
Computational and Applied Mathematics           (2021) 40:29 
https://doi.org/10.1007/s40314-021-01418-5

On the unit Burr-XII distribution with the quantile regression
modeling and applications

Mustafa Ç. Korkmaz1 · Christophe Chesneau2

Received: 12 October 2020 / Revised: 31 December 2020 / Accepted: 9 January 2021
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2021

Abstract
In this paper, we modify the Burr-XII distribution through the inverse exponential scheme
to obtain a new two-parameter distribution on the unit interval called the unit Burr-XII
distribution. The basic statistical properties of the newly defined distribution are studied.
Parameters estimation is dealt and different estimation methods are assessed through two
simulation studies. A new quantile regression model based on the proposed distribution is
introduced. Applications of the proposed distribution and its regression model to real data
sets show that the proposedmodels have better modeling capabilities than competingmodels.

Keywords Probability weighted moments · Order statistics · Stochastic ordering · Data
analysis · Regression model · Unit distribution · Burr-XII distribution · Recovery rate ·
Viable CD34+ cells

Mathematics Subject Classification 60E05 · 62E15 · 62F10

1 Introduction

Several unit distributions have been used for modelling data for percentage and proportions
in many areas such as biological studies, mortality and recovery rates, economics, health,
risks, and measurements sciences. No doubt that the beta, Johnson SB (see Johnson 1949)
and Kumaraswamy (see Kumaraswamy 1980) distributions quickly come to the mind, both
to model and to obtain inferences based on data sets from the above areas. However, these
classical models may be inadequate, which pose many significant problems for accurate data
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analysis. For this reason, the number of studies on unit modeling increases in the literature.
The newly proposed unit distributions have usually been introduced by the transformation of
the well-known continuous distributions. The advantage of these unit distributions is to give
more flexibility to the basic distribution over the unit interval without adding new parameters.
For example, the unit gamma (see Consul and Jain 1971), log-Lindley (see Gómez-Déniz
et al. 2014), unit Weibull (see Mazucheli et al. 2018), unit Gompertz (see Mazucheli et al.
2019b), unit Birnbaum-Saunders (see Mazucheli et al. 2018), log-xgamma (see Altun and
Hamedani 2018), unit inverse Gaussian (see Ghitany et al. 2019), unit generalized half nor-
mal (see Korkmaz 2020b) and log-weighted exponential (see Altun 2021) distributions have
been obtained via the negative exponential function transformation of the gamma, Lind-
ley (see Lindley 1958), Weibull, Gompertz, Birnbaum-Saunders, xgamma (see Sen et al.
2016), inverse Gaussian, generalized half normal (see Cooray and Ananda 2008) and log-
weighted exponential (see Gupta and Kundu 2009) distributions, respectively. One may refer
toMazucheli et al. (2019a), Altun and Cordeiro (2020), Korkmaz (2020a), Gündüz andKork-
maz (2020), Korkmaz et al. (2021a) and Korkmaz et al. (2021b) for the other unit models
which have been obtained with other transformation methods.

On the other hand,Burr (seeBurr 1942) has pioneered a systemof continuous distributions,
which has 12 distributions. This system has been obtained with a differential equation of the
form dF(x)/dx = F(x)(1− F(x))g(x), where g(x) is a non-negative function and F(x) is
the satisfying cumulative distribution function (cdf) to this equation. In thisway, the author has
generalized the Pearson equation. Among these 12 distributions, the Burr III, Burr XII (BXII)
and Burr X distributions are commonly known, and have received much more attention in the
literature. The BXII distribution has the following cdf and probability density function (pdf):

�(z, α, β) = 1 − (
1 + zβ

)−α
and π(z, α, β) = αβzβ−1

(
1 + zβ

)−α−1
, respectively, where

z > 0 and α, β > 0 are the shape parameters. Its pdf shapes are unimodal or decreasing. It
has found many applications in the literature such as reliability analysis (see Zimmer et al.
1998), portfolio segmentation (see Beirlant et al. 1998), and regression modeling (see Afify
et al. 2018; Altun et al. 2018a, b; Cordeiro et al. 2018; Lanjoni et al. 2016; Silva et al. 2008
and Yousof et al. 2019). The Weibull distribution is the limiting distribution of the BXII
distribution when α tends to+∞. The inverse BXII distribution is known as the Burr type III
distribution. For α = 1 and β = 1, the BXII model is reduced to the Lomax and log-logistic
(Fisk) distributions, respectively. One may see Rodriguez (1977) and Tadikamalla (1980) for
its relations to other distributions in detail.

On the other hand, the classic regression models relate the mean response by given cer-
tain values of the covariates. If the response variable follows a skew distribution or has
outliers, then the classic regression model is not suitable for the inferences based on the
relation between the response variable and covariates. Since the mean is affected by these
specific situations, the median is a more informative and robust estimate for these situations.
As a solution, quantile regression models were proposed by Koenker and Bassett (1978).
Mazucheli et al. (2020) have introduced the unit Weibull quantile regression modeling and
have compared its performance with the beta regression (see Ferrari and Cribari-Neto 2004)
and Kumaraswamy quantile regression (see Mitnik and Baek 2013) modelings.

The scope of this study is to propose a new unit alternative distribution and to introduce
its alternative quantile regression modeling to the beta regression (see Ferrari and Cribari-
Neto 2004) and Kumaraswamy quantile regression modeling (see Mitnik and Baek 2013) in
order to model the percentages and proportions when data has outliers. To obtain a new unit
distribution, we use the negative exponential transformation of the BXII distribution. In this
way, we will transport its applicability and work-ability to the unit interval. Hence, we will
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bring into the different pdf and hazard rate function (hrf) properties that the BXII distribution
has not on the unit interval.

The paper is organized as follows. The proposed distribution is defined in Sect. 2. Its basic
distributional properties are described in Sect. 3. Section 4 is devoted to procedures of the
different estimation methods to estimate its unknown parameters. Two different simulation
studies are given to see the performance of the different estimates of the model parameters
in Sect. 5. The new quantile regression model based on the newly defined distribution is
discussed in Sect. 6. Two real data illustrations, which one is related to the univariate data
modeling and other is the quantile regression modeling, are illustrated in Sect. 7. Finally, the
paper ends in Sect. 8.

2 The new unit distribution and its properties

The new unit distribution is defined as follows: Let Z be a random variable having the BXII
distribution with parameters α and β and X = e−Z . Then, the cdf and pdf of X are presented
by

F(x, α, β) = (
1 + (− log x)β

)−α
(1)

and

f (x, α, β) = αβx−1 (− log x)β−1 (
1 + (− log x)β

)−α−1
, (2)

where x ∈ (0, 1) and α, β > 0 are the shape parameters. We denote the newly defined
distribution asUBX I I orUBX I I (α, β) when the parameters need to be indicated. The hrf
of the UBX I I (α, β) distribution is given by

h(x, α, β) = αβx−1 (− log x)β−1

(
1 + (− log x)β

)−α−1

1 − (
1 + (− log x)β

)−α
. (3)

The analytical behavior of f (x, α, β) and h(x, α, β) is discussed below. When x tends to 0,
the following equivalences hold:

f (x, α, β) ∼ h(x, α, β) ∼ αβx−1 (− log x)−αβ−1 ,

which tends to +∞ for all the values of β > 0 and α > 0.
When x tends to 1, we have

f (x, α, β) ∼ αβ (1 − x)β−1 , h(x, α, β) ∼ β (1 − x)−1 .

Therefore, in this case, if β < 1, f (x, α, β) tends to +∞, if β = 1, f (x, α, β) tends to
α, and if β > 1, f (x, α, β) tends to 0. Moreover, for all the values of β > 0 and α > 0,
h(x, α, β) tends to +∞. The critical points of f (x, α, β) can be determined by solving in a
numerical way the following equation with respect to x :

αβx−2(− log x)β−2 (
(− log x)β + 1

)−α−2

(
(− log x)β(αβ + log x + 1) − β + log x + 1

) = 0.

If we excluded the bounds 0 and 1, this equation is equivalent to (− log x)β(αβ + log x +
1) − β + log x + 1 = 0, which remains of a high complexity from a mathematical point of
view. After numerical tests, 0, 1 or 2 critical points into (0, 1) can be found, depending on
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Fig. 1 The possible shapes regions of the pdf (left) and hrf (right)

Fig. 2 The possible shapes of the pdf (left) and hrf (right)

the values α and β. For instance, in the simple case where β = 1, there is only one critical
point into (0, 1), it is given by x = e−α and is a maximum point.

The critical points of h(x, α, β) can be discussed in a similar manner. More elegantly,
the possible shapes of f (x, α, β) and h(x, α, β) can be represented graphically. Figure 1
determines the regions of the values of α and β where f (x, α, β) is U-shaped, increasing,
decreasing, inverse N-shaped and unimodal, and h(x, α, β) is bathtub and increasing (the
other kinds of shapes being excluded). Figure 2 completes the previous analysis by plotting
diverse curves of f (x, α, β) and h(x, α, β) to visualize their possible shapes.

FromFigs. 1 and 2 , it is clear that theUBX I I distribution enjoys a high level of flexibility,
and we can take advantage of it for various statistical applications.

TheUBX I I distribution is also completely determined by its quantile function (qf) given
as the inverse function of F(x, α, β). After some development, it is defined by

Q(u, α, β) = e−(
u−1/α−1

)1/β
, (4)

where u ∈ (0, 1). The median of the UBX I I distribution is derived by taking u = 0.5
in the above equation. Similarly, the other quartiles and octiles can be determined. Also,
some important qfs can be simply expressed, such as the quantile density and hazard quantile
functions obtained as

q(u, α, β) = 1

αβ
u−1/α−1 (

u−1/α − 1
)1/β−1

e−(
u−1/α−1

)1/β
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and

�(u, α, β) = αβ

1 − u
u1/α+1 (

u−1/α − 1
)1−1/β

e
(
u−1/α−1

)1/β
,

where u ∈ (0, 1), respectively. For the general interpretation of these functions, we refer the
reader to Nair and Sankaran (2009).

3 Some properties

This section presents several theoretical results of interest involving theUBX I I distribution.

3.1 First-order stochastic dominance

The first-order stochastic dominance is a simple concept allowing to compare distributions
through their respective cdfs.We say that a distribution A first-order stochastically dominates
another distribution B if their respective cdfs FA(x) and FB(x) satisfy the following inequal-
ities: FA(x) ≤ FB(x) for all x ∈ R. This concept is particularly developed in biometrics,
reliability, econometrics and actuarial sciences. See, for instance, Shaked and Shanthikumar
(2007) and Muller and Stoyan (2002).

We now expose some results on first-order stochastic dominance satisfied by theUBX I I
distribution. They are contained in the following proposition.

Proposition 1 The two following results hold.

• If α1 ≥ α2, then the U BX I I (α1, β) distribution first-order stochastically dominates the
U BX I I (α2, β) distribution.

• TheU BX I I (α, β) distribution is first-order stochastically dominated by the unit Weibull
distribution with parameters α and β introduced by Mazucheli et al. (2020), and defined
by the following cdf:

FUW (x, α, β) = e−α(− log x)β ,

where x ∈ (0, 1).

Proposition 1 shows that the UBX I I distribution offers a different alternative to the unit
Weibull distribution, in the first-order stochastic sense, and in statistical modelling as well.

3.2 Probability weightedmoments with applications

The probability weighted moments of a random variable generalize the ordinary moments,
and naturally appearwhenwe dealwith the ordinarymoments of order statistics. They are also
involved in some parametric estimation methods. A detailed description of these moments
can be found in Greenwood et al. (1979). In the context of the Burr-XII distribution, we may
also refer to Usta (2013).

The following result is about an expression of the probability weighted moments of a
random variable having the UBX I I distribution.

Proposition 2 Let s and u be two integers, and X be a random variable having the
U BX I I (α, β) distribution. Then, the (s, u)th probability weighted moment of X can be
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Fig. 3 The skewness and kurtosis of the UBX I I distribution for the parameter values into (0, 5)

determined as

μ′
s,u = E

[
Xs F(X , α, β)u

] = 1

u + 1
MBX I I (−s, α(u + 1), β),

where, in full generality, MBX I I (t, α, β) denotes the well-knownmoment generating function
(mgf) of the Burr-XII distribution with parameters α and β taken at the point t .

An analytical expression of MBX I I (t, α, β) exists through the use of the Meijer G-function.
See, for instance, Paranaíba et al. (2011) and Silva and Cordeiro (2015). It can also be eval-
uated numerically with an immediate implementation through any mathematical software,
such as R, Python, Matlab, etc.

From Proposition 2, we easily derive the sth moment of X by taking u = 0 which gives
μ′
s = E(Xs) = μ′

s,0. Also, the mean of X is given by μ = μ′
1, the standard deviation of X

is obtained as σ = (μ′
2 − μ2)1/2 and the sth general coefficient of X is specified by

ϒs = E

[(
X − μ

σ

)s]
= σ−s

s∑

k=0

(
s

k

)
(−1)s−kμs−kμ′

k .

From this general coefficient, the coefficients of skewness and kurtosis of X are defined
byϒ3 andϒ4, respectively. The numerical behavior of these coefficients are shown in Fig. 3.

FromFig. 3, we see thatϒ3 andϒ4 have versatile valueswith non-monotonic shapes. Also,
ϒ3 can be close to 0 and large, showing that theUBX I I distribution is mainly right-skewed.

3.3 Entropy

The entropy of the UBX I I distribution can be evaluated through numerous ways. Here,
we propose the Tsallis entropy, revealing a manageable expression through the use of the
mgf of the Burr-XII distribution. Generalities on the Tsallis entropy can be found in Amigo
et al. (2018). The following result concerns a series expansion of this entropy measure in the
context of the UBX I I distribution.
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Proposition 3 Let τ < 1. Then, the Tsallis entropy of the U BX I I distribution exists and it
is given as

T (τ, α, β) = 1

τ − 1

[
1 −

∫ 1

0
f (x, α, β)τdx

]

= 1

τ − 1

[
1 − ατβτ

∫ +∞

0
e(τ−1)y yτ(β−1) (

1 + yβ
)−τ(α+1)

dy

]
.

For τ ∈ (0, 1), the following upper bound holds:

T (τ, α, β) ≤ 1

τ − 1

[
1 − ατβτ

(1 − τ)τ(β−1)+1
	(τ(β − 1) + 1)

]
,

where 	(x) denotes the standard Euler gamma function.

Proof The proof is centered around the expression of the integral term. From Equation (2),
we get

∫ 1

0
f (x, α, β)τdx = ατβτ

∫ 1

0
x−τ (− log x)τ(β−1) (

1 + (− log x)β
)−τ(α+1)

dx .

By performing the change of variables x = e−y , we obtain

∫ 1

0
f (x, α, β)τdx = ατβτ

∫ +∞

0
e(τ−1)y yτ(β−1) (

1 + yβ
)−τ(α+1)

dy,

which exists if τ < 1. Now, for τ ∈ (0, 1), by using the following inequalities:
(
1 + yβ

)−τ(α+1) ≤ 1 and applying the change of variables z = (1 − τ)y, we have

∫ 1

0
f (x, α, β)τdx ≤ ατβτ

∫ +∞

0
e−(1−τ)y yτ(β−1)dy

= ατβτ

(1 − τ)τ(β−1)+1

∫ +∞

0
zτ(β−1)+1−1e−zdz

= ατβτ

(1 − τ)τ(β−1)+1
	(τ(β − 1) + 1).

By substituting this inequality in the definition of T (τ, α, β) and taking into account that the
factor term (τ − 1)−1 is negative, we obtain the stated result. �	

The integral term in the Tsallis entropy can not be developed. We can however evaluate
it numerically, and the Tsallis entropy as well. In a similar way, we can express the Rényi
entropy which also depends on the same integral term.

3.4 Stress–strength parameter

In lifetime testing, various resistance measures exist to measure the lifetime of a system.
Among them, there is the stress-strength parameter defined by the probability that a compo-
nent of the system will function satisfactorily if the applied stress is lower than its strength.
More details are given in Surles and Padgett (2001)). The following proposition exhibits a
simple form for this parameter in the setting of the UBX I I distribution.
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Proposition 4 Let X1 and X2 be two independent random variables, with X1 having the
U BX I I (α1, β) distribution and X2 having the U BX I I (α2, β) distribution. Then, if we
define the stress-strength parameter as R(α1, α2, β) = P(X2 ≤ X1), then we have

R(α1, α2, β) = α1

α1 + α2
.

The 1/2 value is obtained for α1 = α2. In this case, X1 and X2 are identically distributed.
The closed-form expression of R(α1, α2, β) making it interesting for statistical estimation
purposes.

3.5 Order statistics

The modeling of various lifetime systems having some component structures needs the con-
sideration of ordered random variables, called order statistics. The fundamental of this notion
can be found in David and Nagaraja (2003). Here, standard distributional properties of the
order statistics of the UBX I I distribution are presented.

Let X1, X2, . . . , Xn be a random sample from the UBX I I distribution with sample size
n, and X(1), X(2), . . . , X(n) be their ordered statistics, such that X(1) ≤ X(2) ≤ . . . ,≤ X(n).
For any j = 1, . . . , n, from Equations (1) and (2), the pdf of X( j) is defined as

fX( j) (x, α, β) = n!
( j − 1)!(n − j)! f (x, α, β)F(x, α, β) j−1[1 − F(x, α, β)]n− j

= n!
( j − 1)!(n − j)!αβx−1 (− log x)β−1 (

1 + (− log x)β
)−α j−1

[
1 − (

1 + (− log x)β
)−α

]n− j
,

where x ∈ (0, 1). In particular, the pdf of the infimum of X1, X2, . . . , Xn , that is X(1), can
be expressed as

fX(1) (x, α, β) = nαβx−1 (− log x)β−1 (
1 + (− log x)β

)−α−1

[
1 − (

1 + (− log x)β
)−α

]n−1
,

where x ∈ (0, 1). Also, the pdf of the supremum of X1, X2, . . . , Xn , that is X(n), is

fX(n)
(x, α, β) = nαβx−1 (− log x)β−1 (

1 + (− log x)β
)−αn−1

,

where x ∈ (0, 1). We recognize the pdf of the UBX I I (αn, β) distribution. Therefore, the
theory developed in the previous sections for theUBX I I distribution can be directly applied
for X(n).

The moments of X( j) are discussed in the next proposition.

Proposition 5 Let s be an integer. Then, with the above notations, the sth moment of X( j) can
be expressed as a finite linear combination of mgfs of the BXII distribution. More precisely,
we have

μ∗
s,( j) = E(Xs

( j)) =
n− j∑

k=0

a( j),kMBX I I (−s, α(k + j), β),

123



On the unit Burr-XII distribution with the quantile... Page 9 of 26    29 

where

a( j),k = n!
( j − 1)!(n − j)!

(
n − j

k

)
(−1)k

1

k + j
.

Thanks to Proposition 5, one can express diverse parameters of X( j), such as its mean,
variance, standard deviation, central moments, etc. Also, the order statistics of the UBX I I
distribution will have important roles in the estimation procedures described in the next
section.

4 Estimation procedures for themodel parameters

In this section, six different estimation methods have been pointed out to estimate the param-
eters of the UBX I I distribution. The details are given below.

4.1 Maximum likelihood estimation

In this subsection, we derive estimations of the parameters α and β via the method of the
maximum likelihood (ML) estimation. Let X1, X2, . . . , Xn be a random sample of size n
from the UBX I I (α, β) distribution with observed values x1, x2, . . . , xn . Let ϒ = (α, β)T

be the vector of the model parameters. Then, the log-likelihood function is given by


(ϒ) = n logα + n logβ −
n∑

i=1

log xi + (β − 1)
n∑

i=1

log(− log xi ) − (α + 1)

×
n∑

i=1

log
(
1 + (− log xi )

β
)
. (5)

Then, the ML estimates (MLEs) of α and β, say α̂ and β̂, are obtained by maximizing

(ϒ) with respect to ϒ. Mathematically, this is equivalent to solve the following non-linear
equation with respect to the parameters:

∂

∂α

(ϒ) = n

α
−

n∑

i=1

log
(
1 + (− log xi )

β
) = 0 (6)

and

∂

∂β

(ϒ) = n

β
+

n∑

i=1

log(− log xi ) − (α + 1)
n∑

i=1

log(− log xi )(− log xi )β

1 + (− log xi )β
= 0.

From Equation (6), these solutions are governed by the following relation:

α = n

[
n∑

i=1

log
(
1 + (− log xi )

β
)
]−1

. (7)

Substituting Equation (7) in Equation (5), the profile log-likelihood (PLL) based on the
parameter β is given by


 (β) = n log

⎛

⎝n

[
n∑

i=1

log
(
1 + (− log xi )

β
)
]−1

⎞

⎠ −
n∑

i=1

log xi + (β − 1)
n∑

i=1

log(− log xi )
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− n −
n∑

i=1

log
(
1 + (− log xi )

β
) + n logβ. (8)

Therefore, the MLE β̂ is obtained by maximizing Equation (8) based on the parameter β,
which can be obtained through the solving of the following non-linear equation:

∂

∂β

 (β) = n

β
− n

n∑

i=1

(− log xi )β log(− log xi )

1 + (− log xi )β

[
n∑

i=1

log
(
1 + (− log xi )

β
)
]−1

+
n∑

i=1

log(− log xi ) −
n∑

i=1

(− log xi )β log(− log xi )

1 + (− log xi )β
= 0.

Hence, the numerical methods are needed to obtain theMLE β̂. After theMLE β̂ is obtained,
the α̂ is derived from the relation Equation (7).

Under mild regularity conditions, one can use the bivariate normal distribution with the
mean μ = (α, β) and variance-covariance matrix I−1, where I denotes the 2 × 2 Fisher
informationmatrix, to construct confidence intervals or likelihood ratio test on the parameters.
The asymptotic variance-covariance matrix of the maximum likelihood estimators of the
parameters is given by the inverse of the Fisher information matrix. If the considered pdf
is smooth, the related Fisher information matrix is the matrix whose elements are negative
of the expected values of the second partial derivatives of the log-likelihood function with
respect to the parameters. In applications, the observed information matrix denoted by J ,
which is the negative of the Hessian matrix of the log-likelihood function with the parameters
replaced by their estimates and is a sample-based version of the Fisher information, is usually
used instead of I . The components of the observed information matrix can be requested from
the authors when it is needed. It is noticed that it is also obtained numerically by computer
packages such as R. Then, approximate 100(1 − ϑ)% confidence intervals for α and β can
be determined by the following bounds:
α̂± zϑ/2sα̂ and β ± zϑ/2sβ̂ , where zϑ/2 is the upper (ϑ/2)th percentile of the standard normal

distribution, sα̂ =
√
J−1
αα , s

β̂
=

√
J−1
ββ , and J−1

εε are diagonal elements of J−1 corresponding
to ε = α and β.

4.2 Maximum product spacing estimation

The maximum product spacing (MPS) method has been introduced in Cheng and Amin
(1979). It is based on the idea that differences (spacings) between the values of the cdf at
consecutive data points should be identically distributed. Let X(1), X(2), . . . , X(n) be the
ordered statistics from the UBX I I distribution with sample size n, and x(1), x(2), . . . , x(n)

be the ordered observed values. Then, we define the MPS function by

MPS(ϒ) = 1

n + 1

n+1∑

i=1

log
[
F(x(i), α, β) − F(x(i−1), α, β)

]
. (9)

The MPS estimates (MPSEs) can be obtained by maximizing MPS(ϒ) with respect to ϒ.
They are also given as the simultaneous solutions of the following non-linear equations:

∂MPS(ϒ)

∂α
= 1

n + 1

n+1∑

i=1

[
F

′
α(x(i), α, β) − F

′
α(x(i−1), α, β)

F(x(i), α, β) − F(x(i−1), α, β)

]

= 0
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and

∂MPS(ϒ)

∂β
= 1

n + 1

n+1∑

i=1

[
F

′
β(x(i), α, β) − F

′
β(x(i−1), α, β)

F(x(i), α, β) − F(x(i−1), α, β)

]

= 0,

where

F
′
α(x, α, β) = − (

1 + (− log x)β
)−α

log
(
1 + (− log x)β

)

and

F
′
β(x, α, β) = −α

(
1 + (− log x)β

)−α−1
(− log x)β log (− log x) log

(
1 + (− log x)β

)
.

4.3 Least squares estimation

The least square estimates (LSEs) α̂LSE and β̂LSE of α and β, respectively, are obtained by
minimizing the following function:

LSE(ϒ) =
n∑

i=1

(
F(x(i), α, β) − E

[
F(X(i), α, β)

])2
, (10)

with respect to ϒ, where E
[
F(X(i), α, β)

] = i/(n+1) for i = 1, 2, . . . , n. Then, α̂LSE and

β̂LSE are solutions of the following equations:

∂LSE(ϒ)

∂α
= 2

n∑

i=1

F
′
α(x(i), α, β)

(
F(x(i), α, β) − i

n + 1

)
= 0

and

∂LSE(ϒ)

∂β
= 2

n∑

i=1

F
′
β(x(i), α, β)

(
F(x(i), α, β) − i

n + 1

)
= 0,

where F
′
α(x, α, β) and F

′
β(x, α, β) are mentioned before.

4.4 Weighted least squares estimation

Similarly to LSEs, the weighted least square estimates (WLSEs) α̂WLSE and β̂WLSE of α

and β, respectively, are obtained by minimizing the following function:

WLSE(ϒ) =
n∑

i=1

1

V
[
F(X(i), α, β)

]
(
F(x(i), α, β) − E

[
F(X(i), α, β)

])2
, (11)

with respect to ϒ, where E
[
F(X(i), α, β)

] = i/(n + 1) and V
[
F(X(i), α, β)

] =
i(n − i + 1)/[(n + 2)(n + 1)2] for i = 1, 2, . . . , n. Then, α̂WLSE and β̂WLSE are solu-
tions of the following equations:

∂WLSE(ϒ)

∂α
= 2

n∑

i=1

(n + 2)(n + 1)2

i(n − i + 1)

(
F(x(i), α, β) − i

n + 1

)
F

′
α(x(i), α, β) = 0
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and

∂WLSE(ϒ)

∂β
= 2

n∑

i=1

(n + 2)(n + 1)2

i(n − i + 1)

(
F(x(i), α, β) − i

n + 1

)
F

′
β(x(i), α, β) = 0.

4.5 Anderson–Darling estimation

The Anderson–Darling minimum distance estimates (ADEs) α̂AD , β̂AD of α and β, respec-
tively, are obtained by minimizing the following function:

AD (ϒ) = −n −
n∑

i=1

2i − 1

n

[
log F(x(i), α, β) + log

{
1 − F(x(n+1−i), α, β)

}]
, (12)

with respect to ϒ. Therefore, α̂AD and β̂AD can be obtained as the solutions of the following
system of equations:

∂AD (ϒ)

∂α
= −

n∑

i=1

2i − 1

n

[
F ′

α(x(i), α, β)

F(x(i), α, β)
− F ′

α(x(n+1−i), α, β)

1 − F(x(n+1−i), α, β)

]
= 0

and

∂AD (ϒ)

∂β
= −

n∑

i=1

2i − 1

n

[
F ′

β(x(i), α, β)

F(x(i), α, β)
− F ′

β(x(n+1−i), α, β)

1 − F(x(n+1−i), α, β)

]

= 0.

4.6 The Cramér–vonMises estimation

The Cramér–von Mises minimum distance estimates (CVMEs) α̂CVM and β̂CVM of α and
β, respectively, are obtained by minimizing the following function:

CVM (ϒ) = 1

12n
+

n∑

i=1

[
F(x(i), α, β) − 2i − 1

2n

]2
, (13)

with respect to ϒ. Therefore, the desired estimates can be obtained as the solutions of the
following system of equations:

∂CVM (ϒ)

∂α
= 2

n∑

i=1

(
F(x(i), α, β) − 2i − 1

2n

)
F ′

α(x(i), α, β) = 0

and

∂CVM (ϒ)

∂β
= 2

n∑

i=1

(
F(x(i), α, β) − 2i − 1

2n

)
F ′

β(x(i), α, β) = 0.

Since all the equations above contain non-linear functions, it is not possible to obtain
explicit forms of all estimates directly. Therefore, they have to be solved by using numerical
methods such as the Newton–Raphson and quasi-Newton algorithms. In addition, Equations
(5), (9), (10), (11), (12) and (13) can be also optimized directly by using the software such asR
(constrOptim,optim and maxLik functions), S-Plus andMathematica to numerically
optimize 
(ϒ) and MPS (ϒ), LSE (ϒ), WLSE (ϒ), AD (ϒ) and CVM (ϒ) functions.
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5 Simulations

In this section, we perform two graphical simulation studies to see the performance of the
above estimates of the UBX I I distribution with respect to varying sample size n. The first
step is the generation of N = 1000 samples of size n = 20, 25, . . . , 1000 from the UBX I I
distribution based on the actual parameter values. We take them as α = 5, β = 2 and
α = 2, β = 5 for the first and second simulation studies, respectively. The random numbers
generation is obtained by the use of the qf of the model. All the estimations based on the
estimation methods have been obtained by employing the constrOptim function in the
R program. Further, we calculate the empirical mean, bias and mean square error (MSE) of
the estimations for comparisons between estimation methods. For ε = α and β, the bias and
MSE are calculated from all the samples as

Biasε(n) = 1

N

N∑

i=1

(ε − ε̂i ), MSEε(n) = 1

N

N∑

i=1

(ε − ε̂i )
2,

respectively. We expect that the empirical means are close to true values when the MSEs and
biases are near zero. The results of this simulation study are shown in Figs. 4 and 5.

Figures 4 and 5 show that all estimates are consistent since the MSE and biasedness
decrease to zero with increasing sample size as expected. All estimates are asymptotic unbi-
ased also. According to the simulation studies, the amount of the biases and MSEs of the
CVM, MLE and MPS methods are bigger than other methods initially for both parameters.
However, the performances of all estimation methods come closer to each other while the
sample size increases. It can be said that the LSE, WLSE and AD methods may be used to
obtain inferences from small samples size. Therefore, allmethods can be chosen as alternative
results for the newly definedmodel according to large sample sizes. It is noticed that since the
MLE and MPS estimation methods have very important properties such as consistency, effi-
ciency and asymptotic normality, they offer many advantages in terms of inferences. Similar
results can be also obtained for different parameter settings.

Moreover, we also give a simulation study based on above results of the MLEs for the
efficiency of the 95% confidence intervals. We use the coverage length (CL) criteria to see
the performance of the MLEs. For ε = α or β, the estimated CLs are given by

CLε(n) = 3.919928

N

N∑

i=1

sε̂i ,

where sε̂i is the standard error of theMLE ε at the i th sample (which is evaluated by inverting
the observed information matrix).

Figure 6 displays the simulation results for CLs. As seen from Fig. 6, as expected, when
the sample size increases the CL decreases for each parameter.

6 An alternative quantile regressionmodel

The quantile regression has been originally proposed by Koenker and Bassett (1978) as a way
to model the conditional quantiles of an outcome variable as a function of explanatory vari-
ables without any distributional assumptions on the error term. When the response variable
has a skewed distribution or outliers in the measurements, robust estimation results based
on the regression model are needed for the model inference. For this reason, the quantile
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Fig. 4 The results of on the parameters α (top) and β (bottom) for the first simulation study

Fig. 5 The results of the parameters α (top) and β (bottom) for the second simulation study

regression is a good robust alternative model to the ordinary LSE model, which estimates the
conditional mean of the response variable. In other words, quantile regression can be thought
of as an extension of linear regression used when the conditions of linear regression are not
met. The quantile regression has also been applied to the analysis of continuous bounded
outcomes (see, e.g., Jung 1996; Geraci and Bottai 2007; Liu and Bottai 2009; Bottai et al.
2010). Since the moments of the UBX I I distribution are not obtained with a closed-form,
its mean is not obtained with a simple term. Although it has no moments with closed-form,
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Fig. 6 The estimated ALs for the first (left) and second (right) simulation studies

its qf given is very manageable. So, we are also motivated with quantile regression modeling
thanks to its nice statistical property.

On the other hand, if the support of the response variable is defined on the unit interval, a
unit regression model based on the unit distribution can be used for modeling the conditional
mean or quantiles of the response variable via independent variables (covariates). No doubt
that the beta regression Ferrari and Cribari-Neto (2004) model comes to mind firstly to
relate with continuous mean response variables in the standard unit interval with covariates.
However, using the beta regressionmodelmay not be suitable when the unit response variable
has a skewed distribution because the mean is affected by the skewing of the distribution
precisely. If the conditional dependent variable is skewed, especially, the median may be
more appropriate when compared with the mean Mazucheli et al. (2020).

With the re-parameterizing the probability distribution as a function of the quantile
approach, the Kumaraswamy Mitnik and Baek (2013), Bayes et al. (2017) and unit Weibull
Mazucheli et al. (2020) quantile regression models have been proposed for modeling the
conditional quantiles of the unit response. In light of these references, this Section aims
to introduce an alternative quantile regression model considering a parametrization of the
UBX I I distribution in terms of any quantile. The re-parameterizing process has been applied
via a shape parameter as being a quantile of the UBX I I distribution. Now, we introduce an
alternative quantile regression based on the UBX I I distribution.

6.1 The UBXII distribution based on the its quantiles

Since the qf of the UBX I I distribution is a very tractable analytic equation, its pdf and
cdf can be re-parameterized in terms of its quantiles easily. Firstly, the pdf of the UBX I I
distribution can be given with a re-parameterization based on its qf given in Equation (4).
Let μ = Q(u, α, β) and β = log

(
u−1/α − 1

)
/log (− logμ). Then, the pdf and cdf of the

re-parameterized distribution are given by

g(y, α, μ) = log
(
u−1/α − 1

)α

log (− logμ)y
(− log y)

log
(
u−1/α−1

)

log(− logμ)
−1

(

1 + (− log y)
log

(
u−1/α−1

)

log(− logμ)

)−α−1

(14)
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Fig. 7 The pdf shapes of the
UBX I I quantile distribution

and

G(y, α, μ) =
(

1 + (− log y)
log

(
u−1/α−1

)

log(− logμ)

)−α

, (15)

respectively, where α > 0 is the shape parameter, the parameter μ ∈ (0, 1) represents
the quantile parameter, and u is known. A random variable Y having this pdf is denoted by
Y ∼ UBX I I (α, μ, u). Some possible shapes of the quantile distribution are shown in Fig. 7.
We see that the possible pdf shapes the distribution are bathtub shaped, inverse N-shaped and
unimodal. It is noticed that we must have either u > 2−α and μ > e−1, either u < 2−α and
μ < e−1.

6.2 The UBXII quantile regressionmodel

Now, we focus on the quantile regression model based on the UBX I I distribution with pdf
in Eq. (14). Let y1, y2, . . . , yn such that yi is an observation of Yi ∼ UBX I I (α, μi , u) for
i = 1, . . . , n, with unknown parameters μi and α. Note that the parameter u is known. Then,
the new quantile regression model is defined as

g(μi ) = xiδT ,

where δ = (
δ0, δ1, δ2, . . . , δp

)T and xi = (
1, xi1, xi2, xi3, . . . , xip

)
are the unknown regres-

sion parameter vector and known i th vector of the covariates. The function g(x) is the link
function which is used to relate the covariates to conditional quantile of the response variable.
For instance, when the parameter u = 0.5, the covariates are linked to the conditional median
of the response variable. Since the UBX I I distribution is defined on the unit-interval, we
use the logit-link function such that

g(μi ) = logit(μi ) = log

(
μi

1 − μi

)
, i = 1, 2 . . . n.

Alternatively, the probit and log-log link functions can be used for linking to conditional
quantiles of the response variable.
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6.3 Parameter estimation

We point out the unknown parameters of the UBX I I quantile regression model to obtain
them via the MLE method. Thus, we consider

g(μi ) = log

(
μi

1 − μi

)
= xiδT . (16)

From Equation (16), the following relation is obtained

μi = exp
(
xiδT

)

1 + exp
(
xiδT

) . (17)

Let Y1, Y2, . . . , Yn be a random sample of size n with Yi ∼ UBX I I (α, μi , u) and observed
values y1, y2, . . . , yn , where the μi is given by (17) for i = 1, . . . , n. Then using Equation
(14), the associated log-likelihood function is given by


 (�) = n logα + n log
[
log

(
u−1/α − 1

)] −
n∑

i=1

log yi −
n∑

i=1

log
[
log (− logμi )

]

−
n∑

i=1

(
log

(
u−1/α−1

)

log(− logμi )
− 1

)
log (− log yi ) − (α + 1)

n∑

i=1

log

(

1 + (− log yi )
log

(
u−1/α−1

)

log(− logμi )

)

,

(18)

where � = (α, δ)T is the unknown parameter vector. The MLEs of �, say �̂ =
(
α̂, δ̂

)T
,

is obtained by maximizing 
 (�) with respect to �. Since Equation (18) includes nonlinear
function according to model parameters, it can be maximized directly by software such as
R, S-Plus, and Mathematica.

It can be noticed that, when u = 0.5, it is equivalent to model the conditional median.

Under mild regularity conditions, the asymptotic distribution of
(
�̂ − �

)
is multivariate

normal Np+1 (0, I ), where I is the inverse of the expected information matrix. One may
use the (p + 1) × (p + 1) observed information matrix instead of I . The elements of this
observed information matrix are evaluated numerically by the software. We use themaxLik
function (see Henningsen and Toomet 2011) of R software to maximize Equation (18).
This function also gives asymptotic standard errors numerically, which are obtained by the
observed information matrix.

6.4 Residual analysis

The residual analysis can be needed to check whether the regression model is suitable. In
order to see this, we will point out the randomized quantile residuals (see Dunn and Smyth
1996) and the Cox-Snell residuals (see Cox and Snell 1968).

For i = 1, . . . , n, the i th randomized quantile residual is defined by

r̂i = �−1 [
G(yi , α̂, μ̂i )

]
,

where the G(y, α, μ) is the cdf of the re-parameterizedUBX I I distribution given by Equa-
tion (15), �−1(x) is the qf of the standard normal distribution, and μ̂i is defined by Equation
(17) with δ̂ instead of δ. If the fittedmodel successfully deals with the data set, the distribution
of the randomized quantile residuals will correspond to the standard normal distribution.
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Table 1 Some summary statistics of the data set

Minimum Mean Median Maximum Variance Skewness Kurtosis n

0.4000 0.7907 0.8000 0.9900 0.0130 −0.7851 3.8237 239

Alternatively, for i = 1, . . . , n, the i th Cox and Snell residual is given by

êi = − log
[
1 − G(yi , α̂, μ̂i )

]
.

If the model fits to data accordingly, the distribution of these residuals will distribute the
exponential distribution with scale parameter 1.

7 Data analysis

This section provides two real data sets applications for illustrating themodeling ability of the
UBX I I distribution. The first data set is about univariate real data modeling and the other
is about quantile regression modeling. The used data set for both applications consists of
some measurements about 239 patients who consented to autologous peripheral blood stem
cell (PBSC) transplant after myeloablative doses of chemotherapy between the years 2003
and 2008 at the Edmonton Hematopoietic Stem Cell Lab in Cross Cancer Institute - Alberta
Health Services. Autologous PBSC transplants have been widely used for rapid hematologic
recovery following myeloablative therapy for various malignant hematological disorders.
The data set informs about the patients age, gender, as well as their clinical characteristics
such as recovery rates for viable CD34+ cells and chemotherapy receiving of the patients.
The data set can be easily found in the simplexreg package, proposed by Zhang et al. (2016),
of the R software. We use variable recovery rates of the viable CD34+ cells for univariate
data modeling and relate this recovery rate with some covariates in the data set for the second
application. The calculations have been obtained by themaxLik (seeHenningsen andToomet
2011) and goftest functions of the R software. The details are the following.

7.1 Univariate modeling for the recovery rates of the viable CD34+ cells data

Here, used data is recovery rates of the viable CD34+ cells of the 239 patients, who consented
to autologous PBSC transplant after myeloablative doses of chemotherapy. Some summary
statistics and box plot of the data set have been given by Table 1 and Fig. 8. As it can be seen
that the data is left skewed and some observations can be considered as outliers.

Based on this data set, we also compare fitting performances of the proposed distribution
under the MLEmethod with well known unit distributions in the literature. These comparing
distributions have the following pdfs:

• Beta distribution:

fBeta(x, α, β) = 1

B(α, β)
xα−1 (1 − x)β−1 ,

where x ∈ (0, 1), α > 0, β > 0 and B(α, β) denotes the classical beta function.
• Johnson SB distribution:

fSB (x, α, β) = β

x (1 − x)
φ

[
β log

(
x

1 − x

)
+ α

]
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Fig. 8 The box plot of the data
set

where x ∈ (0, 1), α ∈ R, β > 0 and φ(x) denotes the pdf of the standard normal
distribution.

• Kumaraswamy (Kw) distribution:

fKw(x, α, β) = αβxα−1 (
1 − xα

)β−1
,

where x ∈ (0, 1), α > 0 and β > 0.
• Standard two-sided power (STSP) distribution (see van Dorp and Kotz 2002):

fST SP (x, α, β) =

⎧
⎪⎪⎨

⎪⎪⎩

β
( x

α

)β−1
, x ∈ (0, α)

β

(
1 − x

1 − α

)β−1

, x ∈ (α, 1),

where α ∈ (0, 1) and β > 0.

We use the estimated log-likelihood values 
̂, Akaike information criteria (AIC), Bayesian
information criterion (BIC), Kolmogorov–Smirnov (K S), Cramér-von-Mises (W ∗ ) and
Anderson–Darling (A∗) goodness of-fit statistics criteria to determine the optimum model.
The optimum model will have the smaller the values of the AIC, BIC, KS, W ∗ and A∗
statistics and the larger the values of 
̂ and p-value of the goodness-of-statistics.

We give the estimates and the values of goodness-of-fits statistics in Table 2. In particular,
Table 2 indicates that theUBX I I distribution has the lowest values of AIC and BIC statistics
as well as it has the lowest values of A∗ andW ∗ and K-S statistics with higher p-value. These
results show that the UBX I I distribution is the best model for the considered data set.

Figure 9 presents the estimated pdfs, cdfs, and, the quantile–quantile (QQ) plot of the
UBX I I model to see how they are the suitability for data set graphically. From this figure,
it can be said that the UBX I I model has fitted by successfully capturing the skewness and
kurtosis of the data set. The QQ plot indicates that the fitting performance of the UBX I I
distribution is suitable for the data.
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Fig. 9 The fitted pdfs (left), cdfs (center) and QQ plot (right) of the UBX I I model

Fig. 10 The plots of the PLL functions for the data set

Further, to show the likelihood equations have a unique solution, we plot the PLL functions
of the parametersα andβ for the data set in Fig. 10. From this figure, we see that the likelihood
equations have a unique solution for the MLEs.

7.2 Quantile regressionmodeling for the recovery rates of the viable CD34+ cells
data

To see the applicability of the UBX I I regression model, this section presents a real appli-
cation based on the above data set. The aim is to associate these response values (y) with
covariates. The response variable y and covariates associated with this response variable are:

• y: recovery rate of CD34+cells;
• x1 (Gender): 0 for female, 1 for male;
• x2 (Chemotherapy): 0 for receiving chemotherapy on a one-day protocol, 1 for a 3-day

protocol;
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• x3 (Age): adjusted patient’s age, i.e. the current age minus 40.

This data set has been analyzed by Mazucheli et al. (2020). Since the response variable
has some observed outliers, the use of the quantile regression will be better for its inferences.
Two competitor regression models, which are well-known literature, are considered and
compared to theUBX I I quantile regression model. They are the beta regression (see Ferrari
and Cribari-Neto 2004) and Kumaraswamy quantile regression (see Mitnik and Baek 2013)
models. Their pdfs are

f (y, α, μ) = 	 (α)

	 (αμ)	 ((1 − μ) α)
yαμ−1 (1 − y)(1−μ)α−1 , y ∈ (0, 1),

where μ ∈ (0, 1) is the mean and α > 0 and

f (y, α, μ) = α log (0.5)

log (1 − μα)
yα−1 (

1 − yα
)log(0.5)/(α(1−μ)−1)

, y ∈ (0, 1),

whereμ ∈ (0, 1) is themedian andα > 0, for the beta andKumaraswamy quantile regression
models, respectively.

The regression model based on μi is given by

logit (μi ) = δ0 + δ1xi1 + δ2xi2,+δ3xi3 i = 1, 2, . . . , 239.

It is noticed that the quantile parameter u is taken 0.5 for the UBX I I and Kumaraswamy
quantile regression models. We give the results of the regression analysis in Table 3. From
this table, parameter estimations of all models are greater than zero. It means that if there is
any relation statistically significant between the recovery rate of CD34+cells and covariates,
they will affect the recovery rate of CD34+cells positively. The parameter δ1 has not been
seen statistically significant at usual level for all regression models. So, the gender variable
has no effect on the response variable recovery rate. However, the parameters δ2 and δ3 have
been seen statistically significant at 7% level for the UBX I I regression model. Hence, the
recovery rate of the old patients is higher than the young patients as well as the recovery rate
of the patients who are receiving chemotherapy on a 3-day protocol is higher than those of
the patients who are receiving chemotherapy on a one-day protocol.

Further, theUBX I I regression model has lower values of the AIC and BIC statistics have
an upper log-likelihood value than those of other regression models. So, it can be concluded
that the proposed regression model is the best model among application models in terms of
better modeling ability than other regression models.

Figures 11 and 12 display the QQ plots of the randomized quantile residuals and PP plots
of the Cox-Snell residuals for all regression models, respectively. These figures indicate that
the fitting of theUBX I I regression model is better than those of the beta and Kumaraswamy
models.

Since the distribution behind the randomized quantile residuals are theoretically in ade-
quatenesswith a standard normal distribution, onemay seewhether they fit this corresponding
distribution. TheKS, A∗ andW ∗ results are given in Table 4. From this table, it is clear that the
results based on theUBX I I quantile regression model of the randomized quantile residuals
are more suitable than those of the beta and Kumaraswamy regression models.

8 Conclusion

We define a new unit model, called unit Burr-XII distribution, in order to model percentage,
proportion and rate measurements. We investigate general structural properties of the new
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Fig. 11 The QQ plot of the randomized quantile residuals based on the regression application

Fig. 12 The PP plots of the Cox-Snell residuals based on the regression application

Table 4 The goodness-of-fit results of the randomized quantile residuals for the regression models

Models KS p-value A∗ p-value W∗ p-value

UBXII 0.0422 0.7893 0.5652 0.6813 0.0816 0.6829

Beta 0.0518 0.5425 0.9217 0.4010 0.1470 0.3991

Kumaraswamy 0.0673 0.2285 1.2699 0.2423 0.2147 0.2409

distribution. Themodel parameters are estimated by the six differentmethods. The simulation
studies are performed to see the performances of these estimates. The empirical findings
indicate that the proposed model provides better fits than the well-known unit probability
distributions in the literature for both its univariate datamodeling and its regressionmodeling.
It is hoped that the new distribution will attract attention in the other disciplines.
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