade web (WTW) is of great importance, especially as a analytical

tool for countries to design or refine their trade policies. International trade between

countries is critically influential in shaping the world economy. The global gross domestic
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product (GDP) for 2017 (also known as Gross World Product, GWP) is 80.14 Trillion

USD, out of which 16.3 Trillion USD (20%) comes from international trades. This does

not account for all of the secondary effects that trade brings with it, like employment

in factories, shipping and logistics companies, research and development, technological

advances and transfer. Trade also enables the wide-spread of availability of products and

services over the globe, which has been shown to accelerate globalization [2].

Approaching the study of the WTW using network analysis allows to integrally

understand relationships among countries that couldn’t be obtained without the use of

network analysis, such as: assortativity, which would enable to identify if stronger countries

tend to trade with weaker countries or vice versa; clustering, to see if there is a relationship

between how strongly a country interacts with other countries and the strength of the

trade relationships between the countries it trades with; disparity, to measure how well

distributed a country’s exports and imports are; structure of communities, to identify

trade blocks. From an economic perspective, they are relevant because these first and

higher order trade relationships play a role in the degree of dependency of countries on a

given country or pool of countries.

The study of economic interactions using network analysis has recently showed to be

highly insightful in numerous use cases, among the following: the analysis of globalization

and regionalization in international trade [3]; understanding the potential and risks of

economic systems [4]; empirically derive the structure of the world economy [5]; understand

global interdependencies [6]; better understand the role of network characteristics in

countries’ incomes [7, 8]. Nonetheless, the amount of research one can find in the area

is still scarce, being addressed by just a handful of authors. Network analysis can help

understand how crises propagate through the WTW, where a shock to a highly central

country is more likely to be transferred to the rest of the network [7]. Understanding

the structures of communities within the WTW can better help identify trade blocks,
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where shocks that originate in one trade block would be less likely to impact other

trade blocks. Moreover, network analysis has also recently proven useful in tangential

applications to understand global and regional labor mobility, knowledge spillover, and the

formation of geo-industrial clusters [37]. Additionally, dependency analysis, when applied

with network analysis, can enrich the understanding on the role of countries’ network

characteristics in countries’ incomes. Understanding the characteristics of the WTW

can aid in comprehending the structure of the network and pinpoint specific channels of

propagation of economic and financial disasters and shocks, thus enabling policy makers

prevent and prepare for them. The previous implies a natural interdependency among the

countries, since a reduction of a country’s exports to another one can inhibit the latter’s

ability to manufacture exportable goods to its trading neighbors, a negative ripple effect

[6, 8, 38–41]. Trade flows have been shown to be highly correlated with other country

interactions such as flows of services, workers, and financial assets, hence being a relevant

indicator for broader economic relations [42].

This chapter studies the topology of the World Trade Web by analyzing its unweighted

and weighted network characteristics and attempts to answer numerous relevant questions.

The data used for the analysis is the 2017 exports for 238 countries and territories for

which there is available information [21]. This allows for the study of the trade interactions

among countries, phenomenon that has, to this date, scarcely been studied with this

technique. Using both, a directed unweighted and weighted network approach with

the magnitude of exports as weights, this chapter’s objective is to answer the following

questions: Does the WTW still follow a degree power law distribution1 when incorporating

a richer dataset? How do the WTW’s trading communities look like? Which continents

are more susceptible to instability originating from their trading partners and spreading

through trade? From a multivariate perspective, which countries are the most central
1A power law distribution describes a phenomenom where few items are clustered on one end of a

distribution, representing at least 95% of the occurrences
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in the WTW? Which countries have a substantially high dependency on others? Do

countries trade with partners that are similar (in degree and weighted degree) to them?

Does geographical proximity and trade agreements influence the relative intensity of trade

among countries? What relationships can be found taking into consideration all of the

countries’ network characteristics? What actions can countries take to improve their per

capita gross domestic product (PCGDP)? What continents are the major players in trade?

How do the continental trade flows look like? This chapter also attempts to address

several concerns that have been pointed out by authors that have done tangential works.

Fagiolo, Reyes, and Schiavo [7] mention the lack of in-depth analysis into the topological

characteristics of the individual continents and regions from the cross-sectional perspective,

as well as the lack of studies in the role of geographical proximity in shaping the WTW

and how fragile the network is. It is also mentioned that it is necessary to analyze if the

topological properties of the WTW, from a weighted analysis perspective, can explain

macroeconomic dynamics of growth and development.

The results obtained are insightful to understand the behavior and economic charac-

teristics of countries with a determined network structure. Geographical proximity and

trade agreements are found to have a crucial impact on the intensity of interactions among

countries. The continent most susceptible to instability is North America, and the one

least vulnerable is Europe. The results of Ordinary Least Squares Regression (OLS) show

that in order to increase their income, countries should associate with more neighbors that

are themselves weaker; reciprocate fewer of their trade links; trade more strongly with

countries that are themselves stronger; and increase their export to GDP ratio.

The following sections are organized as follows: firstly, in section 3.2 related works in

the field of unweighted network analysis and weighted network analysis will be discussed;

following, in section3.3 the database that was used is described as well as how the network

was constructed; afterwards, in section 3.4 the methodology to be employed for each one
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of the objectives and the results is covered; next section 3.5, goes through the conclusions

and future work that could be done using these results as a foundation; finally, in section

3.6 the limitations of the work are discussed.

3.2 Literature Review

For network analyses, the entities (countries, people, etc.) are represented as nodes, and

edges between any pair of entities represent their relationship (trades, friendship, etc.).

The edges between nodes might be binary or weighted. A binary edge captures if the

relation between two nodes exists or not (e.g., if two countries trade or if two people are

friends) whereas weighted edges capture the magnitude or extent of the relationship (e.g.,

the value of trades between two countries, or the extent of friendship between two people).

In this light, network analyses might fall into two categories of binary (or unweighted)

and weighted depending on whether the underlying network is represented by binary or

weighted edges. There are well-studied methodologies to analyze unweighted networks (see,

for example, these comprehensive introductions [10, 43]). In contrast, the techniques to

analyze weighted networks are still novel, questionable, and not necessarily well-established

(see, for example, the various generalizations for a weighted clustering coefficient that

have been proposed [11–14]). Nonetheless, numerous novel weighted network metrics have

been developed for weighted analysis [11, 15–20]. We believe that the weighted network

analyses of the World Trade Web is of practical importance by capturing not only the

trades of two countries but also the magnitude of those trades.

Failing to use weighted links when working with the WTW results in a vast loss of

information and possible insights that could be obtained from a weighted network analysis.

Nonetheless, the bulk of the available literature on network analysis applied to the WTW

approaches the analysis in an unweighted fashion (see [3, 5, 44–46]). With an unweighted

approach, equal weights are applied to all trade links in the WTW. The previous can be
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argued inappropriate since it is, for example, giving the same importance to a trade of

10 billion dollars and one of 10 dollars. However, to be able to contrast results with the

ones from the literature, unweighted analysis of the WTW is to also be performed in the

current chapter, and results that debate other authors’ findings were obtained.

Custom-weighing methods other than the actual magnitude of the trade flows have

been used in the literature, which can be argued inappropriate. Fagiolo, Reyes, and

Schiavo [7] use an arbitrary and custom weighting method that involves the addition of,

for example, the exports of country “A” to country “B” and vice versa, over the gross

domestic product (GDP) of the exporting country (“A”), divided by 2. The drawbacks of

using such a weighting approach, is that this deflates trade magnitudes. E.g. if country “A”

exports 1 billion dollars to country “B” and the economy of the former is 10 billion dollars,

then the ratio of exports to GDP would be 0.1. In a similar way, if country “B” exports 1

dollar to country “A”, and the size of the former is 10 dollars, then the ratio is also 0.1, so

this is holding back the detection of the magnitude and potential of stronger trade links.

This mechanism can be useful in some cases, where the researcher wants to analyze how

important a partner is to a country in particular, instead of the entirety of the WTW.

Weighing mechanisms like the previous could be arguably considered inappropriate for

the analysis of the topology of the WTW depending on the objective of the analysis to be

performed, hence this chapter uses the export magnitudes as weights. Breiger [47] also

uses a custom weighting method, where trade flows are studied using weighted links on an

undirected network. In this work, custom weighting that is depurated by average imports

and exports is used, again having the same drawbacks as the custom weighing method

used by Fagiolo, Reyes, and Schiavo [7]. Bhattacharya [48] and Bhattachayra, Mukherjee,

and Manna [49] weigh each link using the difference between exports and imports (having

the same drawbacks as the aforementioned studies) and an intertemporal comparison

where constant United States Dollars (USD) aren’t used was performed, rather current
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USD, which can be argued inadequate for numerous applications in economics because

inflation is not accounted for. Serrano, Boguńá, and Vespignani [6] use a rather peculiar

weighing mechanism, where a trade link only exists if there’s a bilateral trade imbalance

between two countries, and it is weighted with the magnitude of said imbalance.

Some authors have argued that there is evidence to symmetrize the network [7] which

could potentially allow the researcher to simplify the analysis by reciprocating trade

links that aren’t currently being reciprocated and removing the directionality of the

flows. However, this can be deemed inappropriate under particular circumstances. When

analyzing the WTW, Fagiolo, Reyes, and Schiavo [7] use a metric of symmetry proposed by

Fagiolo [50], and after getting positive results for this test, the data matrix is symmetrized

by removing the directionality. Symmetrizing the network can be argued inadequate when

there is a lower network density, which stands at 37% using the dataset from [21] and

a reciprocity of 62%, and this doesn’t account for magnitudes of the flows, which could

arguably make the WTW less symmetrical.

Dependency analysis can be used to understand how the network characteristics of

countries can impact their development. General characteristics of countries such as

initial GDP conditions, physical capital, human capital, and other variables like degree

of openness, geographical, and political characteristics have been used to explain GDP

per capita growth rate [51–53]. Kali and Reyes [8], whose work is based on Harrison

[51], Yanikkaya [52], and Irwin [53], perform a dependency analysis including network

characteristics, such as export dependency and import dependency of the nodes, as

independent variables to explain GDP per capita growth rates. A drawback with this

exercise when the researcher’s objective is to find the significance of variables that are

network characteristics, is that variables that aren’t network characteristics are included

in the regression, such as human capital, physical capital, regime, climate, and access to

water, which can reduce the significance of the variables that are network characteristics.
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Also, the independent variables that are network characteristics are metrics that are

complicated for countries to manipulate through public policy in order to improve their

growth (such as centrality), which doesn’t allow countries to take recommended actions to

improve their growth rates. Arora and Vamvakidis [54] have shown that the gains from

trade do not depend just on the degree of trade openness, but the number of trading

partners, which is associated with higher growth rates [8]. The previous relationship is

associated as a result of the countries with more trade partners being exposed to better

technologies, more markets and competition.

For the weighted approach of this work, the volume of trade will be used as the weight

of the edges of the WTW, and will be approached as a directed network, which means

that unlike Fagiolo, Reyes, and Schiavo [55], the matrix won’t be transformed as a result

of a symmetry index, since it is a strong and unreliable assumption that the export flows

from country “A” to country “B” are the same as the export flows from the latter to the

former. Just by glancing at the matrix, one can notice that there’s no strong symmetry, so

no approach to remove directionality will be undertaken. As of today and to the best of

our knowledge, no other works have been identified that analyze the WTW on a directed,

weighted fashion for the year 2017 with the weighting mechanism hereby proposed, and

with the rich database provided by COMTRADE[21].

3.3 Data

This chapter uses a dataset from the World Integrated Trade Solution (WITS), provided

by the United Nations (UN) COMTRADE [21]. The data is from 2017, which is currently

the most recent year with information on all of the countries reported by the database,

and reports data con 238 countries. Note that we will refer to any independent territory

reported by the database as a country. The raw dataset comes in the form of a weighted
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edgelist, which facilitates the processing of data in softwares like Gephi2 and Python

libraries like NetworkX3. Table 3.1 shows a sample weighted edgelist dataset.

Table 3.1 Dataset Sample Weighted Edgelist

Exporting Country 1 Importing Country 1 Trade Flow Magnitude 1

Exporting Country 1 Importing Country 2 Trade Flow Magnitude 2

... ... ...

Exporting Country m Importing Country n Trade Flow Magnitude n

Based on the nature of trade, a country’s export is another country’s import. Stemming

from this, the first column in table 3.1 corresponds to the ISO3 code of the country that

is exporting, the second one to the ISO3 code of the country that is importing, and the

third one to the magnitude of the trade flow. Henceforth, countries can appear numerous

times in both columns because they can be a source of exports and destination of imports

to and from numerous countries.

We should also take into consideration that trade flows reported from this database

come from official, legal trade, which fails to capture the underground economy. One

should note that often trade happens informally between countries, so developed countries’

data could end up being more reliable than that of developing countries due to the existence

of rule of law and strong institutions.

There’s a limited availability of literature on the WTW after the year 2010, which could

be due to the database constructed by Gleditsch [56] not being updated anymore. This

database has been used by numerous authorities in the field [29, 30, 55, 57], but hasn’t

been updated since 2011, and the URL to it doesn’t work anymore. Also, the database
2Gephi is a software for visualizing and analyzing complex networks. The official documentation can

be accessed here: https://gephi.org/users/
3NetworkX is a library that enables the analysis of complex networks. The official documentation can

be accessed here: https://networkx.org
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constructed by Gleditsch [56] consists of just 159 countries (according to the authors that

have used it, since we couldn’t access it ourselves, given that the links to it are broken),

which indicates that this database is considerably less informative than COMTRADE’s

database [21], which consists of 238 countries. One can believe that given that Gleditsch’s

database isn’t available anymore, recent authors like Chow [58] have recurred to using the

OECD database [59], which currently consists of 64 OECD and non-OECD countries. The

drawbacks of using this database are that it doesn’t include most of the African countries,

as well as small countries from southeast Asia and the Caribbean. Also, 64 countries

is less than one third of the countries and territories reported by the database used in

the present study [21]. To the best of our current knowledge, no other author has used

such an in-depth analysis to obtain insights at the country and continent level, together

with a dependency analysis for actual trade policy recommendation. Also, the database

is publicly available on a reliable website that any researcher and/or reader can access

and thus replicate the current experiment or work with the same data on similar research

projects.

3.4 Network Statistics and Results

3.4.1 General Properties

In simple terms, a network is a collection of points joined by lines. Within the field of

network analysis, the points are commonly referred to with the term "vertices" or "nodes",

while the lines that connect said nodes or vertices are referred to as "edges". Edges

can be labeled with additional information like an edge weight, which allow to capture

more details of the system. There are 2 main type of networks: undirected and directed.

The former does not take the directionality of the edges into consideration, while the

latter does. A trivial example of an undirected network can be a communication network,
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where if one person has talked to the other person there has already existed some form

of communication between them, even if the other person does not reply. On the other

hand, a directed network can be a series of airports, where airplanes can fly from one

airport to another one, but the opposite might not be true. Directionality of the edges

conveys additional information as well, as it indicates the flow of the interaction between

the nodes. Neighbor nodes are those that are adjacent to another node (connected by

an edge). In the context of the WTW, a country is represented by a node, their trade

relationship is the edge, the weight, or strength of said trade relationship is the magnitude

of the trade flow, and it is a directed network where directionality works as follows: an

outgoing edge represents an export from the source node, and an incoming edge represents

an import from the target node. A country is considered the neighbor of another country

if they’re connected in either direction (import or export), given that the fact that they

are interacting commercially turns them into trade partners, hence, neighbors.

Mathematically, a dense graph is a graph where the number of edges is close to the

maximum number of edges that can exist within the network. The opposite is also true,

where having few edges relative to the total possible edges is associated with a sparse

graph. The graph density4 for the WTW is 0.372, meaning that there exists 37.2% of the

total possible connections. Note that there are 238 countries, and if every country was

connected to every other country, the number of connections would be 56,406 (238x237).

The density obtained differs from the 50% that Garlaschelli, Loffredo [57], and Fagiolo,

Squartini, and Garlaschelli [30] found for the year 2000 using Gleditsch’s database [56]; the

65% found by Fagiolo, Reyes, and Schiavo [55] for 2000. Hence, these results indicate that

the WTW is considerably less dense and therefore more poorly connected than previously

determined by other authors, showing a lot of opportunity for new trade partnerships and

relationships between countries to occur.
4Graph density represents the actual number of edges as a proportion of the total possible edges if all

the nodes were connected to each other.
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The average nearest neighbor degree (ANND) is defined as the number of trade flows

(number of outgoing + incoming edges) a country’s neighbors has, on averaged over

the number of neighbors. The ANND obtained is 259, significantly higher than the 120

obtained by Fagiolo, Reyes, and Schiavo [55] and Fagiolo, Squartini, and Garlaschelli

[30] for the year 2000 and the 100 obtained by Fagiolo, Reyes, and Schiavo [29]. The

results obtained indicate that countries are connected, on average, to significantly better

connected neighbors than what was previously thought. The average nearest neighbor

strength for the network is 314,447,654 thousand dollars.

In directed networks, the frequency of loops of length 2 is captured by a metric called

"reciprocity", which captures the fraction of vertices that you point to that also point back

at you. In the case of the WTW, a country’s link is reciprocated when it is exporting

to a country it also imports from. The reciprocity obtained in the WTW is 62%, which

represents the proportion of the relationships between countries that are bidirectional

in relation to the total edges, meaning that they are partners through both importing

and exporting from and to each other. The previous result is significantly different from

the ones found by Garlaschelli and Loffredo [60] and Fagiolo [50] of around 80%, and the

95% obtained by Garlaschelli and Lofredo [57], and the almost 100% obtained by Fagiolo,

Reyes, and Schiavo[55]. This once again indicated that the probability of the network

being considered symmetrical is substantially lower, arguably invalidating symmetrizing

the network as done by Fagiolo, Reyes, and Schiavo [55].

In graph theory, the eccentricity of a vertex is the greatest distance between itself and

any other vertex, or how far the node is from the node that is most distant (measured

as total steps to reach the node travelling through edges) in the graph. Similarly, the

diameter is the maximum eccentricity among all the vertices in the network. The diameter

obtained for the WTW is 3, which means the maximum amount of trades flows that should

be followed to get from one country to another one is just 3. The only other identified
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work that had computed this metric for the WTW is Chows’s [58], where a value of 2

was obtained, but given that the OECD database was used, which only consists of 64

countries, the results obtained are significantly different.

The reason for the significant differences obtained are likely due to the fact the database

hereby used considerable more complete, meaning that it includes even small islands from

the Caribbean and Southeast Asia, which enriches the analysis and adds a considerable

amount of countries, links, and relationships that didn’t previously exist, thus reducing

density, reciprocity, and numerous other metrics. Also, as previously mentioned, other

databases like the one from the OECD are missing most of the African countries as well.

One of the most simple centrality measures in network analysis is degree centrality,

which indicates the number of edges that are connected to a vertex. In the case of the

WTW, the degree of a country is the sum of the number of countries it exports to and the

ones it imports from. Figure 3.1 shows a heat map of the degree by country. One can

observe developed countries show a higher degree, namely countries such as Canada, USA,

Australia, Japan, New Zealand as well as most of Europe. Developing countries with a

remarkable degree include Brazil, South Africa, India and China. Note that most of Africa

is notably poorly connected. Another trend that can be observed is that geographically

smaller countries tend to be less connected than large countries. The correlation between

the size of countries (in land square kilometers) and their degree is 0.267, showing a

low-moderate correlation, meaning that larger countries do tend to have a higher degree.

Statistically, a power law is defined as a functional relationship between two variables,

where changes in one of the variables results in a proportional relative change in the other

variable. In other words, one variable is changing as a power of another one. In the case

of the WTW, it would follow a power law degree distribution if numerous countries had a

low degree, and few countries had a very high degree (known is some domains as the 80-20

rule). By observing Figure 3.2a, one can note that the degree distribution of the world
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Figure 3.1 Heat Map of Degree by Country
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(a) Binary (b) Weighted

Figure 3.2 Degree Distributions (Cumulative Percentage)

trade web doesn’t seem to follow a power-law distribution. If one looks at the cumulative

distribution, it’s increasing linearly, whereas for power law one would expect for most

of the observations to accumulate in the lower degrees, and for it to marginally increase

afterwards. For power law to occur in this dataset, there should be numerous countries

with a low degree, and very few countries with a high degree, which is not the case.

The average weighted degree of a network is the average magnitude of its edges. In

the case of the WTW, the average weighted degree is the average magnitude of the export

and import flows. The average weighted degree is 68,439,821 Thousand USD. When

observing the network taking into consideration weighted edges, it can be shown in Figure

3.2b that the weighted world trade web seems to follow a power law weighted degree

distribution, which means that numerous countries have very weak trade links, whereas

very few countries have very strong ones. There is strong evidence of this, given 95% of

the countries trade less than 20% of the USA’s trade5.

Figure 3.3. is a heat map of the difference between the number of exporting partners

(out-degree) and the number of importing partners (in-degree). If a country obtains a
5The USA is the country that trades the most.
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Figure 3.3 Heat Map of Number of Export Partners Minus Number of Import
Partners

positive score, this indicates that it exports to more countries than it imports from. When

observing this heat map, it can be noted that the main continent where countries import

from more countries than the ones they export to is Africa, with a few exceptions. Some

territories in the middle east also appear to have this characteristic. Most of the rest of

the territories appear to have a positive result in this metric. Note that most small islands

and territories are sink nodes, meaning that they only import. This can be reflected by

observing the number of nodes with a null out-degree, which amounts to 96.

Figure 3.4 shows the net exports (total exports minus total imports) of countries,

divided by their corresponding GDP. This allows to see the magnitude of their trade
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Figure 3.4 Heat Map of Net Exports as % of GDP

surplus or deficit in proportion to their GDP. Russia, Australia, Mexico, Brazil, Chile,

South Africa, Eastern Asia, and other few countries appear to have large trade surpluses

relative to the rest of the countries. Most of the African countries and small islands denote

the opposite characteristic, having a large trade deficit, which is supported by Figure 3.3.

3.4.2 Community Detection

The algorithm used for community detection was developed by Blonde [61] and is based on

modularity optimization. This algorithm identifies the communities based on capturing the

sets of highly and densely interconnected nodes. It has been shown that the aforementioned
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algorithm has a high quality of communities detected and has been proven by ad hoc

modular networks. The method also allows for the use of weighted edges to account for

strength in the relationship of the communities. A resolution parameter was introduced

by Lambiotte, Delvenne, and Barahona [62] and is constructed through the connection

between community detection and Laplacian dynamics, using extended versions of the

current algorithms to test its efficiency. This resolution parameter allows for “fine tuning”

of the communities; a higher parameter will result in less, bigger communities. On the

other hand, a lower parameter will result in more, smaller communities. A resolution

parameter of 0.6 was used for community detection, and the resulting communities can be

observed in Figure 3.5.

Figure 3.5, with a resolution parameter of 0.6, detects 7 communities. The 1st one

groups North America and the northern part of South America. The 2nd one most of

South America with Africa, Ukraine, most of the Middle East, South Asia and Southeast

Asia. The 3rd one groups Finland, Russia, and most of central Asia, mainly the “stans”

(Uzbekistan, Afghanistan, Pakistan, etc.). The 4th one groups Most of Europe, Morocco,

Tunisia, the United Kingdom, Iceland, Norway and Denmark. The 5th one groups China,

Mongolia, Iran, Australia, New Zealand, and Papua New Guinea. The 6th one groups

Denmark, Greenland, and the Faroe Islands. The 7th one groups Cyprus, Greece, Cayman

Islands, and Pitcairn. Once again, the algorithm detects a strong interaction among

countries that are geographically proximate.

One can observe that the algorithm can also capture some countries with trade

agreements within the same community, given that they have stronger ties. The vast

majority of the countries that are members of the European Union can be detected within

the same community. The North American Free Trade Agreement (NAFTA) between

Mexico, the USA and Canada can also be detected, given that they are all within the

same community. Brazil, India, and South Africa are all detected within the same trade
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community and form part of “BRICS” economies (Brazil, Russia, India, China, and South

Africa). Note that the interaction between “BRICS” is not yet influent enough to group

Russia and China within the same community. Also, one can note that China and Australia

are within the same community, and this could be due to the strong interactions that

occur since Australia is well known to be a crucial supplier of raw materials for Chinese

manufacturing facilities.

Community detection is of vital importance, because it identifies trade blocks that are

formed by countries that have many and strong interactions among them. Identifying

trade blocks can signal how the spread of different economic, financial, and in general

stability shocks to a country, can propagate to other countries or regions. Shocks that

affect a country or region have a higher probability of being mostly contained within the

community, which will be affected the most by said shock, while other trade blocks should

be affected to a lesser extent.

3.4.3 Unweighted Centrality Index

For unweighted centrality, 6 metrics are going to be taken into account: degree centrality,

betweenness centrality, closeness centrality, harmonic centrality, eigenvector centrality,

and page rank. Homologous weighted metrics are going to be used on section 3.4.4 for a

measure of weighted centrality. A brief explanation for each one of the measures is going to

be provided. Newman [10] offers further details on each one of these measures. Given that

the metrics are highly correlated among them and interdependent, it is possible to create

a country importance index using principal component analysis (PCA), which reduces

dimensionality and summarizes information, while minimizing the loss of information.

Degree centrality is a rather simple measure and it’s just the degree of the node, in

this case the amount of countries a determined country is trading with, or the sum of its

total outgoing edges and incoming edges.
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Figure 3.5 Community Detection with Resolution Parameter = 0.6
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Eigenvector centrality also takes into account how important the neighbors of a node

are. In this case, the importance of a node is not only going to be determined by the

amount of neighbors or edges it has, but also by how well connected the neighbors

themselves are. Vertices get a score proportional to the sum of the scores of its neighbors.

Eigenvector centrality was constructed on the notion that, according to Bonacich [63], its

creator, and contrary to traditional social network research from Mizruchi and Domhoff

[64], and Mintz and Schwartz [65], power itself doesn’t necessarily properly determine

centrality. In a power hierarchy, one’s power depends on the power of the partners you

have power over. In other words, in unweighted networks, being connected to countries

that are themselves well connected will results in a higher eigenvector centrality. Similarly,

in weighted networks being more strongly connected to stronger countries will results in a

higher eigenvector centrality.

Pagerank, introduced by Page [66] is based on another notion of centrality called the

Katz centrality, and differs by diluting the scores that nodes get from receiving connections

from prestigious vertices by the amount of outgoing edges that said prestigious vertex has.

Pagerank takes eigenvector centrality as its foundation.

Harmonic Centrality, when computed with edges, uses well known Djikstra’s algorithm

[67]. The algorithm works by creating a tree of all the existing shortest paths from a node

to all of the other possible nodes in the graph, it works with a signal travelling through

the nodes and edges that is going to avoid using the edges with high degree, hence nodes

with better connections will have less traffic of signals. Nodes with better connections will

have a lower harmonic centrality score.

Closeness centrality is the measure of the mean distance from one vertex to the rest

of the vertices, being an unconventional measure of centrality. This measure is useful,

because in the case of a social network, if someone has a lower mean distance to other

people, their actions will reach other people in the community faster than someone with a
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higher mean distance. The previous applies in the case of countries as well.

Betweenness centrality captures the extent to which a vertex lies on paths between

other vertices, or how many shortest paths need to go through the vertex that is object of

the analysis. The development of this centrality measure is attributed to Freeman [68].

Before performing PCA for dimensionality reduction and information summarization,

one should first verify that all the variables are in the same direction (more is better or

vice versa). In case one variable is not in the same direction as the rest, the inverse should

be computed. Once all the variables are in the same direction, they should be normalized

in order for them not to be unwillingly weighted based on their scale. Furthermore, one

should perform 2 common tests to assess if the variables are significantly and sufficiently

intercorrelated among them, and hence information reduction can be performed on them.

The 2 tests are the Barlett test of sphericity and Kaiser-Meyer-Olkin (KMO). For the

former, a value below 0.05 is desired, and the current dataset obtained a score <0.001,

hence satisfactory. For the latter, a score below 0.5 is unacceptable, in the 0.50s miserable,

0.60s mediocre, 0.70s middling, 0.80s meritorious, and 0.90s marvelous [69]. The KMO

score obtained is 0.7, which is considered a middling score, hence PCA can be performed

to obtain an unweighted centrality index.

One should evaluate the component matrix, where factor loadings above 0.3 are

significant, while the ones above 0.5 are highly significant. Having variables with factor

loadings below 0.3 should make the researcher reconsider whether to include that variable

or not. All of the factor loadings were considerably above 0.5, hence all of them will be

retained.

Among the criteria commonly evaluated to decide the number of factors that should be

extracted, one finds the latent root (eigenvalue) and the percentage of variance criterion.

Factors with eigenvalues greater than 1 are usually considered significant [70, p. 107]. The

scree plot suggest the extraction of just one factor, which accounts for 78% of the total
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Table 3.2 Top 10 Most Central Countries Based on Unweighted Centrality Index

Centrality

Rank
Country

Centrality

Index

Times Centrality

Index is Surpassed

by the USA

Centrality

Relative to

the USA

1

United

States of

America

16.07 1.00 100.00%

2 China 12.24 1.31 76.16%

3 Germany 12.06 1.33 75.04%

4
Great

Britain
11.00 1.46 68.47%

5 Netherlands 10.91 1.47 67.89%

6 France 10.61 1.51 66.02%

7 Canada 9.59 1.68 59.67%

8 Italy 9.58 1.68 59.64%

9 Spain 8.89 1.81 55.33%

10 Switzerland 8.84 1.82 54.99%

variance explained. These are desired results when one wants to create an index, because

it denotes high homogeneity and interdependence of the principal component to be used in

the construction of the index. The results of PCA allow to create a hierarchy of the most

important countries taking into consideration all of the 6 centrality metrics altogether.

Also, the score of the index can be interpreted as well to denote the magnitude of the

difference in importance between the countries. The results of the previous exercise are

shown in table 3.2.

The centrality rank isn’t the only aspect worth noting on table 3.2, but one should also
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pay attention to the percent of centrality relative to the USA, which serves as a reference

point to the magnitude of the difference in centrality between the countries, in this case,

to what extent each country is less influential that the USA. It’s worth noting that the

USA is about 80% more central than Switzerland, and Spain. It is about 50% more

central than Great Britain, Netherlands, France, Canada, and Italy. Also, it is around

30% more central than China and Germany. Table 3.2 allows to identify the countries

whose economic and financial health and stability can impact in a greater magnitude than

the rest of the less central countries, and quantifies the differences in proportion of such

impact based on their centrality.

According to the centrality index and differing to what was found by Fagiolo, Reyes,

and Schiavo [55] from the year 1981-2000, the situation 15 years later has significantly

changed. The importance of China increased drastically, now being the second most

central country. Russia is not a member of the most central countries anymore. Japan

and France have lost relevance during this time frame, while Great Britain remains fairly

constant. Germany has regained its centrality. It’s important to note that Fagiolo, Reyes,

and Schiavo [55] only used the weighted metric random walk betweenness centrality (more

about this metric on the next section) to rank the countries, which arguably has numerous

limitations when denoting centrality, since there’s a great variety of centrality metrics,

hence we chose to perform PCA to consolidate them into one and take all of them into

consideration. Also, Chow [58] has significantly different results using the same metric as

[10] to measure centrality, given that their results show Japan, Hong Kong, and Singapore

as the 3rd, 4th, and 5th most central countries respectively for 2009, whereas this chapter’s

results show that none of them are even within the 10 most central countries. Table 3.6

shows a red-yellow-green color-coded heat world map to visualize the centrality index of

the countries in the WTW.

In general terms, one can observe that the USA, Canada, China and most countries in
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Figure 3.6 Red-Yellow-Green Color-Coded Heat Map (Centrality Index in De-
scending Order: Red, Orange, Yellow, Light Green, Dark Green)

47



Europe are the most central countries. On the other hand, Africa, the Middle East, and

South America appear to be the least influential territories.

3.4.4 Weighted Centrality Index

For weighted centrality, 6 metrics are going to be taken into account: weighted degree,

random walk betweenness centrality (RWBC), random walk closeness centrality (RWCC),

weighted harmonic centrality, weighted eigenvector centrality, and weighted page rank. It

is relevant to note that RWBC is the homologous of betweenness centrality (BC), but is

used for weighted networks instead, since BC can’t be calculated for a weighted network as

such; the same relationship applies between RWCC and closeness centrality (CC). Given

that the metrics are highly correlated among them and interdependent, this allows for the

use of PCA as well to create a weighted centrality index.

RWBC was developed by Newman [25] and Fisher and Vega-Redondo [26] and can be

intuitively explained using signals. What the algorithm does, is send signals through all of

the edges, and each signal has a target node. The signal is going to perform a random

walk, where nodes that have a higher weighted degree have a greater probability of being

chosen as a route. Hence, those nodes that have the most traffic of signals going through

them are going to be the ones with the highest RWBC. A higher RWBC means higher

importance in the betweenness centrality aspect.

RWCC is also known as information centrality and was developed and tested by

Stephenson and Zelen [27]. Robust statistical knowledge is necessary to fully comprehend

the technicalities of the measure and providing an intuitive explanation is challenging.

However, this metric has been further optimized and tested by Brandes and Fleischer [28]

in order to be able to approximate this metric for large networks being less computationally

intensive. A higher RWCC means higher importance in the closeness centrality aspect.

Once again, the Barlett test of sphericity and KMO were computed. For the former,
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the current dataset obtained a score <0.001, hence satisfactory. For the latter, the

score obtained is 0.829, which is considered a meritorious score, hence PCA can be

performed. When evaluating the component matrix, the RWCC obtained a factor loading

that was below 0.3, and in general the correlations between this variable and the rest were

significantly lower than the average, hence the variable was eliminated, and the exercise

was recomputed without it. The KMO and Barlett test scores remained highly significant,

and now all of the factor loadings were significant as well.

The scree plot suggested the extraction of just one factor, which accounts for 84% of

the total variance explained. Once again, the results obtained were desired because it

denotes high homogeneity and interdependence of the principal component to be used in

the construction of the index. The results of PCA allow to create a hierarchy of the most

important countries taking into consideration all of the 5 centrality metrics altogether.

Also, the magnitude of the index can be interpreted as well to denote the magnitude of

the difference in importance between the countries. The results of the previous exercise

are shown in table 3.3.

Once again, one should also pay attention to the percent of centrality relative to the

USA, which serves as a reference point to the magnitude of the difference in centrality

between the countries. It’s worth noting that the USA is about 5 times more central than

South Korea, Canada, and Hong Kong. It is about 4 times more central than France,

Great Britain, Japan, and the Netherlands. Also, it is more than twice as central as

Germany, and around 30% more central than China. Table 3.3, once again, allows to

identify the countries whose economic and financial health and stability can impact in a

greater magnitude than the rest of the less central countries, and can also help quantify

the differences in proportion of such impact according to their centrality.

Comparing the results to the unweighted centrality index computed in the previous

index, one can see that in general and as expected, using the weights boosts the importance
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Table 3.3 Top 10 Most Central Countries Based on Weighted Centrality Index

Centrality

Rank
Country

Centrality

Index

Times Centrality

Index is Surpassed

by the USA

Centrality

Relative to

the USA

1

United

States of

America

41.18 1.00 100.00%

2 China 31.88 1.29 77.43%

3 Germany 17.74 2.32 43.07%

4 Netherlands 10.15 4.06 24.65%

5 Japan 10.10 4.08 24.52%

6
Great

Britain
9.88 4.17 24.00%

7 France 9.45 4.36 22.94%

8 Hong Kong 8.60 4.79 20.89%

9 Canada 7.56 5.44 18.37%

10
South

Korea
7.43 5.54 18.04%
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Figure 3.7 Red-Yellow-Green Color-Coded Heat Map (Centrality Index in De-
scending Order: Red, Orange, Yellow, Light Green, Dark Green)

of the USA and China relative to other countries significantly, because of their colossal

trade flows. Japan wasn’t included within the 10 most central countries when not using

weights, but now is. France’s centrality is reduced. Not only that, but also Japan and

the Netherlands now become more central than Great Britain. Canada loses a couple

of rankings, and Italy, Spain, and Switzerland aren’t within the most central countries

anymore, and are instead replaced by Hong Kong, Japan, and South Korea. Figure 3.7

shows a red-yellow-green color-coded heat world map according to weighted degree to

visualize the centrality index of the countries in world trade.
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(a) Binary (b) Weighted

Figure 3.8 Scatter Plots of Clustering Coefficient

3.4.5 Unweighted Clustering

For unweighted graphs, the clustering of a node is defined as the fraction of existing

triangles over the total possible triangles that could be formed through that node. For

the unweighted analysis of clustering, the correlation between the clustering coefficient

and the degree was computed and is -0.97. The results obtained indicate that there is

an extremely strong inverse relationship between the amount of countries a determined

country interacts with (degree) and the amount of the triadic closures that it forms. This

implies that countries with numerous trade interactions have partners that do not tend

to trade among themselves, hence triangles are not formed. The results obtained in this

section are in consensus with what has been found by the bulk of the other authors who

have computed this metric for the WTW. Figure 3.8a shows the scatter plot of unweighted

clustering coefficient and unweighted degree.
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3.4.6 Weighted Clustering

For weighted graphs, the metric to be used is the directed weighted clustering coefficient

for directed graphs, developed by Fagiolo[14], which is a weighted-directed adaptation of

the well-known binary clustering coefficient. The directed weighted clustering coefficient

is defined as the geometric average of the subgraph edge weights, and it measures the

tendency of a network to form neighborhoods that are strongly connected.

For the weighted analysis of clustering, the correlation between the weighted clustering

coefficient and the weighted degree was computed and is 0.84. The results obtained

indicate that there is a very strong direct relationship between how strongly a country

interacts with other countries and the strength of the trade relationships between the

countries it trades with. Note that using weights, the result is the polar opposite than

with the unweighted version in the previous section. The results hereby obtained are

significantly different than the ones from other authors. Chow [58] finds a virtually null

correlation for the same variables for the year 2009. Additionally, Fagiolo, Reyes, and

Schiavo [29] find a positive and significant relationship between the variables, however

said relationship is extremely weak by the looks of the scatter plot shown (no correlation

was provided). The results of Fagiolo, Reyes, and Schiavo [7] show similar results to those

from Fagiolo, Reyes, and Schiavo [29], but still no correlation was provided. Figure 3.8b

shows the scatter plot of weighted clustering coefficient and weighted degree.

3.4.7 Unweighted Assortativity

To assess the assortativity of the network, two exercises can be performed. The first one

is to compute the Degree Pearson Correlation Coefficient (DPCC) of the entire network,

which is an algorithm developed by Newman [71] and then adapted for directed networks

by Foster [72]. The second one is the correlation between average nearest neighbor degree
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(a) Scatter Plot of ANND and Degree (b) Scatter Plot of ANNS and Strength

Figure 3.9 Assortativity

(ANND) and node degree (ND), as performed in other works [7, 29, 30, 57, 58].

The observed correlation between ANND and ND is -0.98, and the unweighted DPCC

of the network is just -0.27, consistent with the previous correlation in direction but not in

magnitude. The results hereby obtained are in consensus with what most of the studied

authors have obtained, suggesting that from the unweighted perspective the network is

highly disassortative. This suggests that countries that are well connected tend to interact

with countries that aren’t well connected themselves. Figure 3.9a shows the resulting

scatter plot for ANND and ND.

3.4.8 Weighted Assortativity

A similar exercise to the one performed in the previous section is performed but including

weight in the analysis. The homologous for ND is neighbor strength (NS), and for ANND

it’s average nearest neighbor strength (ANNS). A weighted version of the DPCC is

computed as well, and a score of -0.06 is obtained. The correlation between ANNS and

NS is -0.31. The results obtained suggest a weak disassortativity of the weighted network,

considerably weaker than the ones obtained from the previous section. The correlation
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obtained is similar to the one achieved by Fagiolo, Squartini, and Garlaschelli [30], however

the DPCC we obtained appears to be considerably lower. Similar results in the correlation

between ANNS and NS are obtained by Fagiolo, Reyes, and Schiavo [7, 29], but no DPCC

was provided. The results suggest a weakly disassortative weighted WTW, meaning that

countries that are stronger tend to, to a low extent, trade with countries that are less

powerful. Figure 3.9b shows the resulting scatter plot for ANNS and NS.

3.4.9 Disparity

To measure how well distributed a countries’ exports are, the Herfindahl Hirschman Index

(HHI) is going to be used [73, 74]. The previous index is well known for its ability to

detect concentration and is mostly used in economics for market share concentration and

monopolistic analysis.

The HHI can be extrapolated to any other field. In this case, if a country exports the

totality of its exports to a single country, the HHI for that country will have a value of

1; on the other hand, if they export an equal percentage of their total exports to all of

the countries they trade with, the value of the index is going to be equal to 1 divided

by the number of partners, which serves as a reference value. The lowest possible HHI

(total disparity) is 0.0042 (1/237) in case a country exports the same percentage of its

total exports to each one of the other 237 countries. This serves as a reference value for

the rest of the HHI values. Both the HHI of imports (HHIImp) and the one of exports

(HHIExp) will be further analyzed.

Having a high HHI implies a high dependency and attachment to few countries, which

could cause the economic shocks of one country to be easily transmitted to countries

that are trading a high percentage of their total GDP with said country. This serves as

a recommendation to those countries to diversify their portfolio of exports in order to

decrease the dependency on their trading partners. For practicality, Antarctica will be
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ignored for the analysis, given that it’s conformed by just 5 very small territories, and

given their characteristics, have an outstandingly high HHIImp, and no exports. As a

reference, the average HHIExp among all the countries is 0.167, and for HHIImp it’s 0.2.

Also, the reader should note that, as mentioned earlier, the entirety of the 238 countries

included in the analysis import, but only 142 countries export. This happens mainly

because small countries tend to just import and are mainly tourist destinations, hence

their economies grow through tourism and not exports.

Figure 3.10 shows how the HHIExp is distributed by color coded continent, and one

can use table 3.4 as support for the following analysis. The continent with the highest

HHIExp is North America, with an average score of 0.30. Among the high outliers, one

finds Bermuda (HHIExp = 0.67), Mexico (HHIExp = 0.64), and Canada (HHIExp =

0.57). The continent with the second highest concentration is Oceania, with a value of

0.20. Among the countries with the highest concentration one finds Solomon Islands

(HHIExp = 0.44), Palau (HHIExp = 0.24), and Samoa (HHIExp = 0.17). The third

continent with the highest concentration is Asia, with an average of 0.18. Two of the

countries belonging to this continent have the highest concentration, which are Kuwait

(HHIExp = 0.81), Mongolia (HHIExp = 0.74), and then there’s Oman (HHIExp = 0.5).

Africa has an average concentration very close to Asia, with a slightly lower value of 0.17.

Among its most concentrated countries one finds Cabo Verde (HHIExp = 0.56), Swaziland

(HHIExp = 0.49), and Lesotho (HHIExp = 0.45). The continent with the second lowest

concentration is South America, with a value of 0.11, and it has no significant outliers

worth mentioning. The continent with the lowest average is Europe, with a value of 0.10,

and among the only outlier territories worth mentioning one can find Andorra (HHIExp

= 0.39), and Albania (HHIExp = 0.3).

Figure 3.11 shows how the (HHIImp) is distributed by color coded continents, and

table 3.4 serves as support for the following analysis. One can also get insights on how
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Figure 3.10 Structure of HHI Exports by Continent (Height of rectangle is
proportional to the HHI for that country)
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many countries are in each range of HHI values as well. Among the insights obtained

from the visualization are that North America is the continent with the highest average

concentration, having some small Caribbean countries with very high concentrations

like Turks and Cacos Islands (HHIImp = 0.8), Saint Marteen (0.65), Saint Barthelemy

(HHIImp = 0.55), but also some large economies like Canada (HHIImp = 0.41) and Mexico

(HHIImp = 0.35). Oceania has an average of 0.21, being the second most dependent

continent. Among the high outliers one finds Tokelau (HHIImp = 0.52), Nauru (HHIImp =

0.50), and Niue (HHIImp = 0.38). Africa is the third most dependent countries. Numerous

countries of its countries have a relatively low HHIImp, and this can be reflected on their

average score of 0.19, with only a few exceptions like Western Sahara (HHIImp = 0.93),

Lesotho (HHIImp = 0.75), and Swaziland (HHIImp = 0.70). Asia has the same average

score as Africa, and among the exceptions that have High dependency one can note North

Korea (HHIImp = 0.89), Christmas Island (HHIImp = 0.75), and Bhutan (HHIImp =

0.65). One can note that in general, the countries and territories that appear to have a

higher HHIImp are small territories and islands. South America has the second lowest

HHIImp average, with a value of 0.15, with no significant outliers to be mentioned. Europe

is the continent with the lowest average HHIImp, with a score of 0.12, meaning that

they have their trade volumes more equally distributed and low dependency on singular

countries. Among the only exceptions to the previous are European countries like Andorra

(HHIImp = 0.45), Faroe Islands (HHIImp = 0.35), which is a self governing territory part

of the Kingdom of Denmark, and Belarus (HHIImp = 0.375).

3.4.10 General Descriptive Network Statistics

The current section has as an objective to make an in-depth analysis into the topological

characteristics of the individual continents and regions from the cross-sectional perspective

and can also aid in determining how fragile the WTW is.
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Figure 3.11 Structure of HHI Imports by Continent (Height of rectangle is
proportional to the HHI for that country)
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Table 3.4 HHI, Avg. Weighted Degree, and Avg. Weighted Degree/GDP by
continent

Africa Antica. Asia Europe N.A. Oceania S.A.

Number of

Countries
54 5 53 40 37 25 13

Unweighted

Centrality Index
-0.26 -7.87 1.39 3.70 -1.49 -4.32 0.89

Weighted

Centrality Index
-1.16 -1.44 0.77 1.25 0.30 -1.13 -0.68

Degree 167 17 199 281 127 78 225

Weighted Degree

(Millions)
15 108 230 296 138 21 68

HHI Exports 0.17 0.18 0.10 0.30 0.20 0.11

HHI Imports 0.19 0.56 0.19 0.12 0.27 0.21 0.15

ANND 265.98 336.25 252.19 215.53 275.92 300.76 237.41

ANNS (Millions) 306 679 274 205 352 516 246

PCGDP 2,530 14,350 33,095 13,985 13,427 8,568

%(Trade/GDP) 28.26% 27.26% 31.05% 11.60% 85.74% 4.59%

%(Exports/GDP) 14.94% 22.60% 38.42% 9.63% 5.45% 22.36%

%(Imports/GDP) 41.58% 34.19% 45.51% 38.72% 498.91% 19.37%

Antica. = Antarctica || N.A. = North America || S.A. = South America
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Table 3.4 shows the averages per continent for miscellaneous metrics (except weighted

degree, which is the sum of all the countries’ weighted degrees), which consolidate relevant

information for each one of the regions. The metrics include: for centrality, unweighted

centrality index and weighted centrality index, degree, and weighted degree; for concen-

tration, HHI of Exports and HHI of Imports; for characteristics of neighbors, ANND

and ANNS; for income, PCGDP; for openness, total trade as a percentage of GDP, total

exports as a percentage of GDP, and total imports as a percentage of GDP. Note that once

again and for practicality purposes, the metrics of Antarctica will be once again ignored,

given that it is formed by 5 countries and territories that are outliers in every metric and

represent a very small percentage of the world’s total population and production.

Regarding centrality, one can notice that in all of the metrics, the most central continent

is by far Europe, and the least central one is Oceania. As mentioned in the previous

section, the continent that is most diversified is Europe, and the one that is the most

concentrated is North America. The continent that is on average connected to the best

connected neighbors is Oceania (highest ANND), and the one connected to the worst

connected neighbors is Europe. On the other hand, the continent connected to the

strongest neighbors is Oceania (highest ANNS), and the one connected to the weakest

is Europe. The continent with the highest average PCGDP is Europe, and the lowest is

Africa.

Now, analyzing openness, the continent that trades the most as a percent of their

GDP is Europe, and the lowest, by far, is South America. Notice that the second lowest

is North America, so America in general trades a very low percentage of their GDP. Now,

taking into consideration the percentage of exports over GDP, Europe is the continent

that exports the most as a percent of its GDP, while Oceania is the one that does so the

least. Now analyzing imports, the continent that imports the most as a percent of its GDP

is Oceania, but this average is highly skewed upwards because of the Marshall Islands
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(strategic island for the USA during World War II, with a population of just 55,000), that

imports 78 times its total GDP. Given the extreme outlier nature of the Marshall Islands,

it will be excluded for this part of the analysis. When excluded, the average of Oceania

drops from 498% to 42%, and is now surpassed by Europe as the continent that imports

the most as a percentage of its GDP, and the continent that does so the least is South

America.

Figure 3.12 shows the continental trade flows, and the following insights can be obtained

from it and the data underlying it: Antarctica is a sink node, meaning that it just imports,

with no outgoing flows; the continent with the highest influence in the WTW, followed by

Asia and North America, while the rest of the continents render virtually insignificant

to world trade; the continents with the highest intracontinental trade are, from highest

to lowest, Europe, Asia, and North America. 64% of the entire trade in the world comes

from just the interactions within and between North America, Europe, and Asia. South

America, Africa, Oceania, and Antarctica are minor players in the WTW. Overall, the

northern hemisphere is where close to two thirds of the total trade in the world takes

place.

3.4.11 Correlations

The purpose of the current section is to analyze if the topological properties of the

WTW, from a weighted analysis perspective, relate with the macroeconomic dynamics

of growth and development. Given that this is atheoretical, exploratory analysis will be

undertaken in order to look for relations between PCGDP and the different topological

properties of the WTW. In the following section, a regression will be performed aiming

to find statistical significance in dependence relationships between PCGDP and different

topological properties, which would enable countries to fine tune their trade policies to

maximize PCGDP.
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Figure 3.12 Continental trade flows. Nodes represent continents, edges represent
flows. Edge colors are the same as the exporting continent’s node. Node size
is proportional to the weighted degree. Edge thickness is proportional to the
magnitude of the trade flow. Self loops are attached to the right of each node and
account for intracontinental trade and are also proportional to the magnitude of
the total flows.
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Table 3.5 shows the correlation matrix of numerous metrics, characteristic of the WTW.

The abbreviation of some variables had to be modified for space efficiency. “WCent” is

weighted centrality index (computed in section 3.4.4); “WCluster” is the weighted clustering

coefficient; “Recip” is reciprocity; “WEigenv” is weighted eigenvector centrality; “Exp/GDP”

is the percentage of total exports divided by the corresponding GDP; “Imp/GDP” is

homologous of the previous one but for imports; “WDeg” is weighted degree; “Land” is the

territory size in squared kilometers.

Table 3.5 Correlation Matrix and 1-Tailed Significance of Relevant Indicators6

Pearson

Correlation
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1.PCGDP - .36 .16* .11* .42* .52* .49* .41 .08 .36 .23 0 .36 .07

2.WCent .36 - .15* .13* .39* .46* .47 .92 .19 .96 0.10 .08* .98 .51

3.HHIImp .16* .15* - .48 .38 .37 .40* .25* .17* .07* .03* .12 .16* .04*

4.HHIExp .11* .13* .48 - .42 .42 .42* .25* .25* .03* 0 .01 .15* .03*

5.ANNS .42* .39* .38 .42 - .94 .96* .54* .69* .38* .32* .10 .41* .23*

6.ANND .52* .46* .37 .42 .94 - .97* .61* .55* .44* .32* .10 .47* .24*

7.Degree .49 .47 .40* .42* .96* .97* - .63 .65 .45 .34 .12* .48 .27

8.WClust .41 .92 .25* .25* .54* .61* .63 - .28 .86 .23 .07* .96 .47

9.Recip .08 .19 .17* .25* .69* .55* .65 .28 - .19 .31 .11* .19 .17

6Pearson Correlation Absolute Values > 0.4 and their significance in Bold, negative correlations with

asterisk superscript. PCGDP = Per Capita Gross Domestic Product | WCent = Weighted Centrality |

HHIImp = Herfindahl Hirschman Index of Imports | HHIExp = Herfindahl Hirschman Index of Exports |

ANNS = Average Nearest Neighbor Strength | ANND = Average Nearest Neighbor Degree | WClust =

Weighted Clustering Coefficient | Recip = Reciprocity | WEig = Weighted Eigenvector Centrality | E/G

= Exports to Gross Domestic Product Ratio | I/G = Imports to Gross Domestic Product Ratio | WDeg

= Weighted Degree |
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10.WEig .36 .96 .07* .03* .38* .44* .45 .86 .19 - .13 .05* .92 .52

11.E/G .23 .10 .03* 0 .32* .32* .34 .23 .31 .13 - .52 .14 .12*

12.I/G 0 .08* .12 .01 .10 .10 .12* .07* .11* .05* .52 - .07* .26*

13.WDeg .36 .98 .16* .15* .41* .47* .48 .96 .19 .92 .14 .07* - .48

14.Land .07 .51 .04* .03* .23* .24* .27* .47 .17 .52 .12* .26* .48 -

1-Tailed

Significance
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1.PCGDP - 0 .03 .10 0 0 0 0 .18 0 0 .49 0 .20

2.WCent 0 - .04 .06 0 0 0 0 .01 0 .13 .17 0 0

3.HHIImp .03 .04 - 0 0 0 0 0 .02 .20 .38 .08 .03 .31

4.HHIExp .10 .06 0 - 0 0 0 0 0 .35 .49 .46 .05 .35

5.ANNS 0 0 0 0 - 0 0 0 0 0 0 .12 0 0

6.ANND 0 0 0 0 0 - 0 0 0 0 0 .11 0 0

7.Degree 0 0 0 0 0 0 - 0 0 0 0 .08 0 0

8.WClust 0 0 0 0 0 0 0 - 0 0 0 .22 0 0

9.Recip .18 .01 .02 0 0 0 0 0 - .01 0 .10 .01 .02

10.WEig 0 0 .20 .35 0 0 0 0 .01 - .06 .30 0 0

11.E/G 0 .13 .38 .49 0 0 0 0 0 .06 - 0 .05 .09

12.I/G .49 .17 .08 .46 .12 .11 .08 .22 .1 .3 0 - .22 0

13.WDeg 0 0 .03 .05 0 0 0 0 .01 0 .05 .22 - 0

14.Land .20 0 .31 .35 0 0 0 0 .02 0 .09 0 0 -
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There are numerous interesting and complex correlations that one can find from the

previous correlation matrix. PCGDP is highly and negatively correlated with ANNS, and

this was expected, given the results of section 3.4.8, where countries with a higher Weighted

Degree have a lower ANNS. The relationship would be second order, given that countries

with a higher weighted degree tend to also have a higher PCGDP, as observed on the able,

so the correlation between weighted degree and ANNS, and PCGDP and ANNS would

be expected to be very similar, which is the case. A similar and expected relationship

is observed between ANND and PCGDP, which was expected based on the results of

section 3.4.7, where countries with a higher ANND have a lower ND, and according to

the correlation matrix, countries with higher ND have higher PCGDP. Hence, there is an

inverse relationship between PCGDP and ANND. One can also note that countries that

have a higher PCGDP also tend to be more clustered.

Now, analyzing the correlations with weighted centrality, one can see obvious very

high positive correlations with weighted eigenvector centrality and weighted degree, given

that these metrics were used to compute the weighted centrality. However, it is interesting

to observe that countries with higher weighted centrality index also have a higher degree.

Another result worth noting is that countries with more territory have a higher centrality,

and this could be due to the fact that more territory has a high probability to come with

more natural resources and borders, as well as access to the ocean, hence more trade and

centrality.

It is worth noting as well that countries that have concentrated export destinations

also have concentrated import origins, so they tend to be highly dependent on both

flows. Additionally, countries with strong and well-connected neighbors tend to have more

concentrated exports. Also, having fewer trade connections is related to countries with

poor export diversification.

Countries whose neighbors are strong on average tend to be less clustered, a lower
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reciprocity of trade links, tend to be themselves poorly connected, and trade less, but

their neighbors are well connected. Also, countries that are connected with neighbors

that themselves are well connected are less clustered, reciprocate less trade links, tend to

connect stronger with weak neighbors, trade less, and are better connected.

Countries that are better connected tend to cluster, trade and reciprocate, and connect

more strongly with stronger neighbors. Countries that are more clustered tend to connect

more strongly to strong neighbors, trade more, and have more territory. Countries who

connect more strongly with stronger neighbors tend to be larger and trade more. It is also

interesting to note that countries that export a high percentage of their GDP, tend to also

import a high percentage of it. Finally, larger countries tend to trade more.

3.4.12 Cluster Analysis

Cluster analysis (CA) is a renowned and acknowledged method to group objects (countries

in this case) based on analogous characteristics that they possess [75, p. 418]. To group

the countries based on their network characteristics (the same variables from the previous

section are used), CA was used.

Mahalanobis distance D2, a multivariate distance measure that equally weighs each

variable [75, p. 432], was used to remove outliers (with a Chi-squared distribution trans-

formation to statistically determine outliers). Outlier removal is necessary because CA

is sensitive to them, creating additional clusters that include outliers only and thus un-

necessarily complicating the analysis. These outliers included countries that have large

economies and are highly involved in international trade, such as Mexico, China, USA,

Germany, and Russia. However, these are later added to the cluster that is the most

similar to them.

Hierarchical methods are useful to determine the optimal number of clusters [75,

p. 444]. Hence, a dendogram was used to determine the optimal number of clusters, and
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the clustering algorithm used for the computation was Ward’s method, using squared

Euclidean distances. The optimal number of clusters is 3.

It is commonly accepted by the research community to use a combination of both

hierarchical and non-hierarchical methods which counterweighs their benefits and weakness

[76]. Hence, once the number of clusters was determined with the hierarchical method,

this information served as an input for the non-hierarchical method, since the latter needs

the number of clusters as an input [75, p. 444].

A K-means non-hierarchical procedure followed, which is a method that minimizes

the intra cluster distance and maximizes the inter cluster distance. This is desirable

because the members of each cluster should be highly homogeneous, and the clusters

should be heterogenous [75, p. 444]. Each of the 3 clusters is labeled based on its main

characteristics. Table 3.6 shows the final cluster centers. The first cluster (left column,

54 member countries) is labeled "Low Income Poorly Connected", given that it groups

countries with a low PCGDP, small territories, weak trade (low exports and imports as

a percent of GDP, as well as low weighted degree), few trading partners (low degree),

connected to strong and well connected neighbors (high ANND and ANNS), weakly

connected to stronger neighbors (low weighted eigenvector centrality), concentrated import

origins, weak neighborhoods (low weighted clustering coefficient), and little reciprocating

with their partners. The third cluster (right column, 22 member countries) is labeled

"High Income Well Connected", given that it groups countries with high PCGDP, large

territories, strong trade (high exports and imports as a percent of GDP, and high weighted

degree), numerous trading partners (high degree), connected to weak and poorly connected

neighbors (low ANND and ANNS), strongly connected to stronger neighbors (high weighted

eigenvector centrality), diversified import origins (low HHIImp) and moderately diversified

export origins (moderate HHIExp), strong neighborhoods (high weighted clustering) and

reciprocate most of their trade links (high reciprocity). The second cluster (middle, 98
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Figure 3.13 Cluster Map

1 (Red) = Low Income Poorly Connected, 2 (Yellow) = Low Income Moderately Connected, 3
(Green) = High Income Well Connected

member countries) is a middle ground between cluster 1 and 3 (in the middle for most

network characteristics), with the exception that the PCGDP is virtually the same as

the cluster of Low Income Poorly Connected countries, and is thus named accordingly.

Note that at the end of the procedure, the outliers were incorporated to the cluster of

High Income Well Connected countries, given that it was the one that resembled their

characteristics the most. Figure 3.13 aids in visualizing the clusters.
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Table 3.6 Final Cluster Centers

Cluster

Low Income

Poorly

Connected

Low Income

Moderately

Connected

High Income

Well

Connected

Land 0.03 0.04 0.14

Exports/GDP 0 0.22 0.37

Imports/GDP 0.14 0.13 0.13

WCent 0.02 0.05 0.51

Degree 0.15 0.61 0.94

WDeg 0.01 0.04 0.51

WEigenv 0.01 0.03 0.43

ANNS 0.42 0.15 0.02

ANND 0.78 0.35 0.06

WClust 0.09 0.11 0.64

HHIImp 0.17 0.16 0.07

HHIExp 0.04 0.22 0.12

PCGDP 0.1 0.11 0.3

Reciprocity 0.04 0.88 0.91
a

aFor more information on abbreviations, see table 3.5
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Table 3.7 Regression Results and Accuracy

β0 β1 β2 β3 β4 R2

Unstd. Unstd. Std. Untd. Std. Unstd. Std. Unstd. Std. .195

32471** 0.00005479** (.34) (15985)** (.27) 70734** .25 14014* .18 -

*Significant with 95% confidence | **Significant with 99% confidence | Unstd. = Unstandardized
Coefficients | Std. = Standardized Coefficients | Numbers in parenthesis are negative

3.4.13 Multiple Regression

Numerous regression models with PCGDP as the dependent variable were attempted

but, as expected given the numerous highly correlated metrics, variance inflating factors

(VIFs) which indicate multicollinearity, tended to be extremely high. Given the previous

circumstances, numerous variables had to be eliminated in order to solve the undesirable

multicollinearity problems and to just retain a handful of significant and insightful variables,

that could help policy makers to fine-tune their trade policies in order to improve their

PCGDP. The final regression model to be used is shown in 3.1.

PCGDP = β0 + β1ANNS + β2Reciprocity + β3Weigenv + β4ExpGDP (3.1)

“PCGDP” is per capita GDP, β0 is the constant of the equation, “ANNS” is average

nearest neighbor strength and β1 is its coefficient, “Reciprocity” is self-explanatory and β2

its coefficient, “WEigenv” is the weighted eigenvalue and β3 its coefficient, and “ExpGDP”

is the percent of total exports over GDP and β4 its coefficient. The resulting coefficients,

t-values, and significance are shown in table 3.7.

As observed in table 3.7, the R2 is 0.195, and a score this low was expected, given that

PCGDP also depends on numerous other hard economic variables like quality of education,

efficiency of government spending, rule of law, efficiency of institutions, technology, among

others. The purpose of the current exercise is to see if the topological properties of the
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WTW included in (1) are statistically significant explaining PCGDP, hence the ability to

make accurate predictions with the independent variables is not of interest for the current

study.

There is a highly significant inverse relationship between ANNS and PCGDP, meaning

that to increase a country’s PCGDP, it should associate with countries that are weaker.

The previous supports the core-periphery model of dependency, where weaker countries

are more strongly connected with developed, stronger countries. There is also a highly

significant inverse relationship between PCGDP and the reciprocity, which would suggest

that having a high reciprocity with your trading partners tends to decrease your PCGDP,

so one should seek less symmetry (more research on how exactly this happens should be

undertaken). Another result is that there is a direct and highly significant relationship

between weighted eigenvector centrality and PCGDP, which means that countries with

higher income per capita tend to associate more strongly with stronger partners, so if a

country desires to increase their PCGDP they should focus on trading more with countries

that are strong. The results also show a high significant direct relationship between

PCGDP and the percent of total exports over GDP, which means that in order to increase

the income of their population, countries should focus on exporting more, which has been

the model of growth during the previous couple of decades for China.

All of the research questions that were formulated at the end of the introductory

section will be addressed in the following section. Possible future work that could be done

using the present research as a foundation is proposed as well.

3.5 Conclusions and Future Work

The first conclusion is that when analyzing the WTW from a binary perspective, it doesn’t

seem to follow a power-law distribution. However, when analyzing it from a weighted

perspective, it does appear to follow a power law distribution, where numerous countries
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have weak trade links, and few countries have extremely strong trade links.

A structure of the communities was displayed in Figure 3.7, with evidence that countries

that are geographically closer tend to form more and stronger relationships, which is

expected because of transportation costs and trade agreements that tend to happen among

countries that are geographically close. Also, one can observe the communities and infer

that trade agreements also increase the intensity of trade among communities.

The continent most susceptible to instability spread through their trading partners is

North America, which has by far the highest HHI both for exports and imports. However,

on average, they trade the least percentage of their total GDP (next to South America),

minimizing the percentage of their economy that depends on foreign countries. The

previous information can be observed in table 3.3. The most central continent is Europe,

which also has the lowest HHI of export and imports, which helps it partially shield

from instability originating from other countries. However, they are one of the continents

that on average trades the most as a percentage of its GDP, which could facilitate the

transmission of instability from other continents and territories.

According to the Unweighted Centrality Index computed in section 3.4.3 using PCA,

the most central countries, in descending order, are the following: USA, China, Germany

Great Britain, Netherlands, France, Canada, Italy, Spain and Switzerland. However, when

one takes into consideration the weights, which was addressed in section 3.4.4 constructing

a Weighted Centrlaity Index using PCA, the picture changes. The most central countries

in descending order are the following: USA, China, Germany, Netherlands, Japan, Great

Britain, France, Hong Kong, Canada, and South Korea. Comparing the results between

the unweighted centrality index and the weighted one, one can see that in general and

as expected, when using the weights the importance of the USA and China are boosted

relative to other countries, mainly because of their massive trade flows. Also, the ranks

between the countries are shifted. Spain and Switzerland are no longer within the 10 most
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central countries, and are instead replaced by Hong Kong, Japan, and South Korea. This

can be observed in tables 3.2 and 3.3. The results obtained are significantly different from

that of other authors, mainly because of the database used, as well as because 6 centrality

metrics were incorporated using PCA for the centrality indices.

Among the large countries (by the size of their GDP, with the goal of excluding small

Islands) that have a substantially high dependency on others based on their HHIImp

and HHIExp are: Mexico (HHIExp = 0.64, HIIImp = 0.35), Canada (HHIExp = 0.67,

HHIImp = 0.41), Kuwait (HHIExp 0.81), Mongolia (HHIExp = 0.74), Andorra (HHIExp

= 0.39, HHIImp = 0.45), Albania (HHIExp = 0.3), Belarus (HHIImp = 0.375), Lesotho

(HHIExp = 0.74, HHIImp = 0.75), Swaziland (HHIExp = 0.49, HHIImp = 0.70), and

North Korea (HHIImp = 0.89).

Using an unweighted approach in section 3.4.7, one can observe that countries with

high degree tend to associate with neighbors that themselves have low degree, pointing

to strong disassortativity both through the correlation of ANND and ND, as well as the

DPCC. However, this drastically changes when using the edge weights, as the correlation

between ANNS and NS is significantly lower, as well as the DPCC. However, both metrics

still point to disassortativity, regardless of it being weaker than from the unweighted

approach.

Taking into consideration numerous network metrics and their relationships (cor-

relations), there are several key insights that one finds. Countries that have a high

concentration on their imports (HHIImp) tend to also have a high concentration on their

exports (HHIExp), making them more vulnerable through both concentrations. Countries

with higher PCGDP tend to associate with countries that are themselves weakly and poorly

connected, pointing to a core-periphery structure. Also, countries with higher PCGDP

tend to be better connected and more clustered. Having more land (more territory) is

associated with being more central. Countries whose neighbors on average are stronger
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and also better connected, tend to be less clustered and to reciprocate their links to a

lesser extent. Lastly, countries that tend to associate more strongly with countries that

are themselves strongly tend to cluster more heavily and have more territory.

According to the results in section 3.4.13, actions that countries could take to improve

their PCGDP include associating with more neighbors that are themselves weaker; recip-

rocate fewer of their trade links; trade more strongly with countries that are themselves

stronger; and increase their export to GDP ratio.

This research provides the foundation for a critical latent line of investigation regarding

public policy, specifically trade policy. With the numerous insights hereby conveyed, trade

policy can be tuned at the country and continent levels in order to minimize the magnitude

of dependencies while still being able to benefit of the gains of trade. The current research

describes to fine detail the binary and weighted characteristics of the WTW using the

most complete database that has been identified to date, and provides information that is

helpful towards determining what actions can be taken to improve income per capita.

Plenty of research can be inspired from the input of this paper, for example: How is

reciprocating less trade links associated with a higher PCGDP? Is it because they export

to more countries they don’t import from? Or the other way around? Why is associating

more strongly with stronger partners associated with a higher PCGDP? Is it because

those partners aid with technology transfers to the less developed country that associates

with them? Is it just because it allows for more exports to larger countries? Or is it

because you get catapulted to more trade partners when associating with them? What

can be done to increase the connectivity and exports of Africa? Or is Africa condemned

by certain circumstances to have trade deficits and be poorly connected? Is it just a

matter of time before this improves? Which countries have been able to decrease their

dependency (measured by HHIImp and HHIExp) through time? How did they achieve

this? Will their methods work for other countries and help them be less vulnerable?
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3.6 Limitations and Discussion

One of the main limitations in this chapter, is that the weighting mechanism for the edges

in the WTW is subject to discussion, depending on the objective that the researcher has.

In the literature, there are authors that use other weighing mechanisms, such as the ratio

of a particular trade flow to GDP of the exporting country. There can be extensive debate

when it comes to the advantages and disadvantages of each weighing mechanism based on

what the objective that is to be attained is. Additionally, this analysis is performed from

the cross sectional perspective, and a similar analysis could potentially yield significantly

different results if made from the times series perspective, having either one country as

the object of analysis, or the entirety of the WTW. Finally, the validity and usefulness of

PCGDP to explain prosperity has been an object of extensive discussion in the scientific

community within economics. Countries are diverging away from having PCGDP as one

of the main economic performance metrics, and are gravitating gradually towards other

complementary indicators that could better measure quality of life, such as education,

healthcare, sustainability, and happiness.

In the next chapter, we use a deep neural network for link weight prediction in the

WTW. The predictive model is based on the gravity model of trade, as defined by the

prominent economist Walter Isard [22]. We aim at being able to predict the trade flows

between countries more accurately and with a lower variance than other works that use

techniques based around Ordinary Least Squares Regression, specifically the ones of Rose

[23] and Head [24].
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Chapter 4

The World Trade Web: A Deep

Learning Approach to Link Weight

Prediction

4.1 Introduction

Studying the world trade web (WTW) is of great importance and countries can use it

as a tool to design their trade policy. The global gross domestic product (GDP) for

2017 (also known as Gross World Product, GWP) is 80.14 trillion USD, out of which

16.3 trillion USD (20%) comes from trade. This does not account for all of the indirect

benefits that trade brings with it like employment in factories, shipping and logistics

companies, research and development, technological advances and transfers. Additionally,

trade enables the availability of products and services in regions which otherwise wouldn’t

have access to them. Any small island can be taken as a trivial example of a territory

that just imports but doesn’t have any exports, where imports are of crucial importance

for the basic functioning and well-being of the country. Needless to say, trade has played

a crucial role in the ever-increasing important interactions among countries that in turn
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accelerate globalization [2]. It is also well known in the economic literature that there

are gains of trade that result from specialization in production due to division of labor,

agglomeration, economies of scale, scope, an increase in the total production possibilities,

and trade through markets by selling one type of product for other more valuable goods [77].

Furthermore, understanding the characteristics of the WTW aids in comprehending the

structure of the trade network and pinpoint specific channels of propagation of economic

and financial disasters and shocks, thus enabling policy makers prevent and prepare for

them. Naturally, this implies an interdependency among countries, since a reduction

of a country’s exports to another one can inhibit the latter’s ability to manufacture

exportable goods to its trading neighbors, a negative ripple effect [40, 41, 78–81]. Trade

flows have been shown to be highly correlated with other country interactions such as

flows of services, workers, and financial assets, hence being a relevant indicator for broader

economic relations [42].

Surveying existing approaches for link weight prediction in the WTW, one finds that

economists have addressed this issue with a method known in the literature as “The

Gravity Model of Trade”, which was originally theoretically proposed by Walter Isard

in 1954 [22], then further expanded and popularized by Dutch economist Jan Tinbergen

in 1963 [82]. The bulk of the empirical work in the existing literature uses econometric

approaches with variations of the aforementioned model to predict the magnitude of trade

links between countries. Using econometric approaches in this context is useful because it

allows to interpret the statistical significance, direction, and magnitude of the impact of

each one of the variables in the model. However, econometric approaches have been used

for numerous years, which begs the question on whether the accuracy of the predictions

can be improved with newer algorithms and techniques. This leads anyone within the

computer science field to wonder if this problem has been addressed using deep neural

networks (DNNs), techniques which usually provide an adequate solution to the modelling
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and prediction of complex problems like the one hereby addressed. To the best of our

current knowledge, no approach has been taken where deep learning is used for link weight

prediction in the WTW, which motivates the current chapter. The question that naturally

arises and that is to be answered in this chapter is the following: can DNNs beat the

accuracy of existing econometric models for link weight prediction in the WTW? If so,

how can this be useful for public policy decision-making?

Forecasts of exports and imports are central providers of economic forecasts, which

can aid in public policy decision-making. More accurate forecasts result in better GDP

forecasts, which can aid in commercial policy, particularly the optimization of tariffs,

quotas, and subsidies. Additionally, predicted trade flows that are significantly lower

than than the observed trade flows, could arguably provide some evidence towards the

existence of informal trade between two countries. The results obtained in this chapter

enable the identification of such estimation errors, which could potentially shed some light

as to which countries are transacting informally. The consequences of informal trade can

be substantial, by reducing the tax collection by the state, thus reducing the tax base,

generating unfair competition for enterprises, and endangering intermediate and final

consumers with products that aren’t inspected at a point of entry. Henceforth, it’s in the

countries’ best interest to identify and mitigate informal trade.

The use of DNNs for link weight prediction in the WTW showed an improvement in

performance of as much as 8.2% over multiple regression, while also reducing the standard

deviation of the standard errors by as much as 13.8%. However, it should be taken

into account that when using nonlinear activation functions in DNNs, the interpretation

of the parameters is lost (known as the black box of deep learning). Therefore, using

DNNs is more accurate in link weight prediction, but it comes with the cost of the loss of

interpretation of the parameters. If one wishes to identify the impact that each one of the

variables has on the trade between countries, multiple linear regression should be used.
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In domains where the cost of the loss or error is extremely high (say for example, cancer

detection), using DNNs would prove to be more convenient given the increase in accuracy

and reduction in loss, even when it is just a moderate 8.2%, like in this specific use case.

Slight accuracy improvements like the one hereby achieved could make a vast difference in

humanity’s wellbeing in certain domains. This improvement in the prediction accuracy of

trade flows is relevant because it allows for better GDP forecasts, which can signal public

policy decision makers to actions that can be taken regarding tariffs, subsidies, and quotas

to mitigate potential external shocks that could arise from hindered trade with relevant

trade partners. Predictions with significant error could potentially signal to informal trade

routes between countries.

The rest of this chapter is organized as follows: firstly, the existing theory and empirical

works for link weight prediction are explored; furthermore the approach to be taken is

desribed; follwowing, the datasets used and the structure of the models are described;

next, the results obtained and their interpretation are showed; then, the hardware and

software used in the experiment are described, and access to the code for reproducibility

purposes is provided; finally, the last section goes through the conclusions and discussion.

4.2 Literature Review

In order to determine the features that should be included for link weight prediction

within the WTW, one should first go to theoretical resources that build on the factors that

incentivize trade between countries. A solid ground to begin looking for such resources

is within the theoretical work and empirical findings of works in economics. The base

theories, as well as the diverse adaptations stemming from said theories that have been

made by several authors, should serve as a foundation in determining variables to include

in our DNN for prediction.

In the literature related to trade, one finds two main theoretical approaches: location
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theory and trade theory. Location theory is commonly applied on research when one wants

to understand the factors that incentivize international companies on where they locate

their foreign operations. Location theory tries to find the optimal location of production,

which is in function of the cost of the different factors of production (commonly capital

and labor), as well as the transportation costs to consumers, which is usually viewed

in terms of individual industries. On the other hand, trade theory attempts to explain

the patterns of international production and trade, which are in function of the relative

endowments of factors of production necessary to produce determined goods, as well as

comparative advantage. Trade theory has traditionally viewed this in terms of aggregates

like total exports, imports, national income, and so forth. Small differences aside, there is

a considerable overlap between trade theory and location theory. They address similar

questions and make similar assumptions on their theoretical approaches. However, none

of them is able to predict specific countries or regions where production of a determined

good will be located [22, 83, 84].

It should be rather simple to determine why, in general terms, most of the traditional

factors considered in location theory (except for transportation costs, which can be

approximated by distance between countries) wouldn’t work for what is intended in the

current research, since those approaches are mostly intended to be studied on a per-

industry basis, comparing and contrasting directly with other countries to understand

why production of a determined industry takes place in one country or region based on

their capital, labor, and cost structure. Also, finding data that is industry-specific for each

one of the countries can prove to be a daunting task. Trade theory, on the other hand,

could be more useful in guiding the modelling of this chapter, given that it uses aggregate

terms and could ease the comparison between countries, where data is readily available on

trustworthy government sources from each one of the countries as well as international

organizations.
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The most common theory that is the basis for the bulk of the authors that address

this problem is currently known as “The Gravity Model of Trade” (GM), developed by

prominent economist Walter Isard [22]. This theory mainly emphasizes the role of distance

in trade, where shorter distances bring lower transportation costs, hence more trade,

and vice versa. One of the main critiques that is made to previous approaches in pure

trade theory is that there is a two-country abstraction with either zero or fixed transport

costs assumed, where distance is implicitly neglected. It is argued that trade encounters

spatial resistances of different magnitudes for each pair of regions or nations based on their

geographical proximity. It is important to point out that using a variable like distance

could be misleading, given that it is sensible to the country sizes. For example, two

countries can share a border, but the distance between their centers can be significantly

larger than another pair of countries, due to country size. The most important takeaway

from Isard [22] is that bilateral trade between two countries is inversely proportional to the

geographic distance between them. Empirical evidence for the GM is strong, specifically

for the role of distance in trade links [85–88].

Expanding on the theoretical proposition of Isard [22], a remarkable Dutch economist,

Jan Tinbergen [82], used an analogy involving Newton’s Universal Law of Gravitation (this

is why the model is currently known as the gravity model of trade) applied to bilateral

aggregate trade flows between countries, where said flows are proportional to the size of the

countries, and inversely proportional to their distance. Note that the size of the countries

can be measured by gross national product (GNP) or gross domestic product (GDP),

but the bulk of the literature frequents the latter when accounting for country size. The

findings with both metrics are consistent, hence they are commonly used interchangeably

within this context.

One particularly classical, valuable, and early empirical contribution that uses the

(now known as) GM as its foundation, dates to 1963 [89]. The model used to estimate the
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flows of trade is shown in 4.1.

aij = ccicj
eαiie

β
jj

(1 + γrij)δ
(4.1)

Where:

aij = estimate of the value of exports from country i to country j

eij = national income of the country of export i

ejj = national income of the country of export j

rij = distance of transportation

α,β= national income of the country of export i

γ= transportation cost coefficient per nautical mile

δ= isolation parameter

ci = export parameter of the country of export

cj = import parameter of the country of import

c = a constant

As a general note, in 1963 (when equation 4.1 was estimated) the term “ordinary least

squares regression” hadn’t been popularized, but the authors mentioned that to estimate

the parameters, the logarithmic residual sum of squared errors is to be minimized. Also,

note that in the 1950s and 1960s economists used electromechanical desk calculators to

estimate the parameters of regressions, and these computations generally took at least 24

hours. In this case, the analysis was made using an Elliot 803 data processing machine.

The starting points for the estimation were α= β= 0.5; γ= 0.01; δ= 2; lnc = 4. The results

were the following:

α= 0.518

β= 0.504

γ= 0.00157
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δ= 1.817

lnc = -3.818

The values of α and β indicate that an increase in countries’ income of 1% is expected

to increase exports and imports by around 0.5%. Furthermore, the fact that α + β ≈ 1

indicates a static nature of the model. The values of γ and δ indicate that an increase in

the distance of transportation will decrease the magnitude of trade between countries. The

previous work, besides being old, is a classic and the foundation of most of the empirical

work that was undertaken in the following years. One will note that numerous models from

various empirical works build on the foundation of this econometric model and estimations.

Well known American economist Paul Krugman [86] is among the empirical contributors

to support the idea that country size is proportional to the magnitude of trade links.

The model developed explains how trade flows are directly proportional to country size

and additionally, that trade barriers have the opposite effect on trade flows. Krugman

also builds on the causes of trade between economies that are similar in their factor

endowments, which challenges the classic theoretical propositions of Heckscher, Ohlin,

and Samuelson [90–93], whose model is commonly referred to in trade theory as the

Heckscher-Ohlin-Samuelson model (HOMM). The primary work behind the HOMM was

performed by Eli Hecksher in 1919 [90], further expanded by Bertil Ohlin in 1933 [91],

with some final expansions performed by Paul Samuelson in 1949 [93] and 1953 [92].

The main idea behind the HOMM is that countries produce and trade based on their

relative abundance of factors of production (mainly capital and labor). It establishes

that countries with a relative abundance in capital will produce and export goods that

are intensive in capital, and similarly countries that have a relative abundance in labor

will produce and export goods that are intensive in labor. Nonetheless, even though

HOMM is a reasonable and logical theoretical proposition, little evidence has been found

to support it. According to the HOMM, developed countries should trade heavily with
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developing countries. However, empirical evidence shows that this is far from the case. As

Steffan Linder [94] states, previous theories overlook one main factor when attempting to

understand trade between countries: quality of products demanded. Linder argues that

since countries with similar incomes require products of similar quality, this leads them to

be more prone to trading with one another.

Judging by its nature, one can argue that the GM that takes just country size and

distance into consideration for prediction of the magnitude of trade between countries

can be and overly simplistic approach. Hence, as acknowledged by Dueñas and Fagiolo

[95], country-specific explanatory variables that capture whether countries share a border,

language, religion, trade agreements, access to the sea, among others can be used to

expand this basic model. These findings are relevant, because it is identified identify that

in order to properly predict the weighted properties of the WTW, one must fix the binary

structure equal to the observed one, meaning that the existing models fail to predict

non-existing links between countries (zeros in the adjacency matrix). The bulk of the

available literature has indeed fixed the binary structure of the WTW when working

with trade flows, given the increase in complexity that arises when trying to predict the

existence or absence of a trade link.

There have been remarkable works [23, 24] that construct databases that are a precious

input for link weight prediction in the WTW and are an extension of the GM, even

though the focus is rather on tangential issues. For instance, Rose [23] studies the effect

of multilateral trade agreements on international trade. To accomplish this, quantitative,

dyadic binary, and categorical variables are used. The quantitative variables are: real

trade (dependent variable); distance between the trading countries; their GDP; per capita

GDP; and land area. The dyadic variables are binaries like: whether both countries are

in the general agreement on tariffs and trade (GATT) or the world trade organization

(WTO), or just one is in GATT/WTO, whether they belong to the generalized system of
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preferences (GSP), if they have a regional free trade agreement, a currency union, common

language, land border, common colonizer, currently colonized, were ever colonized, and

another binary variable that captures whether the two countries remained part of the

same nation during the sample (e.g., Guadeloupe and France). The categorical values

that can take 3 values are: if none, one or both countries are landlocked and whether

none, one or both countries are islands. Rose compiles the database from prestigious

sources like the international monteray fund (IMF), the Penn World Table, World Bank,

the United Nations (UN), among others, and is conveniently available for public access

at http://faculty.haas.berkeley.edu/arose/. Due to the ease of replicability, the default

model shown in Table 1 [23] is used as a benchmark, given that the author reports the

root mean squared error (RMSE) of the predictions, which can be easily compared to

the RMSE of running a DNN with the same database and verify if this metric can be

decreased with machine learning. In a similar fashion to Rose’s work, another paper that

serves as a benchmark for our paper is Head et al. [24], the database compiled by Rose

is extended. The ordinary least squares (OLS) (1) model reported in Table 2 [24] can

be easily replicated, given that the RMSE is reported and the database used is publicly

available in http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=8.

To the best of my knowledge, there has just been one attempt to estimate the informal

trade by countries around the world [96], where an econometric approach of multiple

indicators and multiple causes (MIMIC) is used. Informal trade is estimated by the

information redundancy procedure, parting from the fact that in commercial exchanges

between two countries, there are two customs declarations made, one by the source country

and another by the destination country. The discrepancies between what has been declared

by an exporter and what has been declared by an importer allow to obtain a proxy of

informal trade. The downside of the previous method is that it does not account for

the exchange of goods of services that happens through unconventional methods, not
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being declared or passed through customs. In our approach, predicted trade flows that

are significantly lower than than the observed trade flows, could arguably provide some

evidence towards the existence of informal trade between two countries (not transacting

through customs). The results obtained in this chapter enable the identification of such

estimation errors, which could potentially shed some light as to which countries are

transacting informally.

4.3 Approach

The approach to be taken is partially based on the DNN architecture proposed by Hou et

al. [97], where DNNs are used for link weight prediction in other tangential domains and

applications such as airports, scientific collaborations, United States congress committees,

and social networks like forums and others.

Two experiments are to be run: the first one aims at using a DNN with the goal of

reducing the RMSE reported by the default model shown in Table 1 [23]; the second one

has the same goal as the previous, but applied to the OLS (1) model reported in Table 2

[24].

The variable to be predicted in each one of the DNNs is the magnitude of the trade

relationship between the countries, and the features or independent variables follow the

specifications of each one of the models as outlined in Rose [23] and Head et al. [24]

respectively.

The model contains the following fully connected layers:

• An input layer, with an input shape of i, where i corresponds to the quantity of

features (this size is mandatory for the functioning of the model).

• Two hidden layers with layer size of 19 of exponential linear units (ELUs), which

tend to converge cost to zero faster and produce more accurate results.
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• An output layer with a layer size of 1 (this size is mandatory for the functioning of

the model) and a linear regression unit, which is usually suggested for the last layer

in applications that don’t involve classification.

The layer size is directly proportional to the number of observations in the dataset.

Larger datasets require a model that is more discriminative. Empirical work usually sets

the layer size using 4.2, where n is the layer size and d is the width of the layers [97].

d = log2(n) (4.2)

The decision on the number of layers is also directly proportional to the complexity of

the relationship between the inputs and output. Empirical work usually sets the layer

size to 4, which is generally considered a good balance regarding the tradeoff between

learning speed and prediction accuracy [97]. Other layer sizes were attempted but the

results didn’t change significantly, hence we stick to 4 layers.

Backpropagation is used, which performs propagation of the errors from the output

later back to each one of the earlier layers [98]. A minibatch of size 32 is used, and the

decision was made through model tuning. The optimal minibatch size of 32 obtained for

our dataset is in line with the generic baseline recommendation in the literature [99], [100].

The Adam optimizer is used, which is an algorithm for first-order gradient-based

optimization of stochastic objective functions that is based on adaptive estimates of lower

order moments. Adam has been widely used in the literature pertaining machine learning

due to its computational efficiency, little memory requirements, as well hyper-parameters

that need little to no tuning [101].

The data frames are randomly shuffled before training commences. Then, it is split

into 3 subsets:

• 70% trining
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• 15% validation

• 15% test

Given the nature of the dependent variable, where it’s not categorical (it’s not a

classification problem), performing the training, validation, and test splits can result in

subsets where the mean of the dependent variable varies considerably among the subsets.

The function to perform the train, test, and validation split from Scikit-Learn (python

library) shuffles the dataset randomly before performing the split, which can result in

the differences in the mean of the subsets mentioned previously. To mitigate this issue, a

loop of 100 initialization seeds are tested to identify the one that minimizes the difference

between the average mean of the generalization sets and the training set. Once the seed

that minimized this difference was identified, it was fixed for the train, test, and validation

split of the dataset.

RMSE is used as a prediction accuracy metric. The main reason for choosing RMSE

over any other metric is because it enables comparison of performance to the one obtained

by other authors. The main fallback of RMSE is that it’s scale sensitive, whereas other

performance metrics like mean average percentage error (MAPE) aren’t scale sensitive,

which allows for comparison even across dependent variables with different scales. However,

when using MAPE it is common for it to colossally inflate when calculating the MAPE

in observations where the actual value is a decimal very close to zero, given that the

denominator will be miniscule, thus inflating the MAPE. The previous can be mitigated by

eliminating observations where the dependent variable is close to zero. However, justifying

such a decision is not simple given the amount of information loss that could result from

such a procedure. Hence, in line with what has been used by other authors, RMSE is

used.

Before tuning hyperparameters, it should be acknowledged that there are numerous

sources of randomness when running a DNN that complicate the reproducibility of results
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and compromise the validity of hyperparameter tuning if these sources of randomness are

not controlled beforehand. Among these sources one finds: the initialization of weights

and biases (which is done by default following a probabilistic distribution), the train, test,

and validation split from Scikit-Learn (which has a shuffle parameter which is defaulted to

True), and the fitting of the model with Keras (which has a shuffle parameter defaulted to

True). These sources of randomness can be solved by fixing the initialization seed of the

probabilistic distribution used for the initialization of weights and biases, and disabling

the automatic shuffling by changing the shuffling parameters to “False”, respectively. After

the previous is performed, one can get reproducible results, which then allow to attribute

the variations in model performance to the actual tuning of hyperparameters, instead of

the randomness in the procedures previously outlined.

When training large models, it is common a phenomenon for the training error to

decrease steadily as more epochs are computed, but the validation set error can start to

increase after a determined number of epochs. A model with better generalization (lower

validation and test set error) can be obtained by running the model just for the number of

epochs that minimize the validation set error. The strategy previously described is known

as early stopping and was used to determine the number of epochs that the model had to

be run in order for the model to better generalize [102, p. 246-251]. The total number of

epochs for the DNN based on Rose was 983, and for the one based on Head, 300.

Due to the size of the datasets and hardware limitations, grid search was not feasible.

Hence, manual tuning of the model was necessary. When doing manual tuning, one can

reduce the computational intensity over grid search by only using the combinations that

make sense. For example, if reducing the batch size from 32 to 16 yields significantly

worse results, then one immediately decides to not try all of the possible combinations

of the rest of hyperparameters and a batch size of 16, which depending on the number

of hyperparameters and complexity of the model can save a significant amount of time.
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On the other hand, grid search is automated and would still go ahead and try all of the

combinations of batch size 16 and the rest of the hyperparameters, which in this case

would be an extra 18,432 combinations.

The following hyper-parameter values were attempted before determining the final

values to be used (in bold the optimal parameter based on validation loss minimization):

• Batch Size: 16, 32, 48, 64, 128, 256, 512, 1024

• Width of Layers: 10, 14, 19, 22

• Number of Layers: 4,5,6

• Optimizer: Adam, Adadelta, SGD, Adamax, RMSProp, Adagrad,Nadam

• Adam Learning Rate: 0.001 (default), 0.01, 0.05, 0.1

• Dropout: 0, 0.1, 0.05, 0.1

• L1 Regularization: 0, 0.01, 0.05, 0.1

• L2 Regularization: 0, 0.01, 0.05, 0.1

Notice that for activation functions, numerous combinations between layers were

attempted using exponential linear units (ELU), rectified linear units (RELU), scaled ex-

ponential linear units (SELU), softplus, softsign, tanh, sigmoid, hard sigmoid, exponential,

and linear. The best performing structure was using ELU for all of the layers. Note that

no regularization was needed given the training error virtually converging before allowing

for the model to overfit on the validation set. Table 4.1 shows the variables included

in each model, as well as the number of observations included after cleaning the data

according to the specifications of each one of the corresponding papers.

After detecting the number of epochs where each model’s training error converges and

knowing that it’s good at generalizing, the entire database is used for training with the
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optimal number of epochs detected, as well as the hyper-parameters found to be adequate.

The training loss obtained through this method is to be used as the final performance

metric of the model.

4.4 Data

Two datasets are used. The first one is compiled by Rose [23] and is available in

http://faculty.haas.berkeley.edu/arose/. It contains 234,597 trade flows of 177 conuntries

from 1948 to 1999. The second one is compiled by Head et al. [24] and is available in

http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=8. It contains 592,923

trade flows for 238 countries from 1948 to 2006. For both, each observation is formed by

the magnitude of the trade transaction between two countries, one being the importer and

the other one being the exporter, together with characteristics of each one of the countries

including quantitative variables, their dyadic binary relationships, and categorical variables

(that can take 3 values). Both models are shown in table 4.1. Note that the dependent

variable is the one to be predicted (also known as output in machine learning) and the

independent variables are known as features in machine learning.

In table 4.1, log stands for natural logarithm. Distance stands for the distance in

kilometers between the center of the 2 countries that are trading. Land border is a binary

variable that determines whether the two interacting countries share a land border. GATT

stands for General Agreement on Tariffs and Trade, and WTO stands for World Trade

Organization. Regional FTA is a binary variable that indicates whether the interacting

countries have a regional free trade agreement in place. Colonial relationship is a binary

variable that shows whether two interacting countries have had a colonial relationship

throughout history. GDP P/c stands for gross domestic product per capita. Log population

origin is the natural logarithm of the population of the exporting country. Log population

destination is the natural logarithm of the population of the importing country. GSP
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Table 4.1 Structure of the Models

Model Based on Rose [25]
Model Based on Head et al.

[26]

Dependent Variable Log Real Trade* Log Real Trade*

Independent Variables

Log Distance* Log Distance*

Land Border** Land Border**

Both Countries in

GATT/WTO**

Both Countries in

GATT/WTO**

Regional FTA** Regional FTA**

Common Language** Common Language**

Same Currency** Same Currency**

Colonial Relationship** Colonial Relationship**

Currently Colonized** Currently Colonized**

Log GDP* Log Population Origin*

Log GDP P/C*
Log Population

Destination*

Log Product Land Area*
Log GDP/Population

Origin*

One Country in

GATT/WTO**

Log GDP/Population

Desintation*

GSP Membership** ACP**

Common Colonizer** Same Legal System**

Common Country**

Number Landlocked***

Number Islands***

Observations 234,597 592,923

*For quantitative variables | ** for dyadic binary variables | *** for categorical variables, log is
natural logarithm
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stands for generalized system of preferences, which provides tariff reduction for least

developed countries. Number landlocked determines whether 0, 1 or 2 of the interacting

countries are landlocked or not. Number islands determines whether 0, 1, or 2 of the

interacting countries are islands. ACP stands for Africa, Caribbean and Pacific countries.

4.5 Results

Recall that two models were run. The first one followed the specifications used in the

default model shown in Table 1 of Rose [25]. The second one, the ones used in the OLS (1)

model reported in Table 2 of Head et al. [26]. The goal is to use deep learning to reduce

the RMSE reported by these papers (increase the accuracy of their models), as well as the

one obtained when trying to replicate their original experiments with the corresponding

specifications. Note that when attempting to replicate their experiments, higher RMSEs

than the ones reported in the original papers were obtained for both of them (nevertheless

very close to the ones reported by the authors), even when following their specifications

and using their datasets. The reason for the previous is unknown, it could have been

because of differences in the software used for processing, or for exact details in the data

cleaning process that were performed that weren’t reported on the papers.

Early stopping and is used to determine the number of epochs that the model had to be

run in order for the model to better generalize [102, p. 246-251]. Figure 4.1 and 4.2 show

the early stopping process for both DNNs performed according to Rose’s specification and

Head’s specifications respectively. For the former, the lowest validation error was obtained

on epoch 983; for the latter it was 300. One could argue that the validation errors could

have been further improved if run for more epochs. However, the decrease in loss was

marginal relative to the computation time required for the decrease, hence it was decided

to stop the training at 1,000 and 300 epochs respectively. Recall that 70% of the data was

used for the training set, 15% for the validation set, and 15% for the test set.
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Figure 4.1 Rose Training and Validation Errors
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Figure 4.2 Head Training and Validation Errors

96



Following the running of both models, the test set error was reviewed in order to

verify that generalization is adequate, and the error obtained was in between the losses

of the training set and validation set, which is usually ideal and further strengthens

the conviction that the model generalizes well. Note that using K-fold validation was

considered and attempted but wasn’t feasible due to computational limitations. Once the

number of optimal epochs is determined, the model is retrained using all the data (no

train, validation, test split) for the respective optimal number of epochs. The previously

described workflow followed to determine the number of epochs to train for and how to

split and train the data comes from Algorithm 7.2 [102, p. 273].

Figures 4.3 and 4.4 show the behavior of the errors when performing the original

regressions as specified by Rose and Head respectively. The takeaways from figure 3 include:

average predictions of larger trade flows tend to be more accurate; the average residuals

for smaller trade flows tend to be overestimated and the larger ones underestimated; the

absolute percentage error (APE) is not an adequate metric to keep track of when using

logarithms, given that when the observed trade flow is closer to zero, the APE will tend

to infinity, given that it’s in the denominator of the computation of the APE, hence it

skyrockets near zero values. From figure 4 the takeaways are similar: average predictions

of larger trade flows tend to be more accurate, but as the trade flows get extremely large,

the accuracy variates greatly; smaller trade flows tend to be underestimated and larger

ones overestimated, with notably less variation than Rose’s regression; average APE is

once again verified as inadequate when using logarithms.

Figures 4.5 and 4.6 are homologous to 4.3 and 4.4, but correspond to the DNNs run

based on each one of the respective models after using all of the data as training for

the corresponding optimal number of epochs. In figure 4.5, it can be observed that the

behavior of the 3 measures of error are very similar to the ones from figure 4.3, but when

looking closely at the graphs one can note that the volatility is significantly lower with the

97



Figure 4.3 Rose Regression Errors Behavior
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Figure 4.4 Head Regression Errors Behavior
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Figure 4.5 Rose DNN Errors Behavior

DNN than with the regression. To verify the previous statement, the standard deviation

of the standard errors was computed for both the regression based on Rose [23] and the

DNN based on the previous, and the regression is 16% more volatile in its squared errors.

The same comparison was done between the regression based on Head et al. [24] and

its corresponding DNN, and it was found that the regression is 4.5% more volatile in its

squared errors. Volatility was also reviewed for the residuals, and it was found that Rose’s

regression is 8.23% more volatile than its corresponding DNN, and for Head it’s 8.7%.

Overall, the errors of the DNNs are considerably more stable than those of the multiple

regression models.

Table 4.2 shows the performance comparison of the models run. Recall that there are

3 different results for each one of the two base models: the ones reported in the original

papers, the ones obtained with our attempt to replicate the original paper’s experiment
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Figure 4.6 Head DNN Errors Behavior
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Table 4.2 Performance Comparison

Model Based on Rose

[25]

Model Based on Head

et al. [26]

Metric RMSE

Results Reported in

Original Paper
1.98 1.88

Results Obtained

When Attempting to

Replicate Original

Experiments

2.13 2.08

Results Obtained with

Deep Learning
1.98 1.91

(where our RMSE was marginally higher than the one reported by the papers, even when

following all of the corresponding specifications and using the original datasets), and the

ones obtained with the DNNs. Note that the RMSE reported by Rose’s paper is the same

as the one obtained with deep learning. However, when comparing the RMSE obtained

with our attempt to replicate the original experiment and the one obtained with the DNN,

the RMSE was reduced by 7%. When looking at Head et al.’s RMSE reported in the

original paper, it’s lower than the one obtained with the DNN approach. However, when

comparing the DNN approach with our attempt to replicate the original experiment’s

regression, the RMSE is reduced by 8.2%.

4.6 Reproducibility

In order to make the experiment reproducible, this section mentions the details of the

implementation. The purpose is to allow other users to be able to not only replicate the
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experiment, but further modify the architecture outlined in this chapter and possibly

obtain substantial improvements.

• Programming Language: Python 3.7.3

• Deep learning package: Tensorflow 1.13.1

• Operating system: Windows 10 Home 64-bit (10,0, Build 17763)

• Computer make and model: ASUSTek Computer Inc. TUF Gaming FX504GE_FX80GE

• Memory: 16,384 MB of RAM

• Processor: Intel Core i7-8750H CPU @ 2.20 GHz (12 CPUs)

• Threads used: 10

• Numpy version: 1.16.4

• Sklearn version: 0.21.2

• Pandas version: 0.24.2

The dataset as well as the code for implementation is publicly available on GitHub at:

https://github.com/malg95/Link-Weight- Prediction-WTW/tree/master

4.7 Conclusions and Discussion

The use of deep neural networks (DNNs) for link weight prediction in the world trade

web showed an improvement in performance of as much as 8.2% over multiple regression,

while also reducing the standard deviation of the standard errors by as much as 13.8%.

However, it should be taken into account that when using nonlinear activation functions

in DNNs, the interpretation of the parameters is lost. Therefore, using DNNs is more
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accurate in link weight prediction, but it comes at the cost of the loss of interpretation of

the parameters. If one wishes to identify the impact that each one of the variables has

on the trade between countries, multiple linear regression should be used. In domains

where the cost of the loss or error is extremely high (say for example, cancer detection),

using DNNs would prove to be superior given the increase in accuracy and reduction in

loss, even when it is just a moderate 8.2% in this specific use case, it could make a vast

difference in humanity’s wellbeing in certain domains.

The improvement in accuracy can results in better GDP forecasts, which can aid

countries to better tune their public policy in regards to tariffs, quotas, and subsidies.

This can mitigate potential trade hindering that could originate from external shocks like

changes in the size of main trade partners, changes in regional or free trade agreements,

and similar factors. Additionally, predicted trade flows that are significantly lower than

than the observed trade flows, could arguably provide some evidence towards the existence

of informal trade between two countries. The results obtained in this chapter enable

the identification of such estimation errors, which could potentially shed some light as

to which countries are transacting informally. The consequences of informal trade can

be substantial, by reducing the tax collection by the state, thus reducing the tax base,

generating unfair competition for enterprises, and endangering intermediate and final

consumers with products that aren’t inspected at a point of entry. Henceforth, it’s in the

countries’ best interest to identify and mitigate informal trade.

4.8 Limitations

One of the main limitations of this chapter is that the impact of each individual independent

variable on the dependent variable, as well as their statistical robustness, is lost when

using ML instead of econometric approaches due to non-linearity and the black box effect

in ML. Whether this tradeoff is worthwhile is subject to debate. In domains where the
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cost of loss or error is extremely high, say, for example, false negatives in cancer detection,

the tradeoff might be worthwhile. Additionally, the predictive capabilities of this model

for the future can be limited by the fact that numerous years are pulled together. This

leaves an additional avenue of exploration for predictive capabilities of a cross sectional

model instead of a time series based model.
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Chapter 5

Conclusion

The World Trade Web (WTW) contains a wealth of information, that upon rigorous

analysis can provide insights related to what network characteristics are associated with

more prosperity, as well as how crisis can propagate along the network. Literature that

attempts to describe the topology of the WTW is abundant, but insights on commercial

actions countries could take to improve their well-being are scarce. Using network analysis

to study the WTW has proven to be insightful in numerous occasions, such as the

analysis of globalization and regionalization in international trade [3]; understanding the

potential and risks of economic systems [4]; empirically derive the structure of the world

economy [5]; understand global interdependencies [6]; better understand the role of network

characteristics in countries’ incomes [7, 8]. The main contribution of this dissertation is

that in chapter 3, based on Fagiolo, Reyes, and Schiavo’s [7] suggestion, we first provide

an in-depth analysis of the topological characteristics of individual countries and regions

from the cross-sectional perspective, as well as analyzing the role of geographical proximity

in shaping the WTW to determine how fragile the network is. Knowing the fragility of

the network is relevant to better understand the spread of financial crises, supply chain

perturbations, among other trade and economic phenomena. Furthermore, in chapter

4 we improve the prediction accuracy of the trade links in the WTW relative to works
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that use econometric based approaches like Rose [23] and Head [24]. This contributes

to the importance of machine learning in the field of economics, and could be critical

when extrapolated to uses where the cost of error could be fatal. Predictions that are

significantly lower than actual trade flows could provide initial evidence of informal trade

flows, where it’s in countries’ best interest to mitigate these flows. Additionally, better

accuracy in the prediction of flows can improve GDP forecasts, and in turn aid in public

policy decision-making regarding tariffs, quotas, and subsidies.

The bulk of the thesis consists of two research chapters. Chapter 3 delves into the

topology of the WTW and then finds relationships between the network characteristics

of countries and their income. We find numerous empirical insights. Countries that

are geographically closer tend to form more and stronger relationships, which could be

due to lower transportation costs and trade agreements that tend to happen between

countries that are geographically closer and could provide evidence that trade agreements

increase the intensity of trade among communities. The continent most susceptible to

instability originating from its trade partners is North America, and the most central

continent is Europe. The most central countries in the WTW are USA, China, Germany,

Great Britain, and the Netherlands. The countries that have the highest dependency on

other countries are Mexico, Canada, Kuwait, Mongolia, and Andorra. The exploratory

econometric analysis that uses countries’ network characteristics as an input suggests that

there is evidence that countries with higher PCGDP tend to associate with more neighbors

that are themselves weaker, reciprocate fewer of their trade links, and trade more strongly

with countries that are themselves stronger, and have a higher export to GDP Ratio. This

could signal to what actions some countries could take from the public policy perspective

in order to achieve a higher income.

Chapter 4 builds on the gravity model of trade and uses a deep neural network with the

purpose of link weight prediction in the world trade web, that is, predicting the magnitude

107



of the trade interactions between countries. The inputs for prediction are characteristics

of the interacting countries such as their gross domestic product and land area, as well as

their bilateral relationship traits, which include variables like distance between them and

dyadic binary variables such as whether they are in the same continent, share borders,

language, ethnicity, trade agreements, legal system, among others. The results of using

deep learning are favorable, improving the performance obtained by traditional methods

like ordinary least squares regression by as much as 8%. This contributes to the use of ML

to better understand global trade. Our results can arguably be used as evidence of the

existence of informal trade between countries, taking into consideration the predicted trade

flows that are significantly higher than the observed flows. These errors are obtainable

with our methodology, and they have the potential of shedding some light in pointing

regulators to where the informal flows are sourcing and directing to. This is relevant,

because informal trade can bring with it undesirable consequences like lower tax collection

by the government, a smaller base to collect taxes from, unfair competition for businesses,

and the absence of safety inspections of products for intermediate and final consumers.

Mitigating informal trade is in the countries’ and citizen’s best interest. The improvement

in trade forecasts can also have a chain effect on the accuracy of GDP forecasts, which

can aid in public policy decision-making, particularly for tariffs, trade, and subsidies.

The key contribution of this thesis is towards the area of the value in the use of

network analysis in the field of economics. This thesis shows how network characteristics

of countries can be insightful and actionable insights on commercial actions to take to

improve the countries’ incomes. Main players in the network are identified not only at the

country level, but also at the continental level, which could aid in better understanding

how crisis and pandemics can propagate along the network. Another achievement is that

we improve the accuracy of traditional approaches on link weight prediction on the WTW,

showing that DNNs can prove useful in this context and aid in the potential identification
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of informal trade routes, as well as the optimization of tariffs, quotas, and subsidies.

5.1 Discussion

Someone with the power of doing public policy in their respective country should take

the results of research like the one provided in chapter 3 with extreme caution, given that

policies and systems that work in one country might not work in others due to numerous

factors. Among these factors that make policy results vary, one can find differentials in rule

of law, safety, climate, culture, economy, fiscal policy, monetary policy, commercial policy,

and so forth. One should really delve into the specific situation of every specific country

with a panel of experts in order to evaluate whether a certain policy could potentially

benefit their population. For example, protecting a rising industry from foreign competition

in a country might prove useful if said industry shows signs of increased productivity,

quality, and competitiveness at the international level through time. Once this industry

has the opportunity to catch up to international standards, then the protection can be

waived and it should be able to compete with other international competitors. While this

policy might work in some cases like the one previously described, it might not work in

other countries where protection is provided to an industry, but it does not show any signs

of improved productivity and quality. If a government continues protecting an industry

like this, it could lead to scarcity of products from said industry at the national level, low

quality, and higher costs, which could have a ripple effect on social costs and development.

An interesting remark is that the results stemming from the Herfindahl-Hirschman

Index analysis show that the countries that have the highest dependency on other countries

are Mexico, Canada, Kuwait, Mongolia, and Andorra. Something worth noting is that 2

of these 5 countries, Mexico and Canada, are members of the North American Free Trade

Agreement (NAFTA) and have a border with the most influential player in the WTW, the

USA. Based on the results of the dependency analysis, it could be good for their economies
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to trade more strongly with the USA. However, from the risk management perspective,

this results in lower diversification, which makes their economies more dependent on the

USA, hence more prone to suffering from economic shocks originating from that country.

This suggests that there is a trade-off between how much a country can benefit from

trading with a strong country, and the increase in risk to exogenous shocks originating

from having a high percent of their trade relying on one particular partner.

In the realm of grouping similar objects, multivariate exercises such as cluster analysis

that are performed using numerous indicators prove to be challenging because they

can sometimes group countries that are notoriously different into a particular cluster.

Additionally, naming the clusters is subjective and dependent on the researcher, and proves

to be a daunting task when countries that are themselves heterogeneous are grouped

within the same cluster. This results in countries like Norway, Iceland, and New Zealand

being included in a cluster labeled "Low Income Moderately Connected Countries", for

example. However, this is not uncommon in multivariate exercises such as regression

analysis, for example, where there could be some particular outliers and observations

where the estimation error is considerably higher than the average observation.

Lastly, in my attempt to predict trade I use a feed forward deep neural network. This

is just one particular architecture within deep learning that generally allows to improve

prediction accuracy over other econometric methods like linear regression. However, there

are numerous other deep learning architectures that are more complex that could allow

for better prediction accuracy, but come at the cost of a higher computing power and

more taxing hyperparameter tuning. Among these architectures, one finds convolutional

neural networks, that are usually common for machine learning involving the processing

of images. Such architectures are yet to be explored in this context to see if they result in

more accurate and less volatile predictions.
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5.2 Limitations and Future Work

One of the main limitations of the work done in chapter 3 is that the data comes from

official, reported trade interactions between countries. It is well known that there is

vast informal trade between countries, which is not accounted for in these numbers. The

real topology of the WTW when incorporating these unaccounted trade flows could be

significantly different from the one obtained using the data we are able to access. However,

at the time of writing and to the best of the author’s knowledge, the database used is the

most comprehensive public data base. It is important to note that external factors such

as COVID-19 can be sources of exogenous shocks to the WTW stemming from unstudied

forces and hence impact the WTW’s stability, dynamics, insights, which have the power to

potentially weaken the conclusions obtained from this chapter. This adds to the relevance

of constantly updating works like this one, in order to incorporate new phenomena that

develop over time and improve on the integrity and validity of the conclusions. Better

understanding trade networks can empower countries to build more resilient supply chains,

as has been recently exposed by the COVID-19 pandemic. Additionally, the weighting

mechanism used is subject to discussion depending on the research goals. Other researchers

have used varying weighing mechanisms in other papers depending on their goals, and

there can be an extensive discussion as to the advantages and disadvantages of each

weighting mechanism. Moreover, PCGDP shouldn’t be the ultimate goals of countries

when it comes to their economic performance. Other metrics should be taken into account

to get a comprehensive status of their economy, such as metrics related to health, quality

of life, and education.

There is plenty of future work to be done stemming from the findings of this chapter,

such as: determining how exactly does reciprocating less trade links associate with a

higher PCGDP? Is it because of exporting to more countries and not importing from them
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or the other way around? Do technology transfers to less developed countries explain why

associating more strongly with stronger partners is associated with a higher PCGDP? How

could the connectivity and exports of Africa be improved, given that Africa is a big net

importer? Which countries have decreased their dependency on other countries through

time?

For the work presented in chapter 4, we were able to improve the prediction accuracy

relative to other state of the art econometric methods. However, one of the main limitations

of our approach is that we lose interpretation and direction of the impact of the distinct

variables on the magnitude of the trade links. This is an advantage that econometric

methods have over DNNs, and is hence a tradeoff. The questions remains on whether

it’s possible to improve these predictions using more complex DNNs or CNNs that would

require a higher computational power than the one we had at our disposal. Having more

computational resources could enable the user to use L1 and L2 regularization methods

despite their slow down of the learning process of the algorithm, hence being able to do

more training epochs and obtaining a better accuracy. Additionally, we have performed an

analysis that pools numerous years in the analysis, and different results could be obtained

if the researcher controls for the years and decides to perform an analysis from the cross

sectional perspective and where the object of study is either one country in particular, or

the entire WTW.
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