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Abstract

Haptic feedback is missing in teleoperated surgical robots creating a sensory dis-

connect from the surgeon and their patient. This thesis proposes using the electric

impedance of tissues, instead of the traditionally used mechanical impedance, to de-

velop haptic feedback for surgical robots. Electric impedance spectroscopy (EIS) and

a modified surgical needle were successfully able to measure the electric impedance for

gel-based phantoms, ex-vivo tissue, and freshly excised organs. Processes for fitting

the electric impedance of these tissues to the double-dispersion Cole model were de-

veloped including stochastic and deterministic approaches. The tissues were classified

with least square error, k-Nearest Neighbour and Naïve Bayes using the measured

electric impedance and the extracted model parameter values. The thesis culminates

in applications of using EIS as part of implementing vibrotactile and force feedback

applications involving sets of user trials to validate its effectiveness in identifying the

tissue through haptic feedback.

Keywords: Electric Impedance Spectroscopy; Haptics; Surgical Robots;

Tissue Classification
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Chapter 1

Challenges and Solutions in Tissue

Discrimination during Minimally

Invasive Surgery
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1.1 Introduction

Robot-assisted minimally invasive surgery (RMIS) has shown increasing promise in

improving the quality of treatment in the operating room. Typically, the goal of tele-

operated RMIS systems is to enhance the dexterity and precision of the surgeon rather

than having robots replace them in the operating room. Through a remote console,

the surgeon controls a robotic manipulator that operates on the patient, see Figure

1.1. However, the lack of force feedback in the currently available commercial systems

presents a steep learning curve for novice surgeons to become proficient in RMIS and

achieve the desired levels of performance. In some minimally invasive procedures, the

surgeon can rely on other forms of sensory feedback such as laparoscopic cameras to

visualise the surgical site. Yet, this is not always a feasible solution for percutaneous

procedures such as brachytherapy.

Brachytherapy is a surgical procedure that utilises radiation for cancer treatment.

The surgery is often used in the treatment of breast and prostate cancers where there

are two approaches that can be taken: low-dose-rate and high-dose-rate. The lower

dose refers to implanting radioactive seeds into the tissue, where they will remain

permanently, irradiating nearby tumours over time. The higher dose alternative is

temporary, lasting a few minutes in specially designed guide tubes to the tissue. In

both cases the surgeon inserts needles into the organ typically guided by ultrasound

imaging. In the past two decades, there has been growing interest in improving the

technique with robot-assisted technologies [1] [2], including the implementation of

haptic feedback [3]. This push is driven by challenges in accurately locating lesions

during treatment, resulting in radiation being needlessly applied to healthy tissue.

The first issue presents itself in the form of loss of tactile information. In the early

stages of cancer screening, clinicians are able to use palpation to identify possible

abnormalities. The sense of touch is what enables them to feel the change in tissues,

alerting them to possible issues. While this is useful for screening, it is not feasible

to do during further surgery such as biopsy or treatment in brachytherapy. While
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inserting brachytherapy or biopsy needles, it is a difficult task to perceive the change

in tissue stiffness by hand. The loss of this tactile feedback presents a loss of key

information to the surgeon that could aid them in identifying the location of tumours.

The second challenge is the interpretation of imaging methods. The current gold

standard in breast cancer diagnosis is fine-needle aspiration biopsy, in which the pro-

cedure is used in tandem with some form of medical imaging, typically ultrasound,

and the expertise of the pathologist to sample suspect lesions for malignancy. During

these procedures the clinician identifies regions of interest depending on, among other

properties, the echogenicity of the tissue [4]. Hyperechoic regions are indicative of

benign lesions. In contrast, hypoechoic regions are regions of interest for malignant

tissue [5]. However, it is not sufficient to simply rely on echogenicity to diagnose

tissue malignancy, and biopsy is typically used to give histological assessment. These

challenges are not limited to the breast; similar difficulties are seen in other tissues as

well, including prostate cancer.

In prostate cancer biopsy, the needles are guided using transrectal ultrasound. Similar

to the breast tissue, not all tissue structures like cancerous tumours are identifiable

on ultrasound images. Physicians can target hypoechoic regions but it has been

reported that some prostate cancers are difficult to detect with traditional grayscale

ultrasound images [5]. This inability to identify cancerous regions requires multiple

biopsy tissue samples at various locations in the prostate without targeting suspicion

lesions [6]. A longitudinal study from 2007 found that over 25% of patients were under

diagnosed and up to 7.1% were over diagnosed [7], which may result in unnecessary

or insufficient treatment. Furthermore, as false-negatives can occur, one may attempt

repeated sampling, been this has not necessarily shown an improvement in cancer

detection [8] [9]. Since the biopsy only samples a small volume of the tissue and

different types of tissue may be observed by similar ultrasound characteristics, it is

worthwhile to explore how these types of procedures could be improved.

A different approach could be to explore medical imaging techniques other than ultra-
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sound. CT scans and X-ray imaging are able to delineate tumours [10], but segmen-

tation is non-trivial and with the radiation exposure makes it unsuitable for online

treatment and guidance. Similarly, MRI [9] is well known for identifying suspect

lesions, but the size and cost make them prohibitive to use in routine surgical pro-

cedures. Consequently, as an alternative to image-based tissue targeting, there has

been a great deal of research invested in implementing haptic feedback in teleoperation

systems as a method of communicating tissue composition.

1.1.1 Haptic Feedback with Surgical Robots

Surgical robots like the da Vinci system are among the more popular teleoperation

tools for surgery. The system, and many others like it, are composed primarily of

three parts: the robotic manipulator(s), visualisation/imaging, and the remote control

console. The surgeon operates on the patient by controlling the robot through this

console. In the context of the da Vinci robot, the surgeon can view the surgical site

with an endoscopic camera connected to a 3D display, and the actuation of the tools

connected to the manipulator arms can be controlled with joysticks and foot pedals.

In [11] it was found that experienced surgeons applied inconsistent suture tension

when performing the task with the da Vinci robot. The research further investigates

solutions to incorporating feedback, including audible and visual cues, to improve

precision and accuracy in teleoperation [11].

Similar investigations to develop haptic feedback have occurred with other surgical

robots, like the AESOP robotic arms controlled by a PHANToM haptic device in [12],

where a force sensor was installed at the with a scalpel tool and forceps such that force

feedback could be calculated and displayed. Several other researchers have attempted

to augment surgical tools with force sensors [13] [14].

The motivation to use force sensors is that it is relatively intuitive to communicate

force measurements to a perceived force by the operator through a haptic device. In

the context of biopsy or brachytherapy it is well-known that the mechanical properties

of tumours are different than that of their healthy tissue counterpart. With a force
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sensor installed on the tool, one should be able to measure a difference in the stiffness

of the tissue as the tool is inserted during the procedure. Unfortunately, depending

on the location of the force sensor, there are associated challenges. A force sensor

installed at the base of the tool, outside of the body, will be subject to noise since

the sensor will measure friction, cutting and puncturing forces simultaneously, among

others [15] [16]. To mitigate this, one could try to install a force sensor at the tip of

the tool [16], where ideally the tissue stiffness would be the main contributor to the

measurement. This is a non-trivial task however, as the needle tip poses additional

constraints, namely limited size and degrees of freedom [17].

As a result there has been increasing interest in developing new technologies to aid in

the discrimination of different tissues in minimally invasive surgery. There have been

approaches that attempt to utilise the mechanical properties of the tissue, but there

are additional properties of the tissue that could be potentially exploited.

1.1.2 A New Approach

It is intuitive to connect the mechanical properties to physical haptic feedback, but

there are associated challenges with these methods. It is then worthwhile exploring

what other information could be extracted and utilised. Notably, tissues do need to be

characterised solely on their mechanical properties, as organic tissues also have been

reported to possess unique electric and dielectric properties [18]. Researchers have

found such behaviour in benign and malignant tissues for several organs, including in

the prostate [19], breast [20], bladder [21] and skin [22].

One such technology that can discern this electrical information is the method of

electric impedance spectroscopy (EIS). The method involves applying an alternating

current stimulus across a sample and measuring the resulting response, at a wide

range of frequencies. The following will discuss the origins of this method and how it

came to be of interest to research in identification of various tissues.
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Figure 1.1: A flow diagram representing the system that composes a teleoperation haptic
interface.

1.2 Electric Impedance Spectroscopy

The method of electrical impedance spectroscopy has a long history, evolving from

of the works of Issac Newton and studies on the effects of electromagnetic waves on

materials. The study of how material interacts with electromagnetic radiation became

known as spectroscopy. In the late 1800s researchers began to explore how materials

would react to alternating electric current of various frequencies. Heaviside is regarded

as the first to coin the term for electric impedance.

In its essence, electric impedance spectroscopy (EIS) is the analysis of a system’s

impedance as it is applied with alternating current of various frequencies. This re-

search has evolved over the past century and has become relevant to the analysis

of many different applications. While this thesis focuses on the application to bio-

logical tissues, there is a thriving field of research in the analysis of electrochemical

cells since, by its very nature, EIS is heavily intertwined with electrochemistry. For

the sake of clarity it is important to note that bioimpedance analysis and EIS, while

related in principles, traditionally investigate different topics. In the literature, the

term bioimpedance is generally associated in analysis of impedance for the whole

body, where electrodes are placed across multiple limbs, to study body composition

such as body fat and muscle mass. In electric impedance spectroscopy with biological

tissues, one is more concerned about the analysis of small groups of (or in some cases

individual) cells.
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A thorough review of EIS history is provided by Schwan and Foster in [23]. In gist,

the analysis of applying electric stimulus to tissue began in the later 1800’s. Over

time it was understood that electric stimulus will cause cells to react on a microscopic

level where ions act as charge carriers in the tissue. How well these ions are able to

carry charge became a measure of the tissue’s conductivity. Since the inception of EIS,

tissues have been known to exhibit complex dielectric behaviour. The mobility of these

ions within the cells leads to formation of effects such as polarisation, and double-layer

capacitance at the electrode-electrolyte interface. Thus, the permittivity of tissues

also became a matter of interest to researchers. Through the turn of the century,

and into the modern era, there has been specific interest in the application of EIS to

medical technology. Specifically, in the works published by Halter et al., there is a

difference in the conductivity and permittivity in prostate tissues: notably carcinoma

and benign hyperplasia, where current technology is challenged in differentiating them

[24]. Among other similar findings there is a recent thrust in the past decade to

integrate EIS with surgical tools.

The advantage to adopting EIS over traditional force sensor approaches is not to be

understated. As stated above, there are challenges with friction obscuring tissue stiff-

ness when using force sensors at the base of the needle - and integrating these sensors

at the tip of the needle is non-trivial. The capabilities in micro-machining meth-

ods have improved considerably in recent years, enabling electrodes to be integrated

directly onto needles without impeding their surgical function [25] [26].

Provided that EIS is capable of of discriminating between tissues and can be integrated

with surgical instruments, there is an opportunity to explore it’s viability in a haptic

feedback system. Depending on the frequencies measured, and how many samples

are taken per measurement, EIS could rapidly acquire impedance information about

the tissue. The post-processing of this data is also a factor, if the data is fit to a

model for instance, additional processing time is required. Considering this can be

done rapidly, the method would be able to identify tissue fast enough to be used in a

haptic feedback system, ideally in real-time.
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1.3 Objectives and Outline

Presented in this thesis is further development of tissue classification using EIS, but

with the novel application to surgical needles and haptic feedback. The following chap-

ters of this manuscript will range from the development of a prototype EIS electrode-

embedded needle, the implementation of a fitting method to extract the properties

of the tissue from EIS, the classification procedures, to culminating in two example

applications. The thesis will conclude by reviewing the success of the presented ideas,

and recommendations for further development.

Chapter 2 will introduce an provide and overview of the system developed to acquire

EIS data and how it relates to similar designs seen in other publications. The chapter

continues to explain how the system is used to acquire assorted tissue sample data from

frequencies of 10.4 Hz to 349 kHz. The tissue samples include gel based phantoms,

ex-vivo (poultry, bovine) tissue, and freshly excised (canine, feline) tissue. Lastly, a

comparison of the EIS data for these tissues is discussed.

Chapter 3 builds upon the former chapter, where the collected data is fit to a circuit

model that represents the electric properties of the tissue samples. The chapter will

introduce the purpose of these circuit models and their development. The later sec-

tions detail the processes used to extract the parameters of the model for each tissue

sample, using both single and multi-objective optimisation approaches.

In Chapter 4, a few approaches are explored on how EIS data and model parameters

can be used classify new tissue samples. The analysis includes a comparison of least

square error to a database of existing samples, k-Nearest Neighbours, and Naïve Bayes

classification. The effectiveness of these methods is also discussed.

With the EIS system and classification algorithms developed, the applications to

haptic feedback are explored in Chapter 5. The chapter presents two studies where

the content discussed in the former chapters culminate. In the first study a prototype

needle provides vibrotactile feedback to the wielder; informing them of the tissue
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at the needle tip. In the second study the system is integrated to a teleoperation

scenario, where a remote user receives haptic force feedback; alerting them about

tissue composition at the needle tip.

Chapter 6 will summarise the developments of the thesis. Alongside concluding re-

marks, recommendations are suggested for future developments of the system and

proposed techniques.

The contributions of this thesis are:

• Tissue classification with an electrode embedded needle using electric impedance

spectroscopy with a combined database containing gel-based phantoms, ex-vivo

tissue and, and freshly excised tissue.

• Fitting electric impedance measurements to the double-dispersion Cole model

with the RPD-NSGA-II algorithm.

• Generating haptic feedback from electric impedance spectroscopy. Force and

vibrotactile feedback applications investigated.
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Chapter 2

An Electrode Embedded Needle for

Tissue Discrimination
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2.1 Electric Impedance

The objective of EIS is to analyse the properties of an object by applying electric

stimulus of varying frequencies. To achieve this, the electric impedance of the tissue

needs to be known. The fundamental equation in defining electric impedance is defined

by Ohm’s Law,

R =
V

I
(2.1)

where the resistance R is a measure of an object’s ability to impede the flow of

electric current. It is evaluated as the ratio of the electric potential difference, voltage

V , across the object, over the current I through it. The relationship in (2.1) is

applicable in a purely resistive element. As mentioned in the previous chapter, the

electric impedance of tissues changes with frequency of the excitation signal. Thus, a

more general consideration of (2.1) for alternating current (AC) should be considered.

In the time domain, the excitation signal can be written as,

V (t) = V0 sin (ωt) (2.2)

with V0 as the amplitude of the voltage signal. The angular frequency is ω = 2πf ,

where f is the inverse of the excitation signal period, in Hz. Similarly, the current

can be defined, and is relative to the voltage by a phase shift of θ,

I(t) = I0 sin (ωt+ θ) (2.3)

This enables deriving the AC impedance using Euler’s formula and the ratio defined

in (2.1),

Z(ω) = R +X(jω) (2.4)
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with the impedance Z comprised of the resistance R and the reactance X. j =
√
−1

is the imaginary unit. The impedance can also be represented as the magnitude and

phase,

|Z(ω)| =
√
R2 +X2 (2.5)

∠Z(ω) = tan−1
(
X

R

)
(2.6)

There are multiple ways to visualise the change in impedance with respect to fre-

quency, but the most commonly used forms include the Nyquist plot, where impedance

is plotted on the complex plane, or a Bode plot, where magnitude and phase of the

impedance are plotted separately against frequency, see Figure 2.1. In EIS literature

plotting on the complex plane is more-often seen, but this manuscript will utilise the

Bode representation.

Phase

Magnitude

(a) (b)

Figure 2.1: (a) An example of a Nyquist plot where the impedance is plotted on the complex
plane. (b) An example of a Bode plot where the impedance is plotted in two parts, the
magnitude and phase. Both figures illustrate how the impedance change with respect to
frequency.

With electric impedance defined, the following sections detail how the electric impedance

of tissue can be measured, and the system developed to acquire the impedance infor-

mation will be introduced.
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2.2 Existing Implementations of Needle Probes

In the current state of the art, several instruments have been developed to differen-

tiate healthy and cancerous cells through their electrical characteristics. NASA and

BioLuminate Inc. developed a biopsy probe to identify breast cancer through electric

impedance [27]. Yun et al. utilized an electrode embedded needle to identify thyroid

cancer [28]. Park et al. integrated a microelectrode array onto a biopsy needle for

liver cancer discrimination [29].

From the literature it is seen that there are multiple different possible configurations

to conduct EIS. Perhaps the most intuitive approach is the bipolar configuration,

shown in Figure 2.2(a), where two electrodes are placed across the tissue. An AC

voltage is applied to the tissue and the resulting current is measured in-line [30]. The

impedance of the tissue is found from the ratio of the applied voltage over the current,

see (2.1); repeating this process at many frequencies forms the impedance spectrum

of the tissue. One known drawback to the bipolar approach is that electrodes can

become polarised, resulting a source of error in the measurement [31]. Polarisation

is caused by the ions in the metal electrode reacting with the ions in the electrolyte

of the tissue. As negatively charged ions collect on the surface of the electrode,

negative ions are attracted to them, behaving like two charged plates of capacitor.

This layer of negative ions in the electrolyte solution will further attract positive ions

forming a secondary layer. This phenomenon is referred to as double layer capacitance.

Electrode polarisation is more noticeable during low frequency measurements [32] [33],

as there is more time for charge to build on surface of the electrode interface. In higher

frequency analysis, this effect is negligible as there is insufficient time to polarise the

electrode before the polarity is switched on the excitation signal. Despite the existence

of electrode polarisation in bipolar configurations, as shown in [33] tissue classification

can still be conducted. Furthermore, one can compensate for this phenomena by

considering it in the system model [32].

The tetrapolar configuration is another popular approach, where two pairs of elec-
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trodes are used, which solves the issue with electrode polarisation. One pair injects

current through the tissue and potential difference is measured across the other pair

of electrodes, see Figure 2.2(b).

Z(ω)v(ω)

(a)

Z(ω)i(ω)

(b)

Figure 2.2: (a) A bipolar EIS arrangement where two electrodes are attached to an object
with unknown, frequency dependent impedance Z(ω) where a voltage is applied and current
is measured in line. (b) A tetrapolar EIS arrangement where the applied signal electrodes are
separate from the measurement electrodes, requiring four electrodes attached to the object.
The current is injected into the object and voltage is measured.

The existing designs of electrode embedded needles seen in literature tend more often

to adopt the bipolar configuration [31] [34] [19], however monopolar, tripolar and

tetrapolar configurations exist [35]. In a coaxial bipolar configuration the needle

shaft serves as one electrode and the metallic core suspended concentrically inside the

needle serves as the secondary electrode, as shown in Figure 2.3(a). While relatively

easy to manufacture, the notable flaw with this design in that the bore of the needle

is obstructed by the electrode. There have been attempts to circumvent this flaw with

different designs. Trebbels et al. used a concentric shaft in lieu of a solid core in their

augmented brachytherapy needle [34]. Other researchers have managed to miniaturise

electrodes and apply them to the surface of needles [29]. Electrodes on a micrometer

scale have been fabricated into needles using photolithography shown in [25]. For the

sake of simplicity in the design, the coaxial approach with a solid core electrode was

adopted in this thesis. The details of this design are detailed in the following section.
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2.3 Prototype Needle With Coaxial Electrode for EIS

In order to validate the concept of using EIS as a means of providing haptic feedback in

RMIS, a prototype needle probe was developed using the coaxial bipolar configuration.

The concept of the design is shown in Figure 2.3(a).

Keeping the brachytherapy application in mind, an 18 gauge brachytherapy needle

(Eckert & Ziegler, New York, USA) was used as part of the design for the EIS probe.

The design considers the needle shaft itself to act as one of the electrodes. The other

electrode is a copper wire sheathed in PTFE tubing and suspended in the middle

of the needle bore. Cyanoacrylate was used to affix the PTFE tubing to the inner

wall of the needle shaft. The tip of the electrode was tinned with solder to prevent

oxidation and corrosion. Another copper lead is soldered to the base of the needle.

Consequently, with the wire from the core and from the shaft routed to the excitation

and measurement circuits, the probe was complete.

The impedance of the needle should be known such that its effect is accounted for

when measuring the impedance of the tissue. Several models have been proposed

to represent the parasitic impedance of coaxial bipolar electrodes [36] [37] [38] [39].

In this thesis the augmented needle’s impedance is estimated by a resistor and a

capacitor. The model consists of the metals resistance Re and the capacitance between

the two electrodes Ce. The capacitance can be determined from the general form of

concentric cylinder capacitors [40],

Ce = 2π

(
Lca

ln(rsi)− ln(rc)

)
εrε0 (2.7)

where Lca is the effective length of the capacitor, εr is the relative permittivity factor

for the dielectric insulator between the core (subscript c hereinafter) and needle shaft

(subscript s hereinafter) which is multiplied by permittivity of free space ε0. The

radius of the core and needle bore is rc and rsi respectively, refer to Figure 2.3(b).
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The electrode resistance Re can also be estimated by considering the resistivity of the

shaft and core metals ρs, ρc, their lengths Ls, Lc and radii,

Re =
ρcLc
πr2c

+
ρsLs

π(r2so − r2si)
(2.8)

The variables for (2.7) and (2.8) are defined in Table 2.1 and in Figure 2.3(b). Using

these parameters the capacitance of the electrode is evaluated as Ce = 31.70 pF. The

resistance of metal electrodes was calculated to be Re = 0.24 Ω.

Compared to the tissue impedance values reported in the literature, these values will

have a near negligible effect on the entire impedance, and consequently are omitted

for the remainder of this thesis. However, one should consider the impedance of the

electrode in their own research to confirm its impact on their impedance measure-

ments.

As noted by Schwan, the effects of electrode polarisation should be considered [41]. An

additional source of capacitance is caused by the electrode polarisation that occurs on

the surface of both electrodes. This frequency dependent impedance is not considered

here as part of the needle model, but will be touched upon in the development of the

tissue model.

With the prototype needle introduced, the next step is to understand how it is able

to apply electric stimulus and measure the impedance of the tissue.

2.4 Impedance Acquisition Device

The prototype needle needs to be connected to circuitry that is able to apply electric

stimulus to the tissue as well as measure the response. Several circuits have been

developed to accomplish these tasks. The experiments within this thesis utilise the

Quadra (Eliko, Tallin, Estonia), a device specifically designed for electric impedance

spectroscopy research [42] [43] [44]. Using binary PWM excitation signals, the device
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Figure 2.3: A close up view of a model for an electrode embedded needle in a bipolar electrode
arrangement for EIS. The two electrodes in this instance are the inner core electrode and
the needle shaft. An insulating material, such as polytetrafluoroethylene (PTFE), separates
the two electrodes.

Table 2.1: Electrode Needle Parameters

Property Var. Value
Resistivity of copper ρc 1.68× 10−8 Ωm
Resistivity of steel ρs 6.90× 10−7 Ωm
Radius of copper electrode rc 4.50× 10−4 m
Inner radius of steel electrode rsi 4.65× 10−4 m
Outer radius of steel electrode rso 6.35× 10−4 m
Total length of copper Lc 1.682 m
Total length of steel Ls 0.165 m
Effective length of capacitor Lca 0.197 m
Permittivity of free space εo 8.854 pF/m
Relative permittivity of PTFE εr 2.1
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can determine the impedance magnitude and phase in real-time [44] [45]. The device

can be programmed to sample the impedance from frequencies as low as 0.56 Hz to

349 kHz. For obvious reasons, real-time analysis is impossible at such low frequencies,

but critical impedance information may exist at lower frequencies.

2.4.1 Measurement and Excitation Circuit

To begin, the device functions by generating a PWM voltage excitation signal VExc,

that is converted into a current IExc using the operational amplifier stages shown in

Figure 2.4.

IExc =
VExc
RRef1

(2.9)

The current through the tissue’s impedance will result in voltage across the tissue VRes.

Considering the operational amplifiers having sufficiently large input impedance, the

entirety of the current will flow through the load and pass through the reference

resistor RRef2 , which can be used to quantify the excitation voltage V ′Exc as,

V ′Exc = IExc ×RRef2 (2.10)

As noted in [43], while the current is known from the initial conversion stage, signal

degradation can occur due to a decrease in output impedance at higher frequencies.

Thus, where one would normally estimate the unknown impedance through (2.1) as,

Z(ω) =
VRes
IExc

(2.11)

can be adjusted to use measurable quantities. The response voltage VRes across the
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Figure 2.4: The circuit diagram of the Quadra electric impedance device, redrawn from [43].
The primary objective of the device is to measure the unknown impedance Z(ω). This is
accomplished by comparing the response voltage VRes across the load and the measured
excitation V ′Exc.

unknown impedance Z(ω) is measured along with V ′Exc.

Z(ω) =
VRes
V ′Exc

×RRef2 (2.12)

2.5 Experimental Validation

Once the prototype was built and integrated with the excitation and measurement

electronics, a series of experiments were conducted to measure the electric impedance

of different tissue samples. The objective is to show that the obtained impedance

data among the same type of tissue is similar and can be differentiated from other

tissues. To this end, an assortment of tissues were prepared and measured, as shown in

Table 2.2, including gelatin, agar, bovine liver/kidney/muscle, poultry liver, testicles,

ovaries and fat. The following subsections detail the categories and specifics of the
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Table 2.2: Tissue Samples Collected

Tissue No. of Samples Impedance Figure
Canine & Feline Testes 22 Appendix A.1
Canine & Feline Ovaries 22 Appendix A.2
Fat 18 Appendix A.3
Poultry Liver 22 Appendix A.4
Bovine Liver 22 Appendix A.5
Bovine Kidney 22 Appendix A.6
Bovine Muscle 22 Appendix A.7
Agar (Blue) 18 Appendix A.8
Agar (Yellow 1) 14 Appendix A.9
Agar (Yellow 2) 16 Appendix A.10
Gelatin (Original) 16 Appendix A.11
Gelatin (Green) 16 Appendix A.12
Gelatin (Red) 16 Appendix A.13

tissue samples, followed by the measurement procedure.

2.5.1 Experiment Setup

All samples were placed on an aluminium tray, grounded to the Quadra. The exci-

tation signal voltage was set to 4.2V. The electrode embedded needle was inserted

approximately 5-10 mm into the tissue sample. While inserted in the tissue the elec-

tric impedance was measured. At a single frequency, the impedance magnitude and

phase were measured 10 times and averaged to account for noise in a single measure-

ment. Unless otherwise stated, the experiments in this thesis measure the impedance

at the following frequencies in Hz:

f =


10.42 20.83 31.25 100 114.58 300 322.92 700 . . .

1100 1700 2300 3100 11000 17000 23000 31000 . . .

43000 61000 89000 127000 179000 251000 349000

 (2.13)

The data was collected with approval from Ontario Tech Biosafety Committee, ad-

hering to the procedures in handling tissue and sanitation of the equipment.
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2.5.2 Gel-Based Phantoms

Powdered porcine gelatin and agar-agar (agar) were used to make gel-based phantoms.

By adding salt in differing concentrations, the conductivity of the phantom could be

altered in a repeatable and controllable fashion. To ensure variability in the data,

multiple batches were made separately for each phantom, where each batch yielded

multiple samples. Three types of gelatin were created using the following recipes:

• Gelatin (Original) a ratio of 6.7 grams porcine gelatin powder in 80 mL

deionized water;

• Gelatin (Green) a ratio of 6.7 grams porcine gelatin powder with 2.0 grams of

ionized salt diluted in 80 mL deionized water, tinted green with food colouring;

• Gelatin (Red) a ratio of 6.7 grams porcine gelatin powder with 5.0 grams of

ionized salt diluted in 80 mL deionized water, tinted red with food colouring;

Agar was used to create a additional types of phantom tissue, with the following

recipes:

• Agar (Yellow 1) a ratio of 0.7 grams agar powder with 1.0 gram of ionized

salt diluted in 80 mL deionized water, tinted green with yellow colouring;

• Agar (Yellow 2) a ratio of 0.7 grams agar powder in 80 mL deionized water,

tinted yellow with food colouring;

• Agar (Blue) a ratio of 0.7 grams agar powder with 0.5 grams of ionized salt

diluted in 80 mL deionized water, tinted blue with food colouring;

The samples were stored in a refrigerator for a minimum of 4 hours, such that they

would firm-up and set. The samples were removed from the fridge and measured

quickly, at an approximate internal temperature of 14− 18◦C.
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Figure 2.5: The gelatin and agar samples were prepared using their corresponding recipes.
Pictured here are Gelatin (Original), Gelatin (Red), Gelatin (Green), Agar (Blue), and Agar
(Yellow 2).

2.5.3 Ex-Vivo Tissue

An assortment of meat from the grocery store was also measured. In this manuscript

bovine liver, kidney and muscle are measured, along with poultry liver. All of the

meats were trimmed of excess fat and connective tissue where applicable. Each of the

tissues were segmented into 22 samples.

The lobes of the kidney samples were severed and then cut in half to expose their

cross section. The kidney lobe was probed in the renal cortex across all samples, see

Figure 2.6.

The bovine muscle was cubed into 2 cm samples. The probe was inserted into the

tissue, parallel with the direction of the muscle fibres. Strands of fat in the samples

were avoided. The samples were recorded at room temperature.

Figure 2.6: Preparation of the bovine kidney samples. The kidney was sectioned into 22
pieces and placed on an aluminium tray. The needle was inserted into the same location
across the other samples. The other ex-vivo tissue samples received similar preparation.
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2.5.4 Freshly Excised Tissue

Testicle and ovary samples were procured and measured following surgical removal by

a local veterinarian clinic during their scheduled laparoscopic spay and neuters. Fat

tissue surrounding the ovary was also sampled when it was possible. The tissues were

collected from canine and feline patients that varied in age and breed, see Appendix

C for a detailed list. The samples were sampled with urgency, less then five minutes

from excision, with one exception as noted in the entry of Appendix C. The samples

were also recorded at room temperature.

Figure 2.7: Pictured left are two sample ovaries: (top) German Shepard Mix - 6 months,
(bottom) Golden Doodle - 7 months. Pictured right are two testicle samples: (top) Husky
Mix - 12 months, (bottom) Yorkshire Terrier - 8 months.

2.6 Experimental Data & Observations

All of the tissue samples were measured using the EIS needle prototype. The measure-

ments for each sample are compiled in Appendix A and Appendix B. For a cursory

comparison, the average impedance magnitude is listed in Table 2.5. For a high-level

comparison, the magnitude and phase for each tissue were averaged and are plotted in

Figure 2.8. The results clearly show that the different tissues exhibit distinct electric

impedance spectra.

23



The data of the tissues is relatively consistent across samples of the same tissue. A

general trend seen across the samples is the difference in the variation of the data at

the extremes of the frequency ranged measured: the data at higher frequencies was

more consistent and was more broad at lower frequencies, especially in the freshly

excised tissues. This is reflected in the standard deviation of the samples at the

respective frequencies, see Table 2.5. A possible cause for this difference in variation

may stem from the dielectric dispersions of the tissue. Coined by Schwan, the α, β

and γ dispersion regions refer loosely to the low, RF and GHz of frequency bands

respectively [46]. The exact frequencies are disputed in the literature, see [46] [47]

and [48], but in general the ranges are 1 Hz - several kHz for the α dispersion, 1kHz

to several MHz for the β dispersion, and upwards of 1 GHz for the γ dispersion. The

frequency band measured line-up with the ranges for the α and β dispersion regions.

The increase in impedance at the lower end of the spectrum may also be heavily

influenced by the capacitance as the electrodes become polarised. The impedance

matches that of a capacitor in series with the circuit: infinite impedance as the fre-

quency approaches zero. The findings in [33] also found greater influence of electrode

polarisation at low frequencies. However, as the measured frequencies in these exper-

iments did not explore this region, it is difficult to conclude exact behaviour. The

phase decreases further as frequency is lessened, but does not appear to approach the

−90◦ phase shift seen in an ideal capacitor.

There are a few comparisons that can be made to the work by Kalvøy et al. who

analysed the impedance data for different tissues of a living pig, including fat, muscle

and liver [33]. The experiments in this thesis do not include porcine samples (excluding

gelatin), but there is some benefit to a comparison. Notably, Kalvøy observed the

impedance across a similar range of frequencies. Their results show a much greater

phase shift at lower frequencies than seen in this data, and by extension, an order of

magnitude greater in the impedance magnitude at lower frequencies. Nevertheless,

despite the differences in the absolute values, Kalvøy observed different impedance

spectra for different tissues, as seen in these results. They claimed the phase angle
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between 20 and 300 kHz showed sufficient differences that it could be used for tissue

characterisation [33].

Noteworthy features can be seen across the different tissues. At higher frequencies,

fat was observed to have consistently high impedance relative to the other tissues

samples. At lower frequencies, bovine liver has significantly higher impedance than

the other tissues, perhaps making this a defining feature for this type of tissue. The

spectrum of the gelatin samples reinforce the expected results; with the increased

concentration in salt, the lower the magnitude of the impedance. In other words,

the additional salt ions make the samples conduct better. The freshly excised tissue

data-set is limited in size, therefore broad claims regarding the effects of breed, animal

body weight and age can not be made definitively. General observations are made in

Figures 2.9 and 2.10.

A few samples of abnormal tissue were recorded from some of the freshly excised tissue,

see Figure 2.11 and Table 2.3. The limited number of samples can not decide universal

features, but some observations can be made. As shown in [26], where renal cancer and

normal tissue specimens were measured, differences exist in the electric impedance but

are subtle. The authors in [26], recommend that the magnitude of the impedance at

1 MHz be used as the key characteristic in discriminating between normal and cancer

tissues. The findings from these experiments seem to corroborate the idea of using

higher frequency impedance values for tissue discrimination, as the impedance appears

to be most distinct and consistent across all of the tissues investigated. That being

said, at a macro level, the impedance is noticeably different at lower frequencies as

well for categories of tissue. There appear to be distinct groups of tissue types, shown

in Figure 2.8, where the gel-based phantoms are very different from the ex-vivo and

excised tissues. In the paper by Zhang et al. they showed that a frequency of 1465 Hz

resulted in the most unique impedance across their samples of healthy and cancerous

skin cells, favouring neither high or low frequencies [49]. To conclude, it is seen that

there is no universal solution when using electric impedance to distinguish between

different types of tissue and classify malignancy against healthy tissue. Depending
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Figure 2.8: The average magnitude and phase spectra for all tissue samples. For clarity,
a trendline is included for each tissue, interpolating the values between the measured fre-
quencies. The spectra prove that the electric impedance of the tissues can be different, and
supports the notion that electric impedance could be used for tissue classification.

26



Figure 2.9: A comparison of the impedance magnitude of ovaries for different canine breeds.
At the higher frequencies the impedance of the samples is relatively consistent. There does
not appear to be any distinct correlation between the left and right ovaries of the same
donor, nor across breeds, age or body weight.

Figure 2.10: A comparison of the impedance magnitude of testes for three canine breeds and
a feline sample. Notably, the left and right testes of the same donor share similar impedance
across the spectrum, but differ when compared to other pairs at lower frequencies. With
this limited data set, there does not appear to be any distinct correlation between age or
body weight.
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on the tissue one may find differences in impedance across the frequency spectrum.

Thus, the upcoming chapters in this thesis will further develop the idea of using

electric impedance to classify an assortment of tissue in a general manner; where the

methods may be adapted for classifying a specific tissue malignancy.

Figure 2.11: A comparison of the impedance magnitude for three types of abnormal tissue.

Table 2.3: Impedance Magnitude at 4 Frequencies for Abnormal Tissue Samples

Tissue 10.4 Hz 300 Hz 3.1 kHz 349 kHz
Perianal Growth 4108 1536 1146 578

Ovarian Cyst 10118 27293 12091 1231

Oral Growth 10467 4564 3074 365

Based on these results, it can be concluded that the prototype needle and system are

capable of measuring the electric impedance of tissues, and that the impedance data

could be used in tissue classification. The following chapter of this manuscript will

explore how the collected impedance data can be fit to an equivalent circuit model,

which may aid in the classification process.
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Table 2.4: Average Value & Standard Deviation of the Impedance Magnitude at 4
Frequencies for All Tissue Samples (See Appendix B)

Tissue 10.4 Hz 300 Hz 3.1 kHz 349 kHz
Bovine Liver 20859± 3450 7556± 1129 4554± 735 1497± 211

Poultry Liver 12208± 1579 4004± 308 2275± 244 1231± 108

Bovine Muscle 9475± 1575 2022± 342 791± 264 491± 189

Bovine Kidney 12971± 1793 3386± 314 1691± 256 854± 76

Ovary 9987± 2825 3237± 842 1688± 419 864± 220

Testes 12193± 9755 4185± 2640 2323± 1240 1108± 503

Gelatin (Original) 5048± 1635 1741± 175 1348± 114 1060± 72

Gelatin (Green) 2501± 704 566± 79 278± 93 140± 45

Gelatin (Red) 2158± 834 434± 149 198± 85 77± 19

Agar (Yellow 1) 3036± 743 698± 98 391± 51 205± 81

Agar (Yellow 2) 3979± 718 1174± 182 840± 158 609± 139

Agar (Blue) 3317± 798 804± 141 480± 95 253± 40

Fat 10467± 3388 4564± 1698 3074± 1188 1997± 876

Table 2.5: Average Value & Standard Deviation of the Impedance Phase at 4 Fre-
quencies for All Tissue Samples (See Appendix B)

Tissue 10.4 Hz 300 Hz 3.1 kHz 349 kHz
Bovine Liver −23.7± 2.9 −18.1± 2.1 −16.4± 1.5 −10.2± 1.2

Poultry Liver −27.5± 1.4 −20.5± 1.5 −15± 1.7 −6.4± 1

Bovine Muscle −35.1± 1.7 −31.3± 2.9 −22.6± 2.9 −2± 0.4

Bovine Kidney −35.7± 2.3 −24.5± 2.5 −17.2± 1.1 −5.7± 1.1

Ovary −29.2± 6.4 −22.7± 3.5 −18.1± 2.9 −5.3± 0.8

Testes −33.3± 8.8 −18.1± 5.6 −15± 4.3 −6.2± 1.5

Gelatin (Original) −49± 4.7 −11.8± 2.8 −7.3± 0.7 −1.7± 0.5

Gelatin (Green) −57.8± 3.5 −22.8± 5.2 −19.4± 2.5 −6.9± 1.6

Gelatin (Red) −58.6± 4.4 −25.4± 4.5 −24.6± 4.6 −10± 2.4

Agar (Yellow 1) −55.3± 3.6 −19.3± 2 −20.6± 2.4 −6.5± 0.7

Agar (Yellow 2) −51.9± 4.3 −13.3± 1.5 −9.6± 1.3 −3± 0.4

Agar (Blue) −55.3± 3.4 −18.5± 2 −17.5± 1.2 −5.4± 0.4

Fat −31.4± 11 −14.8± 1.9 −11.2± 2.4 −3.7± 0.6
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Chapter 3

Fitting Electric Impedance Data to

an Equivalent Circuit Model
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3.1 Introduction to the Equivalent Circuit Model

In some cases when working with electric impedance spectra, it is beneficial to fit the

data to an equivalent circuit model. The model is comprised of electric circuit elements

that effectively recreate the impedance at any frequency. Concerning biological tissue

itself, several models have been proposed that relate the electric impedance spectra to

an equivalent circuit of passive components. These models typically consist of resistive

elements in combination with pseudo-capacitive elements [35] [50] , see Figure 3.3.

One of the earliest attempts to characterise the behaviour of electrolytes was done

by Warburg [51] [52] in 1899. Traditionally, the Warburg element is considered to

have −10 dB/decade magnitude and a constant 45◦ phase shift, see Figure 3.3(a).

The Warburg element has still been used as part of more complicated models, and

can be approximated by the series combination of a resistor and capacitor in parallel

(R||C) [53]. In 1925 Fricke and Morse presented the equivalent model shown in Figure

3.3(b) to characterise the electric response of blood [54]. This model has been used

in several publications for classification of tissues [55] [56]. In the 1940’s, Kenneth

Cole and Robert Cole published their landmark paper, which built upon the work

of Debye [57], and led to the use of the Cole-Cole model in plotting the real and

imaginary components of the electric impedance. Kenneth Cole’s paper paved the

way for the single dispersion model with a constant phase element, which has been

one of the most popular models in EIS to date, see Figure 3.3(c) [35] [58]. This

model includes the constant phase element (CPE) to account for non-ideal capacitive

behaviour.

The CPE evolved out of the need for better fit to the impedance of real data. It

was well observed that the change in impedance with frequency resembled that of

a capacitor, but it did not mimic the behaviour perfectly. The impedance of this
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(a) (b)

Figure 3.1: The impedance plots of the single dispersion model, see Figure 3.3(c), to illustrate
the effect of changing the value of the dispersion coefficient α.

element is similar to that of capacitor [59],

ZCPE =
1

C(s)α
(3.1)

where C is the admittance constant [60], s = jω, with j =
√
−1 and ω as the frequency

of the excitation signal. The exponent (0 ≤ α ≤ 1) is referred to as the dispersion

coefficient [61]. An example of the CPE in a model is provided in Figure 3.1. Should

α = 1, the CPE behaves like an ordinary capacitor.

A couple of years later, Randles introduced an equivalent circuit, which includes the

Warburg impedance in series with the resistor in the parallel branch, see Figure 3.3(d)

[62] [63]. Since then, Cole’s work has been expanded to encompass multiple dispersions

by introducing an additional R||C stage shown in Figure 3.3(f) [58]. Interestingly,

the double-dispersion Cole model can also be developed from Randles’ model, if one

considers the double layer capacitance, shown as the CPE in Figure 3.3(d), to have

negligible impact on the impedance and approximate the Warburg impedance as a

series of R||C stages [53], one would also arrive at model shown in Figure 3.3(e).

More advanced models have evolved in the recent literature, such as the model pro-

posed by Yun et al. [26], which accounts for the double layer, as well as the effects of

insulating coatings. While these advanced models are more realistic, one should make

informed in the development of their circuit model. If certain parameter elements of
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the model are unknown, this increases the computational cost, as the optimisation

method that fits the model to the impedance data will have to attempt to solve for

this additional unknown. One should consider if the additional circuit elements are

critical to fit the data; if a simpler model exists, and there is a negligible amount

of improvement in the fit, it may be better to forgo the added complexity. This is

especially important when considering the application to haptic feedback. Ideally,

the tissue will be classified within real time. The computation time to fit the circuit

model increases with more unknowns.

The equivalent circuit models have varying levels of accuracy in representing the

impedance spectrum for a given tissue. Different models may be better suited for a

given type of tissue [64]. The single dispersion Cole model has often been used to

characterise the electric impedance of an assortment of organs [65] as well as fruit [66].

The extended version, the double-dispersion Cole model, can be used to accurately

represent the impedance over a larger frequency range or for more complex materials

[64] [65] [67].

The remainder of this manuscript utilises the double-dispersion Cole model, see Fig-

ure 3.2. The model has been known to capture the resistive and pseudo-capacitive

behaviour of biological tissues. Furthermore, it has shown to fit tissue impedance well

over a wide range of frequency [64] and the additional number of parameters in the

model, compared to the more simple models, potentially yield more markers to use

when classifying tissue.

The impedance of the double-dispersion Cole model is,

Z(ω) = R∞ +
R1

R1C1sα1 + 1
+

R2

R2C2sα2 + 1
(3.2)

The capacitive behaviour of the tissue is represented by the constant phase elements

(CPE), with C1 and C2.

In this thesis, the resistive nature of the tissue is represented by resistors R∞, R1, R2,
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where R∞ represents the magnitude of the impedance as ω →∞, R1 (in combination

with the other resistive elements) ensures the high magnitude impedance as ω → 0,

and R2 aids in the positioning of the cutoff frequencies.

The impedance in (3.2) can then be rewritten as,

Re
(
Z
)
− j Im

(
Z
)

= (z1 + z2)− j(z3 + z4) (3.3)

and the phase and magnitude are given as follows,

|Z(ω)| =
√

(z1 + z2)2 + (z3 + z4)2 (3.4)

∠Z(ω) =
180◦

π
arctan

(z3 + z4
z1 + z2

)
(3.5)

where z1 to z4 are defined as,

z1 =
R∞ +R1(R1C1e

α2 ln(w) cos
(
α2

π
2

)
+ 1)(

R1C1eα2 ln(w) cos
(
α2

π
2

)
+ 1
)2

+R2
1C

2
1e

(α2 ln(w))
2

sin(α2
π
2
)2

(3.6)

z2 =
R2

(
R2C2e

a3 ln(w) cos
(
a3

π
2

)
+ 1
)(

R2C2ea3 ln(w) cos
(
a3

π
2

)
+ 1
)2

+R2
2C

2
2e

(a3 ln(w))2 sin
(
a3

π
2

)2 (3.7)

z3 =
R2

1C1e
α1 ln(w) sin

(
α1

π
2

)(
R1C1eα1 ln(w) cos

(
α1

π
2

)
+ 1
)2

+R2
1C

2
1e

(α1 ln(w))2 sin
(
α1

π
2

)2 (3.8)

z4 =
R2

2C2e
α2 ln(w) sin

(
α2

π
2

)(
R2C2eα2 ln(w) cos

(
α2

π
2

)
+ 1
)2

+R2
2C

2
2e

(α2 ln(w))2 sin
(
α2

π
2

)2 (3.9)

Let p ∈ R+ be the vector containing the 7 unknown model parameters that form the
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Figure 3.2: The double-dispersion Cole model, commonly used to fit bioimpedance spectra.
The model consists of resistors and constant phase elements (CPE).

double-dispersion Cole model,

p = [R∞, R1, R2, C1, C2, α1, α2] (3.10)

The goal is, for a given measured impedance spectrum, to find the parameter values

that would result in similar calculated impedance from (3.2) to (3.5). Thus, one

needs an optimisation method that determines these parameter values such that the

calculated impedance matches the measured impedance at various frequencies.

3.2 Optimisation to Derive Circuit Parameters

There have been attempts to fit the electric impedance data to a generalised model

comprised of equivalent circuit elements [58]. In the simple models, the equiva-

lent parameters quantify the conductivity and permeability of the tissue [68] [69],

resulting in easily identifiable metrics. In the more complicated circuit models, it

still provides a smaller number of parameters that describe a wide impedance spec-

trum. To fit the electric impedance spectra data to a model, many optimisation

algorithms have been applied in the literature; the deterministic methods include the

trust-region-reflective algorithm [58], Levenberg-Marquardt [70], Nelder–Mead [71],

Newton-Raphson (Gauss-Newton) [72], among others. To overcome the issue of local

minima traps, some researchers have explored stochastic methods, including particle

filter, simulated annealing and evolution [73]. Regardless of the method, one can de-
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Figure 3.3: Equivalent circuit models used in part to represent bioimpedance of tissue along-
side an example of their respective impedance spectra. (a) The Warburg model, (b) the
Fricke-Morse model, (c) single dispersion Cole model with constant phase element α = 0.75,
(d) Randles’ model, (e) double-dispersion Cole model with ideal capacitors α = 1.00, (f)
Double-dispersion Cole model with constant phase elements α = 0.75. The impedance spec-
tra is dependent on the parameter values; for models (a-c) R1 = 200 Ω, R2 = 1500 Ω,
C1 = 5 × 10−5 F, C2 = 1 × 10−6 F, For models (d-f) R∞ = 200 Ω, R1 = 20000 Ω, R2 =
1500 Ω, C1 = 5× 10−5 F, C2 = 1× 10−6 F.

termine parameter values for a given equivalent circuit model that would best yield

similar electric impedance to that measured in the tissue. In the following subsec-

tions, the Newton-Raphson method and a multi-objective approach are introduced,

and detail how the parameters for the double-dispersion Cole model are determined.

3.2.1 Newton-Raphson Optimisation Approach

If the impedance is measured at n frequencies, then equations (3.4) and (3.5) both

yield n × 1 column vectors. These column vectors are concatenated into a 2n × 1

vector to form the estimated impedance vector ẑ ∈ R2n×1. To elaborate, the first

n elements of the vector are the magnitude of the impedance from (3.4) and the

elements n + 1 to 2n are the phase of the impedance from (3.5), such that z =

[|Z(ω1)|, |Z(ω2)|, · · ·∠Z(ωn−1),∠Z(ωn)]>. Let the actual measured impedance mag-

nitude and phase be z ∈ R2n×1, in the same form.

Let p = [R∞, R1, R2, C1, C2, α1, α2] be the unknown parameters that comprise the
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equivalent circuit. The method proposed here simply finds a set of parameters p that

results in a close approximation of the measured impedance at frequencies ω ∈ Rn×1;

where the difference in the calculated impedance ẑ and the measured values z is min-

imised. These circuit parameters in p do not necessarily constitute the conductivity

or permittivity of the tissue, as others have found [24], since different combinations

of parameters are feasible solutions.

The optimisation algorithm selected to perform this was the Newton-Raphson (Gauss-

Newton) method [74]. The cost function is defined as the least square error between

the measured impedance and calculated impedance at all frequencies,

E =
1

2
(ẑ− z)>(ẑ− z) (3.11)

with the objective of minimising (3.11), one needs to find the set of parameters p ∈

Rm×1 such that this is achieved. To do this one differentiates (3.11) with respect to

the parameters p, and set it equal to zero,

∂E

∂p
= 0 (3.12)

Expanding the above yields,

∂E

∂p
=

(
∂ẑ

∂p

)>
(ẑ− z) = 0 (3.13)

and the term ∂ẑ/∂p is the Jacobian matrix J ∈ R2n×m defined as,

J =


∂ẑw2n

∂R∞

...

∂ẑw2

∂R∞

∂ẑw1

∂R∞

∂ẑw2n

∂R1

...

∂ẑw2

∂R1

∂ẑw1

∂R1

∂ẑw2n

∂R2

...

∂ẑw2

∂R2

∂ẑw1

∂R2

∂ẑw2n

∂C1

...

∂ẑw2

∂C1

∂ẑw1

∂C1

∂ẑw2n

∂C2

...

∂ẑw2

∂C2

∂ẑw1

∂C2

∂ẑw2n

∂α1

...

∂ẑw2

∂α1

∂ẑw1

∂α1

∂ẑw2n

∂α2

...

∂ẑw2

∂α2

∂ẑw1

∂α2


(3.14)
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While (3.14) can be determined explicitly, for computational efficiency the partial

derivatives in the Jacobian can be approximated by determining how the impedance

changes given a small finite step δ → 0 in a given parameter,

∂ẑwn
∂pm

≈ ẑwn(pm + δ)− ẑwn(pm)

δ
(3.15)

Since the problem defined in (3.13) is non-linear, a Taylor series expansion at an

arbitrary point pi gives,

∂E

∂p
≈ ∂E

∂p
(pi) +

∂2E

∂p2
(pi)∆pi (3.16)

where ∂2E/∂p2 is the Hessian matrix, which is approximated by [75],

∂2E

∂p2
=

[
∂ẑ

∂p

]>[
∂ẑ

∂p

]
= J>J (3.17)

Setting (3.16) to zero and solving for ∆p, the parameters are updated through a

small change ∆pi dependent on the difference between the estimated ẑ and measured

impedance z,

∆pi = −[J>J + λI]−1[J]>[ẑ− z] (3.18)

where λ = 1 × 10−8 and is used with an identity matrix I ∈ Rm×m to prevent a

singular matrix that cannot be inverted.

Through the iterations, a small change is made to each of the parameters such that

the error converges to a minimum. Through the ith iteration of the optimiser, the

parameter updates are,

pi+1 = pi + κ I ∆pi (3.19)

where κ is vector of learning rates for the parameters, which intentionally slows the

progress of the optimiser to gradually converge to the minimum value. This iterative
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Jẑ

Figure 3.4: General flow diagram for the Newton-Raphson method to determine the set of
parameters p to minimise the error between the measured and calculated impedance (z− ẑ).
po is the initial guess for the parameter values.

approach is summarised in Figure 3.4.

Since this method is deterministic, the final solution is heavily dependent on the

starting values of the optimiser po. The initial values for the parameters are estimated

by analysing the spectrum data of the measured impedance z. As seen in (3.2)

as ω → ∞ the pseudo-capacitors will act like short circuits, thus one could assign

R∞ = |Z(ω = ∞)|. At the other extreme, as ω → 0 the impedance can be taken as

R∞ + R1 + R2 = |Z(ω = 0)|. However, the device used to measure the impedance is

typically limited in the range of frequencies it can sample, thus one needs to consider

the lowest and highest frequencies sampled: ω1 and ωn respectively [58]. Concerning

the capacitance values C1 and C2, they play an important role in the location of the

pole/zero pairs along the spectrum and should be selected with care.

Provided that Newton-Raphson converges to a set of parameters for the tissue under

test, one can compare these set of parameters to a database to classify the tissue

based on the similarities in the parameters. The following subsection introduces how

this database is developed. Chapter 4 details how the data here will be used to aid

classify the tissue.
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Figure 3.5: An example of how the parameters of the double-dispersion Cole model converge
from the intial to final values during the Newton-Raphson method.

Developing the Parameter Database from Newton-Raphson

This method is used with the impedance data for all tissues as described in Section

2, and listed in Appendix B. As mentioned in the preceding section, the impedance

magnitude and phase data for a tissue sample are concatenated. The optimiser will

take in a starting set of parameters, provided by the user, and across iterations update

these parameters such that when they are applied to the double-dispersion circuit, the

model impedance should be similar to the measured impedance.

It was found that the optimiser struggled to converge when searching for all 7 parame-

ters of the model. Thus, to simplify the problem the dispersion coefficients were fixed

by the user. The dispersion coefficients were, as a default, selected to be α1 = 0.4

and α2 = 0.9, but were updated depending on the nature of the individual tissue

impedance spectrum as appropriate. The initial parameter values were selected as,

po = [z(ωn), 105 × z(ω1), 102, 5× 10−6, 2× 10−7] (3.20)
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Table 3.1: Bounds of Circuit Parameters during Newton-Raphson Optimisation

Var. Lower Bound Upper Bound
R∞ 0.50× po1 2.0× po1
R1 10−2 × po2 103 × po2
R2 10−2 × po3 103 × po3
C1 10−2 × po4 102 × po4
C2 10−2 × po5 102 × po5

Table 3.2: Newton-Raphson Optimisation Stopping Criteria

Criteria Value
(a) i > imax imax = 100
(b) e1 > |ẑi − ẑi−1| e1 = 5.0× 10−4

(c) eee2 > ∆p eee2 = [10, 50, 50, 10−7, 10−7]>

(d) e3 > Ei e3 = 1.0× 10−2

where z(ωn) is the magnitude of the impedance measured at the highest frequency,

and z(ω1) is the magnitude of the impedance measured at the lowest frequency. These

initial parameter values were selected through empirical testing and observations in

the impedance spectrum across different tissues. The bounds on these parameter

values were determined based off the initial values, as seen in Table 3.1.

There are multiple stopping criteria that are checked through an iteration of the

optimiser to determine if the parameters have converged to a solution. These stopping

criteria, listed in Table 3.2, are:

• The maximum number of iterations are exceeded.

• Minimal absolute change in impedance at all frequencies across iterations.

• A minimal change in all parameters through an iteration.

• There is minimal error in an iteration at all data points from (3.11).

The parameters for all 246 tissue samples were determined using the Newton-Raphson

method. An example of how the parameters converged to their final values can be

seen in Figure 3.5. The fit impedance for each tissue type is provided in Figures 3.6(

a) to 3.6(m).
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(a) Gelatin (Original) (b) Gelatin (Green)

(c) Gelatin (Red) (d) Agar (Yellow 1)

(e) Agar (Yellow 2) (f) Agar (Blue)
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(g) Canine & Feline Ovary (h) Canine & Feline Testes

(i) Bovine Kidney (j) Bovine Muscle

(k) Bovine Liver (l) Poultry Liver
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(m) Fat

Figure 3.6: For each tissue the measured impedance for one sample and the estimated
impedance using the equivalent model and the circuit parameters determined from the
Newton-Raphson method.

The optimisation process generates a solution for each tissue sample. To understand

the variation of the parameters across the samples for a tissue statistics are presented

in Figure 3.7 and in Table 3.3. A few observations can be made from the data. First,

for most tissues, the extracted parameters are consistent across the samples. This

is beneficial, since the parameters with small deviation can mean that a new sample

will likely also fall within the same range, increasing the chance that the parameter

can be used as a recognisable feature in classification. Secondly, one can observe how

unique a tissue is in relation to the others based on these parameters. Take Bovine

Liver and Bovine Muscle for example; excluding outliers, the tissues do not have any

overlap for parameters R∞, R1, C1, C2, but overlap does exist in R2. Thus, if one

were comparing these two tissues, it would be favourable to use the more distinct

parameters than those that possibly share similar values. In contrast, consider the

parameter values for Agar (Yellow 1) and Gelatin (Green), where significant overlap in

the values exist in several parameters. This is likely the result of two issues: the tissues

have relatively similar impedance spectra, and the general rule applied to the initial

guess of the parameters. Third, the fit to the measured data is poor in some samples,

again stemming in part from the initial guess, and how the parameters converge to

the solution. This poor fit will lead to parameter values that lie outside those one

44



would expect from that tissue, based off previous samples. Lastly, expanding upon

the previous, it is unlikely that this method will find the global minimum parameters

that will generate the best fit to the impedance. Therefore there exist several more

possible solutions that are equally viable that could generate the impedance, that are

not being acknowledged in this method.

Evidently, it seen that there is promise in using the equivalent circuit parameters as

classification features, but issues exist in the extraction method. The next section

will move away from the rigidity imposed by the deterministic algorithm and explore

an alternative stochastic approach, which may solve some of these issues.
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Table 3.3: Model Parameter Statistics of Tissue Samples from Newton-Raphson

Statistics of R∞ (Ω)
Tissue Mean Std Dev Median

Agar (Blue) 274 45 252
Agar (Yellow 1) 200 27 198
Agar (Yellow 2) 652 150 663
Bovine Kidney 829 288 759
Bovine Liver 1240 220 1198
Bovine Muscle 357 192 317
Poultry Liver 1205 257 1247
Fat 2332 995 2265
Gelatin (Green) 143 42 120
Gelatin (Original) 1156 98 1138
Gelatin (Red) 79 22 74
Ovary 860 296 738
Testes 1178 618 962

Statistics of R1 (Ω)
Mean Std Dev Median
332920 81312 326761
305615 78012 304821
398022 75629 402735
1297099 183505 1311092
2085875 353120 2025907
948548 160389 998790
1221126 161145 1240585
1046703 348200 1125442
246778 74175 212159
501985 167236 490967
210960 86169 189726
997724 289587 931547
1220131 997890 944676

Statistics of R2 (Ω)
Tissue Mean Std Dev Median

Agar (Blue) 314 72 301
Agar (Yellow 1) 326 128 315
Agar (Yellow 2) 326 75 309
Bovine Kidney 4963 10326 478
Bovine Liver 2539 1487 2176
Bovine Muscle 4171 1937 4391
Poultry Liver 775 488 650
Fat 2131 1091 1961
Gelatin (Green) 205 78 203
Gelatin (Original) 11782 30877 673
Gelatin (Red) 201 105 173
Ovary 7026 20833 1060
Testes 1101 1112 716

Statistics of C1 (F)
Mean Std Dev Median
1.86e-05 4.20e-06 1.87e-05
2.02e-05 4.63e-06 2.00e-05
1.72e-05 3.45e-06 1.66e-05
1.56e-05 4.93e-06 1.53e-05
1.02e-05 2.39e-06 1.04e-05
3.16e-05 7.06e-06 3.12e-05
1.69e-05 3.01e-06 1.69e-05
8.03e-06 3.51e-06 6.63e-06
2.14e-05 5.10e-06 2.06e-05
2.39e-05 3.06e-05 6.02e-06
2.26e-05 6.91e-06 2.28e-05
2.51e-05 1.09e-05 2.07e-05
3.27e-05 2.50e-05 2.33e-05

Statistics of C2 (F)
Mean Std Dev Median

Agar (Blue) 1.73e-07 3.08e-07 1.06e-07
Agar (Yellow 1) 1.00e-07 3.28e-08 9.96e-08
Agar (Yellow 2) 3.95e-07 5.69e-07 9.52e-08
Bovine Kidney 2.03e-06 1.99e-06 2.24e-06
Bovine Liver 1.47e-07 6.50e-07 7.77e-09
Bovine Muscle 3.15e-06 9.95e-07 3.13e-06
Poultry Liver 2.14e-06 2.21e-06 1.62e-06
Fat 1.83e-07 1.28e-07 1.48e-07
Gelatin (Green) 1.09e-07 3.74e-08 1.092e-07
Gelatin (Original) 1.76e-06 3.22e-06 6.445e-07
Gelatin (Red) 1.71e-07 9.80e-08 1.33e-07
Ovary 1.57e-06 1.62e-06 1.06e-06
Testes 7.45e-07 2.06e-06 7.30e-08
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Figure 3.7: Boxplots that display the distribution of the circuit parameters for each of the
tissues extracted using Newton-Raphson. The line within the box denotes the median value.
The cross outside of the boxes denote outliers in the data. Reference Tables 3.3 for specific
values.
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3.2.2 Multi-objective Approach

Consider that the electric impedance of the sample tissue is measured at n frequencies.

The impedance data is organised into n× 1 column vectors, containing the measured

impedance magnitude zm and phase zp separately. If the parameters of the circuit p

were known, then equations (3.4) and (3.5) both form n × 1 column vectors as well,

and yield the estimated impedance magnitude ẑm and phase ẑp respectively.

There exists two desired tasks: to minimise the error in the estimated and measured

magnitude ẑm − zm, and phase ẑp − zp, by only altering p. This can be formed into

a multi-objective problem as [76],

Minimise: F(p) = (f1(p), f2(p))T ,p ∈ Ω

Subject to: gk(p) ≥ 0 k = 1 . . . P

hl(p) = 0 l = 1 . . . Q

where P and Q are the numbers of inequality and equality constraints respectively,

Ω is the variable space for p as a candidate solution, and F houses the objective

functions, where it is desired to minimise the square error,

f1 =
1

2

(
(zm − ẑm)>(zm − ẑm)

)
(3.21)

f2 =
1

2

(
(zp − ẑp)

>(zp − ẑp)

)
(3.22)

This may seem unintuitive to decompose the impedance problem, but this enables the

problem to include more objective functions in the future. Also, this enables multiple

solutions can be found, which alleviates some of dependency on the initial guess of

the parameters.
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During optimisation with more than one objective, there is not a guaranteed global

solution that minimises all objective functions. More often, there will be a set of solu-

tions that are non-dominated, see Figure 3.9. The challenge that typically comes with

finding the multi-objective solutions is that, as the number of objectives increase, the

more likely the solutions are to become non-dominated, resulting in poor convergence

or representation of solutions. Thus, this thesis includes the approach presented by

Elarbi et al. [76] to prevent this from occurring.

The solution proposed in [76] is to define a set of evenly distributed reference points

across the hyperplane of the search space [76]. These reference points are used to

evaluate the convergence and diversity of nearby candidate solutions. The reference

point set W is generated by,

W =

 m+ v − 1

v

 (3.23)

where m is the number of objective functions, and v is the number of divisions along

the objective. As previously mentioned, the distance from the solution candidates to

the reference points are determined as,

d1(p) =

∥∥∥f̃(p)TRk

∥∥∥
‖Rk‖

(3.24)

d2(p) =

∥∥∥∥f̃(p)− d1(p)

(
Rk

‖Rk‖

)∥∥∥∥ (3.25)

with f̃(p) being the normalised objective function. Rk is an M-dimensional direction

vector [76].

The method selected to solve the multi-objective problem is the wildly popular Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [77], but with the additional

consideration of reference point dominance (RPD) [76]. The method attempts to

minimise both d1 and d2, which will ensure good convergence and diversity of the
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Figure 3.8: General flow diagram for the RPD-NSGA-II method method to determine the
set of parameters that will fit the measured impedance data.

potential solutions respectively. The RPD-NSGA-II algorithm fundamentals are in-

troduced here, but the reader is directed to the original publication [76] for further

reading, where it is well documented. The flow diagram of the algorithm is presented

in Figure 3.8. The process bears similarities to a traditional genetic algorithm.

Initialise Population: The population is comprised of individual members, where

each population member represents the 7 parameters of the equivalent circuit model.

The parameters are determined randomly between a set of boundary values deter-

mined by the programmer.

Crossover/Mutation: The population members are altered to explore the poten-

tial combinations of parameters. This is achieved using the fundamental transforma-

tions of a genetic algorithm: crossover and mutation. Crossover is performed first,

where two parent population members (pp1,pp2) would be nominated and are used

to create the two child members (pc1,pc2) using the following equations, using a

random variable 0 ≤ µc ≤ 1 for each parameter and the user-defined crossover rate

ζc [78] [79] [80] [81].
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pc1 = 0.5((1− β)pp1 + (1 + β)pp2) (3.26)

pc2 = 0.5((1 + β)pp1 + (1− β)pp2) (3.27)

where β is determined by [78],

β =

(2µc)
1/(ζc+1) if µc ≤ 0.5

(2(1− µc))1/(ζc+1) if µc > 0.5

(3.28)

The children then undergo the mutation stage using the following formulae for poly-

nomial mutation [79]. Using a random variable 0 ≤ µm ≤ 1 for each parameter and

the user-defined crossover rate ζm. If the random variable µm ≤ 0.5 then the update

variable is [79],

δl = (2µm)(1/(ζm+1)) − 1 (3.29)

and the children are mutated using [79],

pc1 = pc1 + δl(pc1 − pUB) (3.30)

pc2 = pc2 + δl(pc2 − pUB); (3.31)

Alternatively, if the random variable is µm > 0.5, the update variable becomes,

δr = 1− (2(1− µm))(1/(ζm+1)) (3.32)

and the children are mutated using,

pc1 = pc1 + δr(pLB − pc1) (3.33)

pc2 = pc2 + δr(pLB − pc2) (3.34)
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Figure 3.9: Normalised fitness values for the population members after 50 generations of the
optimisation method. Encircled members constitute the non-dominated population, which
are used to represent the final set of parameter combinations for the sample.

where pUB and pLB refer to the upper and lower bounds a parameter may take.

Evaluate Fitness: With the new population created each population member is

tested to determine how well its combination of parameters will generate a similar

impedance to that of the measured sample. One at a time, the parameters of a

population member are used in the circuit model to determine the impedance at the

frequencies the measured sample was taken at. From this, the estimated impedance

magnitude and phase are compared to the measured sample using the least square

error equations (3.21) and (3.22).

The maximum fitness value for each of the objective functions is then used to normalise

the fitness values of the other population members, refer to Figure 3.9 where a value

of zero on the horizontal axis would depict a best fit to the magnitude, and a value

of zero on the vertical axis would depict a best fit to the phase.

RP-Dominance: With the fitness values normalised the RP-fronts can be deter-

mined using the Euclidean distance (3.24) and the normal distance (3.25). Using

these distances, the non-RP dominated solutions can be found and the Pareto front

determined. The child population is then constructed using the solutions in the Pareto

front.

If the stopping criteria of the optimiser is met, then the process is complete. Other-
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Table 3.4: Parameter Initial Value Bounds (top), and RPD-NSGA-II Optimiser Pa-
rameters (bottom)

Model Parameter Lower Bound Upper Bound

R∞ 1.0× 100 2.0× 103

R1 1.0× 105 2.0× 107

R2 1.0× 100 2.0× 103

C1 1.0× 10−9 1.0× 10−4

C2 1.0× 10−9 1.0× 10−4

α1 0.30 1.0
α2 0.30 1.0

Variable Symbol Value
Number of Objectives m 2
Dimension of Problem P 7
Population Size N 25
Crossover Rate pc 20
Mutation Rate pm 20
Number of Divisions v 20
Number of Generations 5000

wise, the process repeats. The stopping criteria, at a minimum, consists a maximum

number of iterations but can also check the number of fitness function calls, change

in the variables for convergence, or fitness level.

3.2.3 Optimisation Setup

This method is used with the impedance data for all tissues as described in Section 2.

This optimisation method was allowed to run for 10000 generations, with 25 members

in the population, to try and determine the 7 parameters of the double-dispersion

Cole model. Since the optimiser is trying to minimise error among magnitude and

phase separately, the number of objective functions, m, is 2. The number of divisions

along the hyper-plane, v, is set as 20. The crossover and mutation rates are ζc = 20

and ζm = 20. The initial parent population is created randomly between the bounds

as detailed in Table 3.4.
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3.2.4 Optimisation Results

Provided in Figures 3.11(a) to 3.11(l) are examples of the tissues’ impedance and the

multiple solutions that fit the data. The fit curves in the figures show a high level

of fit across the both the magnitude and phase. This showcases the success of the

method, where solutions can be found that fit both objectives. Deviations exist in

some examples, seen in Figure 3.11(i). This shows the possible variation that can

occur from this approach, where a solution may have a better fit in one objective

than another.

As the method generates a large volume of data, it is difficult to compare the results

of all the tissues with clarity. For this reason, 4 tissues were selected to be compared

in the boxplots of Figure 3.12, where 18 samples for each tissue are provided. Each

box depicts the parameter data for 100 solutions. The data shows the variability

that can occur within tissue through this optimisation process, as the combination

of parameters the solutions may generate can vary extensively. Despite this, trends

can be seen in the data. Most notably is what circuit parameters are most distinct

across the different tissues. This supports the earlier observations in Figure 2.8 and

Table 2.4, where the impedance magnitude at higher frequencies is the one of the

more distinct features, which correlates to R∞. However, across the possible solution

combinations the spread of values leads to some overlap across the tissues. One could

then look to the parameter a1 where, for majority of the samples, the values are

categorically different for each tissue. These results would suggest that this method

could be used to develop the circuit model parameters and, in the case of these 4

tissues, one could use circuit parameters in classifying tissue.
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Bovine Liver

R∞, R1, R2, C1, C2, α1, α2

Poultry Liver

Gelatin (Red)

Figure 3.10: For a given tissue, all of the spectra samples are fed individually to the RPD-
NSGA-II optimiser. This optimiser will generate the Pareto front of solutions that satisfy
the objective functions. The 25 population members in this Pareto front are then extracted,
where each population member contains the 7 model parameters. Refer to Table 3.4 and
Table 2.2.
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(a) Agar (Blue) (b) Agar (Yellow 1)

(c) Agar (Yellow 2) (d) Bovine Liver

(e) Bovine Muscle (f) Bovine Kidney
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(g) Poultry Liver (h) Gelatin (Original)

(i) Gelatin (Green) (j) Gelatin (Red)

(k) Ovary (l) Fat

Figure 3.11: The fit solutions for the assorted tissues using the RPD-NSGA-II optimiser.
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Figure 3.12: Boxplots that display the distribution of the circuit parameters for 4 of the tis-
sues, with 18 samples each, extracted using RPD-NSGA-II. The line within the box denotes
the median value. The cross outside of the boxes denote outliers in the data.
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3.3 Discussion & Comparison of Methods

There are a few advantages to fitting the raw spectroscopy data to an equivalent

circuit model. The fit curve interpolates the data between the measured frequencies,

aids in smoothing out slightly noisy data, and provides easy to digest parameters to

use when comparing different tissues.

The choice to fit the data to a model comes with some disadvantages. Specifically,

the time required to fit the data to the model is of great significance. Ideally, the best

fit will be achieved in as little time as possible to aid in the goal of achieving real-

time haptic feedback. There is a significant difference in how successful the methods

described in this chapter are able to achieve this goal. Both of these methods were

implemented in MATLAB 2020a, running on Windows 10, 3.4 GHz CPU with 2

cores and 8 GB installed RAM. On average, a single impedance spectrum provided

to the Newton Raphson method takes 0.19 seconds to complete 100 iterations, where

parameters can determined to an acceptable level of fit. In comparison, 100 iterations

of the RPD-NSGA-II method takes, on average, 1.3 seconds. This is a result of the

increased number of function calls for the multi-objective approach, as each member

of the population requires additional computations. Furthermore, it is seen that the

RPD-NSGA-II method does not produce converge as quickly as the Newton-Raphson

method. When looking at Figures 3.13(a) and 3.13(b) it is evident that 100 iterations

is not sufficient to fit the sample, and only converged near 2000 iterations. The method

took 1.48 seconds to complete 100 iterations and 16.89 seconds in 2000 generations. In

comparison, the Newton-Raphson method can successfully converge in 100 iterations,

but further generations do not improve the fit, as it has likely entered a local minimum

solution that it will not escape. This behaviour perfectly encapsulates the difference

between a deterministic and stochastic algorithm in optimisation.

On the other hand, there is a jarring obstacle in using the Newton-Raphson method:

the initial guess of parameters. While this chapter presents an empirically tested

method in selecting the initial values for the circuit parameters, they do not guarantee
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(a) (b)

Figure 3.13: A comparison of the number of iterations of the RPD-NSGA-II optimisation
method when trying to fit the impedance of a Bovine Liver sample. (a) 100 generations. (b)
2000 generations.

that the method will converge to a set of parameters that yield an acceptable level of

fit to the data. In fact, it is possible that the solution may not converge, where one or

more parameters fails to approach a steady value. It is for this reason, among other

efficiencies, that researchers have explored improved versions of the method, including

the Levenberg–Marquardt algorithm [82] [70], which alters the rate of change to a

parameter through iterations [83].

The issue with convergence with the Newton-Raphson method is seen by its inability

to solve for all 7 of the model parameters. The increase in the dimension of the

problem further compounds the difficulty in finding a solution. In comparison, the

RPD-NSGA-II method was successfully able to determine all 7 of the parameters.

With the RPD-NSGA-II method, multiple solutions are generated that fit the data.

One should consider their strategy in how this data will be used in tissue classification.

In a Newton-Raphson method, only a single set of parameters are introduced, making

the comparison straightforward. This is not the case in the multi-objective approach,

as all of the solutions generated in the Pareto front are equally viable results.

In closing of this chapter, two methods showed how the raw impedance data could be

fit to a model, each with their strengths and weaknesses. In the next chapter, tissue

classification will be discussed, where the extracted model parameters may be used.
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Chapter 4

Classification of Tissues from Electric

Impedance Spectroscopy
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This chapter develops another crucial part of building toward a haptic feedback surgi-

cal tool: tissue discrimination. The task at hand is to determine how a tissue can be

classified from electric impedance. There are many ways to approach this problem,

and may only be applicable given the available information.

Machine learning based approaches, such as neural networks [84] [22], require very

large sets of data to train their models. One needs to be able to provide a database of

tissue information, whether that be the impedance data at given frequencies or model

parameters, and a corresponding tissue label.

Non-parametric pattern recognition approaches like k-Nearest Neighbours (kNN) [85]

[22] could be used but the algorithm is known to struggle with higher dimension prob-

lems [86]. Dimension reduction techniques could be utilised to pre-process the data,

such as principal component analysis, which determines the most distinct features.

One approach seen from breast cancer researchers, Da Silva, Marques and Jossinet [86]

[87] is to use linear discriminant analysis with features of the complex plane plot of the

impedance. These features include the impedance at the lowest sampled frequency,

the phase angle at 500 kHz, the area under the impedance spectrum, among other

properties [86]. Inspired by the features used in [86], Daliri developed a support vector

machine using the same features [88].

Another approach is seen by direct comparison of the model parameters found in

Chapter 3. In the paper by Laufer et al. the impedance data of healthy liver and a

tumour are fit to the Cole-Cole model, and found sufficient difference in the parame-

ters, notably in the electrical conductivity at lower frequencies [89].

A probability based approach, the Naïve Bayes classifier, has been used with impedance

spectroscopy in a few publications. Some have used the Bayesian approach to classify

from the impedance at select frequencies [90]. The Injeq system has also been used

with a Bayesian algorithm for tissue classification [91]. Similarly, there have been

attempts at discriminating benign and malignant thyroid cancer from EIS using a
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Bayesian belief network [92].

Ultimately, this brief overview of different methods illustrates the open-ended nature

of the classification problem. Whether one chooses to look for defining features in the

impedance spectra, or compare the values from equivalent circuit parameters, there

are many ways to attempt to classify a new tissue sample. The previous chapters of

this thesis have introduced the collection of electric impedance data of a tissue and

how that data can be fit to an equivalent circuit model. Therefore, this chapter will

develop several methods for classification, including a least square error comparison

with the impedance or model parameters, a Bayes approach, and a modified kNN

method.

In the interest of developing a real-time tissue identification tool, the classifier should

be able to rapidly determine the label for a new sample: whether it new sample is

provided as raw impedance measurements or extracted model parameters.

Any of these classification methods require examples to compare a new sample against.

In this thesis the spectra collected in Section 2 are separated into two categories:

training and test data. The training data can be thought of as the database. The

database contains the selected samples’ impedance spectra and the double-dispersion

Cole model parameter values as determined by the algorithms presented in Chapter

3. All of the samples are labelled with that tissue they represent. In comparison, one

can think of a sample in the test data as a new measurement - that which has not yet

been labelled. The classifiers presented here should be able to correctly predict the

true labels for the samples in the test data set.

4.1 Lease Square Error Comparison: Electric Impedance

A simple classification method is introduced in this section. The principle approach is

to use the normalised least square error (LSE) of the test sample impedance against

that of the training data impedance, with weights applied to the error at specific

frequencies. This enables the method to classify where distinguishing features are
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most prominent in the spectrum. For example, the location of the pole zero pair

seen around 104 Hz, the impedance as frequency becomes large (ω →∞ Hz) or small

(ω → 0 Hz) may constitute unique features across different types of tissue, and should

be weighted such that they have more impact on the outcome of the classifier. The

weight for the error at a given frequency is denoted wf , and the similarity/fitness

score g for the xth training sample can be stated as,

gx =

( 23∑
n=1

wf,n

(
|z|t,n − |z|s,n,x
|z|t,n

)2)−1
+

( 23∑
n=1

wf,n

(
(∠z)t,n − (∠z)s,n,x

(∠z)t,n

)2)−1
(4.1)

where n is the frequency index, wf,n denotes the nth weight applied at the frequency,

|z|s,n,x and (∠z)s,n,x are the magnitude and phase of the xth training sample respec-

tively, equivalently |z|t,n and (∠z)t,n are for the test sample to be classified.

Simply put, the largest value of g corresponds to the most similar match between the

test and the training sample. Therefore the test sample will adopt the tissue label of

the training sample which has the largest value in g. There are 103 samples in the

test data set, see Table 4.1 for a detailed list.

4.1.1 Determining Weights for LSE Classifier

The fitness functions in (4.1) use weights to emphasise a particular feature of the

impedance spectra. The question then becomes, how to select effective values for

these weights. A multitude of optimisation methods could be utilised, but this in-

stance makes use of Particle Swarm Optimisation (PSO). The training data-set is

used exclusively to determine the weights with PSO.

PSO is a stochastic algorithm where possible solutions p are explored based on the

individual’s personal best success pb and the best success of its neighbours pg. A pop-

ulation member houses a number of variables equal to the dimension of the problem.

In this application there are 23 weights to solve for in wf . Through the ith iteration
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of the optimiser, the values of a population member are updated by its respective

velocity vi,

vi+1 = vi +

(
c1r1(pb − pi) + c2r2(pg − pi)

)
(4.2)

pi+1 = pi + vi+1 (4.3)

where c1 and c2 are coefficients used to bias the personal or global best, favouring

exploration or convergence. Randomness is introduced by the random numbers r1

and r2 for each member in the population.

The objective in this method is to maximise the accuracy in identifying the labels of

the training data set. In essence, the same fitness function in (4.1) is used but the test

sample is one of the training data samples removed. With the provided weights from

the current population member, the "test" sample label is predicted with (4.1). If the

"test" sample is correctly labelled, the score of this population member increments.

The process iterates through all of the samples in the training data.

The final score, or fitness, for the population member is determined using,

fw =
Number of Correctly Labelled Samples

Total Number of Samples
(4.4)

The process repeats until either one of two stopping criteria are met: a maximum

number of iterations has been exceeded, or a population member has perfect fitness.

In this application, 25 population members were created and each weight was ran-

domly assigned an initial value between 0.1 and 10. c1 and c2 were selected as 1.0 and

2.0 respectively. The maximum number of allowed iterations was 1000.
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The PSO method determined the weights at each frequency to be,

wf =


0.010 3.629 2.281 0.010 10.000 0.010 0.010 7.870 . . .

0.010 2.300 0.010 0.010 9.445 10.000 5.204 0.010 . . .

0.010 0.010 10.000 0.010 10.000 7.037 10.000

 (4.5)

It is interesting to note the frequencies selected by the optimiser as having most

distinct features. As expected, since the standard deviation of the impedance is less

variable at higher frequencies, their associated weights are much larger than those

at lower frequencies. However, some lower frequencies also received large weights,

specifically 114.58 Hz and 700 Hz.

4.1.2 Results of LSE Classifier: Electric Impedance

The classifier was equipped with the optimised weights and used on the test data-set.

Figure 4.1 displays the correlation between the predicted labels of the test data-set

and the actual labels. The classifier displays good performance, achieving an overall

accuracy of 80.58 %. An issue is seen in the Gelatin (Green) tissue, where every test

sample was incorrectly labelled as Agar (Yellow 1). This result is due to the similar

impedance values the two tissues share across the sampled frequencies.

The advantage of the least squares error method is that it eliminates the need to fit

the data to a model. Depending on the optimiser used for model fitting, this can lead

to substantial savings in computation time, which is desirable to achieve real time

tissue classification. However, as addressed in the preceding section, the fitting the

data to a model has its own advantages. Therefore, the following classifier addresses

how one may utilise the model parameters for classification.
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Figure 4.1: A confusion matrix that compares the predicted tissue labels to the actual
labels from the LSE classification process with the impedance test data-set and weighted
frequencies. The results show a strong correlation between the predicted and actual tissue
labels.
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4.2 LSE Comparison: Circuit Model Parameters

A similar LSE analysis can be performed with the extracted model parameters from

Chapter 3. From the multi-objective approach, multiple solutions are generated that

fit the impedance data. The LSE for each solution is compared to all of the solutions

within the database. Each test data solution is classified by taking the label of the

training sample with the smallest LSE.

For the ith solution of the test sample, the jth parameter pt,j,i is compared to the jth

parameter in the qth solution of the xth training sample ps,j,q,x. The similarity of the

solutions determined through LSE of their respective model parameter,

hi =
7∑
j=1

wp,j

(
pt,j,i − ps,j,q,x

pt,j,i

)2

(4.6)

With all solutions of the xth training sample evaluated, the solution with the smallest

value of h is the most similar to the test sample solution. The label of the training

sample, that houses this successful solution, is assigned to the test sample solution.

When all of the test sample solutions are labelled, the unique labels are counted. The

most frequent label in the solutions is used as the label for the test sample.

The vector wp houses the weights that alter the impact of the parameter error, where

subscript j is the index of said vector. As seen in the previous classifier, these weights

can be determined through the PSO method, using only the data present in the

training samples.

4.2.1 Determine Weights for Model Parameter LSE Classifier

PSO is used here again to determine suitable values to use in the classifier, refer to

(4.2) through (4.4). Here, the optimiser is searching for the weights for each model

parameter, therefore this is a 7-dimension problem.
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Once again, to determine the weights the training data was used exclusively. This

time, the training dataset was further segmented into two groups to create new sets

of test and training data. The 11 samples were separated into 4 and 7 samples for

the new test and training data respectively. From this new batch the optimiser would

classify the test samples using the method described in the preceding section and the

new training data.

Within the optimiser the weights were bounded between 0.001 and 100, with the initial

50 population members randomly assigned values between them. The variables c1 and

c2 were both assigned as 2.0. The stopping criteria was a population member achieving

perfect fitness between the training and test labels, or exceeding 100 generations.

From this process, the weights were determined to be,

wp =
[
92.4 75.47 97.73 6.36 6.35 83.3 100

]
(4.7)

4.2.2 Results of LSE Classifier: Circuit Model Parameters

The results of this classifier can be seen in Figure 4.2, which displays the success of

predicting labels of the test data-set. The overall accuracy of the classifier was 71.84

%. As expected, the classifier still struggled with confusing Gelatin (Green) for Agar

(Yellow 1), as the model parameters are based upon their similar impedance data.

Interestingly, this classifier was better able to predict Testes tissue, than the previous

classifier.
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Figure 4.2: A confusion matrix that compares the actual and the predicted tissue labels from
the LSE classifier using the extracted circuit model parameter test data set.

4.3 Modified k-Nearest Neighbours

A popular, yet relatively simple classification algorithm, kNN operates on the prin-

ciple of comparing a test sample to training samples through a distance measure.

The distance function can take many forms, including Euclidean, Chebychev, and

Manhattan [93].

For this application kNN is used with the equivalent circuit model parameters that

were extracted from RPD-NSGA-II in Chapter 3. As a reminder, each tissue sample

has 25 solutions; where each solution contains values for the 7 parameters of the

double-dispersion Cole model, refer to Figure 4.4.

The objective is to determine the label of the test sample. To do this, each of the test

sample’s 25 solutions are classified using kNN, and the label that occurs the most is

used as the label for the test sample.

70



For each parameter in the solution, the Euclidean distance is determined between test

sample solution pt,j and each of the training sample’s solutions ps,j. Since the values

for some of the parameters differ by several orders of magnitude, the distances are

normalised by the test sample value,

d =

(
7∑
j=1

(
pt,j − ps,j

pt,j

)2)0.5

(4.8)

To prevent the solutions from one sample dominating, only the shortest distance is

considered. To elaborate, 25 distances are determined, one for each solution, and

the minimum value is used to represent the tissue sample. This is repeated for each

tissue sample until there is one distance per sample in the training data-set. With

the distances to each sample calculated, the vector is sorted in ascending order, and

the first k entries depict the nearest training samples to the test solution. The tissue

type that occurs most often is used to label the test solution.

With k = 5 it is possible that the most frequent label among neighbours is a tie.

For example, the 5 nearest neighbours to an arbitrary test solution return 2 Fat

solutions, 2 Ovary solutions and 1 Testes solution. The label would be either Fat or

Ovary. In this event, the value of k is decreased, such that the nearest 4 solutions are

considered. If the tie persists, k is decremented again, to a minimum of 1, until the

label is determined for the solution. Note that alternatively one could increment k to

consider additional neighbours to break a tie. The testing here found that reducing

k produced more accurate results, in part that additional neighbours could introduce

more ties with other tissues in some cases.

With all of the solutions labelled, once again, the most frequently occurring label is

used as the label for the test sample.
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4.3.1 Results of Modified k-Nearest Neighbours

The results of this classifier are presented in Figure 4.3. Overall, the classifier achieved

an accuracy of 59.22 %. Ovary and Gelatin (Green) samples struggled significantly

in this method, often being mistaken for Bovine Kidney and Agar Yellow 1. The

Gelatin and Agar tissues have similar impedance and, as a result would share similar

equivalent circuit values. Consequently, significant error is to be expected when using

the parameters in classification. Interestingly, the Ovary and Bovine Kidney tissues

impedance spectra also share a similar shape, with slightly different impedance, see

Figure 2.8. This potentially explains why the parameters may result in similar in

issues in classification, where the impedance did not, see Figure 4.1.

Figure 4.3: A confusion matrix that compares the predicted tissue labels to the actual labels
from the k-Nearest Neighbours algorithm and the equivalent circuit model parameters from
RPD-NSGA-II.
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4.4 Naïve Bayes Classifier

When extracting the circuit model parameters it is possible that the extraction process

will not necessarily converge to the same set of parameter values for any given tissue

spectroscopy measurement. Each parameter will have a distribution of values for a

given tissue, see Figures 3.7 and 3.12. Thus, when it comes to classifying the tissue

based on these parameter values, a probability-based approach can be used. The

Naïve Bayes classifier is well suited for these types of problems. One defines a set of

features from the circuit parameters p that belongs to a tissue type class c, formerly

tissue labels in this chapter. The probability of a test sample belonging to a class

given a set of features is defined as [94],

P (ck|pj) =
P (pj|ck)P (ck)

P (pj)
(4.9)

where pj denotes the jth parameter of p and ck refers to a specific tissue type class.

P (ck|pj) is then a probability density function for a class given a feature, assuming

a Gaussian distribution. The probability of a value for a parameter x belonging to

class can be found using the formula,

P (pj|ck) =
1

σ
√

2π
e−

1
2(x−µσ )

2

(4.10)

provided that values for the mean µ and standard deviation σ of the class are known.

In essence, from (4.9), one can determine which class a given parameter will belong

to based on which has the largest probability [95],

predicted class label←− arg max
j=1...7

P (ck|pj) (4.11)

The classifier is labelled as naïve since the parameters are assumed to be statistically

independent from one another [96]. The combined probability density function for a
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set of features can be written as,

P (p|ck) =
7∏
j=1

P (pj|ck) (4.12)

thus, the predicted label can be found by considering multiple parameters,

predicted class label←− arg max
j=1...7

P (ck)
7∏
j=1

P (pj|ck) (4.13)

Based on a training set of parameter data, a new tissue sample can be labelled based

on the probability of it belonging to a type of tissue with similar circuit parameters.

The training data-set contains 11 samples from each tissue type, and the remaining

available samples are used in the test data set, refer to Table 4.1.

A summary of the proposed classification process using NBC is shown in Figure 4.4.

The impedance data for a test sample is fed into the optimiser to determine the model

parameters. The database contains 11 samples of each tissue, where each sample has

25 solutions (combinations of circuit model parameter values) that were generated

by RPD-NSGA-II. With the same extraction method 25 solutions are created for the

test sample. One of these test sample solutions, the determined model parameters

for the test sample, are compared to all of the solutions in the database using Naïve

Bayes. The label of the solution in the database with the highest value from (4.13)

is assigned to the test solution. This is repeated until the class labels are determined

for all solutions from the test sample. The number of labels are then counted, and

the label with the most occurrences is used as the overall label for the test sample.

Refer to Figure 3.10.
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Table 4.1: Number of Training & Test Data Samples

Tissue No. of Train Samples No. of Test Samples
Agar (Blue) 11 7
Agar (Yellow 1) 11 3
Agar (Yellow 2) 11 5
Bovine Kidney 11 11
Bovine Liver 11 11
Bovine Muscle 11 11
Fat 11 7
Gelatin (Green) 11 5
Gelatin (Original) 11 5
Gelatin (Red) 11 5
Ovary 11 11
Poultry Liver 11 11
Testes 11 11

Bovine Liver: S1
Predicted Label

Bovine Liver: S4

Bovine Liver: S2

R∞, R1, R2, C1, C2, α1, α2

Bovine Liver

Poultry Liver

Gelatin (Red)

Figure 4.4: The proposed classifier using Naïve Bayes and multiple model parameter solu-
tions. The left side depicts the database, or training data. Each tissue For each tissue 11
samples are present, where each sample has 25 solutions.On the right side of the figure a test
sample is introduced. The impedance is converted to 25 different solutions of model param-
eters. Using Naïve Bayes each test solution is labelled. With all test solutions labelled, the
most frequent label is used as the label for the test sample.
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4.4.1 Results of the Naïve Bayes Classifier

It is evident from Figure 4.5 that the classifier yielded poor results in classifying

the test data-set. For multiple tissues the classifier struggled to predict the samples

correctly. In the upcoming section, a modification is made to this method, which aims

to potentially remedy the issues seen here.

Figure 4.5: A confusion matrix that compares the predicted tissue labels to the actual labels
from the Naïve Bayes classifier with the test data set.

4.5 Weighted Naïve Bayes Classifier

While it is desirable to consider all of the circuit model parameters, some model

parameters may be better markers for classification. For example, R∞ may be distinct

among the different tissue samples, whereas values for α2 might be similar across all

tissues. For this reason, the former classifier is built upon, but the addition of weights
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Figure 4.6: A comparison of the probability density functions for three tissue samples with
weights 1.0 and 0.9. It is seen that the weights can alter the probability of a model parameter,
and by extension, its impact on the classifier.

was considered:

predicted label←− arg max
j=1...7

P (ck)
7∏
j=1

P (pj|ck)wj (4.14)

where wj is the weight attributed to parameter pj [97]. Refer to Figure 4.6 to visualise

how the weight would impact a parameter.

4.5.1 Determine Weights for Naïve Bayes

Once again, PSO was used to determine the weights that would be used in this

classifier, reference (4.2) to (4.4) as needed. The optimiser explored the landscape of

a 7-dimension problem to determine the values that would achieve the best possible

fitness (the highest amount of correct label predictions).

In this instance, 50 population members were created with random initial values

between 0 and 30.

Negative weights were not considered as would have a contradictory effect in some

cases. For example, consider a parameter has a value that does not belong to a given

tissue: it would have a probability of 0. A negative weight, of −1 for instance, would

alter the probability such that it is now infinitely likely. For this reason, should any

population member attempt to explore values less than 0, it is set to 0. An upper
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Figure 4.7: The fitness of the global best parameter through the generations of PSO for
finding weights to use in weighted Naïve Bayes.

bound is also included, to prevent extreme attenuation of a probability. From repeated

empirical testing, it was decided any weight value above 30 is set to 30.

The modifiers c1 and c2 were set as 1.0 and 2.0 respectively. The optimiser was

executed for 50 generations. Upon completion, the population member with the best

global fitness was found to have weights:

w = [9.59 2.45 0 6.92 0 9.39 0] (4.15)

It is interesting to note the inclusion of multiple instances where the weights are 0.

A weight of 0 effectively removes the impact of a parameter from the classifier, as

any positive real number raised to the power of 0 will be unity. According to the this

population member the parameters R2, C2 and α2 are not considered for classification.

Furthermore, these weights are determined based when only using the training data-

set. Out of all the samples in the training data, the global best was only 60.14%

correct in predicting the labels, see Figure 4.7. The implications of this are to be seen

in the results with the test data.
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4.5.2 Results of the Weighted Naïve Bayes Classifier

The weighted variant of Naïve Bayes performed better than the unweighted classifier,

see Figures 4.8 and 4.5. The weighted classifier was able to accurately predict 51.92

% of the test samples overall. However, there is still a stark lack of success across the

tissue types.

In an attempt to remedy this, the tissue can be segregated into similar groups. With

the test and training data separated into the gel-based group and ex-vivo with freshly

excised group, the PSO is executed again to determine the weights for these groups.

With the new weights determined, the test samples were classified, see Figures 4.9(a

) and 4.9(b). Improvement is seen once more, where the success rate of the classifier

increased with the smaller groups.

Figure 4.8: A confusion matrix that compares the predicted tissue labels to the actual labels
from the weighted Naïve Bayes classifier with the test data set. Values for the weights were
w = [9.59 2.45 0 6.92 0 9.39 0].
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(a)

(b)

Figure 4.9: Confusion matrices that compare the predicted tissue labels to the actual labels
from the weighted Naïve Bayes classifier with the test data set for (a) gel-based tissues only
where w = [0.20 0 0 3.55 0 11.48 0], and (b) ex-vivo and freshly excised tissues only with
w = [30.00 0.04 0 0 12.63 0 0].
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Table 4.2: Summary of Classifier Results

Classifier Overall Accuracy Figure No.
LSE Comparison: Electric Impedance 80.58 % 4.1
LSE Comparison: Model Parameters 71.84 % 4.2

Modified K-Nearest Neighbours 59.22 % 4.3

Naïve Bayes Classifier 45.19 % 4.5

Weighted Naïve Bayes Classifier:
For All Tissues 51.92 % 4.8
For Gel-Based Phantoms 77.42 % 4.9(a)
For Ex-Vivo & Freshly Excised Tissues 61.64 % 4.9(b)

4.6 Comparing the Classifiers

This chapter explored multiple methods to classify a tissue from its electric properties,

and with varying degrees of success. Looking at overall accuracy, the LSE classifier

with weighted frequencies performed the best. However, there are merits and draw-

backs to each method. In the LSE classifier it would have been possible for a sample

in the training set to be an anomaly, and by chance happen to have similar impedance

at the critical frequencies and different impedance elsewhere. This is feasible concern,

as the impedance at lower frequencies has a relatively large standard deviation. It

is for this reason one could consider the other classifiers such as kNN, to be more

robust. The kNN classifier looks at multiple solutions, not just the most similar, and

therefore one could argue it makes a stronger claim to its prediction.

A significant limitation to this analysis stems from the number of available samples.

Depending on the application, machine learning approaches require a large amount

of data to develop sound models that are relatively free of bias and noise. Further-

more, the robustness of the classifier could be tested through cross validation with

independent test data-sets.

The performance of these classifiers could be improved by honing in the selected

tissues in the training data. If one was attempting to discriminate tissues in prostate

81



brachytherapy for instance, one would only need tissues they would reasonably expect

to encounter. In this example, the training data might consist of impedance data for

glandular tissue, malignant cells or benign hyperplasia; you would not need to consider

tissue you would not expect such as renal cortex of a kidney.

Ultimately, there are multiple ways to classify a tissue sample from the electric prop-

erties. In the next chapter, tissue classification is utilised in practical applications,

and the culmination of this thesis is to be seen.
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Chapter 5

Applications of EIS and Tissue

Classification to Haptic Feedback
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The preceding chapters of this thesis have developed the methods required to discrim-

inate between different tissues using EIS, and shown its efficacy. With this capability

unlocked, one needs to determine how it could be used to best communicate tissue

information during surgery. One may wonder why the impedance spectra could not

be directly shown as visual feedback. It could be presented as such, but one must

remember in the higher cognitive load environment of the operating room, multiple

sources vie for the surgeons attention, and adding another monitor to look at may

lead to visual sensory overload [98]. As an alternative to recreating force or tactile

sensation, some have turned to the idea of sensory substitution: replacing information

we normally expect through touch to a different sense, such as hearing, temperature

or smell. This was explored in [98], where auditory and visual feedback were used

in RMIS. The results in one benchmark test showed that these alternative forms of

feedback performed comparably to their force feedback trials. However, during the

experiments the surgeons had preferred visual over audible feedback; something to

note when considering continuous real-time information against discrete single-event

information such as an audio alarm.

The principal motivations of implementing haptic feedback is to replicate the sensa-

tions that are lost in teleoperation, or to enhance otherwise imperceptible changes

in tissue structure in traditionally manual procedures. As mentioned in Chapter 1,

force sensors would be the intuitive choice, as it is well recognised that the mechani-

cal stiffness of healthy and malignant tissue differ. There are known challenges with

using these devices and a great deal of research has gone into resolving the issues of

compensating for friction forces along the needle shaft, sensor placement, size, etc.

Haptic feedback, simply put, is a means of communication in delivering information

to the recipient. The recipient may be ignorant of how the data is acquired, in the

surgery example, physicians need only know what tissue the tool is in to perform their

tasks. Thus, force sensors are not necessary in conveying tissue information, the tissue

can be determined through alternative means. For these reasons, the applications of

haptic feedback that are traditionally used alongside force sensors are investigated
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here with EIS in its stead.

Haptic systems normally seen with force sensors can be broadly fit into the cate-

gories of force feedback and tactile feedback. Force feedback, generally speaking, is

accomplished where the input device also impedes the motion of the user, such that

it recreates forces that the user expects while interacting with a virtual object. Many

devices use active force feedback, where the forces are generated by elements like mo-

tors, but there is an increasing interest in passive haptic devices as well, where forces

are realised through dissipative elements such as brakes [99]. Tactile feedback is con-

cerned with recreating the sensation of touch [100]. Palpation is a common technique

used by physicians to perceive or gauge the properties of tissue: shape, size, stiffness,

etc. During RMIS the surgeon may not be able to utilise their sense of touch, hence

the desire to recreate this lost sense. Vibrotactile feedback [101] can recreate tactile

information through discrete vibration signals, harsh bumps can simulate a rough

uneven surface, where short clicks can emulate key presses.

The following subsections of this chapter explore different implementations of hap-

tic feedback with EIS as the sensing method. Force feedback in teleoperation and

vibrotactile feedback in handheld tool insertion are tested and discussed.

5.1 Vibrotactile Feedback for Tissue Discrimination

5.1.1 Application Context

The scenario recreated in this application is a surgical procedure where the surgeon

needs to manually insert a needle into tissue, and identify what it is. A real world

analogue would be biopsy for breast cancer, where only a small amount of tissue

is taken a sample for further histological analysis. If the biopsy tool was capable

of alerting its wielder of tissue composition at the needle tip, including malignancy,

before the biopsy core is extracted, it may lead to fewer false-negatives in instances

where healthy tissue would have been otherwise sampled.
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5.1.2 Relating Electric Impedance to Vibrotactile Feedback

The bridge between the tissue’s electric impedance to haptic feedback is developed

here. Biopsy is typically a handheld procedure and guided by ultrasound. Since

the surgeon is in direct contact with the tool, a modification to the handheld tool

is proposed. Vibrotactile feedback is easily achieved by installing a small vibration

disc motor into the handle of the tool, see Figure 5.4. A small vibration motor (from

Adafruit, New York, USA) is installed on the needle shaft to convey information to its

wielder, see Figure 5.4. The vibration motor is connected to an IRFZ44N MOSFET

motor driver and an ATmega328P microcontroller. The intensity of the vibration is

controlled by altering the PWM signal sent to the gate of the MOSFET. The PWM

frequency is configured to 30.64 Hz. The microcontroller was subsequently connected

to a computer running the classification program. When the needle is inserted into

tissue, EIS is used to classify what is at the tip and the motor will generate a vibration

pattern that has been assigned to the tissue, allowing the wielder to identify where

the needle tip is traversing.

Computer

Vibrotactile
Model Impedance

Data
Vibration
Pattern

Manual
Insertion

Gelatin Phantom

Needle

Electrode
Embedded

Vibration Motor

Spectroscopy Device

Hand

and Microcontroller

Figure 5.1: The proposed vibrotactile feedback system for manual insertion. The user holds
the needle by an installed box that houses a vibration motor. When inserted into the
phantom, the electric impedance is measured, and the tissue classified. The corresponding
vibration pattern is sent to the user.

For this application, discrete vibration signals were assigned to the 3 broad categories

one would expect in the surgery: healthy, benign, and malignant. To create these

86



(a) (b) (c) (d) (e)

Figure 5.2: The 5 vibration patterns initially considered to be used for vibrotactile feedback.
The vibration signal envelope has a period of 0.6 seconds. (a) Pattern 1 (b) Pattern 2 (c)
Pattern 3 (d) Pattern 4 (e) Pattern 5.

patterns, one can control a few parameters: the duration of the vibration envelope,

the amplitude by altering the duty cycle, and vibration frequency of the signal. There

are a few criteria to be cognisant of when developing these signals. Foremost, it is

crucial that these 3 patterns be distinct such that they would not be misinterpreted.

Secondly, the signal envelope should be succinct enough to rapidly respond to the

surgeon as they manoeuvre the needle, but long enough for them to recognise the

pattern. To this end, 5 patterns were created, shown in Figure 5.2, and a pattern

recognition experiment was conducted to determine which patterns the participants

found to be the most distinct. From their feedback, the 3 most distinct signals can

be assigned to represent the tissues.

To validate that the patterns in Figure 5.2 are uniquely identifiable, a preliminary

test was performed with 10 participants, of various age and gender. These volunteers

were tasked with recognising a vibration pattern and record its corresponding tissue

type. Each test participant was given the same set of written instructions prior

to starting the experiment. Each participant was trained on the vibration patterns

and their correspondingly assigned tissue types. They held the needle at its base

where the vibration motor was installed. When the participant was familiar with

the vibrotactile feedback the test commenced. The participant sequentially received

a vibration pattern and would write the corresponding tissue type on a provided

answer sheet. Each participant was asked to identify 20 patterns in total: 10 for each

hand. The pattern sequence and composition was built randomly.
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Figure 5.3: Results of the vibration recognition trials presented as a confusion matrix. Rows
represent the actual vibration pattern given to the participant and what they perceived
is tallied in the columns. If the participant was not confident in their guess or unable to
to determine the pattern, it was tallied under the rightmost column. All values listed as
percentages.

5.1.3 Preliminary Pattern Recognition Experiment Results

The results of the vibration perception test are presented in Figure 5.3. It is seen

that the users were able to more clearly identify some patterns over others. The most

distinct patterns were Pattern 1, Pattern 2, and Pattern 4. With the selected patterns

the results suggest strong correlation between the perceived and actual vibration

pattern. Thus, the vibrotactile feedback can be integrated with the tissue classification

method, which is investigated in the next section.

5.1.4 User Trial Study: Setup

In the second test a new group of participants were tasked with using the electrode

embedded needle to probe a tissue phantom that was hidden from view, see Figure 5.4.

The measurement, Newton-Raphson parameter extraction and weighted Naïve Bayes

classification algorithms would then be incorporated into the experiment, from which

the vibrotactile feedback pattern corresponding to the identified tissue is displayed.

To prepare for these user trials 3 gelatin phantom tissues were created and hidden
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from the participant using the recipes for Gelatin (Original), (Green) and (Red) as

detailed in Chapter 2. Gelatin phantoms were used in the experiments predominantly

for control over the electric impedance, ensuring repeatable measurements, as new

phantoms needed to be created to replace deteriorating samples after repeated use in

the experiment. The Gelatin (Original), (Green) and (Red) tissues are relabelled as

Tissue 1, Tissue 2 and Tissue 3, respectively, for the remainder of this section. In

the experiment the participants were trained to identify them as healthy, benign and

malignant tissue respectively, the assignment of which was arbitrarily selected. For

each tissue 4 samples were created.

The user trials consisted of 12 new participants, which consisted of men and woman

ranging in age from 22 years old to 57 years old and did not participate in the pre-

liminary pattern recognition experiment. Each participant was trained to recognise

the 3 vibration patterns and their corresponding tissue type prior to commencing the

experiment. The training consisted of providing them with the vibration signal and

verbally informed what it represented. When all patterns were communicated the

participant was then quizzed on the patterns, where they were randomly provided

with a signal and correctly respond with the associated label. When the participant

was confident in recognising the patterns they were given the a standard set of writ-

ten instructions to read prior to starting the test. They were instructed to use the

electrode embedded needle to sequentially probe each of the hidden phantoms and

based only on the perceived haptic feedback write down what they believe the tissue

to be. They were only allowed to probe the tissue once before making a decision on

the tissue type. They were tasked with identifying 12 phantoms in total. The user

trial participants were not aware of the quantity of samples present, in essence, they

were not informed that the tissues were equally represented.

The EIS system would continually monitor the impedance of the tissue, and attempt

to classify the tissue at the needle tip. In this application the double-dispersion

Cole model parameters were found using Newton-Raphson. A training set was also

established using Newton-Raphson. Naïve Bayes was used as the classifier. When the
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Microcontroller and Motor Driver

Electrode Embedded Needle

Impedance Spectroscopy Device

Gelatin Phantom Tissues

Plastic Guide Cover

Vibration Motor

Figure 5.4: The experiment setup. The user holds an electrode embedded needle with by the
base that houses a vibration motor. The needle is blindly inserted into one of the designated
holes and punctures the gel based phantom tissue. The electric impedance measured at
tip using spectroscopy determines the type of vibration pattern to be displayed to the user
through a small motor encased at the base of the needle.

sample was classified the corresponding vibration pattern would be delivered.

The method described for this application, including the spectroscopy device inter-

facing, optimiser, classifier and microcontroller communication, was implemented in

MATLAB 2019b. The method takes approximately 3.05 seconds to execute, where

the impedance spectroscopy sample takes 2.995 seconds, Newton-Raphson takes 0.042

seconds to converge, Naïve Bayes takes 0.004 seconds to classify a new sample, and

the serial communication to the microcontroller takes 0.002 seconds.

5.1.5 User Trial Study: Results

The results of this experiment, shown in Figure 5.5, are separated into 3 categories:

the actual tissue and the label determined through the Naïve Bayes classifier, the

vibration signal sent to the user once it was classified and what they perceived the

vibration/tissue as, and the end result of the actual tissue to the user’s guess.
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(a)

(b)

(c)

Figure 5.5: Results from the user trials presented as confusion matrices. (a) The actual tissue
sample against what the algorithm classified the tissue as. (b) The classified tissue against
what the user perceived the tissue as through the vibrotactile feedback. (c) Comparison of
the actual tissue to what tissue the user perceived. All values are listed as percentages.
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5.1.6 Discussion: Outcome of the Application

The results from the user experiments reinforce the earlier observations. In Figure

5.5(a), there is a strong correlation between the actual and classified tissue, but

the algorithm struggled with the similar samples. It is believed the algorithm had

difficulty in distinguishing between the parameter values, as they are relatively similar

than in the other tissue, see Figures 3.7. The most unique parameter among them is

R∞, which corresponds to the high frequency impedance. The remaining 4 parameters

share some overlap, which may explain the inaccuracy in discriminating between

tissues.

The results shown in Figure 5.5(b) further corroborate the findings in Figure 5.3 that,

after a training session, the users were able to discern the tissue type based purely

on the vibrotactile feedback with a relatively high degree of accuracy. Most of the

volunteers had perfect perception of the vibrotactile feedback. The feedback received

from the participants that struggled was the perceived similarity in the vibration

patterns. This may be remedied by further exploring unique vibration patterns or

the incorporating additional vibration motors, which enables many new possibilities

for vibration patterns.

The series of experiments conducted suggest that vibrotactile feedback at the base

of the needle was successful in communicating information about the tissue at the

tip of the needle. However, the single vibration source is limited in the number

of distinguishable patterns. The developed method struggled in classifying tissue

samples with similar electric impedance. The presented method of combining electric

impedance spectroscopy with vibrotactile feedback holds promise and with further

development may one day be used to improve the clinical practices used today.

Not all procedures can be performed manually. Many procedures are performed with

surgeon removed from the patient, where they control a robot remotely to operate on

the patient. The upcoming section will explore this further, and how EIS can be used

to develop haptic feedback in a different way.
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5.2 Force Feedback in Teleoperation

5.2.1 Application Context

Over the past few years there has been an increasing interest in the development of

robot aided minimally invasive surgery (RMIS). There are several benefits to using

these systems including teleoperation, repeatable movements, and accurate position-

ing of tools that would otherwise require more invasive procedures. As a result patient

recovery has been known to faster.

The commercially available systems, like the da Vinci robot, do not have haptic

feedback built into the joysticks. Consequently, surgeons who are first learning to use

the system have a steep learning curve to overcome the lack of haptic and kinaesthetic

feedback they are used to when performing traditional surgery.

Thus, this application will explore recreating force feedback for RMIS teleoperation.

The specific surgery used in this scenario is low dose rate prostate brachytherapy. This

procedure involves steering the brachytherapy needle to the prostate under ultrasound

guidance to deposit radioactive seeds that will destroy malignant cells. It has been

reported that some prostate tumours are not visible through ultrasound imaging, thus

making it difficult to place the seeds directly in the tumour. Consequently, some sur-

geons place seeds throughout the prostate such that the radiation has greater coverage

and an increased chance to destroy cancer cells, undesirably irradiating healthy tissue

in the process.

Since the surgeon is performing the task through teleoperation, they are unable to

make use of the force feedback they would expect by inserting the needle by hand.

As discussed previously, there are assorted challenges in using force sensors, but in

this scenario are further complicated by needle-tissue interaction forces. It has been

shown elsewhere that for needle-tissue interaction force at the base of the needle is

comprised of puncturing, cutting and friction forces [102] [15], creating a non-trivial

challenge in extracting only the relevant information such as tissue stiffness for haptic
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feedback.

Thus, once again, it is proposed to use EIS to determine the tissue at the needle tip,

and a corresponding force be generated to alert the robot operator. The following

section describes how this relationship is developed and the experiments used to test

its effectiveness.

Figure 5.6: The proposed teleoperated RMIS system with force feedback setup. The user
moves the handle of haptic device where the movements are transformed to movement of
the robotic arm as it inserts the needle into the phantom tissue. The electrode at the tip
of the needle is used by the spectroscopy device to determine the local electric impedance
of the phantom. The impedance is converted to a force and displayed to the user as haptic
feedback.

5.2.2 Relating Electric Impedance to Force Feedback

When comparing malignant to healthy tissues in organs, such as the prostate or

breast, malignant cells are generally more stiff and have greater electric impedance

[69] [103] [20] [104]. A crude model can be made, where the mechanical stiffness K is

proportional to the electrical impedance Z(ω) of a given tissue,

K = γ1Z(ω) (5.1)

where γ1 is a conversion factor. The conversion factor will differ for any given tissue

and should be calibrated for the specific situation.

As mentioned above there are multiple components that contribute to the force one

94



would feel at the base of the needle. When recreating haptic feedback one has to

determine what information they wish to recreate in the displayed force. To simplify

the model, assume that the needle has already punctured the tissue, eliminating the

puncturing force. As the needle is further inserted into the tissue, the surface area

of the needle in contact with the tissue increases and the friction forces are observed.

These friction forces can be troublesome, as they can be obscure information about

tissue stiffness. Eliminating the friction component would improve the haptic feedback

for tissue discrimination. Thus, only cutting forces are presented where the force at

the base of the needle F is proportional to the tissue stiffness K through a factor γ2,

F = γ2K (5.2)

In combining (5.1) and (5.2) a lumped conversion factor γ = γ1γ2 relates electric

impedance to force,

F = γZ(ω) (5.3)

It should be noted that is is not a universally applicable model. The assumption

in this model is that an increase in tissue stiffness relates to an increase in electric

impedance. This is not true for all tissues; cancerous cells can offer better electrical

conductivity relative to healthy tissue, as seen in liver cancer [89]. Thus, the model

proposed here should be adapted accordingly depending on the application.

For this scenario consider a needle with EIS electrodes at the tip that has punctured

an organ which is comprised of only uniform healthy tissue with a malignant at an

unknown depth. The electric impedance of the tissue at the tip can be evaluated

by averaging n electric impedance measurements. To discriminate between the two

tissues, the electric impedance data is compensated to be relative to the measurement

immediately after puncturing into the healthy tissue. The initial electric impedance

Z(ω, 0) is consequently removed from measurements at needle tip depth d. The haptic
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force can then be estimated as,

F (d) = γ
(∑n

i=1 Zi(ω, d)

n
− Z(ω, 0)

)
(5.4)

In summary, using electric impedance measurements, one can determine the local

electric impedance at the tip of the needle and render that as a force F to the user.

The haptic force can be scaled through a tunable parameter γ. With the relationship

between the electric impedance and haptic force now developed, the following sec-

tion describes the RMIS setup and phantom tissues used to test the proposed force

feedback model.

5.2.3 Experiment Setup

The experimental setup used to validate the concept is shown in Figure 5.7.

The Meca500 6-DOF serial robot arm (Mecademic, Montréal, Canada) inserts an

electrode embedded needle as controlled by the operator with the Novint Falcon 3-

DOF parallel manipulator haptic joystick (Novint Technologies, New Mexico, USA).

The impedance data gathered by a spectroscopy system is then used in the force

feedback model to display a force to the user through the haptic device.

The phantom tissue was made using unflavoured porcine gelatin. Layers of gelatin

were created to fabricate one of the phantoms used in testing: a cancer layer adjacent

to healthy tissue on either side, refer to Figure 5.7. For the healthy tissue, a ratio of

25 grams of gelatin with 5 grams of iodized salt was added to 240 mL of water. To

make the cancerous layer, the ratio used was 40 grams of gelatin to 240 mL of water.

The healthy and cancerous phantom types were prepared such that they would acquire

unique mechanical and electrical properties. The stiffness of the gelatin phantoms

was measured through indentation tests. The tests were repeated at set internal

temperatures, as the mechanical properties of the gelatin were temperature dependent.
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The Young’s modulus K was determined with the relation [105] [106],

K =
(1− v2)Fk

2axκ
(5.5)

where x and Fk are the indentation depth and force, respectively, a is the radius of the

cylinder indenter, and κ was taken as unity since the indenter radius was significantly

smaller than the surface area of the phantom. Poisson’s ratio v was approximated as

0.45, a value between the those seen in the literature, 0.4 [107] and 0.495 [108].

The Young’s modulus of the phantom was determined using data from four different

internal temperatures with five compressions each. The Young’s modulus for the

healthy tissue gelatin phantom and the cancerous gelatin phantom were determined

to be 6.88 ± 0.10 kPa and 12.0 ± 0.17 kPa respectively at 14°C. These values are

comparable to those obtained for gelatin phantoms in other publications [108]. The

created phantoms are less stiff than actual human organs but do mirror the behaviour

of prostate cancer, which has nearly twice the elastic modulus of healthy tissue [104].

Figure 5.7: The setup for teleoperated RMIS force feedback experiment. The robotic arm
(left) inserts the needle into the gelatin phantom tissue. The properties of the tissue are
measured as the needle progresses into the tissue. The user controls the position of the end
effector by moving the joystick of the haptic feedback device (right).
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5.2.4 Experiment Results

The model formulated in (5.4) is integrated in the system shown in Figure 5.7. The

complete results of the experiment are in shown in Figure 5.9.

An unmodified 18 gauge brachytherapy needle was attached to a load cell to determine

the axial insertion force, see Figure 5.9 (b). This plot is representative of the force the

surgeon would feel by inserting the needle by hand. The components of the needle-

tissue interaction are clearly visible: cutting, friction and puncturing. Noticeably,

the slope of the force increases while transitioning into the cancer phantom. This

is a result of the increased stiffness created by altering the water to gelatin ratio in

the phantom fabrication for the respective layers. The overall difference in force seen

along the needle depth is relatively inappreciable, which would make it difficult to

distinguish between the tissue types while inserting by hand. Thus, for the haptic

feedback RMIS scenario, it is prudent that the force be more discernible for the

transition into the cancer layer.

Figure 5.9(a) showcases the difference in electric impedance of the gelatin layers with

respect to an alternating frequency ω through EIS measurements. The addition of

salt in the healthy gelatin resulted in a distinctly different conductivity compared to

the cancerous layer.

In the RMIS control loop the magnitude of the phantom’s electric impedance at

the needle tip was determined by averaging n = 10 spectra samples. The electric

impedance at lower frequencies provided the greatest relative difference in the tissue

types as shown in Figure 5.9(a). In an effort to achieve responsive force feedback, it is

critical that the tissue be classified quickly. To accomplish this a significantly simpler

approach is taken rather than fitting the data to a circuit model and extracting the

parameter values. The magnitude of the electric impedance at a single frequency, ω =

1 kHz, was used in calculating the displayed force in (5.4).

The electrode embedded needle was inserted into the tissue and the impedance at a
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given depth was recorded, see Figure 5.9(c). These impedance values are evaluated

as a force to be displayed to the user as shown in Figure 5.9(d). For any F (d) < 0

was taken as F (d) = 0, otherwise the haptic device would pull the user in rather than

impede their insertion. Furthermore, to provide a safe limit to the displayable force

any F (d) > Fmax was set such that F (d) = Fmax. In comparison to (b), the force is

significantly more noticeable during the transition into the cancer phantom.

The results of the experiment suggested that the haptic feedback would be more

detectable than inserting the needle manually. User trials conducted to confirm this

theory are discussed in the following section.
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Figure 5.8: The difference in the electric impedance can be seen clearly. The lower concen-
tration of salt enables the cancerous phantom to have a higher impedance than the healthy
phantom.
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Figure 5.9: Measured properties during insertion of the electrode embedded needle into the
layered phantom. The top plot illustrates the measured electric impedance magnitude at
the tip of the needle with respect to insertion depth. The middle plot shows what the force
the haptic device should deliver to the user through (5.3), at a given depth in the phantom.
The bottom plot depicts the force measured by the load cell at the base of the needle during
insertion. The shaded region represents the cancer layer of the phantom.

5.2.5 User Trial Study: Setup

An additional study was conducted to test if the developed haptic feedback method

was applicable to in a practical test. A set of user trials were designed to mimic a

surgeon inserting a needle during percutaneous brachytherapy. First, the user would
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insert the needle by hand into unique phantoms, see Figure 5.10(a). Following this, a

robot arm wields the needle probe at the end effector, which the user would control

through the haptic device, where they would detect the force based on the developed

method, see Figure 5.10(b). The participant’s objective was to determine where the

cancer layer existed in the hidden gelatin phantom using only force feedback. In the

hand trial the user would stop inserting the needle when they perceived the cancer

layer, and leave it within the tissue. In the teleoperated test, the user would press

a button on the haptic device handle to signal their perceived change in tissue and

record the needle tip depth.

Multiple phantoms were used with the cancer layer at different depths. The test

participant was unable to view any of the phantoms so they had to rely only on

force feedback. The participant would insert the electrode embedded needle into the

phantom through a traditional brachytherapy grid template.

These user trials consisted of 16 participants. All participants were given the same set

of written instructions prior to the start of the test. Each participant was shown an

example gelatin phantom that they could practice with hand insertion to familiarise

themselves with the needle force associated with the healthy and cancerous layers of

the gelatin. Additionally, a simulated force was presented to the user in the haptic

device such that they could recognise the haptic force they were to expect in the

actual trials. Each participant was only permitted one insertion per phantom.

5.2.6 User Trial Study: Results

Figure 5.11 shows the final depths that the user perceived the cancer for both tests

in each of the phantoms. The teleoperated trials performed significantly better than

the hand trials overall. The hand trials were more successful at finding the cancer

layer in Phantom 2, where the layer was at a shallow depth. It is speculated that the

users had more difficulty in Phantom 1 and Phantom 3 hand trials due to the amount

of friction experienced. In the teleoperation scenario, friction is eliminated, since the

haptic device only displayed a force from the electric properties of the phantom, which
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(a) (b)

Figure 5.10: The two stages of the user trials. (a) The test participant would first insert
the needle by hand to determine the depth of the cancer layer in the unique phantoms. (b)
The participant would then determine the depths using haptic feedback in the teleoperated
scenario.

may explain the increase in performance.

Many of the teleoperated results show final depths recorded before the transition line.

This perceived preemptive stop is likely caused by two things. First, while the gelatin

layers were prepared separately, when combined in the phantom, the salt ions diffuse

gradually into the non-salinated layer which alters the local conductivity near the

layer transition. Second, the haptic force pushes against the user, causing them to

unintentionally move the joystick handle slightly outward and consequently move the

needle out of the cancer. For the latter it can be seen in the Phantom 2 and Phantom

3 results that the users more readily anticipate the haptic force and become more

consistent in stopping within the cancer layer.

The average depth with standard deviation for each of the phantoms in the two test

scenarios are listed in Table 5.1 along with the percentage of trials that successfully

finished within the cancer layer.
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Table 5.1: User Trial Statistics (Units are in [mm])

Phantom 1 Phantom 2 Phantom 3
Cancer
Start:

112.5 Cancer
Start:

56.0 Cancer
Start:

94.5

Cancer
End:

134.5 Cancer
End:

78.0 Cancer
End:

116.5

Avg Depth Success Avg Depth Success Avg Depth Success
Test 1:
Hand

74.9 ± 18.5 0% 61.7 ± 11.1 78% 72.5 ± 15.5 6%

Test 2:
Robot

109.1 ± 9.1 25% 59.9 ± 11.3 75% 96.6 ± 4.3 81%

Needle Tip Depth (mm)
Test 1: Hand Trial
Test 2: Robot Trial
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Figure 5.11: Results of the user trials in each of the phantoms. The shaded region represents
the cancer layer of the phantom.

5.2.7 Discussion: Outcome of the Application

Implementing traditional force sensors on needles for haptic force feedback in tele-

operated RMIS is not a trivial task. This scenario introduces an alternative sensor

through analysis of a tissue’s electric impedance. The user trials and experimental

results indicate that the addition of haptic feedback derived from the spectroscopy

data improved the operators ability to detect where the cancer layer started in the

phantom tissue. The proposed method of using electric impedance to display haptic

feedback may hold new possibilities in several medical procedures including percuta-

neous brachytherapy, nephrolithotomy, angioplasty and stereotactic surgeries.
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The developed model for this application is rudimentary due to the controlled com-

position of the phantom tissues. Further development could be performed using the

classification methods discussed in the previous chapters of this manuscript to classify

more complex and realistic tissues.
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Chapter 6

Manuscript Conclusion
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6.1 Summary of Presented Work

This thesis explores an opportunity to improve some of the surgical procedures cur-

rently being performed under robotic assistance. Specifically, this thesis contributes to

a larger goal of differentiating tissue types from its surroundings in minimally invasive

surgeries like biopsy and brachytherapy. Robot assisted minimally invasive surgery

has been increasingly used as a means of improving surgical procedures, including

the aforementioned. The lack of force and tactile feedback in the commercially avail-

able robot systems pose difficulties for novice practitioners. The addition of haptic

feedback can replace lost sensations when performing the operation remotely through

teleoperation. Thus, the incorporation of haptic feedback into these devices has been

a field of great interest in recent years. There have been attempts at installing sen-

sors in surgical instruments to determine what type of feedback should be sent to the

user. Deriving haptic feedback from force sensors on the surgical tools pose several

challenges.

An alternative approach for the design of a new tool was introduced in Chapter 2,

where the electrical properties are used instead of using the mechanical properties

of the tissue. A coaxial electrode arrangement is integrated into a surgical needle

and combined with a multi-frequency electric impedance analyser to perform electric

impedance spectroscopy on the tissue at the needle tip. The literature has shown

that cancerous tissue can be identified from its healthy counterpart by analysing the

electric impedance. A hand crafted prototype of the tool was made and to validate its

functionality, was used to measure the electric impedance of many tissues, including

gel-based phantoms, ex-vivo organs, and freshly excised tissues from a veterinarian

clinic, as a surrogate for healthy and cancerous tissues. The measurements for these

samples confirmed that, for some tissues, one could use the electric impedance to

identify and differentiate them.

The electric impedance of tissues has been a subject of interest for decades. Through-

out the years, researchers have fit electric impedance data to models to help char-
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acterise and study them. A popular approach is to develop an equivalent circuit

of well recognised circuit elements like resistors and capacitors, that have a similar

impedance spectrum to that of the measured tissue. An assortment of these models

were explored in Chapter 3 of this thesis. The double-dispersion Cole model provided

a flexible model that could be used for the variety of impedance spectra seen in the

tissue samples. The remainder of the chapter proposed and validated different algo-

rithms for determining the values for the double-dispersion Cole model. Deterministic

and stochastic approaches were considered, as each have their own strengths. The de-

terministic method, Newton-Raphson, is a relatively fast optimisation process, but is

not guaranteed to converge on a solution and has a heavy dependence on the initial

conditions of the model parameters. The stochastic method, RPD-NSGA-II, has the

advantage of exploring many possible solutions but at the added cost of computation

time.

In order for haptic feedback to be sent to the user, the tissue needs to be classified

from the EIS data. Chapter 4 introduced several classification methods, and compared

their effectiveness. The classifiers ranged from simply comparing the measured electric

impedance to the advanced methods that evaluated probabilities of the fit circuit

model element values. Weighted variants of these classifiers were investigated, where

defining features were determined through optimisation methods. The least square

error classifier was the most accurate in the experiments and could be executed quickly,

but is not robust, as it is susceptible to incorrectly classifying samples with impedance

similar of any sample of another tissue. The k-Nearest Neighbours algorithm aimed

to improve upon the shortcomings of the former method, but suffered in its accuracy.

The Naïve Bayes classifiers utilised probabilities for classification but needed to have

tissue groups separated to have a high accuracy.

The combination of developments in the prototype tool, equivalent circuit model

and classifier culminated in Chapter 5 to implement haptic feedback in needle-based

applications: in teleoperated RMIS and vibrotactile manual insertion. Vibrotactile

feedback had potential in communicating the tissue composition to the user. Unique
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and distinguishable vibration patterns were developed and tested with user trials.

However, it was found that this is difficult to achieve with only the one vibration

motor installed at the base of the needle. Nonetheless, the results of the black-box

tissue identification study, where users had to identify gelatin phantoms using the

electrode embedded needle and only vibrotactile feedback, showed the method was

successful in differentiating tissues with different impedance.

Force feedback, on the other hand, showed promise in a simulated teleoperated robot

assisted surgery. The electrode embedded needle was wielded by a robotic arm, which

was controlled by an operator through a haptic force feedback joystick. The electric

impedance sensed at the needle tip was converted into a corresponding force to be

displayed to the user through a rudimentary model. A set of experiments conducted

had users try to find the depth of a tumour in gelatin phantoms by manually inserting

a needle by hand and then with the force feedback from EIS system. The trials showed

that users were more accurate in placement of the needle in a phantom when using

the feedback than they were with manual insertion.

6.2 Future Work

The proposed methods and developed prototype can be improved upon, and could

consist of:

• The bore of the developed prototype needle is currently blocked, which prevents

it from performing surgical functions. Refinement of the prototype electrode

embedded needle, including miniaturising the electrodes such that they do not

interfere with its primary function as seen in [25] [26] [109] is recommended.

• Measurements with actual healthy and cancerous tissues of varying malignancy.

It is yet to be seen if the methods discussed in this manuscript are able to

detect the differences in the impedance for these tissues, most notably in-vivo.

A large number of samples are required to form effective databases and enable

meaningful analysis of the data.
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• The combination of the developed systems is currently not feasible for real-time

haptic feedback. Currently, the combination of the Quadra measurement for 23

frequencies, Newton-Raphson model fitting and Naïve Bayes classification take

3.05 seconds to execute. Finding efficiencies in the measurement, model fitting

and classifier that could enable the entire system to be used in real-time.

• The features used for classification in this thesis produced less than desired per-

formance. This thesis focused on the comparison of either measured impedance

or model parameter values exclusively. It is recommended to investigate fea-

tures from the electric impedance spectra beyond those discussed here. Some

merit may be seen in comparing the calculated impedance from the fit model.

Alternative classification features such as critical frequencies, physical charac-

teristics of the patient such as age or otherwise may all be useful in improving

the classification measurement.

• This thesis provided examples of two haptic feedback applications, which lim-

its the proof of the system’s effectiveness. It would be beneficial to explore

additional methods of haptic feedback that may outperform those described

here including multiple motors in vibrotactile feedback, or the combination of

vibrotactile feedback with force feedback.

Beyond the immediate recommendations there are many directions this work could

expand into. Perhaps the most promising is the further development of sensorized

needles. Yu et al. have recently implemented piezoelectric sensors on a surgical needle

to measure the elastic modulus of tissues to great success in differentiating tissues

[110]. With the specific application of prostate cancer in mind, tests that monitors

prostate-specific antigen (PSA) have been used clinically for assessing malignancy.

PSA detection with the combination of EIS has been studied before [111]. It is exciting

to consider the combination of these sensing technologies on the same needle, which

could provide simultaneous PSA information, mechanical and electrical impedance

data of the tissues.
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This thesis investigated the use-cases of force and vibrotactile feedback separately. It

is worthwhile to note that information can be communicated in additional ways, such

as audible or visual feedback. The findings in [112] reported that users responded

favourably to the use of multi-modal feedback: a combination of visual, audible and

vibrotactile haptic feedback. A future avenue to explore could involve multi-model

feedback with the sensorized needle that could simultaneously sample force and elec-

tric impedance measurements. For instance, consider the haptic joystick shown in

Figure 5.7 with a vibration motor installed in the handle. The force feedback could

be proportional to the force measurements, and vibrotactile feedback could be de-

termined by tissue classification from electric impedance measurements. Another

example where multiple sources of haptic feedback could enhance the user percep-

tion include expanding the force feedback to three degrees of freedom. With multiple

piezoelectric sensors along the needle shaft the haptic feedback could recreate the

sensation of the needle surrounded by tissue.

Lastly, the methods proposed in this thesis could be reinforced by increasing the

number of tissue samples and number of participants in the haptic feedback trials.

The number of tissues sampled has shown that it is possible to differentiate some

tissues by their electric impedance, but an increase in the number of samples would

enable one to test the robustness of the classifiers through methods such as cross-

validation. Concerning the number of participants in the haptic feedback trials, it is

important to note the variance in user perception to haptic feedback. Studies have

shown that factors like age [112] [113] and gender [113] could influence the perception

of haptic feedback.

6.3 Concluding Statements

For further reading the author highly recommends the book by Martinsen and Grimnes

[35]. The text covers all facets of the topics discussed in this thesis including the his-

tory of bioimpedance, equivalent models, classification, and more.
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In conclusion, this thesis presents a haptic feedback integrated surgical needle tool that

could determine the tissue at the needle tip through electric impedance spectroscopy.

The prototype was able to differentiate an assortment of tissues through their electric

impedance. The biosensor was reliable in the application experiments where haptic

feedback was used. Thus, the proposed methods may one day contribute to improving

the surgical procedures used today.
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Appendix A

Impedance Plots of Tissue
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Figure A.1: Impedance magnitude and phase for 22 canine and feline testicle samples. Right
figure captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of
the impedance not easily seen in the left figure.

Figure A.2: Impedance magnitude and phase for 22 canine and feline ovary samples. Right
figure captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of
the impedance not easily seen in the left figure.
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Figure A.3: Impedance magnitude and phase for 18 fat samples. Right figure captures the
impedance from 1 kHz to 349 kHz, to call attention to the deviation of the impedance not
easily seen in the left figure.

Figure A.4: Impedance magnitude and phase for 22 poultry liver samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.
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Figure A.5: Impedance magnitude and phase for 22 bovine liver samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.

Figure A.6: Impedance magnitude and phase for 22 bovine kidney samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.
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Figure A.7: Impedance magnitude and phase for 22 bovine muscle samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.

Figure A.8: Impedance magnitude and phase for 18 agar (Blue) samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.
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Figure A.9: Impedance magnitude and phase for 14 agar (Yellow 1) samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.

Figure A.10: Impedance magnitude and phase for 16 agar (Yellow 2) samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.
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Figure A.11: Impedance magnitude and phase for 16 gelatin (Original) samples. Right
figure captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of
the impedance not easily seen in the left figure.

Figure A.12: Impedance magnitude and phase for 16 gelatin (Green) samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.
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Figure A.13: Impedance magnitude and phase for 16 gelatin (Red) samples. Right figure
captures the impedance from 1 kHz to 349 kHz, to call attention to the deviation of the
impedance not easily seen in the left figure.
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Appendix B

Impedance Values for Tissue Samples
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Table B.1: Average Value & Standard Deviation of the Impedance Magnitude at 23
Frequencies for All Tissue Samples
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1925
±

297
1514

±
268

1101
±

170
923
±

115

A
gar

(Y
ellow

2)
3979

±
718

2326
±

340
2058

±
302

1636
±

226
1391

±
196

A
gar

(B
lue)

3317
±

798
2128

±
319

1656
±

301
1244

±
210

1024
±

155

Fat
10467

±
3388

7758
±

2829
7136

±
2618

5962
±

2059
5336

±
2082

121



T
issu

e
300

H
z

322.9
H
z

700
H
z

1.1
kH

z
1.7

kH
z

2.3
kH

z

B
ovine

Liver
7556

±
1129

7724
±

1135
5904

±
921

5491
±

868
5017

±
809

4748
±

769

P
oultry

Liver
4004

±
308

3951
±

263
3034

±
260

2803
±

254
2519

±
248

2368
±

244

B
ovine

M
uscle

2022
±

342
1889

±
345

1283
±

291
1113

±
286

926
±

275
839
±

267

B
ovine

K
idney

3386
±

314
3224

±
289

2378
±

282
2148

±
279

1897
±

273
1771

±
263

O
vary

3237
±

842
3015

±
783

2364
±

616
2154

±
550

1909
±

483
1774

±
447

Testes
4185

±
2640

3868
±

2440
3164

±
1872

2906
±

1656
2604

±
1441

2435
±

1328

G
elatin

(O
riginal)

1741
±

175
1694

±
170

1514
±

134
1485

±
128

1410
±

121
1365

±
117

G
elatin

(G
reen)

566
±

79
567
±

106
369
±

114
349
±

112
309
±

106
286
±

100

G
elatin

(R
ed)

434
±

149
451
±

179
290
±

134
271
±

127
232
±

111
209
±

99

A
gar

(Y
ellow

1)
698
±

98
714
±

77
531
±

77
508
±

71
450
±

62
410
±

56

A
gar

(Y
ellow

2)
1174

±
182

1162
±

172
975
±

165
952
±

163
889
±

161
852
±

159

A
gar

(B
lue)

804
±

141
805
±

126
625
±

120
599
±

115
538
±

105
498
±

99

Fat
4564

±
1698

4392
±

1714
3763

±
1428

3573
±

1358
3319

±
1272

3165
±

1221
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issu

e
3.1

kH
z

11
kH

z
17

H
z

23
kH

z
31

kH
z

43
kH

z

B
ovine

Liver
4554

±
735

4118
±

786
3771

±
670

3497
±

587
3189

±
513

2906
±

439

P
oultry

Liver
2275

±
244

2048
±

264
1959

±
240

1895
±

225
1806

±
212

1747
±

199

B
ovine

M
uscle

791
±

264
656
±

259
628
±

240
609
±

231
578
±

225
567
±

218

B
ovine

K
idney

1691
±

256
1433

±
258

1365
±

223
1315

±
202

1244
±

190
1197

±
170

O
vary

1688
±

419
1549

±
445

1446
±

399
1372

±
370

1281
±

345
1219

±
322

Testes
2323

±
1240

1957
±

985
1855

±
915

1780
±

869
1682

±
814

1612
±

773

G
elatin

(O
riginal)

1348
±

114
1317

±
112

1273
±

105
1246

±
102

1217
±

96
1192

±
92

G
elatin

(G
reen)

278
±

93
330
±

83
298
±

75
274
±

72
249
±

68
228
±

63

G
elatin

(R
ed)

198
±

85
248
±

94
221
±

81
199
±

70
175
±

61
156
±

51

A
gar

(Y
ellow

1)
391
±

51
485
±

217
431
±

187
393
±

167
357
±

147
326
±

135

A
gar

(Y
ellow

2)
840
±

158
848
±

158
814
±

159
790
±

158
757
±

152
737
±

152

A
gar

(B
lue)

480
±

95
502
±

84
457
±

76
424
±

70
389
±

63
364
±

59

Fat
3074

±
1188

2875
±

1293
2762

±
1224

2681
±

1183
2576

±
1141

2504
±

1108
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e
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kH
z

89
kH

z
127

kH
z

179
kH

z
251

kH
z

349
kH

z

B
ovine

Liver
2600

±
371

2286
±

317
2031

±
276

1817
±

246
1632

±
226

1497
±

211

P
oultry

Liver
1672

±
186

1580
±

170
1496

±
154

1408
±

138
1313

±
121

1231
±

108

B
ovine

M
uscle

550
±

211
531
±

205
519
±

200
509
±

196
498
±

192
491
±

189

B
ovine

K
idney

1139
±

153
1072

±
136

1015
±

119
959
±

103
901
±

88
854
±

76

O
vary

1148
±

299
1071

±
277

1011
±

259
957
±

244
904
±

231
864
±

220

Testes
1527

±
725

1428
±

673
1344

±
627

1261
±

583
1176

±
539

1108
±

503

G
elatin

(O
riginal)

1166
±

87
1138

±
82

1115
±

78
1094

±
75

1075
±

73
1060

±
72

G
elatin

(G
reen)

212
±

57
189
±

54
173
±

50
160
±

48
148
±

46
140
±

45

G
elatin

(R
ed)

141
±

44
120
±

37
106
±

30
95
±

26
84
±

22
77
±

19

A
gar

(Y
ellow

1)
299
±

119
271
±

108
250
±

99
232
±

92
216
±

85
205
±

81

A
gar

(Y
ellow

2)
714
±

149
685
±

145
664
±

143
644
±

142
624
±

140
609
±

139

A
gar

(B
lue)

341
±

54
315
±

50
297
±

47
281
±

44
264
±

42
253
±

40

Fat
2418

±
1070

2321
±

1030
2238

±
994

2156
±

955
2070

±
914

1997
±

876
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Table B.2: Average Value & Standard Deviation of the Impedance Phase at 23 Fre-
quencies for All Tissue Samples

T
issu

e
10.4

H
z

20.8
H
z

31.3
H
z

100
H
z

114.6
H
z

B
ovine

Liver
−

23.7
±

2.9
−

24
±

3.5
−

23.6
±

2.8
−

21.9
±

2.6
−

22.9
±

2.5

P
oultry

Liver
−

27.5
±

1.4
−

28.2
±

3.2
−

27.6
±

1.4
−

25.6
±

1.7
−

26.3
±

2.4

B
ovine

M
uscle

−
35.1
±

1.7
−

37.7
±

3.5
−

38.5
±

2.2
−

37.7
±

2.7
−

40.1
±

3.1

B
ovine

K
idney

−
35.7
±

2.3
−

35.4
±

3.8
−

33.8
±

2.3
−

30.7
±

2.9
−

32.2
±

3.7

O
vary

−
29.2
±

6.4
−

28.4
±

6.4
−

29.4
±

5
−

27.6
±

5.1
−

27.5
±

4.4

Testes
−

33.3
±

8.8
−

28.7
±

5.9
−

26.6
±

4.6
−

23.8
±

5.5
−

22.1
±

6.2

G
elatin

(O
riginal)

−
49
±

4.7
−

36.2
±

5.3
−

30.2
±

4.7
−

18.2
±

3.5
−

15.3
±

2.8

G
elatin

(G
reen)

−
57.8
±

3.5
−

46.4
±

4.8
−

41.1
±

4.6
−

31.3
±

4.6
−

29.8
±

4.1

G
elatin

(R
ed)

−
58.6
±

4.4
−

48.1
±

6.5
−

41.1
±

4.3
−

33.3
±

5.3
−

31.4
±

4.3

A
gar

(Y
ellow

1)
−

55.3
±

3.6
−

44.9
±

4.9
−

40.6
±

3
−

27.7
±

3
−

28.8
±

3.1

A
gar

(Y
ellow

2)
−

51.9
±

4.3
−

40.1
±

4
−

33.9
±

2.3
−

22.3
±

1.9
−

21.1
±

2

A
gar

(B
lue)

−
55.3
±

3.4
−

44.4
±

3.6
−

41.1
±

2.2
−

27.4
±

2
−

27.5
±

2.2

Fat
−

31.4
±

11
−

25.9
±

6.6
−

23.3
±

5
−

20.7
±

3.3
−

18.1
±

1.9
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T
issu

e
300

H
z

322.9
H
z

700
H
z

1.1
kH

z
1.7

kH
z

2.3
kH

z

B
ovine

Liver
−

18.1
±

2.1
−

20.4
±

2.1
−

19.1
±

2
−

17.5
±

1.7
−

16.2
±

1.5
−

16.2
±

1.5

P
oultry

Liver
−

20.5
±

1.5
−

23.3
±

2.1
−

21
±

1.7
−

18.6
±

1.7
−

16.3
±

1.7
−

15.7
±

1.7

B
ovine

M
uscle

−
31.3
±

2.9
−

36.7
±

3.4
−

34.4
±

3.7
−

29.7
±

3.5
−

25.7
±

3.3
−

24.4
±

3.1

B
ovine

K
idney

−
24.5
±

2.5
−

28.3
±

3.2
−

25.6
±

2.8
−

22.2
±

2.3
−

19.1
±

1.8
−

18.1
±

1.4

O
vary

−
22.7
±

3.5
−

24.6
±

3.3
−

23.6
±

3.2
−

21.2
±

3.1
−

19
±

3
−

18.6
±

2.9

Testes
−

18.1
±

5.6
−

18.9
±

6.1
−

18.9
±

5.7
−

17.2
±

5.2
−

15.5
±

4.8
−

15.3
±

4.5

G
elatin

(O
riginal)

−
11.8
±

2.8
−

11.3
±

2.1
−

10.1
±

1.2
−

8.5
±

1
−

7.1
±

0.8
−

7.3
±

0.8

G
elatin

(G
reen)

−
22.8
±

5.2
−

25.1
±

4.7
−

23.7
±

4
−

20.2
±

3.1
−

17.9
±

2.9
−

19.5
±

3

G
elatin

(R
ed)

−
25.4
±

4.5
−

27.3
±

4.9
−

28.9
±

4.7
−

24.6
±

4
−

21.9
±

4.5
−

24.6
±

5

A
gar

(Y
ellow

1)
−

19.3
±

2
−

22.8
±

2
−

22.1
±

1.5
−

19.8
±

1.6
−

19
±

2.2
−

21
±

2.3

A
gar

(Y
ellow

2)
−

13.3
±

1.5
−

14.7
±

1.6
−

13.2
±

1.6
−

11.1
±

1.3
−

9.5
±

1.3
−

9.8
±

1.4

A
gar

(B
lue)

−
18.5
±

2
−

20.8
±

2
−

20.1
±

1.6
−

17.8
±

1.4
−

16.7
±

1.5
−

17.9
±

1.4

Fat
−

14.8
±

1.9
−

15
±

2.3
−

14.7
±

2.6
−

13.3
±

2.6
−

11.8
±

2.5
−

11.5
±

2.5
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issu

e
3.1

kH
z

11
kH

z
17

H
z

23
kH

z
31

kH
z

43
kH

z

B
ovine

Liver
−

16.4
±

1.5
−

19.8
±

1.9
−

21.8
±

2.3
−

22.4
±

2.6
−

23.6
±

2.9
−

24
±

3

P
oultry

Liver
−

15
±

1.7
−

12.9
±

1.4
−

12.7
±

1.2
−

11.7
±

1.1
−

11.6
±

1
−

11.1
±

0.9

B
ovine

M
uscle

−
22.6
±

2.9
−

15.1
±

2.1
−

13.6
±

1.6
−

11.1
±

1.7
−

10
±

1.4
−

8.1
±

1.6

B
ovine

K
idney

−
17.2
±

1.1
−

14.2
±

1.2
−

14.1
±

1.2
−

13
±

1.5
−

12.8
±

1.6
−

12.1
±

1.8

O
vary

−
18.1
±

2.9
−

16.6
±

2.7
−

16.7
±

2.7
−

15.4
±

2.6
−

15.2
±

2.6
−

14
±

2.5

Testes
−

15
±

4.3
−

13.6
±

3.6
−

13.7
±

3.5
−

12.9
±

3.3
−

13
±

3.2
−

12.4
±

3.1

G
elatin

(O
riginal)

−
7.3
±

0.7
−

7.7
±

1.2
−

7.2
±

1.1
−

6.6
±

1.2
−

6.2
±

1.3
−

5.7
±

1.3

G
elatin

(G
reen)

−
19.4
±

2.5
−

27.9
±

6
−

27.6
±

5.6
−

25
±

3.7
−

25.5
±

3.7
−

22.3
±

3.6

G
elatin

(R
ed)

−
24.6
±

4.6
−

34.6
±

8.2
−

34
±

7.6
−

31.1
±

5.8
−

33.2
±

5.9
−

28.9
±

5.9

A
gar

(Y
ellow

1)
−

20.6
±

2.4
−

23.9
±

3.1
−

24.7
±

4.3
−

23.8
±

2.9
−

23.9
±

3.5
−

21.9
±

2.3

A
gar

(Y
ellow

2)
−

9.6
±

1.3
−

11.1
±

1.4
−

10.9
±

1.5
−

9.8
±

1.3
−

9.5
±

1.2
−

8.6
±

1.2

A
gar

(B
lue)

−
17.5
±

1.2
−

21.7
±

2.1
−

22.1
±

2.7
−

20.2
±

1.7
−

19.8
±

1.9
−

17.5
±

1.2

Fat
−

11.2
±

2.4
−

10.1
±

1.9
−

10.1
±

1.8
−

9.3
±

1.6
−

9.2
±

1.5
−

8.5
±

1.4
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T
issu

e
61

kH
z

89
kH

z
127

kH
z

179
kH

z
251

kH
z

349
kH

z

B
ovine

Liver
−

24.5
±

3.1
−

24.1
±

3
−

22.7
±

2.8
−

20.2
±

2.5
−

16.2
±

1.9
−

10.2
±

1.2

P
oultry

Liver
−

11.3
±

1
−

11.4
±

1.1
−

11.3
±

1.3
−

11
±

1.4
−

9.5
±

1.4
−

6.4
±

1

B
ovine

M
uscle

−
7.2
±

1.4
−

6.1
±

1.3
−

5.1
±

1.2
−

4.3
±

1
−

3.2
±

0.8
−

2
±

0.4

B
ovine

K
idney

−
12
±

1.9
−

11.7
±

2
−

11.2
±

2
−

10.4
±

1.9
−

8.6
±

1.7
−

5.7
±

1.1

O
vary

−
13.6
±

2.4
−

12.8
±

2.2
−

11.7
±

2
−

10.4
±

1.7
−

8.3
±

1.3
−

5.3
±

0.8

Testes
−

12.5
±

3.1
−

12.4
±

3
−

12
±

2.9
−

11.2
±

2.7
−

9.4
±

2.3
−

6.2
±

1.5

G
elatin

(O
riginal)

−
5.3
±

1.3
−

4.8
±

1.3
−

4.2
±

1.2
−

3.6
±

1
−

2.8
±

0.8
−

1.7
±

0.5

G
elatin

(G
reen)

−
21.1
±

3.8
−

19.4
±

3.9
−

16.8
±

3.8
−

14.3
±

3.4
−

11.1
±

2.7
−

6.9
±

1.6

G
elatin

(R
ed)

−
28.2
±

5.8
−

26.8
±

5.8
−

23.5
±

5.7
−

20.5
±

4.9
−

16
±

4.1
−

10
±

2.4

A
gar

(Y
ellow

1)
−

20.6
±

2.4
−

18.6
±

2.2
−

16.2
±

1.7
−

13.7
±

1.5
−

10.6
±

1
−

6.5
±

0.7

A
gar

(Y
ellow

2)
−

8.1
±

1
−

7.5
±

1
−

6.8
±

0.9
−

6
±

0.8
−

4.7
±

0.7
−

3
±

0.4

A
gar

(B
lue)

−
16.2
±

1.2
−

14.6
±

1.1
−

12.7
±

0.9
−

11
±

0.8
−

8.6
±

0.6
−

5.4
±

0.4

Fat
−

8.3
±

1.3
−

8
±

1.2
−

7.5
±

1.1
−

6.9
±

1.1
−

5.7
±

0.9
−

3.7
±

0.6
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Appendix C

Freshly Excised Tissue Donor Data

Species Breed Age Weight Organ ID

Canine Yorkshire Terrier 8 months 2.4 kg Testes_S1

Testes_S2

Canine German Shepard Mix 6 months 14.0 kg Ovary_S1

Ovary_S2

Canine German Shepard Mix 6 months 16.0 kg Ovary_S3

Ovary_S4

Canine Jack Russel Mix 8 months 8.0 kg Ovary_S5

Ovary_S6

Canine Golden Doodle 6 months 11.8 kg Ovary_S7

Ovary_S8

Canine Yorkie Mix 12 months 2.3 kg Ovary_S9

Ovary_S10

129



Canine Basenji 5 months 8.7 kg Ovary_S11

Ovary_S12

Feline Unknown Uknown Unknown Ovary_S13

Ovary_S14

Cyst

Canine Mini Schnauzer 8 months 7.9 kg Testes_S3

Testes_S4

Canine Golden Doodle 7 months 15.4 kg Ovary_S15

Ovary_S16

Canine Cockapoo* 13 yrs old 9.1 kg Testes_S5

Testes_S6

*Perianal Cyst Abscess Tumor_S11

*Perianal Cyst Abscess Tumor_S12

Canine German Shepard Mix 6 months 19.0 kg Ovary_S17

Ovary_S18

Canine Husky Mix 6 months 18.1 kg Ovary_S19

Ovary_S20

Canine Black Lab* 6 years 36.3 kg Ovary_S21

*4 days after excision Ovary_S22

Canine Schnauzer 7 months 12.7 kg Ovary_S23

Ovary_S24
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Canine Bernedoodle 6 months 28.1 kg Testes_S7

Testes_S8

Canine German Shepard 18 months 40.8 kg Testes_S9

Testes_S10

Canine French Bulldog Mix 6 months 9.5 kg Testes_S11

Testes_S12

Canine Golden Doodle* 11 years 14.9 kg Tumor_S2

*Oral growth

Canine Pomeranian Mix 9 months 5.5 kg Testes_S13

Testes_S14

Canine Bernese Mountain Dog Mix* 13 months 31.7 kg Testes_S15

*Removed: 6/12/2020 Testes_S16

Analyzed: 6/15/2020,

S16 - Was undescended

Feline Domestic Shorthair 8 months 5.5 kg Testes_S17

Testes_S18

Canine Cocker Spaniel 7 months 7.7 kg Ovary_S25

Ovary_S26

Canine Chocolate Lab 7 months 21.5 kg Ovary_S27

Ovary_S28
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Canine Mini Australian Shepherd 6 months 9.2 kg Testes_19

Testes_20

Canine Pug 16 months 7.2 kg Ovary_S29

Ovary_S30

Canine Husky Mix 12 months 58 lbs Testes_21

Testes_22

132



Bibliography

[1] Z. Wei, G. Wan, L. Gardi, G. Mills, D. Downey, and A. Fenster, “Robot-assisted 3d-trus guided

prostate brachytherapy: System integration and validation,” Medical physics, vol. 31, no. 3,

pp. 539–548, 2004.

[2] Y. Yu, T. Podder, Y. Zhang, W.-S. Ng, V. Misic, J. Sherman, L. Fu, D. Fuller, E. Messing,

D. Rubens et al., “Robot-assisted prostate brachytherapy,” in International Conference on

Medical Image Computing and Computer-Assisted Intervention. Springer, 2006, pp. 41–49.

[3] H. Su, W. Shang, G. A. Cole, K. Harrington, and G. S. Fischer, “Haptic system design for

mri-guided needle based prostate brachytherapy,” in 2010 IEEE Haptics Symposium. IEEE,

2010, pp. 483–488.

[4] B. Ihnatsenka and A. P. Boezaart, “Ultrasound: Basic understanding and learning the lan-

guage,” International journal of shoulder surgery, vol. 4, no. 3, p. 55, 2010.

[5] A. Ebeid and A. Elshamy, “Hypoechoic versus hypervascular lesion in the diagnosis of prostatic

carcinoma,” African Journal of Urology, vol. 24, no. 3, pp. 169–174, 2018.

[6] M. Norberg, L. Egevad, L. Holmberg, P. Sparen, B. Norlen, and C. Busch, “The sextant

protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of

cancer,” Urology, vol. 50, no. 4, pp. 562–566, 1997.

[7] T. Graif, S. Loeb, K. A. Roehl, S. N. Gashti, C. Griffin, X. Yu, and W. J. Catalona, “Under

diagnosis and over diagnosis of prostate cancer,” The Journal of urology, vol. 178, no. 1, pp.

88–92, 2007.

[8] B. Djavan, M. Remzi, C. C. Schulman, M. Marberger, and A. R. Zlotta, “Repeat prostate

biopsy: who, how and when?: a review,” European urology, vol. 42, no. 2, pp. 93–103, 2002.

[9] D. N. Costa, B. N. Bloch, D. F. Yao, M. G. Sanda, L. Ngo, E. M. Genega, I. Pedrosa, W. C.

DeWolf, and N. M. Rofsky, “Diagnosis of relevant prostate cancer using supplementary cores

from magnetic resonance imaging-prompted areas following multiple failed biopsies,” Magnetic

resonance imaging, vol. 31, no. 6, pp. 947–952, 2013.

133



[10] O. Acosta, A. Simon, F. Monge, F. Commandeur, C. Bassirou, G. Cazoulat, R. De Crevoisier,

and P. Haigron, “Evaluation of multi-atlas-based segmentation of ct scans in prostate cancer

radiotherapy,” in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to

Macro. IEEE, 2011, pp. 1966–1969.

[11] A. M. Okamura, “Methods for haptic feedback in teleoperated robot-assisted surgery,” Indus-

trial Robot: An International Journal, vol. 31, no. 6, pp. 499–508, 2004.

[12] T. Ortmaier, B. Deml, B. Kübler, G. Passig, D. Reintsema, and U. Seibold, “Robot assisted

force feedback surgery,” in Advances in Telerobotics. Springer, 2007, pp. 361–379.

[13] R. Kokes, K. Lister, R. Gullapalli, B. Zhang, A. MacMillan, H. Richard, and J. P. Desai,

“Towards a teleoperated needle driver robot with haptic feedback for rfa of breast tumors

under continuous mri,” Medical image analysis, vol. 13, no. 3, pp. 445–455, 2009.

[14] W. Shang, H. Su, G. Li, and G. S. Fischer, “Teleoperation system with hybrid pneumatic-

piezoelectric actuation for mri-guided needle insertion with haptic feedback,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013, pp.

4092–4098.

[15] C. Rossa and M. Tavakoli, “Issues in closed-loop needle steering,” Control Engineering Practice,

vol. 62, pp. 55–69, 2017.

[16] S. Elayaperumal, J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M.

Costa, F. Faridian, and B. Moslehi, “Mr-compatible biopsy needle with enhanced tip force

sensing,” in 2013 World Haptics Conference (WHC). IEEE, 2013, pp. 109–114.

[17] A. M. Okamura, “Haptic feedback in robot-assisted minimally invasive surgery,” Current opin-

ion in urology, vol. 19, no. 1, p. 102, 2009.

[18] B. H. Brown, “Electrical impedance tomography (EIT): a review,” Journal of medical engi-

neering & technology, vol. 27, no. 3, pp. 97–108, 2003.

[19] V. Mishra, A. Schned, A. Hartov, J. Heaney, J. Seigne, and R. Halter, “Electrical property

sensing biopsy needle for prostate cancer detection,” The Prostate, vol. 73, no. 15, pp. 1603–

1613, 2013.

[20] J. Jossinet, “The impedivity of freshly excised human breast tissue,” Physiological measure-

ment, vol. 19, no. 1, p. 61, 1998.

[21] A. Keshtkar, A. Keshtkar, and R. H. Smallwood, “Electrical impedance spectroscopy and the

diagnosis of bladder pathology,” Physiological Measurement, vol. 27, no. 7, p. 585, 2006.

134



[22] P. Åberg, U. Birgersson, P. Elsner, P. Mohr, and S. Ollmar, “Electrical impedance spectroscopy

and the diagnostic accuracy for malignant melanoma,” Experimental dermatology, vol. 20, no. 8,

pp. 648–652, 2011.

[23] K. R. Foster, H. P. Schwan et al., “Dielectric properties of tissues,” CRC handbook of biological

effects of electromagnetic fields, pp. 27–96, 1986.

[24] R. J. Halter, A. Schned, J. Heaney, A. Hartov, S. Schutz, and K. D. Paulsen, “Electrical

impedance spectroscopy of benign and malignant prostatic tissues,” The Journal of urology,

vol. 179, no. 4, pp. 1580–1586, 2008.

[25] N. Vasylieva, S. Marinesco, D. Barbier, and A. Sabac, “Silicon/su8 multi-electrode micro-needle

for in vivo neurochemical monitoring,” Biosensors and Bioelectronics, vol. 72, pp. 148–155,

2015.

[26] J. Yun, G. Kang, Y. Park, H. W. Kim, J.-J. Cha, and J.-H. Lee, “Electrochemical impedance

spectroscopy with interdigitated electrodes at the end of hypodermic needle for depth profiling

of biotissues,” Sensors and Actuators B: Chemical, vol. 237, pp. 984–991, 2016.

[27] R. J. Andrews and R. W. Mah, “The NASA smart probe project for real-time multiple mi-

crosensor tissue recognition,” Stereotactic and functional neurosurgery, vol. 80, no. 1-4, pp.

114–119, 2003.

[28] J. Yun, Y.-T. Hong, K.-H. Hong, and J.-H. Lee, “Ex vivo identification of thyroid cancer tissue

using electrical impedance spectroscopy on a needle,” Sensors and Actuators B: Chemical, vol.

261, pp. 537–544, 2018.

[29] J. Park, W.-M. Choi, K. Kim, W.-I. Jeong, J.-B. Seo, and I. Park, “Biopsy needle integrated

with electrical impedance sensing microelectrode array towards real-time needle guidance and

tissue discrimination,” Scientific reports, vol. 8, no. 1, p. 264, 2018.

[30] M. Grossi and B. Riccò, “Electrical impedance spectroscopy (eis) for biological analysis and

food characterization: a review,” Journal of Sensors and Sensor Systems, pp. 303 – 325, 2017,

10.1016/j.corsci.2008.08.049, HAL Id: hal-01579247.

[31] J. Kari, K. Annala, P. Annus, V.-P. Seppä, and K. Kronström, “A thin needle with bio-

impedance measuring probe: tissue recognition performance assessed in in vivo animal study,”

Injeq Oy Ltd., Tech. Rep, 2015.

[32] C. Chassagne, D. Bedeaux, J. Van Der Ploeg, and G. Koper, “Theory of electrode polarization:

application to parallel plate cell dielectric spectroscopy experiments,” Colloids and Surfaces

A: Physicochemical and Engineering Aspects, vol. 210, no. 2-3, pp. 137–145, 2002.

135



[33] H. Kalvøy, L. Frich, S. Grimnes, Ø. G. Martinsen, P. K. Hol, and A. Stubhaug, “Impedance-

based tissue discrimination for needle guidance,” Physiological measurement, vol. 30, no. 2, p.

129, 2009.

[34] D. Trebbels, F. Fellhauer, M. Jugl, G. Haimerl, M. Min, and R. Zengerle, “Online tissue

discrimination for transcutaneous needle guidance applications using broadband impedance

spectroscopy,” IEEE transactions on biomedical engineering, vol. 59, no. 2, pp. 494–503, 2011.

[35] O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics. Academic press,

2011, third Edition.

[36] C. J. De Luca and W. J. Forrest, “An electrode for recording single motor unit activity during

strong muscle contractions,” IEEE Transactions on Biomedical Engineering, vol. BME-19,

no. 5, pp. 367–372, 1972.

[37] F. Yu, R. Li, L. Ai, C. Edington, H. Yu, M. Barr, E. Kim, and T. K. Hsiai, “Electrochemical

impedance spectroscopy to assess vascular oxidative stress,” Annals of biomedical engineering,

vol. 39, no. 1, pp. 287–296, 2011.

[38] F. Yu, X. Dai, T. Beebe, and T. Hsiai, “Electrochemical impedance spectroscopy to characterize

inflammatory atherosclerotic plaques,” Biosensors and Bioelectronics, vol. 30, no. 1, pp. 165–

173, 2011.

[39] M. Habibi, D. P. Klemer, and V. Raicu, “Two-dimensional dielectric spectroscopy: Implementa-

tion and validation of a scanning open-ended coaxial probe,” Review of Scientific Instruments,

vol. 81, no. 7, p. 075108, 2010.

[40] P. Azimi and H. Golnabi, “Precise formulation of electrical capacitance for a cylindrical capac-

itive sensor,” J. Appl. Sci, vol. 9, no. 8, pp. 1556–1561, 2009.

[41] H. Schwan, “Electrode polarization impedance and measurements in biological materials,” An-

nals of the New York Academy of Sciences, vol. 148, no. 1, pp. 191–209, 1968.

[42] M. Min, M. Lehti-Polojärvi, J. Hyttinen, M. Rist, R. Land, and P. Annus, “Bioimpedance

spectro-tomography system using binary multifrequency excitation,” International Journal of

Bioelectromagnetism, vol. 209, pp. 76–79, 05 2018.

[43] M. Min, M. Lehti-Polojärvi, J. Hyttinen, M. Rist, R. Land, and P. Annus, “Bioimpedance

spectro-tomography system using binary multifrequency excitation,” International Journal of

Bioelectromagnetism, vol. 209, pp. 76–79, 2018.

[44] M. Rist, M. Reidla, R. Land, T. Parve, O. Märtens, P. Annus, J. Ojarand, and M. Min,

“Modular system for spectral analysis of time-variant impedances,” in 6th European Conference

136



of the International Federation for Medical and Biological Engineering. Springer, 2015, pp.

858–861.

[45] O. Martens, R. Land, M. Min, P. Annus, M. Rist, and M. Reidla, “Improved impedance ana-

lyzer with binary excitation signals,” in 2015 IEEE 9th International Symposium on Intelligent

Signal Processing (WISP) Proceedings. IEEE, 2015, pp. 1–5.

[46] H. P. Schwan, “Electrical properties of tissues and cell suspensions: mechanisms and models,”

in Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, vol. 1. IEEE, 1994, pp. A70–A71.

[47] D. Dean, T. Ramanathan, D. Machado, and R. Sundararajan, “Electrical impedance spec-

troscopy study of biological tissues,” Journal of electrostatics, vol. 66, no. 3-4, pp. 165–177,

2008.

[48] S. Grimnes and Ø. G. Martinsen, “Alpha-dispersion in human tissue,” in Journal of Physics:

Conference Series, vol. 224, no. 1, 2010, pp. 1–4.

[49] F. Zhang, T. Jin, Q. Hu, and P. He, “Distinguishing skin cancer cells and normal cells using

electrical impedance spectroscopy,” Journal of Electroanalytical Chemistry, vol. 823, pp. 531–

536, 2018.

[50] L. Geddes, “Historical evolution of circuit models for the electrode-electrolyte interface,” Annals

of biomedical engineering, vol. 25, no. 1, p. 1, 1997.

[51] E. Warburg, “Ueber das verhalten sogenannter unpolarisirbarer elektroden gegen wechsel-

strom,” Annalen der Physik, vol. 303, no. 3, pp. 493–499, 1899.

[52] D. C. Grahame, “Mathematical theory of the faradaic admittance,” J. electrochem. Soc, vol. 99,

no. 12, pp. 370–385, 1952.

[53] G. Platt, “How do i convert a continuous-time model to a discrete-time model?” accessed:

2020-03-06.

[54] H. Fricke and S. Morse, “The electric resistance and capacity of blood for frequencies between

800 and 41/2 million cycles,” The Journal of general physiology, vol. 9, no. 2, p. 153, 1925.

[55] A. Ivorra, M. Genescà, A. Sola, L. Palacios, R. Villa, G. Hotter, and J. Aguiló, “Bioimpedance

dispersion width as a parameter to monitor living tissues,” Physiological measurement, vol. 26,

no. 2, p. S165, 2005.

[56] F. Zhang, B. Sanchez, S. B. Rutkove, Y. Yang, H. Zhong, J. Li, and Z. Teng, “Numerical

estimation of fricke–morse impedance model parameters using single-frequency sinusoidal ex-

citation,” Physiological measurement, vol. 40, no. 9, p. 09NT01, 2019.

137



[57] K. Cole, “Dispersion and absorption in dielectrics,” J. Chem. Phys, vol. 9, p. 341, 1941.

[58] T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Extracting the parameters of the double-

dispersion cole bioimpedance model from magnitude response measurements,” Medical & bio-

logical engineering & computing, vol. 52, no. 9, pp. 749–758, 2014.

[59] A. Lasia, “Electrochemical impedance spectroscopy and its applications,” in Modern aspects of

electrochemistry. Springer, 2002, pp. 143–248.

[60] M. N. Kakaei, J. Neshati, and A. R. Rezaierod, “On the extraction of the effective capacitance

from constant phase element parameters,” Protection of Metals and Physical Chemistry of

Surfaces, vol. 54, no. 3, pp. 548–556, 2018.

[61] A. S. Elwakil and B. Maundy, “Experimental technique for estimating the dispersion coefficient

of a constant phase element,” in 2011 20th European Conference on Circuit Theory and Design

(ECCTD). IEEE, 2011, pp. 469–471.

[62] J. E. B. Randles, “Kinetics of rapid electrode reactions,” Discussions of the faraday society,

vol. 1, pp. 11–19, 1947.

[63] T. M. Nahir, “Impedance spectroscopy: Theory, experiment, and applications, edited by ev-

genij barsoukov (texas instruments inc.) and j. ross macdonald (university of north carolina,

chapel hill). john wiley & sons, inc.: Hoboken, nj. 2005. xvii+ 596 pp. isbn 0471-64749-7.”

2005.

[64] T. J. Freeborn, “A survey of fractional-order circuit models for biology and biomedicine,” IEEE

Journal on emerging and selected topics in circuits and systems, vol. 3, no. 3, pp. 416–424,

2013.

[65] B. Rigaud, L. Hamzaoui, M. Frikha, N. Chauveau, and J.-P. Morucci, “In vitro tissue char-

acterization and modelling using electrical impedance measurements in the 100 hz-10 mhz

frequency range,” Physiological measurement, vol. 16, no. 3A, p. A15, 1995.

[66] B. J. Maundy, A. S. Elwakil, and A. Allagui, “Extracting the parameters of the single-dispersion

cole bioimpedance model using a magnitude-only method,” Computers and Electronics in Agri-

culture, vol. 119, pp. 153–157, 2015.

[67] D. A. McRae, M. A. Esrick, and S. C. Mueller, “Changes in the noninvasive, in vivo electri-

cal impedance of three xenografts during the necrotic cell-response sequence,” International

Journal of Radiation Oncology* Biology* Physics, vol. 43, no. 4, pp. 849–857, 1999.

[68] A. Campbell and D. Land, “Dielectric properties of female human breast tissue measured in

vitro at 3.2 ghz,” Physics in Medicine & Biology, vol. 37, no. 1, p. 193, 1992.

138



[69] R. J. Halter, A. Schned, J. Heaney, A. Hartov, and K. D. Paulsen, “Electrical properties of

prostatic tissues: I. single frequency admittivity properties,” the Journal of Urology, vol. 182,

no. 4, pp. 1600–1607, 2009.

[70] T. Dai and A. Adler, “Blood impedance characterization from pulsatile measurements,” in 2006

Canadian Conference on Electrical and Computer Engineering. IEEE, 2006, pp. 983–986.

[71] A. S. Bondarenko, “Analysis of large experimental datasets in electrochemical impedance spec-

troscopy,” Analytica chimica acta, vol. 743, pp. 41–50, 2012.

[72] T. Springer, T. Zawodzinski, M. Wilson, and S. Gottesfeld, “Characterization of polymer

electrolyte fuel cells using ac impedance spectroscopy,” Journal of the Electrochemical Society,

vol. 143, no. 2, p. 587, 1996.

[73] P. Bueschel, U. Troeltzsch, and O. Kanoun, “Use of stochastic methods for robust parameter

extraction from impedance spectra,” Electrochimica Acta, vol. 56, no. 23, pp. 8069–8077, 2011.

[74] J. M. Ortega and W. C. Rheinboldt, Iterative solution of nonlinear equations in several vari-

ables. Siam, 1970, vol. 30, edition from 2000 republication of 1970 publication.

[75] T. J. Yorkey, J. G. Webster, and W. J. Tompkins, “Comparing reconstruction algorithms for

electrical impedance tomography,” IEEE Transactions on Biomedical Engineering, vol. BME-

34, no. 11, pp. 843–852, 1987.

[76] M. Elarbi, S. Bechikh, A. Gupta, L. B. Said, and Y.-S. Ong, “A new decomposition-based

nsga-ii for many-objective optimization,” IEEE transactions on systems, man, and cybernetics:

systems, vol. 48, no. 7, pp. 1191–1210, 2017.

[77] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic

algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197,

2002.

[78] Z. Zhao, B. Liu, C. Zhang, and H. Liu, “An improved adaptive nsga-ii with multi-population

algorithm,” Applied Intelligence, vol. 49, no. 2, pp. 569–580, 2019.

[79] K. Deb and D. Deb, “Analysing mutation schemes for real-parameter genetic algorithms,”

International Journal of Artificial Intelligence and Soft Computing, vol. 4, no. 1, pp. 1–28,

2014.

[80] K. Deb, R. B. Agrawal et al., “Simulated binary crossover for continuous search space,” Complex

systems, vol. 9, no. 2, pp. 115–148, 1995.

[81] K. Kumar and K. Deb, “Real-coded genetic algorithms with simulated binary crossover: Studies

on multimodal and multiobjective problems,” Complex syst, vol. 9, pp. 431–454, 1995.

139



[82] H.-R. Tränkler, O. Kanoun, M. Min, and M. Rist, “Smart sensor systems using impedance

spectroscopy,” Proc. Estonian Acad. Sci. Eng, vol. 13, no. 4, pp. 455–478, 2007.

[83] M. I. Lourakis et al., “A brief description of the levenberg-marquardt algorithm implemented

by levmar,” Foundation of Research and Technology, vol. 4, no. 1, pp. 1–6, 2005.

[84] A. Helwan, J. B. Idoko, and R. H. Abiyev, “Machine learning techniques for classification of

breast tissue,” Procedia computer science, vol. 120, pp. 402–410, 2017.

[85] U. Birgersson, Electrical impedance of human skin and tissue alterations: Mathematical mod-

eling and measurements. Inst för klinisk vetenskap, intervention och teknik/Dept of Clinical

Science . . . , 2012.

[86] J. E. Da Silva, J. M. De Sá, and J. Jossinet, “Classification of breast tissue by electrical

impedance spectroscopy,” Medical and Biological Engineering and Computing, vol. 38, no. 1,

pp. 26–30, 2000.

[87] J. Jossinet and B. Lavandier, “The discrimination of excised cancerous breast tissue samples

using impedance spectroscopy,” Bioelectrochemistry and Bioenergetics, vol. 45, pp. 161—-167,

1998.

[88] M. R. Daliri, “Combining extreme learning machines using support vector machines for breast

tissue classification,” Computer methods in biomechanics and biomedical engineering, vol. 18,

no. 2, pp. 185–191, 2015.

[89] S. Laufer, A. Ivorra, V. E. Reuter, B. Rubinsky, and S. B. Solomon, “Electrical impedance

characterization of normal and cancerous human hepatic tissue,” Physiological measurement,

vol. 31, no. 7, p. 995, 2010.

[90] S. Wasterlain, D. Candusso, F. Harel, X. François, and D. Hissel, “Diagnosis of a fuel cell stack

using electrochemical impedance spectroscopy and bayesian networks,” in 2010 IEEE Vehicle

Power and Propulsion Conference. IEEE, 2010, pp. 1–6.

[91] J. Kari, V. Seppä, K. Annala, and K. Kronström, “In-vivo tissue identification using

bioimpedance spectroscopy with conventional anaesthesia needles.”

[92] B. Zheng, M. E. Tublin, A. H. Klym, and D. Gur, “Classification of thyroid nodules using

a resonance-frequency–based electrical impedance spectroscopy: A preliminary assessment,”

Thyroid, vol. 23, no. 7, pp. 854–862, 2013.

[93] P. Mulak and N. Talhar, “Analysis of distance measures using k-nearest neighbor algorithm

on kdd dataset,” International Journal of Science and Research, vol. 4, no. 7, pp. 2101–2104,

2015.

[94] K. B. Korb and A. E. Nicholson, Bayesian artificial intelligence. CRC press, 2010.

140



[95] S. Raschka, “Naive bayes and text classification i-introduction and theory,” arXiv preprint

arXiv:1410.5329, 2014.

[96] S. Theodoridis, Machine learning: a Bayesian and optimization perspective. Academic Press,

2015.

[97] H. Zhang and S. Sheng, “Learning weighted naive bayes with accurate ranking,” in Fourth

IEEE International Conference on Data Mining (ICDM’04). IEEE, 2004, pp. 567–570.

[98] M. Kitagawa, D. Dokko, A. M. Okamura, and D. D. Yuh, “Effect of sensory substitution on

suture-manipulation forces for robotic surgical systems,” The Journal of thoracic and cardio-

vascular surgery, vol. 129, no. 1, pp. 151–158, 2005.

[99] M. Lacki and C. Rossa, “On the feasibility of multi-degree-of-freedom haptic devices using

passive actuators,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2019, pp. 7288–7293.

[100] E. P. Westebring-van der Putten, R. H. Goossens, J. J. Jakimowicz, and J. Dankelman, “Hap-

tics in minimally invasive surgery–a review,” Minimally Invasive Therapy & Allied Technolo-

gies, vol. 17, no. 1, pp. 3–16, 2008.

[101] J. T. Dennerlein, P. A. Millman, and R. D. Howe, “Vibrotactile feedback for industrial tele-

manipulators,” in Sixth Annual Symposium on Haptic Interfaces for Virtual Environment and

Teleoperator Systems, ASME International Mechanical Engineering Congress and Exposition,

vol. 61, 1997, pp. 189–195.

[102] M. Khadem, C. Rossa, N. Usmani, R. S. Sloboda, and M. Tavakoli, “A two-body rigid/flexible

model of needle steering dynamics in soft tissue,” IEEE/ASME Transactions on Mechatronics,

vol. 21, no. 5, pp. 2352–2364, 2016.

[103] Q. Li, G. Y. Lee, C. N. Ong, and C. T. Lim, “AFM indentation study of breast cancer cells,”

Biochemical and biophysical research communications, vol. 374, no. 4, pp. 609–613, 2008.

[104] T. Krouskop, T. Wheeler, F. Kallel, B. Garra, and T. Hall, “Elastic moduli of breast and

prostate tissues under compression,” Ultrasonic imaging, vol. 20, no. 4, pp. 260–274, 1998.

[105] M. P. Ottensmeyer and J. K. Salisbury, “In vivo data acquisition instrument for solid organ

mechanical property measurement,” in Int. Conf. on Medical Image Computing and Computer-

Assisted Intervention. Springer, 2001, pp. 975–982.

[106] T. Lehmann, C. Rossa, N. Usmani, R. S. Sloboda, and M. Tavakoli, “Intraoperative tissue

young’s modulus identification during needle insertion using a laterally actuated needle,” IEEE

Transactions on Instrumentation and Measurement, vol. 67, no. 2, pp. 371–381, 2017.

141



[107] A. Markidou, W. Y. Shih, and W.-H. Shih, “Soft-materials elastic and shear moduli mea-

surement using piezoelectric cantilevers,” Review of Scientific Instruments, vol. 76, no. 6, p.

064302, 2005.

[108] T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,”

IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 44, no. 6, pp. 1355–

1365, 1997.

[109] C. Russell, A. C. Ward, V. Vezza, P. Hoskisson, D. Alcorn, D. P. Steenson, and D. K. Corrigan,

“Development of a needle shaped microelectrode for electrochemical detection of the sepsis

biomarker interleukin-6 (il-6) in real time,” Biosensors and Bioelectronics, vol. 126, pp. 806–

814, 2019.

[110] X. Yu, H. Wang, X. Ning, R. Sun, H. Albadawi, M. Salomao, A. C. Silva, Y. Yu, L. Tian,

A. Koh et al., “Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting

via mechanical sensing,” Nature biomedical engineering, vol. 2, no. 3, pp. 165–172, 2018.

[111] G. Chornokur, S. K. Arya, C. Phelan, R. Tanner, and S. Bhansali, “Impedance-based minia-

turized biosensor for ultrasensitive and fast prostate-specific antigen detection,” Journal of

Sensors, vol. 2011, 2011.

[112] M. J. Pitts, M. A. Williams, T. Wellings, and A. Attridge, “Assessing subjective response to

haptic feedback in automotive touchscreens,” in Proceedings of the 1st international Conference

on Automotive User interfaces and interactive Vehicular Applications, 2009, pp. 11–18.

[113] C. Geitner, S. Birrell, C. Krehl, and P. Jennings, “Haptic foot pedal: Influence of shoe type,

age, and gender on subjective pulse perception,” Human factors, vol. 60, no. 4, pp. 496–509,

2018.

142


	Challenges and Solutions in Tissue Discrimination during Minimally Invasive Surgery
	Introduction
	Haptic Feedback with Surgical Robots
	A New Approach

	Electric Impedance Spectroscopy
	Objectives and Outline

	An Electrode Embedded Needle for Tissue Discrimination
	Electric Impedance
	Existing Implementations of Needle Probes
	Prototype Needle With Coaxial Electrode for EIS
	Impedance Acquisition Device
	Measurement and Excitation Circuit

	Experimental Validation
	Experiment Setup
	Gel-Based Phantoms
	Ex-Vivo Tissue
	Freshly Excised Tissue

	Experimental Data & Observations

	Fitting Electric Impedance Data to an Equivalent Circuit Model
	Introduction to the Equivalent Circuit Model
	Optimisation to Derive Circuit Parameters
	Newton-Raphson Optimisation Approach
	Multi-objective Approach
	Optimisation Setup
	Optimisation Results

	Discussion & Comparison of Methods

	Classification of Tissues from Electric Impedance Spectroscopy
	Lease Square Error Comparison: Electric Impedance
	Determining Weights for LSE Classifier
	Results of LSE Classifier: Electric Impedance

	LSE Comparison: Circuit Model Parameters
	Determine Weights for Model Parameter LSE Classifier
	Results of LSE Classifier: Circuit Model Parameters

	Modified k-Nearest Neighbours
	Results of Modified k-Nearest Neighbours

	Naïve Bayes Classifier
	Results of the Naïve Bayes Classifier

	Weighted Naïve Bayes Classifier
	Determine Weights for Naïve Bayes
	Results of the Weighted Naïve Bayes Classifier

	Comparing the Classifiers

	Applications of EIS and Tissue Classification to Haptic Feedback
	Vibrotactile Feedback for Tissue Discrimination
	Application Context
	Relating Electric Impedance to Vibrotactile Feedback
	Preliminary Pattern Recognition Experiment Results
	User Trial Study: Setup
	User Trial Study: Results
	Discussion: Outcome of the Application

	Force Feedback in Teleoperation
	Application Context
	Relating Electric Impedance to Force Feedback
	Experiment Setup
	Experiment Results
	User Trial Study: Setup
	User Trial Study: Results
	Discussion: Outcome of the Application


	Manuscript Conclusion
	Summary of Presented Work
	Future Work
	Concluding Statements

	Appendix Impedance Plots of Tissue
	Appendix Impedance Values for Tissue Samples
	Appendix Freshly Excised Tissue Donor Data

