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Abstract

Recently, Variational Autoencoders (VAEs) have shown remarkable performance in

collaborative filtering (CF) with implicit feedback. These existing recommendation

models learn user representations to reconstruct or predict user preferences. However,

existing VAE-based recommendation models learn user and item representations sep-

arately. This thesis introduces joint variational autoencoders (JoVA). JoVA, as an

ensemble of two VAEs, simultaneously and jointly learns both user-user and item-item

correlations and collectively reconstructs and predicts user preferences. Moreover, a

variant of JoVA, referred to as JoVA-Hinge, is introduced to improve recommendation

quality. JoVA-Hinge incorporates pairwise ranking loss to VAE’s losses. Extensive

experiments on multiple real-world datasets show that our model can outperform

state-of-the-art under a variety of commonly-used metrics. Our empirical experi-

ments also confirm that JoVA-Hinge offers better results than existing methods for

cold-start users with limited training data.

Keywords: recommender systems; deep learning; Variational Autoencoder; hinge-

based loss function;
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades, the overload and diversity of information are among the

problems we face. These problems result in several challenges, such as finding the

most relevant information. Recommender systems are promising solutions to these

problems. Recommender systems can solve the problem of information overload and

are extensively used by many online services. They filter irrelevant items and present

only the most desirable information and items to users based on their preferences.

Recommender systems have been successfully used for movies (Netflix), books (Ama-

zon), music (Spotify).

Recommender systems are usually categorized into collaborative filtering, content-

based recommender system and hybrid recommender system based on how their rec-

ommendations are being made [1] [2]. Collaborative filtering (CF) is known as the

most popular recommendation technique. The key idea behind CF [3] is that users

with similar revealed preferences might also rate items similarly in the future. CF
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can use either explicit (i.e., ratings and reviews) or implicit feedback.

Explicit feedback is more informative than its implicit alternative; however, it

imposes a more cognitive burden on users through their elicitation. Explicit feedback

is also subject to noisy self-reporting [4], and suffers from interpersonal comparison or

calibration issues [5][6]. In contrast, implicit feedback naturally originates from user

behavior based on the assumption that a user’s interaction with an item is a signal

of his/her interest in the item. Compared to explicit feedback, implicit feedback is

more easily collected and abundant as long as user-item interactions are observable.

In the research on implicit feedback, only positive implicit feedback, such as purchase

history, browsing history, search patterns can be observed [7]. And it indirectly

reflects users’ preference [8].

In most practical recommendation scenarios, user feedback is implicit, not explicit.

This abundance of implicit feedback has made collaborative filtering more intriguing

at the cost of some practical challenges. The implicit feedback lacks negative examples

as the absence of a user-item interaction does not necessarily indicate user disinterest

(e.g., the user is unaware of the item). Also, the user-item interaction data for implicit

feedback is large, yet severely sparse. It is even sparser than explicit feedback data as

the unobserved user-item interactions are a mixture of both missing values and real

negative feedback.

Since Deep Neural Networks (DNNs) are very powerful in learning representations,

they have been widely explored and applied for recommendation task[9][10]. DNNs

can learn non-linear user-item interactions. Recent work [11][12] has used deep learn-

ing models for recommendation with implicit feedback. Multilayer perceptron (or

feedforward) networks were (arguably) the first class of neural networks successfully
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applied for collaborative filtering [10][8]. Neural collaborative ranking [13] is a general

collaborative ranking framework based on neural networks. To model a user’s pair-

wise preference between items and estimate ranking, they combined pairwise ranking

classification strategy with a neural network.

There has been emerging interest in deploying the variants of Autoencoder (AE)

based models. They have shown promising performance in the recommendation task.

Collaborative Denoising Auto-Encoder (CDAE) [14] presents a framework for a rec-

ommendation with implicit feedback. Users and items representations are learned by

a Denoising Auto-Encoder. Joint Collaborative Autoencoder (JCA) [15] presents a

joint learning model with AE that captures the correlation between users and items.

The loss function of JCA incorporates pairwise ranking loss. But, these models are

deterministic. Consequently, they are not able to obtain the uncertainty of the la-

tent representations. On the other hand, Variational autoencoder (VAE) has the

power to capture uncertainty and perform efficient inference. Recent work shows

that VAE-based models outperform previous neural network-based methods for rec-

ommendation task. Mult-VAE [16] utilizes the VAE with a multinomial log-likelihood

loss. The CVAE [17] is another VAE-based model that considers both content and

rating information.

Despite the effectiveness of VAE-based models, they consider users and items

separately. To improve user and item interaction modeling, we use two VAEs to

simultaneously model users and items. One VAE captures user representation, and

the other one focuses on item representation simultaneously.

3



1.2 Contribution of This Work

We present joint variational autoencoder (JoVA), an ensemble of two variational au-

toencoders (VAEs). The two VAEs jointly learn both user and item representations

while modeling their uncertainty, and then collectively reconstruct and predict user

preferences. This design allows JoVA to capture user-user and item-item correlations

simultaneously. We also introduce JoVA-Hinge, a variant of JoVA, which extends

the JoVA’s objective function with a pairwise ranking loss further to specialize it for

top-k 1 recommendation with implicit feedback.

The main contributions of this thesis are as follows:

• We propose a VAE-based collaborative filtering (CF) model for top-k recommen-

dation with implicit feedback. Instead of learning user and item representations

separately, we use two VAEs to simultaneously capture user-user and item-item

correlations.

• We extend the VAE loss with hinge-based loss in combination with reconstruc-

tion loss of VAE.

• Through extensive experiments over multiple real-world datasets, we show the

accuracy improvements of our proposed solutions over a variety of state-of-the-

art methods, under different metrics. Our JoVA-Hinge significantly outperforms

other methods in the sparse datasets. Our experiments also demonstrate that

JoVA-Hinge can achieve the best performance across all users with varying

numbers of training data. Our findings confirm that the ensemble of VAEs

1In top-k recommendation, for each user, k most preferred items are recommended from all his
un-interacted items (see section 4.1)
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equipped with pairwise loss improves recommendations with implicit feedback.

1.3 Thesis Outline

The remainder of this thesis is organized as follows.

In chapter 2, we present the background concepts on recommender systems and

deep learning.

In chapter 3, we review a survey of related works on implicit feedback recom-

mendation and deep learning models employed for recommender systems.

In chapter 4, we present proposed Joint Variational Autoencoders for Recom-

mendation with Implicit Feedback (JoVA) and its variant (JoVA-Hinge).

In chapter 5, the experimental design, analysis of the experimental results, and

the discussion of research questions are presented.

In chapter 6, we present a discussion of the conclusion and direction for future

research.
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Chapter 2

Background

Our goal is to provide personalized item recommendations with the presence of im-

plicit feedback. In this section, we present the essential background. We review

the personalized recommendation and its three categories: Collaborative Filtering,

Content-based and Hybrid Methods. We also introduce deep neural networks and

two primary neural networks that are related to our work.

2.1 Personalized Recommendation

Recommender systems aim to help users find relevant information such as products

to buy, movies to watch, or restaurants to eat. We can categorize the recommenda-

tion task into two groups based on the form of outputs: rating prediction and top-k

recommendation. The recommender system with rating prediction considers explicit

feedback. The top-k recommendation provides users a ranked list of k items. This

research thesis focuses on the top-k recommendation.

Recommender systems usually fall into three categories: collaborative filtering,
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content-based recommender system, and hybrid recommender system based on how

recommendations are made [1][18].

2.1.1 Collaborative Filtering Methods

Collaborative filtering (CF)—a well-recognized approach in recommender systems—

is based on the idea that users with similar revealed preferences might have similar

preferences in the future [19]. CF can use explicit (i.e., ratings and reviews) or implicit

feedback (i.e., purchase history, browsing history, search patterns, and clicks).

CF methods can be grouped into point-wise and pairwise approaches based on

the form of the loss function and training data. CF methods that consider the pref-

erence prediction problem in a point-wise way are such as the recommender systems

that consider ratings. Although point-wise approaches can work well, they have some

drawbacks. The same rating given by different users can represent different pref-

erences. This drawback is known as calibration [5][6]. For example, a rating of 1

for some user A might be comparable to a rating of 2 for another user B. Also, the

user’s judgment may change during the rating process. Some users also may not be

comfortable giving numerical ratings to items. But, Pairwise ranking based models of

CF, which are referred to as Collaborative Ranking (CR) [5] can solve these problems.

CR methods evaluate the rankings of items for each user, instead of predicting score

or rating for each item. And also, in most cases, users do not change their pairwise

comparisons after seeing new information. For example, a user who prefers item i

over item j will still do so after he has seen other items. The ratings of other users

are not used in content-based methods.

Collaborative filtering methods are also classified into two classes: neighborhood-
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based and model-based methods [20]. Neighborhood-based recommender systems

first compute the similarities between users. Then, they compute an estimation

based solely on the preference of similar users to the target user. Contrary to the

neighborhood-based model, the model-based approach builds user and item latent

representations using machine learning algorithms. This thesis research offers the

model-based method.

2.1.2 Content-based Methods

The content-based systems recommend items to the user, similar to items that he

had interactions in the past [21]. The content-based recommender system calculates

items’ similarities. For example, Amazon suggests products similar to the products

that users have in their basket. This similarity can be based on rating correlations

among users or item attributes such as item description and location of the user, etc

[22][23][24].

Content-based methods are useful for new items with few ratings. They take ad-

vantage of the item descriptions, such as movie descriptions (e.g., keywords, genre,

directors, actress, and actors). They also use user profiles which can be built by user

feedback about different items. The user profile is consists of a set of keywords with

weights. These weights show the word strength. The term frequency-inverse docu-

ment frequency (TF-IDF) [25] is most commonly used to assign weights to keywords.

The TF-IDF value considers Term Frequency (TF) and Inverse Document Frequency

(IDF). TF defines the relevance of the term in the item description by considering

the term’s frequency on the document, and IDF expresses how rare and unique terms

are in the collection of items. In the recommendation process, the most similar doc-
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uments in the corpus to the user profile are recommended. For documents, similarity

could be calculated by a Euclidean distance between TF-IDF vectors.

While content-based models can alleviate item cold-start problems (new items),

they can not help user cold-start problems (new users). For content-based models

to be effective, users should have rated enough number of items. Moreover, content-

based models cannot recommend diverse items and mostly recommend expected or

obvious items. They cannot recommend items with a specific set of keywords that

users have not used in the past. The content-based model is generally combined with

CF [26] to solve the mentioned weaknesses.

2.1.3 Hybrid Methods

Hybrid systems combine the CF and content-based methods. They can take advan-

tage of strong points of both CF and content-based methods [27]. There are two

subcategories for hybrid methods: loosely coupled and tightly coupled methods [28].

Loosely coupled methods perform separate collaborative and content-based systems

and then combine the outputs into final recommendations. Tightly coupled methods

consider auxiliary information (which is processed) as a feature for the collaborative

methods. The rating information helps the learning of features. Also, the extracted

features can improve the prediction [11]. This thesis contribution can be easily ex-

tended to hybrid methods.
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2.2 Deep Neural Networks

Deep learning is a sub-field of machine learning. In recent years, deep learning has

shown great success in many applications, such as computer vision, speech recognition,

and natural language processing. Recently, researchers showed deep learning can

improve the performance of the recommender system [18]. We briefly introduce two

primary neural networks related to our works: Multilayer perceptron and Autoencoder.

2.2.1 Multilayer Perceptron

Multilayer perceptron (MLP), also known as feedforward neural network consists of

three or more layers: an input layer, one or more hidden layers, and an output layer

with non-linear transformations. Formally, we can define MLP with L layers as:

h1(x) = a1(W1x+ b1)

h2(x) = a2(W2h1 + b2)

...

fMLP (x) = aL(WLhL−1 + bL)

(2.1)

Where WL and bL are weight matrix and biases associated with layer L, respec-

tively. a∗ is the non-linear activation function. Activation function is a non-linear

function which can be layer specific. Most commonly used activation functions are

sigmoid σ(x)= 1
(1+e−x)

, hyperbolic tangent tanh(x)= ex−e−x
ex+e−x

and rectifier unit relu(x)=

max(0, x).
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2.2.2 Autoencoder
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Figure 2.1: Structure of autoencoder. Autoencoder takes input and tries to recon-
struct it. Green blocks represent hidden layers. The encoder takes input and converts
it to latent representation, then the decoder takes latent representation and converts
it to a reconstructed input.

An autoencoder, as shown in Figure 2.1 encodes the input into some representa-

tion, such that the input can be reconstructed from that representation. It includes

three layers: the input layer, the hidden layer, and the output layer. The encoder

compresses the input and generates the latent representation (process from the input

layer to the hidden layer). Then the decoder tries to reconstruct the input from the

latent representation (process from the hidden layer to output layer). The output

layer is an equal size as the input layer. The parameters are learned by minimizing

reconstruction error:

L(x, x̂) = ||x− x̂||2, (2.2)

where x̂ is the model output. The number of neurons in the input layer and the
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number of neurons in the output layer are equal. Mean squared error or binary cross-

entropy can be used. To make the training phase of autoencoders faster, we can use

gradient-based backpropagation methods. There are many variants of autoencoders

such as denoising autoencoder, variational autoencoder (VAE) [29], sparse autoen-

coder, marginalized denoising autoencoder [30] and contractive autoencoder [31].

2.3 Matrix Factorization

Figure 2.2: Example of Matrix Factorization (MF) taken from [32]. Rating matrix is
decomposed to user matrix and item matrix.

Traditional recommendation systems such as collaborative filtering systems, use

the basic matrix factorization (MF). MF has been known as the most popular and

effective technique in the recommendation [33]–[35]. Users and items are mapped into

a shared latent space, and vectors of latent features represent users and items. Figure

2.2 represents example of user and item matrices. Then the user’s interaction with

the item can be calculated by the inner product of their latent vectors. Vector pu

denotes the latent feature vector for user u, and vector qi denotes the latent feature
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vector for item i. So the interaction between user u and i can be modeled as:

ŷui = pTu qi. (2.3)

Weighted regression function can be used to learn the parameters [7]:

J =
M∑
u=1

N∑
i=1

wui(yui − ŷui)2 + λ(
M∑
u=1

||pu||2 +
N∑
i=1

||qi||2), (2.4)

where yui is rating provided by user u for item i, ŷui is the predicted rating and λ is

hyperparameter to control regularization. In the recommendation task with implicit

feedback, unobserved ratings are usually assigned to non-zero wui weight (smaller

weight than the weight assigned to observed ratings) [36][7].

One limitation of MF is that the mapping between the representation space and

the latent space is assumed to be linear, which is not always true. So, it may not

capture the complex (non-linear relation) structure of interaction between users and

items.
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Chapter 3

Related Work

This chapter reviews the related work on collaborative filtering and deep learning

approaches in the recommender system with implicit feedback. We also review some

related fields on recommender systems to position this thesis in a broader litera-

ture: group recommendations, cross-domain recommendations, social recommender

systems, and recommendations with noisy preferences.

3.1 Implicit Feedback Recommendation

In many real-world scenarios, implicit feedback (such as clicking and browsing history)

are more common than explicit feedback. The key developments are designing new

models for capturing user-item interactions or novel objective functions for model

learning. Class of collaborative filtering with implicit feedback is also known as One-

Class Collaborative Filtering (OCCF) [37].

Matrix factorization (MF) and its variants have been known as the most popular

and effective technique in the recommendation [33]–[35]. In MF, users and items are
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mapped into a shared latent space, and vectors of latent features represent users and

items. Then a user’s interaction with an item can be calculated by the inner product

of their latent vectors. Weighted regression function can be used to learn the param-

eters [7]. In the recommendation task with implicit feedback, unobserved ratings are

usually assigned to non-zero weight (smaller weight than the weight assigned to ob-

served ratings) [7], [36]. One limitation of MF is that the mapping between user-item

interactions and the latent space is assumed to be linear, which is not always true.

So, it may not capture the complex structure of interaction between users and items.

Several methods have formulated the recommendation task as a ranking problem.

Bayesian personalized ranking (BPR) [38] has been widely used for recommendation

task. BPR assumes users prefer an interacted item to an un-interacted item and

optimizes objective function based on pairwise ranking between items. The BPR op-

timization objective is based on the maximum posterior estimation, which the Area

Under the ROC Curves (AUC) be maximized. BPR optimizes the posterior proba-

bility p(θ| >u) where >u shows the latent representation for user u. The probability

that user u prefers item i over j is calculated by a logistic sigmoid function. Most

work focuses on effective negative sampling strategies to improve the performance of

BPR. Since BPR was proposed, work has used BPR to optimize their models [36],

[39]. For example, Group Bayesian Personalized Ranking (GBPR) [40] is an exten-

sion of the BPR framework. GBPR introduces a group preference over items (instead

of considering users’ preferences for individual items). GBPR can decrease sampling

uncertainty by aggregating similar users’ features.

CofiRank [41] is designed to directly optimize ranking metrics (NDCG) by fitting

a maximum margin matrix factorization model [42]. CofiRank employs an exponen-
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tially decaying weight function for ranks, in which more weight is set to the top ranks

and less to the bottom. Maximum Margin Matrix Factorization (MMMF) is used to

optimize NDCG. EigenRank [43] also directly models the recommendation task as a

ranking problem and optimizes a preference function by Kendall rank correlation. It

extends the neighborhood-based collaborative filtering framework.

Noia et al. [44] proposed an algorithm called SPrank, which is a unified hybrid

graph-based data model that considers collaborative ranking as a learning-to-rank

problem and combines ontological knowledge from the Web of Data with user prefer-

ences. It first builds a graph by using user-item interactions and the items’ background

knowledge. Then, based on the number of paths between a user and an item, features

are extracted. Finally, they feed extracted features into learning-to-rank algorithms.

RankALS [45] minimizes a ranking objective function without sampling by adopt-

ing a square loss. The objective function directly incorporates ranking optimization.

For optimizing, Alternating Least Squares (ALS) is used, which is a popular method

to optimize the implicit MF model. CoFiSet [46] (Collaborative Filtering via Learn-

ing Pairwise Preferences over Item-Sets) is a pairwise recommender system which

uses pairwise preference on a set of items instead of utilizing a single item. They in-

troduced four variants of their model, CoFiSet(SS), CoFiSet(MOO), CoFiSet(MOS)

and CoFiSet(MSO).

These classical methods, despite their success in the recommendation, suffer from

some limitations:

• They fail to capture non-linear relationships between users and items.

• They cannot learn diverse users’ preferences as they treat each dimension of the

latent feature space in the same way.
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• They have poor performance on sparse datasets.

3.2 Deep Learning for Recommender Systems

Recently, researchers showed the effectiveness of applying deep learning to the recom-

mendation task [18]. By bringing non-linearity, they capture more enriched represen-

tations for users and items. Multilayer perceptron (MLP) can add non-linearity to

existing recommender system methods. Neural collaborative filtering (NCF) [8] learns

interactions between users and items. It uses an MLP to learn the user-item inter-

action function. NCF is able to express and generalize matrix factorization (GMF).

Users and items are represented via a one-hot encoding. Above the input layer is the

embedding layer. The obtained user (item) embedding can be considered as the latent

vector for the user (item) in the latent factor model. They used binary cross-entropy

as a loss function.

Wide & Deep model [10] was introduced for an app recommendation for Google

play. It consists of two components: A wide component and a deep component. The

wide component is a generalized linear model that is responsible for cross-product

features. At the same time, deep component extracts non-linear relations among

features. Item features are learned through a feed-forward neural network with em-

beddings. The model takes cross features as inputs to a linear model and jointly

trains the linear model with a deep neural network model. Combining wide and deep

components enable the recommender to capture both memorization and generaliza-

tion.

Another example of the neural network-based recommendation model with im-

plicit feedback is a Visual Bayesian Personalized Ranking (VBPR) [47] framework.
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VBPR extends the Bayesian Personalized Ranking (BPR), which includes visual fea-

tures.

Neural network-based recommendation model (NeuRec) [48] is a non-linear model

that understands the relationship between items and users. They stored implicit

feedback of users in the interaction matrix. The user-based NeuRec, first, maps each

row of the interaction matrix to dense high-level representations with feed-forward

neural networks. Then these representations are fed to a multi-layers neural network

to learn user-item interactions. Similarly, the item-based NeuRec maps each column

of the interaction matrix to a dense representation with a multi-layers neural net-

work. With experiments, they showed that NeuRec performs better with sigmoid as

activation function than tanh, relu and identity.

Neural Network-based Collaborative Ranking (NCR) [49] is a general collaborative

ranking framework. NCR assumes that the user prefers an observed item to an un-

observed item. It consists of three layers, the embedding layer, the hidden layers, and

the output prediction layer. And it models a (user, item, item) triplet interaction.

They adopt the binary cross-entropy loss for their model because prior work [50][8]

showed that binary cross-entropy loss performs well for neural network-based ranking

models. Then they proposed an algorithm to find the top-k ranked items.

Elkahky et al. [51] utilized deep learning for content-based multi-domain rec-

ommendation. They used neural networks to model the cross-domain behaviors of

the user. This model learns user features and item features from different domains

jointly and maps them to shared space. They used Deep Structured Semantic Models

(DSSM) [52], where the first neural network includes a user’s query, and the second

neural network includes implicit feedback. DSSM is a deep neural network for learning
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semantic representations of entities in a common continuous semantic space. Doc-

uments and queries are converted to vectors into a common low-dimensional space.

Then vectors are fed into MLPs to extract semantic features. They used objective

function based on a cosine similarity between the document’s semantic features–query

pairs extracted by the neural networks.

Of the most relevant to our work are recommender systems built based on autoen-

coders or their variations. Autoencoders have been a successful approach for deep

learning models for recommender systems [28][53][54][55]. AutoRec [53] is an autoen-

coder framework that can be used for collaborative filtering. Each user and each item

are represented as a partially observed vector. AutoRec learns an autoencoder that

encodes these vectors into lower-dimensional latent space and then decodes them to

make missing rating predictions. It is also able to learn a non-linear latent repre-

sentation. They evaluated their model’s performance as the number of hidden units

varied and found that AutoRec with 500 hidden units showed the best result (mini-

mum Root Mean Square Error). In their model, weight matrices are shared among

the autoencoder.

Collaborative Denoising Auto-Encoder (CDAE) [14] presents a framework for a

recommendation models. CDAE is mainly designed for ranking prediction. Users’

and items’ representations are learned by a Denoising Auto-Encoder. The input of

CDAE (user partially observed preferences) is corrupted by Gaussian noise. They

took advantage of negative sampling. CDAE parameters increase linearly with both

the number of users and the number of items.

Collaborative Deep Ranking (CDR) [56] employs Stacked Denoising Autoencoders

to represent the feature of item content (such as the title and abstract of the ar-
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ticles and tags) into the pair-wise ranking model’s Bayesian framework. CDR is a

hybrid pair-wise approach with implicit feedback that jointly implements representa-

tion learning and collaborative ranking. They confirmed that using the ranking loss

can significantly improve the recommendation performance.

JCA [15] is a joint model of user-based and item-based autoencoders that can

capture user-user and item-item correlation. This model consists of two autoencoders,

which are called the user component and item component. The model takes the

whole rating matrix as a dual input. The user component takes the user rating

vector (i.e., one row of rating matrix) as an input, and the item component takes

the item rating vector (i.e., one column of the rating matrix) as an input. The user

component and item component predict two completed rating matrices independently,

and then the final output is computed by combining the two outputs (unweighted

average of two predicted rating matrices). They also adopt normalization constant

to alleviate the influence of item feedback heterogeneity. JCA is optimized only by

a pair-wise hinge-based objective function. They also proposed a novel mini-batch

optimization algorithm to train JCA without loading the entire rating matrix, which

is more practical for especially massive datasets. New users and items can be trained

through the mini-batch optimization. The number of parameters of the JCA increases

linearly with both the number of users and the number of items, making it more prone

to overfitting.

Another example of autoencoder model for recommendation is Deep generative

ranking (DGR) Wasserstein autoencoder based model [57]. DGR is a recommender

system that jointly models the generation of implicit feedback data and the creation

of a pair-wise ranking list. In DGR, implicit feedback data is generated under the
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Beta-Bernoulli distribution. DGR also generates the pair-wise ranking list by utilizing

both interacted and non-interacted items for each user.

Mult-VAE [16] is a collaborative filtering model for implicit feedback based on

variational autoencoders. Mult-VAE assumes the distribution of the latent variables

can be estimated from the implicit feedback data. Mult-VAE uses a multinomial

log-likelihood instead of the Gaussian likelihood. The generative model of Mult-

VAE samples a latent representation for each user, and then the feedback history

of each user is assumed to be drawn from the multinomial distribution. Then the

latent representation is utilized to reconstruct the input rating matrix. This work

also proposed a regularization hyperparameter to control the trade-off between the

reconstruction loss and the Kullback-Leibler (KL) loss in the objective function. Mult-

VAE showed better performance than CDAE. Recently, RecVAE [58] proposed a new

approach to optimizing this hyperparameter which leads to better performance than

Mult-VAE. In RecVAE, this hyperparameter for the Kullback-Leibler term is user-

specific, which depends on the amount of implicit feedback available for each user.

We can model user-item interactions as a bipartite graph. Berg et al. [59] proposed

GC-MC for the recommendation task by considering it as a link prediction task

with a convolutional neural network graph. Graph autoencoder consists of a graph

encoder and a pairwise decoder. The encoder takes a graph adjacency matrix and

outputs a node embedding matrix. The decoder takes pairs of node embedding and

predicts respective entries in the adjacency matrix. It computes the pairwise distance

given network embedding. GC-MC can easily integrate side information into the

recommendation model. GC-MC is designed for explicit datasets and uses different

weight matrix to decode various types of edges (ratings). Ying et al. [60] proposed a
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PinSage a graph CNNs based model for a recommendation on Pinterest. PinSage can

handle a billion-scale graph. It combines random walks and graph convolutions to

create embedding of nodes. Item embedding incorporates both graph structure and

item feature information. For more efficient training, they present a mini-batch by

uniformly sampling the neighboring nodes. Multi-modal Graph Convolution Network

(MMGCN) [61] combines information from different sources, such as movie and video

data. For each modal (visual, acoustic, and textual), MMGCN creates a user-item

bipartite graph. After building the bipartite graph, it uses graph convolution networks

to train each bipartite graph. Finally, it merges the node information of different

modals. Neighbor Interaction Aware Graph Convolution Networks (NIA-GCN) [62]

used a pairwise neighborhood aggregation layer to capture relationships between pairs

of neighbors. The loss function includes the Euclidean distance between users and

items with their neighbors. Low-pass Collaborative Filter (LCF) [63] removes the

noise in observed data. LCF is applicable to the large graph as it reduces the time

consumption of graph convolution.

3.3 Group Recommendation

Recently, group recommendation becomes helpful in plenty of scenarios. Group rec-

ommendations can be useful in different types of groups and items. For example,

group recommender systems to find movies for a group of friends to watch or restau-

rants for a group to eat. Some recent work has addressed the problem of providing

recommendations to a group of users. To make efficient group recommendation, Puja-

hari and Padmanabhan [64] combined both user-user filtering and item-item filtering

for predicting items that are common for most of the users in the group. They gener-
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ated recommendations by making homogeneous groups. First, the system generates a

homogeneous group by finding the degree of similarity between members. Then group

recommendations are provided for the group of users. Gorla et al. [65] assumed that

the recommendation score for an item depends on its relevance to each group member

and its relevance to the group as a whole. They proposed a probabilistic framework

to make group recommendations.

Preference-oriented social networks (POSNs) [66] use a social network structure

to make better group decisions when some group members’ preferences are not ob-

served yet. POSNs exploit ranking networks [67] to capture the preference rankings

correlation between users in social networks. They considered user preferences in the

form of ranking of a finite set of options (e.g., a set of products, a genre of movies,

etc). The generative process for POSNs starts with drawing individual preferences

from a ranking distribution; then, POSNs connect individuals with a probability. The

probability increases with the similarity of individuals’ preferences. Each user prefer-

ence ranking is drawn independently with Mallows φ-model. Their empirical results

showed the effectiveness of their inference and group recommendation methods. It

also confirmed the importance of employing a social network structure to make a

better decision for groups with missing preferences of some group members.

Baltrunas et al. [68] studied and compared different aggregation methods (such

as Spearman Footrule, Borda Count, Least Misery, and Average) and found no clear

winner. They showed that an aggregation method’s effectiveness depends on the

group size and group similarity between group members.

We can classify most existing group recommendation approaches into two cate-

gories: aggregating individual profiles and aggregating individual recommendations :
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• Aggregating individual profiles: aggregating individual members’ preferences

represent the preferences of the group.

• Aggregating individual recommendations: individual members’ recommenda-

tions are provided independently, and aggregating individual recommendations

generate group recommendations [68].

One of the major issues in group recommendation is the difficulty of the eval-

uation process. Two evaluation approaches have been mainly used in the field of

recommender systems: live user experiments and offline experiments [69]. In offline

evaluation, datasets used for evaluating individual recommender systems are usually

used to assess group recommendation systems. Or researchers collect new evaluation

datasets from complete, practical systems. If the dataset contains no groups, groups

can be generated randomly or based on the similarity between users. For example,

users with user-to-user similarity higher than some threshold can form groups [68]

where the Pearson correlation coefficient computes similarity.

Sparsity and cold start problems are also among major issues in group recom-

mendations. To address these problems, we can use a cross-domain recommendation.

Cross-domain recommender systems (see section 3.4 ) use the information of two or

more different domains to recommend items on one of those domains. For example,

suppose we know group members’ music preferences, but their movie preferences are

not observed. We can exploit their music preferences to recommend movies to them.

Using a cross-domain recommendation for groups of users where their preferences are

in the form of rankings of items has received little attention.
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3.4 Cross-domain Recommendation

Cross-domain recommender systems use the information of two or more different

domains to recommend items on one of those domains. The domain in which the

recommendations are performed is called target domain, and auxiliary or source do-

main is the domain from which knowledge and information are transferred to help

recommendations in the target domain. Cross-domain recommendations can mitigate

the cold start problem by using information acquired from other domains. Collabo-

rative filtering recommenders will not recommend a new item since it has not been

rated by someone. Cross-domain systems can solve this problem by recommending

items from multiple domains. Moreover, a cross-domain recommendation can reduce

sparsity and increase novelty and diversity in the set of the items recommended since

considering multiple domains instead of only one domain help get better coverage of

the range of user preferences. Besides, it can improve user models. Cross-domain

recommenders improve serendipity by using information from multiple domains in

which serendipity means the items recommended to users are somewhat unexpected.

Different understandings have been made in the various research area for address-

ing the cross-domain recommendation problem. A domain is a particular field of

thoughts, interest, or activity that can be defined at the four following levels [70].

• Item level: recommended items have a different type. In other words, all or

at least most of their attributes are different. For example, movies and books

belong to different domains, or music and movies.

• Attribute level : recommended items have the same type. In other words, two

items are considered as belonging to distinct domains if the value of a certain

25



attribute is different. For example, two books in the same system belong to

distinct domains if they have different genres, like comedy and horror books.

• Type level: types of recommended items are similar and have some attributes

in common. If not all the two items’ attributes are not the same, they are

considered distinct domains. For example, movies and T.V shows belong to

distinct domains.

• System level: in this, almost the same items, collected in different ways or

from different operators. For example, music listened in the Last.fm, and music

listened in the Spotify by users.

Most of the work considers domains at the item and system levels. The most common

domains that are used in cross-domain recommender systems are movies, books, and

music.

And four scenarios based on the combination of users and items overlapping in

the cross-domain recommendation are [71]:

• No overlap: there is no overlap between users or items.

• User overlap: in this case, some shared users exist who have rated for items in

both domains.

• Item overlap: there are shared items rated by users from both the domains.

• User and item overlap: there are both overlaps between users and between

items.

Codebook transfer algorithm [72] is transfer learning to collaborative filtering prob-

lems. They considered domains without any shared users and with no overlap of items.
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Their algorithm consists of three steps: First, they applied co-clustering algorithms

on users and items simultaneously in the source rating matrix. Then they constructed

a cluster-level rating matrix called codebook. The knowledge is transferred through

the codebook. After codebook construction, they used the codebook to fill missing

ratings in the target rating matrix, which reduces the target domain’s sparsity. For

reducing the sparsity, users, and items in the target domains are mapped to the co-

clusters in the codebook by minimizing the certain loss function. Both two steps

are based on tri-matrix factorization. Finally, they used the filled target matrix for

predicting the rating. They showed that transferring useful information from a dense

source rating matrix is more effective than recommending using only the knowledge

in the sparse target rating matrix.

Sahebi [73] proposed a Canonical Correlation Analysis (CCA) a cross-domain

collaborative filtering method. CCA finds two projection vectors that maximize the

correlation coefficient between independent and dependent variable sets. They sup-

posed that users overlapped between the source and target domains and considered

the source domain in cross-domain recommender as the independent variable set and

the target domain as the dependent variable set. CCA finds the components of each

domain that are most similar to each other based on user rating behavior. It deter-

mines how much two components are correlated with each other. In order to know

how the ratings of a combination of items in the source domain affect the ratings of an

item in the target domain, projections vectors can be used. After adding the source

domain’s user ratings, we can understand how all of a user’s ratings in the source do-

main affect the same user’s ratings in the target domain. The ratings of users in the

target domain can be estimated by using the projection vectors, the source domain
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ratings, and the canonical correlation value.

Feng Yuan proposed a deep domain adaptation model for the cross-domain rec-

ommendation [74]. They assumed the target and source domains have the same set

of users, but the items are different and considered rating matrices for each domain.

Their goal was to predict missing ratings in the target domain by using information

from the source rating matrix. They learned a set of embeddings to represent each

user’s preferences. Embedding representation is used to extract the shared user rating

patterns from the two domains. In their model, an autoencoder predicts the missing

values in the rating matrix. The input is the partially observed rating vectors for

each user (item). They then mapped each vector into a low-dimensional latent space,

followed by a reconstruction layer as output to recover the rating vectors. They used

one deep feed-forward neural network to reconstruct the rating vectors for the source

and the other network for the target domain separately. They showed that their

model performs better rating prediction than several state-of-the-art cross-domain

recommendation methods.

Collaborative cross networks (CoNet) [75] is a deep learning model with a feed-

forward neural network model that models the interactions between users and multiple

domains. CoNet’s core components are cross-connection units that enable dual knowl-

edge transfer. The target network uses information from the source network and vice

versa. Source and target networks are coupled with cross-connections. They defined

a joint loss function. They showed their better performance over the state-of-the-art

recommendation algorithms. They compared CoNet with MLP++. MLP++ is a

combination of two multilayer perceptron models by sharing only the user embedding

matrix. MLP++ has no cross-connection units. They showed that their model per-
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formed better than MLP++, which shows the importance of cross-connection units.

Another approach for transferring knowledge across domains is using deep learning

methods by linking cross-domain user latent representation [76]. Variational Autoen-

coder is used for cross-domain linking. The model incorporates two Vaes for modeling

each domain, which is linked at their latent layer. They also modify the optimization

criterion to improve the knowledge transfer from the source domain. They compared

their model with the current state-of-the-art methods. It performed better than all of

the state-of-the-art techniques, including CoNet [75] with metric hit ratio (HR) and

NDCG.

Adaptive deep learning strategy (ADC) [77] is an algorithm for the cross-domain

recommendation that controls and adjusts the contribution of each domain while opti-

mizing the model parameters. They considered different domains and jointly learned

all the different single domain. They compared their method with various single and

cross-domain methods, including CoNet [75]. And they showed that ADC could im-

prove recommendation performance comparing to CoNet in the term of evaluation

metric NDCG.

Two categories of cross-domain approaches, based on how knowledge from the

source domain is used are aggregating knowledge and transferring knowledge [71]:

• Aggregating knowledge: knowledge of different source domains is aggregated to

achieve recommendations in a target domain.

• Transferring knowledge: knowledge is transferred between domains in order to

enhance recommendation.

Aggregating knowledge methods fall into 4 categories: merging user preferences,

mediating user modeling data, combining recommendations and linking domains [71]:
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• Merging user preferences: data sources such as ratings, tags, and click-through

data from different domains are merged, and a traditional single-domain recom-

mender system is used on the merged data. Therefore, it requires user overlap

between the source and target domains. These approaches can enhance rec-

ommendation since the users’ profiles become richer when multiple sources of

personal preferences are combined [71].

• Mediating user modeling data: in this approach, models from different domains

are aggregated. The mediation improves the user models of the target recom-

mender. For instance, If there is an overlap of users between the source domain

and target domain, a cross-domain recommender based on mediating can ex-

tract the list of neighborhoods in the source domain and use it for the target

domain’s recommendation. This type of method requires either user-overlap or

item-overlap between domains [71].

• Combining recommendations: single recommendations are combined where each

of the recommenders has a weight that is based on its importance. Combining

recommendations can increase diversity, and it is easy to implement; however,

it is challenging to tune the weights assigned to each recommendation. Weights

can be computed based on different factors, such as the reliability of each rec-

ommender [71].

• Linking domains: linking domains by a common knowledge such as item at-

tributes, user attributes, or association rules [71].

Transferring knowledge methods can be divided into two subcategories, sharing

latent features and transferring rating patterns :
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• Sharing latent features: source and target domains are related by means of

shared latent features.

• Transferring rating patterns: in this type of method, rating patterns are trans-

ferred between the source domain and target domain. Rating patterns are

correlations between the preferences of groups of users for groups of items.

3.5 Social Recommender Systems

Social networks can be used to improve recommendations. Items can be recommended

to users based on the users’ ratings that have social relations with the given user. The

social recommendation is a task that occurs daily because we always ask friends for

recommendations [78]. Thus, to enhance recommender systems and provide more

personalized recommendation results and solve sparsity and cold start, we can use

social network information among users. Social networks can provide extra informa-

tion for making recommendations. We can use information from the users who have

a connection with the given user. If the user has not rated enough items in systems,

her neighbors’ information in social networks can help solve sparsity and cold start

problems.

Social Poisson factorization (SPF) [79] is a probabilistic model that incorporates

social network information into a traditional factorization method. Latent user pref-

erences are used for discovering patterns in user activity, and it also estimates how

much each user is influenced by her friends’ observed clicks. Then, SPF makes the

recommendation. So, the users may like and click items for two reasons, the first

reason is that the items attribute match user preferences, and the second reason is
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the users’ friend likes that item. Each user has both a vector of latent preferences and

a vector of influence values in their model. For each of her friends, the user has one

vector of influence values. In other words, in SPF, user action and a social network

are the observed data. SPF is based on Poisson factorization (PF) [80] and models

the number of times the user is engaged with an item and finds the latent influence

between users in a social network. Accordingly, it matches user preferences with her

social friends to produce the top-k recommendations. SPF model does not consider

time. When two connected users both like an item, one of them may use it first. In

other words, it can not consider the time of users’ actions.

Social Recommendation (Sorec) [81] uses a user’s social network graph with the

user-item rating matrix so to create more accurate and personalized recommenda-

tions. Within the social network graph, nodes represent users, and edges represent

relations between users. Each relation is associated with a weight that shows how

much users trust each other. Social recommender combines social network structure

and the rating matrix, based on probabilistic factor analysis. The shared user la-

tent feature space connects the social network structure and the rating matrix. They

learned the low-rank user latent feature space and item latent feature space by per-

forming factor analysis. Factor analysis is based on probabilistic matrix factorization.

Sorec assumes that the observed data is a linear combination of some latent factors.

They used a logistic function that can be improved by employing a Gaussian Kernel

or a Polynomial Kernel. To evaluate the effectiveness of their approach, they used the

Epinions dataset. The experimental results showed that Sorec is better than other

collaborative filtering recommendation system, particularly for cold users. Besides, it

can be applied to very large datasets. Their approach can handle the missing value
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problem. The disadvantage of this work is that they did not consider the information

propagation between users. They did not consider that information from neighbors

of the user’s neighbor can also be useful. It also does not reflect the real world

recommendation because it lacks interpretations.

PsRec [82] is trust-based matrix factorization model. This framework alleviates

the sparsity problem and cold start problem. They filled some missing values by

information collected from social networks with pseudo ratings. Pseudo ratings are

based on an observation that the user likely agrees with her friends’ average interest

on an item if most of her friends have a similar interest in that item [83]. In order to

solve the cold start problem, they produced more pseudo-ratings for cold-start users.

They measured the distance between a user’s rating and her friends’ average rating.

Then they used this predicted distance to fill pseudo ratings. They learned the user

and item latent features with minimizing the mean square error over the observed rat-

ings. They called the matrix containing both observed ratings and pseudo ratings (for

filling missing value) as the merged rating matrix. They used weights that represent

confidence in observed rating and pseudo rating for two reasons. First, pseudo-ratings

have different importance. Second, treating observed rating and pseudo rating equally

in matrix factorization reduces the prediction accuracy because pseudo ratings have a

large amount of noise that will destroy the useful information that they can provide.

After generating pseudo ratings with corresponding weights, they used an optimiza-

tion method to find the user-feature matrix and the item-feature matrix. Fusing social

information in pseudo ratings and the weight matrix make the recommendation more

powerful than other methods that use a similar Probabilistic Matrix Factorization

Model. They used Ciao and Epinions datasets to evaluate their framework. Ciao
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is a product review website where users can rate and record reviews for different

products. Besides, they can build social relations with other users on Cia. The trust

relation is described as binary values. If it is one, it represents trust. Otherwise, trust

statements are unobserved. PsRec performed the best of all for mean absolute error

(MAE) and root mean square error (RMSE) on the two datasets For both all users

and cold start users when they compared it with six other methods such as SoRec

[81], SocialMF [84], TrustMF [85], and TrustSVD [86].

The authors of the paper [87] proposed a trust-aware recommender system that

predicts the rating for items by integrating the trust matrix and the rating matrix.

They found users’ neighbors and calculated the weights different from traditional

collaborative filtering recommender systems. Trust values and similarity measures

between users are computed. The trust-aware system replaces the similarity find-

ing with the utilization of a trust metric that can propagate trust over the trust

network. Trust metrics algorithms predict, based on the trust network. There are

many alternative trust metrics which can be classified to global and local [87]. Local

trust metrics consider the users’ very personal views and predict different trust values

in other users for every individual user. The trust matrix, which represents all the

community trust statements, and the rating matrix, are their model’s inputs. They

used MoleTrust [87] for local trust metric which is a depth-first graph walking algo-

rithm. MoleTrust can control the distance to which trust is propagated. They used

PageRank for the global trust metric. For the similarity metric module, they used

the Pearson Correlation Coefficient. They tested their framework on the real-world

dataset and showed that it worked very effectively for recommending to a new user.

The authors of the paper [88] presented a framework to analyze the interactions
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between social influence and selection. They verified that people are similar to their

neighbors in a social network. They proposed a mathematical model that both in-

fluences and homophily (homophily indicates that neighbors in a social network are

similar.) play the role of predicting future behavior in the social network (They tested

it over Wikipedia). They addressed that to what extend similarities and social inter-

actions do the work of predictors of future behavior. But their method cannot tell

which node has a stronger influence on the other in the social network. Besides, it can

not determine the node with the strongest influences in the network. Although their

model is more robust than similar frameworks, it requires more parameters. So more

data is required to learn the parameters. Their work provides a richer framework

for exploring the dynamics of behavior, opinion, and idea change and adoption in

networks compared to previous work.

TRUSTMF [89] maps users into two low-dimensional spaces, which are called

truster space and trustee space. They performed mapping by factorizing trust net-

works. They showed TRUSTMF better predictive accuracy than other trust-based

models using four data sets, including Epinions, Douban, and Flixster. They also

proposed another model which is called TrustPMF. TrustPMF is a more general and

flexible framework and can provide a probabilistic view for understanding the Truster,

Trustee, and TrustMF models. TrustPMF performed better than TRUSTMF.

3.6 Recommendation with Noisy Preferences

In recommender systems, it is assumed that the ratings in the datasets have no

irregularities or inconsistently. However, users may be inconsistent while rating items

[90]. Amatriain et al. [90] proposed an approach to eliminate noisy ratings called
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item re-rating. Item re-rating can remove natural noise in user inputs in order to

improve accuracy in recommender systems. In this study, they asked users to rate

again previously rated items to denoise the dataset. The re-rating was through three

trials. The minimum time difference between the first and second trials was 24 hours,

and the minimum time difference between the second and third trials was 15 days.

The items presented in the first and third trials were in the same random order, but

in the second trial, the items were presented in order of popularity. As it is not

possible to ask all users to re-rate all items once or twice, they proposed methods to

choose which rating to denoise selectively. They selected ratings randomly based on

values and based on how noisy the user is. They confirmed that denoising extreme

ratings resulted in better performance than denoising mild ratings. One limitation of

this work is user participation, which makes it hard to apply in real-world scenarios.

It is not practical to ask users to re-rate in every case. Correcting noise instead of

removing noise might improve recommendation accuracy.

Another method to handle natural noise in user ratings was presented in [91].

The authors of the paper mentioned two types of noise in the recommender system

database. Natural noise and malicious noise. Natural noise happens when users

become inconsistent when they elicit ratings for items. Malicious noise is biased

noise being deliberately inserted into a system by attackers. In this paper, they

detected and corrected natural noise using only ratings. Their method is based on

that users have their own tendency to give ratings and items have their own tendency

to receive ratings. So, they classified users, items, and ratings. Each rating and its

corresponding user and item are classified as strong, average, or weak. If the user and

item behavior are the same and contradict rating classification, then the rating can be
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noise. They then find they compute prediction for each noise using a recommendation

algorithm for its corresponding user and item. If the difference between the old and

new value is higher than a given threshold, then the prediction replaces the original

value; otherwise, they keep the old value. They did not consider the relation between

users and the correlation between items to detect noise. They also did not consider

and manage the inherent uncertainty associated with the ratings in the systems.

Salehi-Abari and Larson [92] proposed a probabilistic framework for modeling

noisy subjective preferences. They studied how noise in revealed subjective pref-

erences can impact different voting rules for group recommendations. In this work,

they assumed that users revealed or observed preference ranking is a noisy observation

of users’ true preference. More specifically, they assumed users revealed preference

ranking is drawn from a conditional distribution Mallows φ-model.

They compared the group preference aggregated from noisy preferences (using an

instance of noise model class) with the group preference aggregated from true pref-

erences (drawn independently from a ranking distribution or a real-world preference

dataset) to evaluate each aggregation method. Four voting rules: Plurality, Borda,

Copeland, and Kemeny [93] were examined. Their empirical results confirmed that

each group decision method’s robustness differs depending on the underlying noise

model and preference distributions.

3.7 Summary

In this chapter we described the related work on collaborative filtering (section 3.1)

and deep learning approaches in the recommender system (section 3.2), as well as the

relevant fields on recommender systems such as group recommendations (section 3.3),
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cross-domain recommendations (section 3.4), social recommender systems (section

3.5), and recommendations with noisy preferences (section 3.6).

Our work is closely related to both JCA and Mult-VAE, as we build on these

two strengths. While JCA is jointly optimizing two classical autoencoders, it does

not capture the uncertainty of latent representations. Consequently does not benefit

from the representation power of variational autoencoders. We deploy two separate

variational autoencoders and jointly optimized them by our proposed loss function to

address this. Our loss function, by taking into account two variational autoencoders’

losses and a pair-wise ranking loss, well tunes our deep learning models for recommen-

dation with implicit feedback. While differentiating from both JCA and Mult-VAE

regarding both architecture and loss function, our proposed work can be viewed as

the powerful generalization or extension of these two. JCA and our proposed models

learn user-user and item-item correlations separately and simultaneously with two

separate networks. JCA used autoencoders, while our proposed models consist of

variational autoencoders.
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Chapter 4

Approach

This chapter presents the main contributions of this thesis. Our goal is to provide

personalized item recommendations with the presence of implicit feedback. In this

section, we formally define our problem and detail the proposed joint variational au-

toencoder (JoVA) framework and its variant (JoVA-Hinge) for top-k recommendation

with implicit feedback.

4.1 Problem Statement

We assume that a set of n users U can interact with the set of m items I (e.g., users

click ads, purchase products, watch movies, or listen to musics). We consider user-

item interactions are binary (e.g., a user has watched a specific movie or not), and

represent them with the user implicit feedback matrix R ∈ {0, 1}m×n as:

Rui =


1, if (user u, item i) interaction is observed

0, otherwise

(4.1)
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Where a value of 1 for Rui indicates that there is an interaction between user

u and item i and value of 0 for Ruj indicates that no interaction between user u

and item j is observed. In the implicit feedback study, each entry is one if the

corresponding user has interacted with the corresponding item, and 0 otherwise. In

the implicit feedback study, the task is to predict the missing entities, i.e., 0 in the

implicit feedback matrix [8], [15], [16]. In the implicit feedback study, the unobserved

interaction data is a mixture of real negative feedback and missing values (unknown).

We can only observe positive feedback signals. It means that we only know which

items users like. As we do not know which items users dislike, we can not distinguish

between users’ real negative feedback and missing values. For this reason, we consider

observed interactions as one and all unobserved interactions as 0.

As each column (or row) of the matrix corresponds to a specific item (or user), we

let Ru and RT
i denote the user u’s and item i’s interaction vectors, respectively. We

also let I+u = {i ∈ I|Rui = 1} denote a set of items that user u has interacted with,

and I−u = I \ I+u be a set of items that user u has not yet interacted with.

Our goal in top-k recommendation is to recommend k most preferred (or likely)

items to user u from I−u . To achieve this goal, we predict the likelihood of interaction

between user u and I−u (or preference of user u over I−u ), and then select a rank-list

of k items with the highest prediction score to recommend to user u. Our learning

task is to find a scoring function f that predicts an interaction score r̂ui for each user

u and an unobserved item i ∈ I−u . The scoring function f is formulated as r̂ui =

f(u, i|θ), where θ represents model parameters.

Most of model-based collaborative filtering methods [19] differentiate from each
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other on the scoring function f formulation or architecture or the objective functions

used for parameter learning. There are various formulation of f such as deep networks

[18] and matrix factorization [33], etc. In general, the objective functions fall into two

categories. Point-wise loss [7], [8], by assuming an unobserved user-item interaction

as a negative example, minimizes the error (or distance) between predicted interaction

score r̂ui and its actual value rui. In contrast to point-wise loss, Pairwise loss [38][47]

directly optimize the ranking of the user-item interaction while assuming that users

prefer observed items to unobserved items.

4.2 Preliminaries

In this section, we describe VAE, which serves as a building block for our proposed

model.

4.2.1 Variational AutoEncoders (VAEs)

Our model uses the variational autoencoder (VAE) [94] as a building block. The

VAE is a popular variant of autoencoders. It is a deep generative model that can

learn complex distributions. Each VAE, similar to classical autoencoders, consists

of encoder and decoder networks. The encoder first encodes the inputs to latent

representations, and then the decoder reconstructs the original inputs from latent

representations. However, the VAE differentiates from classical autoencoders by en-

coding an input as a distribution over latent representations (rather than a single

point). This probabilistic representation choice makes VAE a generative model and

reduces overfitting by forcing smoother latent representation transitions. Figure 4.1
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Figure 4.1: Structure of a variational autoencoder. Image is taken from [95]. VAE is
used as a building block for our proposed model, for more details see section 4.3.1.

represents the overall structure of the VAE model, including encoder, decoder, and

sampling components.

The encoder network of VAE encodes the input x to a d-dimensional latent rep-

resentation z, which is a multivariate random variable with a prior distribution p(z).

The common practice is to assume that p(z) is a standard multivariate normal dis-

tribution:

z ∼ N (0, I). (4.2)

One can view the encoder as the posterior distribution pφφφ(z|x) parametrized by

φφφ. Since this posterior distribution is intractable, it is usually approximated by vari-

ational distribution [96]:

qφφφ(z|x) = N (µφφφ(x), σ2
φφφ(x)I), (4.3)
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where two multivariate functions µφφφ(x) and σφφφ(x) map the input x to the mean

and standard deviation vectors, respectively. In VAE, µφφφ(x) and σφφφ(x) are jointly

formulated by inference network :

fφφφ(x) = [µφφφ(x), σφφφ(x)]. (4.4)

The decoder network pψψψ(x|z), also known as generative network, takes z and outputs

the probability distribution over (reconstructed) input data x. Putting together the

encoder and decoder networks, one can lower bound the log-likelihood of the input x

by:

log p(x) ≥
∫
qφφφ(z|x) log

pψψψ(x|z)p(z)

qφφφ(z|x)
dz = Eqφφφ(z|x) [log pψψψ(x|z)]−KLqφφφ(z|x)p(z),

where KL is Kullback-Leibler divergence distance measuring the difference between

the distribution qφφφ(z|x) and the unit Gaussian distribution p(z) This lower bound,

known as evidence lower bound (ELBO), is maximized for learning the parameters of

encoder and decoder, φφφ and ψψψ, respectively. Equivalently, for learning VAE parame-

ters, one can minimize the negation of the ELBO as a loss function (see Eq. 4.5) by

stochastic gradient decent with the reparameterization trick [94].

LVAE(x|θθθ) = −Eqφφφ(z|x)[log pψψψ(x|z)] + KLqφφφ(z|x)p(z), (4.5)

where θθθ = [ψψψ,φφφ]. One can view this loss function as a linear combination of re-

construction loss and KL divergence, which serves as a regularization term. KL

divergence measures the dissimilarity between two distributions. Our goal is to find
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the variational parameters that minimize this divergence. It is common to use Gaus-

sian distribution to approximate the true posterior [17], [96], [97]. It would be easier

to compute KL divergence if we use Gaussian distribution [29].

Recent research [16], [58] has introduced regularization hyper-parameter β for

controlling the trades of between regularization term and reconstruction loss:

LVAE(x|θθθ, β) = −Eqφφφ(z|x)[log pψψψ(x|z)] + βKLqφφφ(z|x)p(z), (4.6)

In this paper, as our input data x is a binary vector (i.e., implicit feedback), we

consider logistic likelihood for the output of VAE decoder. Defining fψψψ(z) = [oi] as

the output of generative function of the decoder, the logistic log-likelihood for input

x is

log pψψψ(x|z) =
∑
i

xi log σ(oi) + (1− xi)(1− σ(oi)). (4.7)

Here, σ(x) = 1/(1 + exp(−x)) is the logistic function. This logistic likelihood renders

the reconstruction loss to the cross-entropy loss.

4.3 Proposed approach

4.3.1 Joint Variational Autonecoder (JoVA)

We here detail the proposed joint variational autoencoder (JoVA) framework and its

variant for top-k recommendation with implicit feedback. We first discuss the model

architecture of JoVA and then discuss various objectives functions used for parameter

learning.
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4.4 Model

Figure 4.2 illustrates the general structure of JoVA model we propose. Our model

consists of two separate variational autoencoders:

• user VAE : given the implicit feedback matrix R, the user VAE aims to recon-

struct the matrix row-by-row.

• item VAE : given the implicit feedback matrix R, the item VAE reconstructs it

column-by-column.

In other words, user VAE takes and reconstruct each user vector Ru (i.e., a row

of the matrix). Similarly, item VAE takes and reconstruct each item vector RT
i (i.e.,

a column of the matrix). User vector u indicates the preference of a user u on all the

items i in the dataset, whereas item vector i indicates the preferences of all the users

to the item i.

User VAE and item VAE independently and simultaneously complete the implicit

feedback matrix. The final output of our model is the average of two predicted implicit

matrices:

R̂ =
1

2
(R̂user + R̂item), (4.8)

where R̂user and R̂item are implicit matrices predicted (or completed) by user VAE

and item VAE respectively. The parameters of user VAE and item VAE are learned

jointly with a joint objective function (see below for details).

In Section 4.2.1, we provided details about how to build and train a variational

autoencoder. For each user u , the user VAE samples a K-dimensional latent rep-

resentation zu from a standard Gaussian prior. Then the latent representation zu is
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Figure 4.2: Illustration of the proposed model. User VAE and item VAE take the
whole rating matrix and recover the whole rating matrix independently. The final
rating matrix is the average of rating matrices constructed by user VAE and item
VAE.

transformed via a non-linear function f in order to produce a probability distribu-

tion over I items π(zu). The decoder is modeled as: logP (xu|zu). Item VAE works

similarly.

JoVA model is designed carefully to capture both user-user and item-item correla-

tions at the same time. The item VAE encodes similar items close to each other in its

latent representations to preserve their correlations. In contrast, user VAE encodes

similar users close to each other in its latent representations to preserve their corre-
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lations. The joint optimization of these two VAEs helps their fine-tune calibration.

Therefore user VAE and item VAE can complement each other in their predictions.

Both item and user VAEs together can learn complementary information from user-

item interactions beyond what each could separately learn. This richer learning of

user-item interaction is a valuable asset, especially for sparse datasets (as confirmed

by our experiments below). In other words, when the dataset is sparse and lacks

enough information for recommendation task, considering only user-user correlation

or only item-item correlation may not provide enough information to provide a robust

recommendation. However, using both user-user correlation and item-item correla-

tion can extract more and complementary information from the data. User VAE

can extract information that item VAE is not able to obtain and vise versa. All in

all, considering the average of two predicted rating matrices obtained by user VAE

and item VAE can yield improved implicit top-k recommendation performance and

quality, especially with sparser datasets.

We can see a connection between JoVA and ensemble learning. Ensemble learning

combines multiple models into one learning framework. Similar to ensemble learning,

JoVA combines user VAE and item VAE into one learning framework for final pre-

diction. From this perspective, each VAE independently predicts the rating matrices,

and then the final prediction is the aggregation (unweighted averaging) of VAEs’ pre-

dictions. Unweighted averaging is shown to be a reliable choice as an aggregation

method in the ensemble of deep learning models [98]. Averaging user VAE and item

VAE predictions can reduce the expected variance of neural network models and re-

duce the risk of overfitting. These can result in improving the model accuracy of deep

neural networks.
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In order to provide the top-K recommended list for each user u, for all the item

i ∈ I, we sort the output scores rui directly to obtain the top-k ranked items. Then

we select the k items that score highest.

4.4.1 Weighted Average

This unweighted averaging in JoVA-Hinge can easily be extended to the weighted

averaging at the cost of tuning more hyper-parameters for each dataset, but with the

promise of increased accuracy.1 To study the effectiveness of taking an average user

VAE and item VAE, we introduce hyper-parameter γ:

R̂ = γR̂item + (1− γ)R̂user. (4.9)

4.4.2 Model Learning

To learn model parameters of JoVA, we consider two variants of loss functions. We

call the proposed model without considering pairwise objective function JoVA and

the model with pairwise objective function JoVA-Hinge. One loss function naturally

arises from the combination of two user and item VAEs:

LJoVA(R|θθθ, α) =
∑
u∈U

LVAE(Ru|θθθU , α) +
∑
i∈I

LVAE(R
T
i |θθθI , α) (4.10)

1We have confirmed this in experiments (see Section 5.7).
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Here, θθθU and θθθI represent the model parameters of user and item VAEs repsectively,

and LVAE is computed by following equations:

LVAE(Ru|θθθU , α) = −EqφφφU [log pψψψU (Ru|z)] + αKLqφφφU (z|Ru)p(z), (4.11)

LVAE(Ri|θθθI , α) = −EqφφφI [log pψψψI (Ri|z)] + αKLqφφφI (z|Ri)p(z), (4.12)

with the logistic likelihood of:

log pψψψU (xu|z) =
∑
u

xu log σ(ou) + (1− xu)(1− σ(ou)), (4.13)

log pψψψI (xi|z) =
∑
i

xi log σ(oi) + (1− xi)(1− σ(oi)), (4.14)

Where σ(x) = 1/(1 + exp(−x)) is the logistic function.

To further specialize and improve accuracy of JoVA model for top-k recommen-

dation, we incorporate a pairwise ranking loss in its loss function. Specifically, we

introduce JoVA-Hinge loss function:

LJoVA−H(R|θθθ, α, β, λ) = LJoVA(R|θθθ, α) + βLH(R|θθθ, λ) (4.15)

where

LH(R|θθθ, λ) =
∑
u∈U

∑
i∈I+u

∑
j∈Ĩ−u

max(0, r̂uj − r̂ui + λ)

is hinge loss function, widely and successfully used as a pairwise ranking loss [15], [99],

[100]. Here, r̂ui is the predicted ratings of user u for item i, and λ is the margin hyper-
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parameter for the hinge loss. The hinge loss is built upon the assumption that user

u prefers his interacted item i ∈ I+u over an uninteracted item (or negative example)

j ∈ I−u with the margin error of λ. In practice, the hinge loss is usually computed

over the sample of negative examples. We have introduced the hyper-parameter β for

controlling the influence of hinge loss to the JoVA’s objective function.

4.4.3 Variational Autoencoder Model Architecture

In this section, we explain the architecture of user VAE and item VAE. We build

the encoder and the decoder of user VAE and item VAE based on MLP (only fully

connected layers). In a user VAE and item VAE, the encoder includes one (or more)

hidden layer(s) connecting the input layer to the latent representation. Then the

decoder consists of one (or more) hidden layer(s) connecting the latent representation

to the output layer of user VAE (item VAE). The neural network takes an input

vector xu (or xi) and maps it to an output vector: yu (or yi) with:

yui = a(Wuxu + bu) (4.16)

where a is a non-linear activation function. Wu is a weight matrix, and b is a bias.

Both user VAE and item VAE are symmetric VAEs. It means that the dimensions of

the decoder’s hidden layers are the same as dimensions of the encoder but in reversed

order. We explained the choice of activation functions and numbers of hidden layers

and dimensions in the experiments chapter.
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4.5 Mini-batch Optimization Algorithm

In each training iteration, if we feed the whole user-item-rating matrix for training,

it would not be practical, particularly for massive datasets. Following previous work

[15], we decomposed the whole rating matrix into several small matrices. Then each

of the small matrices is considered as one mini-batch.

In each training iteration, user VAE takes n user rating vectors represented by

BU = Rp ∈ Rn×M where p is a list of n randomly sampled row indexes (user vectors).

And in each training iteration, item VAE takes m item rating vectors represented by

BI = Rq ∈ Rm×N where q is a list of m randomly sampled column indexes (item

vectors). The user VAE outputs B̂U and the item VAE outputs B̂I . There are

n × m common entries covered by both B̂U and B̂I . Matrix C ∈ Rn×m represents

commonly covered parts of B̂U and B̂I . Then in each training iteration, matrix C

can be predicted by:

Ĉ =
1

2
(B̂U

q + B̂I
p). (4.17)

51



Chapter 5

Experiments

Our empirical experiments intend to assess the effectiveness of our proposed meth-

ods JoVA and JoVA-Hinge, for top-k recommendation with implicit feedback. We

compare our methods’ accuracy under various evaluation metrics with an extensive

subset of state-of-the-art methods on real-world datasets. We further study the effec-

tiveness of our methods in handling cold-start users. We also investigate the training

and inference time of the proposed model. We show the promise of increased ac-

curacy of weighed averaging at the cost of tuning more hyper-parameters for each

dataset. Finally, we also investigate the impact of the hyper-parameter choice on

recommendation performance. The source code is available on Github1.

In summary, our experiments aim to address the following questions:

• (Q1) Does JoVA-Hinge outperform state-of-the-art implicit CF methods (sec-

tion 5.2)?

• (Q2) Are incorporating pairwise ranking loss helpful for learning user represen-

1https://github.com/bahareAskari/JoVA-Hinge.git

52

https://github.com/bahareAskari/JoVA-Hinge.git


tations (section 5.3)?

• (Q3) How does the proposed model perform for cold-start users comparing other

methods (section 5.5)?

• (Q4) Is using an unweighted average reasonable choice comparing to the weighted

average for JoVA and JoVA-Hinge (section 5.7)? What is the impact of hyper-

parameter choice (section 5.8)?

5.1 Evaluation Datasets

We report results obtained on four real-world recommendation system datasets: MovieLens-

1M (ML1M) 2, Yelp 3, Pinterest 4, and Netflix.5 Table 5.1 provides the statistics of

these datasets after pre-processing.

Dataset #User #Item #interaction Sparsity(%)

MovieLens 6,027 3,062 574,026 96.89
Yelp 12,705 9,245 318,314 99.729
Pinterest 55,187 9,911 1,500,806 99.726
Netflix 70,000 17,769 86,23,831 99.31

Table 5.1: Summary statistics of the four datasets.

MovieLens (ML1M) [101] dataset has been widely used for evaluating collaborative

filtering models. MovieLens consists of user-movie ratings obtained from a movie

recommendation service. ML1M originally includes five-star user-item ratings. As

previous work[8], [15], we used the version of the ML1M dataset that every user has

2http://files.grouplens.org/datasets/movielens/ml-1m.zip.
3https://www.yelp.com/dataset/challenge.
4https://sites.google.com/site/xueatalphabeta/academic-projects.
5https://www.kaggle.com/netflix-inc/netflix-prize-data
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given at least 20 ratings. The Yelp dataset is a subset of Yelp businesses, reviews,

and user data. Yelp originally consists of five-star user-item ratings. Pinterest is

a visual discovery website for gathering, arranging, and organizing content. Users

on Pinterest can pin images on their boards. This dataset is an implicit feedback

dataset originally gathered by [102] for investigating the image recommender system

performance.

5.1.1 Preprocessing

In ML1M, Yelp and Netflix following previous work [15], [16], [57], a user-item rating

was converted to 1 if it is greater than or equal to 4 and 0 otherwise. In Pinterest,

following the previous work [8], we kept only users with at least 20 interactions (pins).

Interaction is 1 if the user has pinned the image to her board. For each dataset, we

randomly selected 20% of all user-item values as the test set and 80% as the training

set. In the testing set, we further set 10% as a validation set. For Netflix, we have

randomly selected 70,000 users (with all their user-item interactions) from the original

dataset.

5.1.2 Evaluation Metrics

In terms of evaluation metrics, we use Precision@k, Recall@k, F1@k and Normalized

Discounted Cumulative Gain@k (NDCG@k) to assess the quality of ranked list ωu

predicted for user u with the ground-truth items. We report the score averaged by

all test interactions for all metrics.

Precision@k (P@K) quantifies which fraction of u’s recommended ranked list ωu
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which are u’s true preferred items:

P@K(ωu, I
∗
u) =

1

k

k∑
i=1

1 [ωu(i) ∈ I∗u] , (5.1)

where 1 [.] is the indicator function, ωu(i) is the ith ranked item in ωu, and I∗u is u’s

true preferred items in held-out data.

Similarly, Recall@k (R@K) measures which fraction of u’s true preferred items I∗u

are present in u’s recommended ranked list ωu:

R@K(ωu, I
∗
u) =

1

|I∗u|

k∑
i=1

1 [ωu(i) ∈ I∗u] . (5.2)

F1-score@k (F1@k) captures both of these metrics by computing the harmonic mean

of the precision and recall. It reaches its maximum of 1 if both precision and recall

are perfect (i.e., have value of 1):

F1@k(ωu, I
∗
u) =

2 · P@K(ωu, I
∗
u) ·R@K(ωu, I

∗
u)

P@K(ωu, I∗u) +R@K(ωu, I∗u)
(5.3)

One criticism of P@K, R@K, and F1@K is giving the same importance to all items

ranked within the first k. To address this, NDCG@k gives higher weight to the higher

ranked items:

NDCG@k(ωu, I
∗
u) =

1

IDCG@k

k∑
i=1

21[ωu(i)∈I∗u] − 1

log2(i+ 1)
, (5.4)

where IDCG@k =
∑k

i=1(1/ log2(i+ 1)) normalizes NDCG with the maximum of 1.

We report the average of these metrics in our experiments, when the average is
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taken over all testing users.

5.1.3 Baselines

To evaluate the effectiveness of our model, we compare with the following methods:

• BPR [38]. This model optimizes the MF model with a pairwise ranking loss.

We evaluated the number of latent factors of [8; 16; 32; 64], reporting the

best performance. It utilizes (Stochastic gradient descent) SGD to learn user

preferences from implicit feedback data. We used a fixed learning rate.

• CDAE 6[14]. This model assumes that observed ratings are a corrupted user’s

preferences. It extends the Denoising Auto-Encoder. It improves the denoising

autoencoder by adding a latent user factor to the input. We used sigmoid

function as activation function and chose the hinge-based pairwise loss presented

in CDAE.

• Mult-VAE 7 [16]. This model is a multi-layer VAE model. Mult-VAE used

the multinomial probabilistic instead of Gaussian and Bernoulli distributions

usually used in VAE. It used Bayesian inference for parameter estimation.

• NCF 8 [8]. It is state-of-the-art collaborative filtering method with implicit

feedback. It learns user-item interaction function using neural networks. It

combines MF and multi-layer perceptrons (MLP) and employs binary cross-

entropy loss.

6https://github.com/gtshs2/Collaborative-Denoising-Auto-Encoder
7https://github.com/dawenl/vaecf
8https://github.com/hexiangnan/neuralcollaborativef iltering
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• JCA 9 [15]. JCA deploys two classical autoencoders for modeling users and

items, and only uses hinge pairwise loss function.

• FAWMF [103]. It is an adaptive weighted matrix factorization method based

on a variational autoencoder. FAWMF models data confidence weights with a

community-based inference neural network.

We have used the implementations and optimal parameter settings reported by

the original papers for all these baselines.

5.1.4 Hyperparameters Setting

For learning all the models, we used Adam [104] as the optimizer. We set the learning

rate of 0.003. We decomposed the whole rating matrix into several small matrices.

Then each of the small matrices is considered as one mini-batch. We set the size

of the mini-batch to 1500. So, each mini-batch size is set to encompass 1500 rows

and 1500 columns. We use a validation set to find the optimal hyper-parameters for

JoVA-Hinge. We set λ = 0.15 (margin parameter) and α = 0.01 for all experiments,

but picked β individually for each dataset: β = 0.001 for Yelp, and β = 0.01 for both

MovieLens, Pinterest and Netflix.

We randomly sampled one negative instance per positive instance, so the ratio of

negative sampling is 1. Following previous work [15], in each epoch, we re-sampled

negative samples. We had two hidden layers for each encoder and decoder, each with

320 dimensions and tanh activation functions, while the sigmoid activation function

was used for the output layers. For both VAEs10 , we set the dimension of the latent

9https://github.com/Zziwei/Joint-Collaborative-Autoencoder
10See section 4.4.3 for description of VAE architecture, including its inputs and outputs.
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representation to 80. The number of hidden neurons was selected by grid search.

Adding more layers did not improve recommendation accuracy.

5.2 Performance Comparison

In this section, we report the performance of our model and the baselines and discuss

the results. We compared the top-k recommendations’ performance with various

k ∈ {1, 5, 10}. We report the results F1-score@k and NDCG@k of JoVA-Hinge and

baselines on four datasets in Table 5.2 and Table 5.3 11.

From the results, we can notice that methods using neural networks are superior

to traditional ranking approach BPR, which indicates the effectiveness of non-linear

features for recommendations task and in learning the user-item interaction function.

As we can see, our model achieves the best performance in the term of F1 measure

on four datasets and outperforms the state-of-the-art methods. Compared with the

best baseline (JCA), F1-score@k is improved by up to 3.65% in ML1M, 25.62% in

Yelp, 33.33% in Pinterest, and 50% in Netflix.

For NDCG, JoVA-Hinge also outperforms others significantly in three datasets

of Yelp, Pinterest and Netflix. In Yelp, the mimimum improvement is 8.19% (for

k = 10) and the maximum improvement is 10.86% (for k = 1). The JoVA-Hinge has

even higher improvement for Pinterest with the mimimum of 21.72% (for k = 10)

and the maximum of 34.82% (for k = 1). In Netflix, the mimimum improvement is

5.26% (for k = 1) and the maximum improvement is 11.76% (for k = 5). For ML1M

and NDCG, the performance of JoVA-Hinge is comparable to the performance of

best baseline FAWMF. Higher NDCG determines that the model can efficiently rank

11The purple shows the best results and the gray shows the second best results.
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ML1M
F1-score NDCG

@1 @5 @10 @1 @5 @10
BPR 0.0410 0.1285 0.1698 0.2843 0.2549 0.2434
NCF 0.0513 0.1487 0.1883 0.2955 0.2727 0.2709
CDAE 0.0518 0.1474 0.1873 0.3428 0.2896 0.2728
Mult-VAE 0.0518 0.1420 0.1801 0.3428 0.2886 0.2695
FAWMF 0.0595 0.1661 0.2068 0.3775 0.3176 0.2991
JCA 0.0602 0.1634 0.2080 0.3699 0.3125 0.2976
JoVA-Hinge 0.0624 0.1665 0.2115 0.3718 0.3143 0.3013

% improve 3.65 0.24 1.68 -1.53 -1.04 0.73

Yelp
F1-score NDCG

@1 @5 @10 @1 @5 @10
BPR 0.0065 0.0180 0.0219 0.01660 0.0223 0.0301
NCF 0.0153 0.0325 0.0350 0.0367 0.0392 0.0497
CDAE 0.0159 0.0315 0.0356 0.0378 0.0390 0.0471
Mult-VAE 0.0148 0.0317 0.0344 0.0350 0.0381 0.0465
FAWMF 0.0152 0.0290 0.0305 0.0358 0.0358 0.0425
JCA 0.0160 0.0350 0.0376 0.0405 0.0440 0.0537
JoVA-Hinge 0.0201 0.0391 0.0401 0.0449 0.0483 0.0581

% improve 25.62 11.71 6.64 10.86 9.77 8.19

Table 5.2: Performance of the baselines and JoVA-Hinge on MovieLens and Yelp
under F1@k and NDCG@k metrics. The purple shows the best results and the gray
shows the second best results.
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Pinterest
F1-score NDCG

@1 @5 @10 @1 @5 @10
BPR 0.0120 0.0292 0.0333 0.0328 0.0312 0.0414
NCF 0.0123 0.0306 0.0375 0.0375 0.0348 0.0479
CDAE 0.0154 0.0349 0.0401 0.0415 0.0387 0.0506
Mult-VAE 0.0153 0.0349 0.0402 0.0466 0.0397 0.0504
FAWMF 0.0131 0.0310 0.0360 0.0416 0.0359 0.0450
JCA 0.0150 0.0383 0.0456 0.0448 0.0424 0.0557
JoVA-Hinge 0.0200 0.0471 0.0542 0.0604 0.0532 0.0678

% improve 33.33 22.97 18.85 34.82 25.47 21.72

Netflix
F1-score NDCG

@1 @5 @10 @1 @5 @10
BPR 0.001 0.003 0.005 0.009 0.010 0.010
NCF 0.001 0.006 0.008 0.013 0.012 0.013
CDAE 0.001 0.005 0.007 0.011 0.011 0.013
Mult-VAE 0.001 0.004 0.010 0.011 0.011 0.011
FAWMF 0.002 0.006 0.009 0.019 0.017 0.017
JCA 0.002 0.007 0.011 0.017 0.016 0.017
JoVA-Hinge 0.003 0.008 0.012 0.020 0.019 0.019

% improve 50 14.29 9.10 5.26 11.76 11.76

Table 5.3: Performance of the baselines and JoVA-Hinge on Pinterest and Netflix
datasets under F1@k and NDCG@k metrics. The purple shows the best results and
the gray shows the second best results.
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the item’s user preferred in top ranks. Cross-examination of F1-score and NDCG

results suggests that our JoVA-Hinge model significantly improves the state-of-the-

art methods in terms of both F1-score and NDCG for sparse datasets (i.e., Yelp,

Netflix and Pinterest).

As we can see, the performance difference between the JoVA-Hinge model and

other methods is larger on Yelp, Pinterest and Netflix, which are sparser than Movie-

Lens. It may be due to considering user-user correlations or item-item correlations

separately is not enough to provide effective recommendations.

We also find that the performance improvement is more significant for smaller k.

It can be considered as advantageous for recommendation tasks. Because although

recommendations are presented as an ordered list, users usually pay more attention

to the first item. As the position of the item in the ranking gets higher, users may

pay less attention. Therefore, our results also suggest that JoVA-Hinge offers a more

significant improvement for smaller k (e.g., k = 1 or k = 5), which is of particular

practical interest for reducing cognitive burden on users, when the recommendation

slate is small.

Figure 5.1 illustrates the performance of all methods under precision@k and re-

call@k for various k and datasets. We noticed that the performance with Precision@k

and Recall@k trends were similar to trends with F1-score@k and NDCG@k. JoVA-

Hinges achieves the best results in most cases. The only exception is on MovieLens

datasets, where FAWMF performs better than it by a small margin in Presion@1 and

Presion@5. Recall can be considered an essential metric in applications when the

purpose is to present the greatest possible number of relevant items to the user.

On sparser datasets (Yelp and Pinterest), the JoVA-Hinge can perform better by
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Figure 5.1: Precision (a–c) and Recall (d–f) for all methods and three datasets of
MovieLens, Yelp, and Pinterest.
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more significant margin under Precision and Recall. This observation suggests the im-

portance of considering both user-user and item-item correlations on sparse datasets.

Similar to previous metrics, all neural-based methods outperform BPR under Pre-

cision and Recall by a large margin, which confirms non-linear features’ success in

the recommendation task. Overall, based on the results, our model improves the

recommendation performance.

In the real-world scenario abundant implicit feedback data is available, whereas

explicit data feedback is scarce. For example, on Amazon, all users’ purchasing history

can be considered as a source of implicit feedback data. However, small percentages

of users rate the products they bought or provide reviews about them. But for

academic research, accessing implicit feedback data is a challenging factor as there

are few public implicit datasets (e.g., purchase transactions) available. So it is crucial

to pre-process the explicit datasets and convert them to implicit feedback data.

In this thesis, for the MovieLens dataset, following previous work [15], [16], [57]

we converted the rating to 1 if it is higher or equal to 4. But some previous work

[8] considered rating as 1 if user has rated the item. Table 5.4 shows the results

of MovieLens where explicit data is binarized similar to previous work [8] 12. We

converted rating to 1 if the user has rated the item and to 0 otherwise. We can

observe that JoVA-Hinge outperforms other models (Mult-VAE, CDAE, FAWMF,

and JCA) with some exceptions. Precision was increased by up to 4.56%, F1-score

by up to 4.31%, and NDCG by up to 4.63%. Mult-VAE performs better than other

models under recall (up to 65.93%) and F1-score@1 (48.55%). Recall is an important

metric when we want to recommend as many relevant items as possible to users. Mult-

12The purple shows the best results and the gray shows the second best results.
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VAE is more successful than other models under recall showing considering user-user

correlations using one variational autoencoder can find more relevant items in this

dataset. Except for Mult-VAE, JoVA-Hinge performs better than other models under

recall.

ML1M

P@1 R@1 F1@1 NDCG@1

Mult-VAE 0.0863 0.0151 0.0257 0.0863

CDAE 0.1266 0.0077 0.0145 0.1267

FAWMF 0.1514 0.0081 0.0154 0.1513

JCA 0.1457 0.0084 0.0159 0.1457

JoVA-Hinge 0.1583 0.0091 0.0173 0.1583

% improve 4.56 -65.93 -48.55 4.63

P@5 R@5 F1@5 NDCG@5

Mult-VAE 0.0645 0.0547 0.0591 0.0710

CDAE 0.1130 0.0345 0.0529 0.1165

FAWMF 0.1325 0.0366 0.0574 0.1371

JCA 0.1274 0.0349 0.0548 0.1319

JoVA-Hinge 0.1349 0.0388 0.0603 0.1406

% improve 1.81 -40.98 2.03 2.55

P@10 R@10 F1@10 NDCG@10

Mult-VAE 0.0524 0.0883 0.0658 0.0811

CDAE 0.1071 0.0632 0.0795 0.1194

FAWMF 0.1222 0.0661 0.0858 0.1358

JCA 0.1213 0.0660 0.0855 0.1337

JoVA-Hinge 0.1232 0.0702 0.0895 0.1395

% improve 0.82 -25.78 4.31 2.72

Table 5.4: Performance of the baselines and JoVA-Hinge on MovieLens dataset with
different processing under all four metrics. The purple shows the best results and the
gray shows the second best results.
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5.3 Effect of Pairwise Ranking Loss

To confirm the effectiveness of incorporating pairwise ranking loss in the loss function

of the proposed model, we compare the result of JoVA-Hinge with JoVA. In other

words, we aim to understand whether both variational encoders and pairwise loss

function have contributed to the success of JoVA-Hinge. Table 5.8, 5.6 and 5.7 present

the performance of JoVA-Hinge and JoVA in terms of four evaluation metrics.

As we can see, using pairwise ranking loss in conjunction with VAE loss improves

accuracy on almost every case (except for P@1, P@10, and NDCG@10 on MovieLens).

So we empirically show that the hinge objective function can be effective for the

implicit top-k recommendation. We believe this successful combination of VAEs and

pairwise loss functions can be extended to other models built based on VAEs building

blocks even in other applications (e.g., vision, speech, etc.).
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ML1M
P@1 R@1 F1@1 NDCG@1

JoVA 0.3730 0.0329 0.0605 0.3730
JoVA-Hinge 0.3718 0.0340 0.0624 0.3718

P@5 R@5 F1@5 NDCG@5
JoVA 0.2845 0.1169 0.1657 0.3135
JoVA-Hinge 0.2853 0.1176 0.1665 0.3143

P@10 R@10 F1@10 NDCG@10
JoVA 0.2382 0.1864 0.2092 0.2990
JoVA-Hinge 0.2340 0.1890 0.2115 0.3013

Table 5.5: Performance of JoVA and JoVA-Hinge for various k and metrics on Movie-
Lense. The purple shows the best values.

Yelp
P@1 R@1 F1@1 NDCG@1

JoVA 0.0420 0.0120 0.0180 0.0433
JoVA-Hinge 0.0449 0.0130 0.0201 0.0449

P@5 R@5 F1@5 NDCG@5
JoVA 0.0320 0.0430 0.0360 0.0449
JoVA-Hinge 0.0337 0.0464 0.0391 0.0483

P@10 R@10 F1@10 NDCG@10
JoVA 0.0272 0.0722 0.0395 0.0553
JoVA-Hinge 0.0281 0.0758 0.0401 0.0581

Table 5.6: Performance of JoVA and JoVA-Hinge for various k and metrics on Yelp.
The purple shows the best values.

Pinterest
P@1 R@1 F1@1 NDCG@1

JoVA 0.0571 0.0113 0.0189 0.0571
JoVA-Hinge 0.0604 0.0120 0.0200 0.0604

P@5 R@5 F1@5 NDCG@5
JoVA 0.0464 0.0459 0.0461 0.0516
JoVA-Hinge 0.0474 0.0468 0.0471 0.0532

P@10 R@10 F1@10 NDCG@10
JoVA 0.0406 0.0799 0.0538 0.0666
JoVA-Hinge 0.0409 0.0805 0.0542 0.0678

Table 5.7: Performance of JoVA and JoVA-Hinge for various k and metrics on Pin-
terest. The purple shows the best values.
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5.4 Ablation Study

This section reports the results of an extensive ablation study on JoVA-Hinge by

removing some of its components and evaluating the resulting models. Table 5.8

shows our ablation studies’ results on three datasets under F1-score and NDCG. The

results show that JoVA performs better both user VAE and item VAE for all datasets

and metrics. This finding means that the ensemble of VAEs is more effective than

individual VAEs. We can also observe that hinge loss can improve item VAE, but can

not improve user VAE. However, except for one case, JoVA-Hinge improves JoVA for

all datasets and metrics. The results suggest that incorporating hinge loss improves

the performance of the ensemble of VAEs.
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ML1M Yelp Pinterest

F1@1 NDCG@1 F1@1 NDCG@1 F1@1 NDCG@1

User VAE .0510 .3191 .0150 .0352 .0168 .0508

User VAE-Hinge .0486 .3043 .0154 .0344 .0127 .0383

Item VAE .0555 .3423 .0156 .0352 .0178 .0538

Item VAE-Hinge .0573 .3479 .0181 .0407 .0200 .0597

JoVA .0605 .3730 .0180 .0433 .0189 .0571

JoVA-Hinge .0624 .3718 .0201 .0449 .0200 .0604

F1@5 NDCG@5 F1@5 NDCG@5 F1@5 NDCG@5

User VAE .1379 .2683 .0328 .0397 .0430 .0477

User VAE-Hinge .1360 .2596 .0323 .0388 .0330 .0364

Item VAE .1556 .2933 .0308 .0376 .0435 .0489

Item VAE-Hinge .1558 .2932 .0362 .0442 .0469 .0520

JoVA .1657 .3135 .0360 .0449 .0461 .0516

JoVA-Hinge .1665 .3143 .0391 .0483 .0471 .0532

F1@10NDCG@10 F1@10NDCG@10 F1@10NDCG@10

User VAE .1750 .254 .0365 .0495 .0512 .0625

User VAE-Hinge .1728 .2482 .0346 .0474 .0401 .0486

Item VAE .1980 .2816 .0340 .0472 .0498 .0621

Item VAE-Hinge .1984 .2816 .0385 .0540 .0538 .0663

JoVA .2092 .2990 .0395 .0553 .0538 .0666

JoVA-Hinge .2115 .3013 .0401 .0581 .0542 .0678

Table 5.8: Ablation study of JoVA-Hinge for various k, datasets, and metrics. The
purple and grey shows the best and second best results, respectively.

5.5 Impact of Sparsity

Data sparsity and cold-start problems are among the challenges in recommender sys-

tems. The cold-start problem refers to users or items that have no or few interactions

in systems. We aim to understand how the accuracy of recommendation changes for

users with a different number of user-item interactions (i.e., positive examples). We

study the average accuracy of users with at most L user-item interactions in training

data while increasing L. This setting allows us to study not only users with small

L (e.g., L= 10) but also how more availability of user-item interactions affect the

accuracy of recommendation.

68



<10 <15 <20 <25 <30 <35 <40 <45 <50
# positive examples in training

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

P@
1

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(a) P@1

<10 <15 <20 <25 <30 <35 <40 <45 <50
# training items

0.040

0.045

0.050

0.055

0.060

0.065

0.070

R@
1

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(b) R@1

<10 <15 <20 <25 <30 <35 <40 <45 <50
# training items

0.05

0.06

0.07

0.08

0.09

F1
@

1

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(c) F1-score@1

<10 <15 <20 <25 <30 <35 <40 <45 <50
# training items

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

N
D

CG
@

1

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(d) NDCG@1

<10 <15 <20 <25 <30 <35 <40 <45 <50
# positive examples in training

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P@
5

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(e) P@5

<10 <15 <20 <25 <30 <35 <40 <45 <50
# positive examples in training

0.12

0.14

0.16

0.18

0.20

R@
5

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(f) R@5

<10 <15 <20 <25 <30 <35 <40 <45 <50
# positive examples in training

0.06

0.08

0.10

0.12

0.14

0.16

F1
@

5

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(g) F1-score@5

<10 <15 <20 <25 <30 <35 <40 <45 <50
# positive examples in training

0.10

0.12

0.14

0.16

0.18

0.20

N
D

CG
@

5

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(h) NDCG@5

<10 <15 <20 <25 <30 <35 <40 <45 <50
# positive examples in training

0.02

0.04

0.06

0.08

0.10

0.12

P@
10

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(i) P@10

<10 <15 <20 <25 <30 <35 <40 <45 <50
# training items

0.16

0.18

0.20

0.22

0.24

0.26

R@
10

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(j) R@10

<10 <15 <20 <25 <30 <35 <40 <45 <50
# training items

0.04

0.06

0.08

0.10

0.12

0.14

0.16

F1
@

10

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(k) F1-score@10

<10 <15 <20 <25 <30 <35 <40 <45 <50
# training items

0.12

0.14

0.16

0.18

0.20

N
D

CG
@

10

MovieLens

JoVA-Hinge
JCA
FAWMF
Mult-VAE

(l) NDCG@10

Figure 5.2: Performance of Mult-VAE, FAWMF, JCA, and JoVA-Hinge on cold start
users on the MovieLens.
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We compare the performance of models Mult-VAE, FAWMF, JCA, and JoVA-

Hinge. From Figure 5.2, we can observe that generally increasing the number of

training items enhances the performance of the recommendations. In general, results

under different metrics have similar patterns. Unsurprisingly, the performance of

roughly all methods increases with more availability of user-item interactions. How-

ever, JoVA-Hinge outperforms other methods (with a few small exceptions) for users

with a low number of user-item interactions and for well-established users. For R@1,

F1-score@1, R@5, surprisingly, JoVA-Hinge works better for users with less than 10

interactions than users with less than 15. These few contradictions in results do not

prevent us from concluding that recommendation accuracy increases for users with

more observed interactions. We have enough evidence from experiments to confirm

our findings.

These results suggest that the overall success of JoVA-Hinge is not limited to a

specific class of users, and all users with various numbers of user-item interactions

can benefit from its prediction power. Therefore the experiments verify that JoVA-

Hinge can achieve a better performance than other methods for users with sparse

interactions.

5.6 Runtime Analysis

We conduct further experiments to explore the runtime of JoVA-Hinge, JCA, Mult-

VAE, and CDAE. All the models are trained on the same GPU. The training time of

different models is shown in Table 5.9. On all the datasets, the training time of Mult-

VAE, which uses one VAE, is less than other models. Comparing JoVA-Hinge and

Multi-VAE, we can see that using two VAE increases the training time. The training
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time of JoVA-Hinge is comparable to JCA. Classical autoencoder learns quicker and

needs less computational resources than VAE. Table 5.10 represents inference time

of different models. The inference is the step that a trained model is used to infer

(predict) the testing examples and contains a similar forward pass as a training process

to predict the outputs. In contrast, training does not include a backward pass to

compute the loss and update weights.

ML1M Yelp Pinterest
training time #epoch training time epoch training time #epoch

CDAE 1188 54 2698 80 16790 35
JCA 968 50 1750 35 12600 25
Mult-VAE 158 160 216 110 5880 200
JoVA-Hinge 2215 90 2028 40 19500 30

Table 5.9: Comparisons of training time (second[s]) and number of epochs.

Model MovieLens Yelp Pinterest

CDAE 2.5 10 60
JCA 1.75 7.6 28
Mult-VAE 1.5 6 41
JoVA-Hinge 2 5.5 48

Table 5.10: Comparisons of inference time (second[s]) for each epoch.

5.7 Weighted Average

In this section, we investigate the effect of different values of γ. We want to study

the effectiveness of the weighted average in JoVA-Hinge. Table 5.11 shows the perfor-

mance of JoVA-Hinge under F1-score@k and NDCG@k for various k on three datasets

with different values of γ (by holding other hyper-parameters at their optimal set-

tings). We increased γ from 0 to 1 with increments of 0.1. In MovieLens and Yelp,

JoVA-Hinge with γ = 0.5 outperforms other values of γ (with few exceptions). In
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ML1M
F1-score NDCG

@1 @5 @10 @1 @5 @10
0 0.0486 0.1360 0.1728 0.3043 0.2596 0.2482
0.1 0.0486 0.1985 0.1843 0.3186 0.2752 0.2638
0.2 0.0539 0.1530 0.1951 0.3411 0.2929 0.2792
0.3 0.0585 0.1568 0.2021 0.3520 0.2995 0.2874
0.4 0.0630 0.1623 0.205 0.3754 0.3094 0.295
0.5 0.0624 0.1665 0.2115 0.3718 0.3143 0.3013
0.6 0.0614 0.1629 0.2096 0.3669 0.3077 0.2971
0.7 0.0616 0.1661 0.2099 0.3740 0.3125 0.2987
0.8 0.0579 0.1619 0.204 0.3581 0.3056 0.2916
0.9 0.0569 0.1608 0.2041 0.3545 0.3033 0.2902
1 0.0573 0.1559 0.1984 0.3479 0.2932 0.2817

Yelp
F1-score NDCG

@1 @5 @10 @1 @5 @10
0 0.0154 0.0323 0.0346 0.0340 0.0388 0.0474
0.1 0.0161 0.0344 0.0364 0.0352 0.0414 0.0506
0.2 0.0169 0.0345 0.0376 0.0376 0.0418 0.0517
0.3 0.0161 0.0349 0.0381 0.0374 0.0423 0.0525
0.4 0.0193 0.0377 0.0401 0.0412 0.0463 0.0562
0.5 0.0201 0.0391 0.0401 0.0449 0.0483 0.0581
0.6 0.0201 0.0388 0.0411 0.0455 0.0478 0.0579
0.7 0.0187 0.0380 0.0406 0.0431 0.0465 0.0566
0.8 0.0188 0.0381 0.0406 0.0420 0.0462 0.0565
0.9 0.0189 0.0367 0.0395 0.0423 0.0454 0.0557
1 0.0181 0.0362 0.0385 0.0407 0.0442 0.0539

Pinterest
F1-score NDCG

@1 @5 @10 @1 @5 @10
0 0.0127 0.0331 0.0401 0.0383 0.0364 0.0485
0.1 0.0151 0.0373 0.0443 0.0450 0.0415 0.0545
0.2 0.0171 0.0396 0.0471 0.0510 0.0446 0.0584
0.3 0.0175 0.0420 0.0493 0.0525 0.0471 0.0611
0.4 0.0182 0.0438 0.0514 0.0550 0.0492 0.0637
0.5 0.0200 0.0471 0.0542 0.0604 0.0532 0.0678
0.6 0.0200 0.0474 0.0542 0.0604 0.0532 0.0663
0.7 0.0205 0.0494 0.0564 0.0616 0.0556 0.0706
0.8 0.0210 0.0496 0.0571 0.0638 0.0561 0.0714
0.9 0.0189 0.0473 0.0553 0.0576 0.0529 0.0681
1 0.0200 0.0469 0.0538 0.0597 0.0520 0.0663

Table 5.11: Performance of the JoVA-Hinge under F1@k and NDCG@k metrics with
different γ values. The purple shows the best values.
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Pinterest, JoVA-Hinge with γ = 0.8 achieved the best results. JoVA-Hinge with

γ = 0.8 outperforms JoVA-Hinge with γ = 0.5 up to 5.63%. The best value for γ

depends on the dataset, the number of users, the number of items, the number of rat-

ings provided for each item, and the number of ratings given by users. If the implicit

feedback matrix includes more enriched item vectors than user vectors, lager γ is a

more suitable choice and vice versa.

In general, the results of JoVA-Hinge with γ = 0.5 are the best or comparable

to other γ values’ performance. Introducing a hyper-parameter to a model increases

the training cost (training time), so it is reasonable to use the unweighted average for

JoVA. In conclusion, extending unweighted averaging in JoVA-Hinge to the weighted

averaging can increase model accuracy with the cost of tuning more hyper-parameters

for each dataset.

5.8 Hyper-parameter Sensitivity

In this section, we investigate how we set the margin parameters of λ. Hyper-

parameter λ defines how big the margin between positive feedback and random nega-

tive samples is possible. Results on different datasets under F1-score and NDCG with

various k are reported in Table 5.12. We can see that on three datasets, JoVA-Hinge

with λ = 0.15 either outperforms other values or is comparable. On MovieLens,

λ = 0.1 can improve up to 1.08% (NDCG@1), on Yelp λ = 0 improves F1-score by

1% and on Pinterest λ = 0.1 can improve up to 1.15% (NDCG@1). Therefore, this

experiment confirms that λ = 0.15 is an appropriate choice for the margin parameter.
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ML1M
F1-score NDCG

@1 @5 @10 @1 @5 @10
0 0.0622 0.1679 0.2102 0.3707 0.3139 0.300
0.1 0.0629 0.166 0.2107 0.3758 0.3166 0.3012
0.15 0.0624 0.1665 0.2115 0.3718 0.3143 0.3013
0.2 0.0614 0.1645 0.2069 0.3662 0.3106 0.2965
0.3 0.0588 0.1594 0.2037 0.3561 0.3036 0.2910
0.4 0.0550 0.1572 0.2019 0.3396 0.2981 0.2868
0.5 0.0522 0.1515 0.1964 0.3351 0.2908 0.2802
0.6 0.0510 0.1483 0.1938 0.3290 0.2861 0.2758
0.7 0.0504 0.1478 0.1937 0.3335 0.2891 0.2774
0.8 0.0496 0.1447 0.1896 0.3333 0.2857 0.2731
0.9 0.0456 0.1427 0.1912 0.3182 0.2785 0.2702
1 0.0453 0.1449 0.1911 0.3139 0.2806 0.2700

Yelp
F1-score NDCG

@1 @5 @10 @1 @5 @10
0 0.0190 0.0377 0.0399 0.0420 0.0460 0.0559
0.1 0.0189 0.0376 0.0405 0.0430 0.0460 0.0565
0.15 0.0201 0.0391 0.0401 0.0449 0.0483 0.0581
0.2 0.0190 0.0380 0.0399 0.0431 0.0463 0.0559
0.3 0.0182 0.0361 0.0395 0.0409 0.0445 0.0550
0.4 0.0189 0.0366 0.0401 0.0414 0.0450 0.0558
0.5 0.0182 0.0384 0.0402 0.0409 0.0464 0.0559
0.6 0.018 0.379 0.0402 0.0405 0.0458 0.0558
0.7 0.0186 0.0377 0.0402 0.0420 0.0458 0.0561
0.8 0.0176 0.0375 0.0402 0.0392 0.0452 0.0553
0.9 0.0178 0.0374 0.0402 0.0408 0.0456 0.0559
1 0.0193 0.0370 0.0401 0.0435 0.04590 0.0562

Pinterest
F1-score NDCG

@1 @5 @10 @1 @5 @10
0 0.0202 0.0468 0.0541 0.0611 0.0530 0.0674
0.1 0.0202 0.0469 0.0541 0.0609 0.0532 0.0674
0.15 0.0200 0.0471 0.0542 0.0604 0.0532 0.0678
0.2 0.0199 0.0465 0.0534 0.0601 0.0525 0.0671
0.3 0.0196 0.0461 0.0538 0.0589 0.0520 0.0670
0.4 0.0193 0.0460 0.0534 0.0584 0.0519 0.0665
0.5 0.0192 0.0454 0.0531 0.0581 0.0511 0.0657
0.6 0.0186 0.0454 0.0533 0.0563 0.0508 0.0657
0.7 0.0188 0.0454 0.0531 0.0568 0.0509 0.0657
0.8 0.0186 0.0449 0.0531 0.0561 0.0504 0.0654
0.9 0.0173 0.0450 0.0530 0.0528 0.0498 0.0648
1 0.0186 0.0452 0.0531 0.0565 0.0507 0.0655

Table 5.12: Performance of the JoVA-Hinge under F1@k and NDCG@k metrics with
different λ values. The purple shows the best values.
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5.9 Summary

In this chapter, we showed that JoVA-Hinge could perform better than a broad set of

state-of-the-art collaborative filtering methods through extensive experiments. Our

proposed models have two main strong points: (1) they take advantage of variational

autoencoders’ representation learning power. (2) they can learn both user-user and

item-item correlations. User and item VAEs together can extract more and comple-

mentary information from the user/item interactions data. The generative process of

VAEs can also help the JoVA and JoVA-Hinge perform better predictions than their

similar model with classic autoencoders (JCA). Our experimental results on the three

real-world datasets show that JoVA-Hinge with hinge loss usually can perform better

than JoVA (see section 5.3). Another important point from our experiments is that

the ensemble of VAEs improves the performance of the ensemble of autoencoders

(JCA), especially in the sparse dataset (see section 5.2). For this, we need to use

VAEs for sparse data. The ensemble of autoencoders is often not powerful enough to

learn good representations from sparse data.
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Chapter 6

Conclusions

In this chapter, we present conclusions and directions for future work. The section

6.1 describes the conclusions, and the section 6.2 illustrates some directions for future

work.

6.1 Overall Summary

In this thesis, we have introduced a joint variational autoencoder (JoVA) for top-k

recommendation with implicit feedback. JoVA, as an ensemble of two VAEs, jointly

learns user-user and item-item correlations simultaneously. A variant of JoVA, re-

ferred to as JoVA-Hinge, includes pairwise ranking loss in addition to VAE’s loss to

specialize JoVA further for recommendation with implicit feedback. We have investi-

gated a wide variety of hyperparameter settings on different datasets. Our empirical

experiments on multiple real-world datasets show that JoVA-Hinge advances the rec-

ommendation accuracy compared to a broad set of state-of-the-art methods, under

various evaluation metrics. Additionally, our experiments confirm that JoVA-Hinge
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outperforms other baselines across all users regardless of their numbers of observed

interactions.

6.2 Future Directions

Our JoVA (JoVA-Hinge) model provides a robust framework for the broader investi-

gation of the ensemble of VAEs equipped with pairwise ranking loss in recommender

systems or even possibly in other applications (e.g., vision, robotics, etc.). Our mod-

els (JoVA and JoVA-Hinge) are generic, which can be extended to various types of

recommendation tasks. Some problems that the research of this thesis can continue

are presented in the following subsections.

6.2.1 Incorporating Side information

In future work, we are interested in incorporating external information into the frame-

work for improving the recommendation quality. External information includes user

and item features (e.g., descriptions, demographic information, etc.), side information

(e.g., social networks), context (e.g., time, location, etc.) [21].

6.2.2 Dynamic Environments

In this thesis, we focus on modeling user interests’ in stable (non-dynamic) environ-

ments. However, in real-world scenarios, users’ interests and items’ characteristics

change over time. In the future, we are interested in extending JoVA to model non-

stationary user preferences. In the future, we can adopt reinforcement learning [105].

Reinforcement learning is a powerful approach for sequential decision-making prob-
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lems in dynamic environments.

6.2.3 Scalability

Improving the scalability of the JoVA framework is also an important future direction.

While our system’s time performance is comparable to the other prior work systems,

we plan further to improve the scalability of JoVA through distributed computing

techniques. The main reason for the long training time is the massive number of

model parameters. In future work, we can work on variants of models that reduce

the number of parameters.

78



References

[1] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions,” IEEE trans-

actions on knowledge and data engineering, vol. 17, no. 6, pp. 734–749, 2005.

[2] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender

system: A survey and new perspectives,” ACM Computing Surveys (CSUR),

vol. 52, no. 1, pp. 1–38, 2019.

[3] L. Candillier, F. Meyer, and M. Boullé, “Comparing state-of-the-art collabo-

rative filtering systems,” in International Workshop on Machine Learning and

Data Mining in Pattern Recognition, Springer, 2007, pp. 548–562.

[4] X. Amatriain, J. M. Pujol, and N. Oliver, “I like it... I like it not: Evaluat-

ing user ratings noise in recommender systems,” in Seventeenth International

Conference on User Modeling, Adaptation, and Personalization, Trento, Italy,

2009, pp. 247–258.

[5] S. Balakrishnan and S. Chopra, “Collaborative ranking,” in Proceedings of

the fifth ACM international conference on Web search and data mining, 2012,

pp. 143–152.

79



[6] S. Hacker and L. Von Ahn, “Matchin: Eliciting user preferences with an on-

line game,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 2009, pp. 1207–1216.

[7] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback

datasets,” in 2008 Eighth IEEE International Conference on Data Mining,

Ieee, 2008, pp. 263–272.

[8] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative

filtering,” in Proceedings of the 26th international conference on world wide

web, 2017, pp. 173–182.

[9] A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based music

recommendation,” in Advances in neural information processing systems, 2013,

pp. 2643–2651.

[10] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G.

Anderson, G. Corrado, W. Chai, M. Ispir, et al., “Wide & deep learning for

recommender systems,” in Proceedings of the 1st workshop on deep learning

for recommender systems, 2016, pp. 7–10.

[11] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for rec-

ommender systems,” in Proceedings of the 21th ACM SIGKDD international

conference on knowledge discovery and data mining, 2015, pp. 1235–1244.

[12] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative knowl-

edge base embedding for recommender systems,” in Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and data min-

ing, 2016, pp. 353–362.

80



[13] B. Song, X. Yang, Y. Cao, and C. Xu, “Neural collaborative ranking,” in

Proceedings of the 27th ACM International Conference on Information and

Knowledge Management, 2018, pp. 1353–1362.

[14] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising auto-

encoders for top-n recommender systems,” in Proceedings of the Ninth ACM

International Conference on Web Search and Data Mining, 2016, pp. 153–162.

[15] Z. Zhu, J. Wang, and J. Caverlee, “Improving top-k recommendation via

jointcollaborative autoencoders,” in The World Wide Web Conference, 2019,

pp. 3483–3482.

[16] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational au-

toencoders for collaborative filtering,” in Proceedings of the 2018 World Wide

Web Conference, 2018, pp. 689–698.

[17] X. Li and J. She, “Collaborative variational autoencoder for recommender

systems,” in Proceedings of the 23rd ACM SIGKDD international conference

on knowledge discovery and data mining, 2017, pp. 305–314.

[18] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender

system: A survey and new perspectives,” ACM Computing Surveys (CSUR),

vol. 52, no. 1, pp. 1–38, 2019.

[19] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”

Advances in artificial intelligence, vol. 2009, 2009.

[20] Y. Koren and R. Bell, “Advances in collaborative filtering,” in Recommender

systems handbook, Springer, 2015, pp. 77–118.

[21] C. C. Aggarwal et al., Recommender systems. Springer, 2016, vol. 1.

81



[22] K. Lang, “Newsweeder: Learning to filter netnews,” in Machine Learning Pro-

ceedings 1995, Elsevier, 1995, pp. 331–339.

[23] X. Li, M. Cheung, and J. She, “Connection discovery using shared images by

gaussian relational topic model,” in 2016 IEEE International Conference on

Big Data (Big Data), IEEE, 2016, pp. 931–936.

[24] M. Pazzani and D. Billsus, “Learning and revising user profiles: The identifi-

cation of interesting web sites,” Machine learning, vol. 27, no. 3, pp. 313–331,

1997.

[25] R. Li and X. Guo, “An improved algorithm to term weighting in text classi-

fication,” in 2010 International Conference on Multimedia Technology, IEEE,

2010, pp. 1–3.

[26] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, “Recommender sys-

tems survey,” Knowledge-based systems, vol. 46, pp. 109–132, 2013.

[27] N. X. Bach, N. Do Hai, and T. M. Phuong, “Personalized recommendation of

stories for commenting in forum-based social media,” Information Sciences,

vol. 352, pp. 48–60, 2016.

[28] H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for rec-

ommender systems,” in Proceedings of the 21th ACM SIGKDD international

conference on knowledge discovery and data mining, 2015, pp. 1235–1244.

[29] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint arXiv:1606.05908,

2016.

[30] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized denoising autoen-

coders for domain adaptation,” arXiv preprint arXiv:1206.4683, 2012.

82



[31] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-

encoders: Explicit invariance during feature extraction,” in Icml, 2011.

[32] S. Ghosh, Simple matrix factorization example on the movielens dataset using

pyspark.

[33] Y. Koren, “Factorization meets the neighborhood: A multifaceted collabora-

tive filtering model,” in Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2008, pp. 426–434.

[34] H. Zhang, F. Shen, W. Liu, X. He, H. Luan, and T.-S. Chua, “Discrete collab-

orative filtering,” in Proceedings of the 39th International ACM SIGIR confer-

ence on Research and Development in Information Retrieval, 2016, pp. 325–

334.

[35] D. D. Le and H. W. Lauw, “Indexable bayesian personalized ranking for effi-

cient top-k recommendation,” in Proceedings of the 2017 ACM on Conference

on Information and Knowledge Management, 2017, pp. 1389–1398.

[36] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization for

online recommendation with implicit feedback,” in Proceedings of the 39th

International ACM SIGIR conference on Research and Development in Infor-

mation Retrieval, 2016, pp. 549–558.

[37] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang, “One-

class collaborative filtering,” in 2008 Eighth IEEE International Conference on

Data Mining, IEEE, 2008, pp. 502–511.

83



[38] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian

personalized ranking from implicit feedback,” arXiv preprint arXiv:1205.2618,

2012.

[39] F. Yuan, G. Guo, J. M. Jose, L. Chen, H. Yu, and W. Zhang, “Lambdafm:

Learning optimal ranking with factorization machines using lambda surro-

gates,” in Proceedings of the 25th ACM International on Conference on Infor-

mation and Knowledge Management, 2016, pp. 227–236.

[40] W. Pan and L. Chen, “Gbpr: Group preference based bayesian personalized

ranking for one-class collaborative filtering,” in Twenty-Third International

Joint Conference on Artificial Intelligence, 2013.

[41] M. Weimer, A. Karatzoglou, Q. V. Le, and A. J. Smola, “Cofi rank-maximum

margin matrix factorization for collaborative ranking,” in Advances in neural

information processing systems, 2008, pp. 1593–1600.

[42] N. Srebro, J. Rennie, and T. S. Jaakkola, “Maximum-margin matrix factoriza-

tion,” in Advances in neural information processing systems, 2005, pp. 1329–

1336.

[43] N. N. Liu and Q. Yang, “Eigenrank: A ranking-oriented approach to collabo-

rative filtering,” in Proceedings of the 31st annual international ACM SIGIR

conference on Research and development in information retrieval, 2008, pp. 83–

90.

[44] T. D. Noia, V. C. Ostuni, P. Tomeo, and E. D. Sciascio, “Sprank: Semantic

path-based ranking for top-n recommendations using linked open data,” ACM

84



Transactions on Intelligent Systems and Technology (TIST), vol. 8, no. 1,

pp. 1–34, 2016.
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