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Abstract 

Disaster resilience is a topic of increasing importance for policy makers in the context of climate change. 
However, measuring disaster resilience remains a challenge as it requires information on both the physical 
environment and socio-economic dimensions. In this study we developed and tested a method to use remote 
sensing (RS) data to construct proxy indicators of socio-economic change. We employed machine-learning 
algorithms to generate land-cover and land-use classifications from very high-resolution satellite imagery to 
appraise disaster damage and recovery processes in the Philippines following the devastation of typhoon 
Haiyan in November 2013. We constructed RS-based proxy indicators for N=20 barangays (villages) in the 
region surrounding Tacloban City in the central east of the Philippines. We then combined the RS-based proxy 
indicators with detailed socio-economic information collected during a rigorous-impact evaluation by DEval 
in 2016. Results from a statistical analysis demonstrated that fastest post-disaster recovery occurred in urban 
barangays that received sufficient government support (subsidies), and which had no prior disaster 
experience. In general, socio-demographic factors had stronger effects on the early recovery phase (0–2 
years) compared to the late recovery phase (2–3 years). German development support was related to 
recovery performance only to some extent. Rather than providing an in-depth statistical analysis, this study 
is intended as a proof-of-concept. We have been able to demonstrate that high-resolution RS data and 
machine-learning techniques can be used within a mixed-methods design as an effective tool to evaluate 
disaster impacts and recovery processes. While RS data have distinct limitations (e.g., cost, labour intensity), 
they offer unique opportunities to objectively measure physical, and by extension socio-economic, changes 
over large areas and long time-scales. 

Keywords: remote sensing, disaster risk management, socio-economic change, machine learning, climate 
change 



Zusammenfassung 

Zunehmende Wetterextreme und Naturkatastrophen sind Folgen des Klimawandels. Aufgrund dieser 
steigenden Risiken rückt die Resilienz der Bevölkerung im Katastrophenfall als zentrales Thema in den 
Vordergrund und hat zunehmende Bedeutung für politische Entscheidungstragende. Dennoch bleibt die 
Messung des mehrdimensionalen Konzepts der Katastrophenresilienz eine Herausforderung, da sie 
Informationen sowohl über die physische Umgebung als auch sozioökonomische Faktoren erfordert. In 
dieser Studie wird eine Methode entwickelt, um aus Fernerkundungsdaten (RS-Daten) Indikatoren zu 
entwickeln, die Aspekte des sozioökonomischen Wandels approximieren und somit messbar machen (Proxy-
Indikatoren). 

Zu diesem Zweck wurden Algorithmen des maschinellen Lernens eingesetzt. Mit Hilfe dieser Algorithmen 
wurden aus hochauflösenden Satellitenbildern Klassifizierungen für Landstruktur und Landnutzung 
konstruiert, um Katastrophenschäden und Wiederaufbauprozesse auf den Philippinen nach der Zerstörung 
durch den Taifun Haiyan im November 2013 zu messen. Aus den RS-Daten wurden die Indikatoren für N=20 
Barangays (Dörfer) in der Region um die Stadt Tacloban im zentralen Osten der Philippinen berechnet. Diese 
auf RS-Daten basierenden Indikatoren wurden mit detaillierten sozioökonomischen Informationen 
kombiniert, die für eine DEval-Evaluierung im Jahr 2016 erhoben wurden. Die Ergebnisse der statistischen 
Analyse zeigen, dass der schnellste Wiederaufbau nach der Katastrophe in städtischen Barangays zu 
beobachten war, die ausreichend staatliche Unterstützung (Subventionen) erhielten und über keine 
Katastrophenerfahrung verfügten. Im Vergleich hatten soziodemografische Faktoren allgemein stärkere 
Auswirkungen auf die frühe (0-2 Jahre) als auf die spätere (2-3 Jahre) Wiederaufbauphase. Es konnte nur ein 
bedingter Bezug zwischen der deutschen Entwicklungszusammenarbeit und den Wiederaufbauerfolgen 
festgestellt werden. 

Diese Studie versteht sich als Nachweis der Machbarkeit, weniger als detaillierte statistische Analyse. Sie 
belegt, dass hochauflösende RS-Daten und Techniken des maschinellen Lernens innerhalb eines integrierten 
Methodendesigns als effektives Werkzeug zur Bewertung von Katastrophenauswirkungen und 
Wiederherstellungsprozessen eingesetzt werden können. Trotz spezifischer Einschränkungen (hohe Kosten, 
Arbeitsintensität etc.) bieten RS-Daten einzigartige Möglichkeiten sowohl Umweltbedingungen als auch 
sozioökonomische Veränderungen über große Gebiete und lange Zeiträume hinweg objektiv messen zu 
können. 

Keywords: Fernerkundung, Katastrophenrisikomanagement, Sozioökonomischer Wandel, Maschinelles 
Lernen, Klimawandel 
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1. INTRODUCTION
International development cooperation is increasingly concerned with addressing climate change and 
assisting vulnerable populations in adapting to its adverse impacts. Evaluating adaptation to climate change 
is unique because changes in the natural environment (climate change) and the socio-economic situation 
(adaptation) both need to be measured. 

This leads to numerous challenges. First, climate change manifests itself as a heterogeneous group of 
environmental impacts. These range from an increase in sudden-onset natural disasters such as tropical 
storms to more gradual changes such as desertification and sea-level rise. These environmental changes can 
impact large geographical areas and develop over long time periods. Second, human responses to climate 
change are highly diverse, including changes in agricultural production techniques (e.g., drought-resistant 
seeds, irrigation systems), infrastructure, and built environment (e.g., storm shelters, dams, sea-walls), or 
mobility patterns (e.g., climate-related human mobility). Assisting populations in adapting to these 
challenges requires a diverse set of programmes and strategies. 

Surveys and censuses have been used by evaluators to measure social and economic changes. However, such 
methods of data collection are both labour and cost intensive and not very flexible in terms of their scope 
and application. For example, it is often not possible to collect relevant baseline data prior to a natural 
disaster, making it difficult to evaluate disaster recovery. Similarly, it would require multiple rounds of survey 
data collection to capture gradual climatic changes and related impacts that develop over decades. However, 
recent technological developments in remote sensing (RS) methods and data availability may facilitate the 
evaluation of climate-change adaptation and post-disaster recovery processes. 

RS is a technology used to detect, collect, and monitor the earth’s surface by measuring its reflection and 
emission of radiation. This is done by a collection platform that is remote from the target being observed, 
such as a satellite, aeroplane, or unmanned aerial vehicle (UAV). RS sensor systems are able to collect 
information ranging from visible to invisible (e.g. radar and infrared) features that can be traced using their 
specific spectral signature. As such, RS data are ideal to measure changes in the physical environment, 
including climate change. Moreover, some changes in the physical environment may be used as proxy 
indicators or indirect measures of socio-economic changes. For example, RS data can be used to measure the 
extent of slums as an indicator of poverty in a given region. However, the most comprehensive approach 
would be a mixed-methods evaluation design that combines RS data with survey data to provide a complete 
picture of the impacts of climate change as well as adaptation and recovery processes. As such, this study8 

has two main objectives: 

1. develop a (semi) automated approach to generate RS-based proxies for socio-economic change,
which can be used to assess post-disaster recovery;

2. combine these RS-based proxies with survey data to contextualize the recovery processes.

These objectives highlight the exploratory nature of this study. Specifically, it can be seen as a “proof of 
concept” of using machine-learning-based RS data analysis to measure environmental as well as socio-
economic changes and of combining RS with survey data for a more comprehensive analysis of recovery 
processes.  

We first develop a conceptual framework for the generation and use of RS-based proxies of socio-economic 
change. Second, this framework is applied to the case of post-disaster recovery in the Philippines following 
the devastation of typhoon Haiyan.9 The discussion paper is divided into five sections. Section 2 provides a 

8 This study was designed as a joint project by the University of Twente’s Faculty for Geo-Information Science and Earth Observation (ITC) Earth 
Systems Analysis Unit and the German Institute for Development Evaluation (DEval). 

9 Typhoon Haiyan, which is the subject of this study, devastated large parts of the central Philippine archipelago on 7–9 November 2013. 
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context for the use of RS data to measure socio-economic change and climate change. Section 3 highlights 
the proxy-based approach to measure socio-economic change. Section 4 presents the case study of disaster 
risk management (DRM) in the Philippines. Section 5 discusses the important findings and concludes the 
paper. Based on his study, a recent publication (Kerle et al., 2019) highlights the benefits and limitations of 
using remote sensing to support evaluation work. 

2. USING REMOTE SENSING DATA TO MEASURE SOCIO-ECONOMIC
CHANGE AND CLIMATE CHANGE

One of the most pressing questions of our time is whether humanity can find effective answers to climate 
change. Current state-of-the-art prognoses anticipate a likelihood that certain extreme weather events will 
increase in magnitude and frequency (Davies et al., 2009; Field and IPCC, 2012). In addition to these 
irregularly occurring natural shocks, overarching long-term climate-change phenomena exist. Examples of 
these so-called stressors are desertification, an increasing global temperature, and rising sea-levels. Both 
shocks and stressors induce social stress and may cause lasting damage to the human environment (Turner 
et al., 2003). 

Adaptation processes play a central role in the search for solutions to climate change. The term ”adaptation” 
refers to the process of adjusting to climate change and its effects in order to moderate or avert the harm to 
human systems caused by stressors and shocks (Edenhofer, 2014). However, human response to stressors is 
different from the human response to shocks. While stressors require adaptation of human and natural 
systems, typically through increased adaptive capacities or established enabling environments (i.e. system-
level changes in the environmental, socio-economic, and/or institutional system), shocks require a similar, 
but different response strategy.  

While a proper response to shocks also benefits from an increase in adaptive capacities and economic 
capabilities, it requires, in addition, systematic disaster risk management (DRM) to increase the preparedness 
for likely disasters. If proper proactive DRM is absent in the event of a disaster, ad hoc reactive risk 
management (i.e. risk coping) is required, which is typically less effective (Matthews, 2012; Leppert, 2015). 
The performance of post-disaster recovery depends on all response measures: the level of adaptive 
capacities and economic capabilities, and, in particular, established proactive DRM. 

Interdependencies between experienced shocks and vulnerability also impact disaster-related losses and 
damages, as well as recovery performance. Bunched or repeated shocks can result in increased vulnerability 
for future crises (Matthews, 2012; Leppert, 2015). A high degree of exposure to shocks and stressors may 
reduce communities’ future adaptive capacities (Shackleton et al., 2014; Villanueva, 2010). By contrast, 
resilient communities show a high capacity for adaptation and are able to maintain or retain their essential 
functions even in the case of extreme weather events (Edenhofer, 2014). 

The adaptation process underlies a dynamic logic of social progress (Toye, 2017) and is therefore directly or 
indirectly connected to a range of social and economic factors (Villanueva, 2010). As Figure 1 illustrates, 
climate-related shocks and stressors may trigger adaptation and risk-management activities and may 
ultimately lead to socio-economic change. In this sense, socio-economic change refers to “the way the state 
of a system changes over time (…)” due to adaptation (Newell et al., 2005). The scale and dynamics of socio-
economic changes are highly variable, from the seemingly static traditional rural communities to the 
dynamic, growing megacities that are in perpetual development and change. 

In response to shocks and stressors, climate-change adaptation and risk management can trigger socio-
economic change. With reference to the previous example of a typhoon, affected communities might 
implement early-warning systems and evacuation plans, the construction of sea-walls and, ultimately, 
relocation from hazard zones – activities that increase their resilience with respect to future shocks and 
stressors. However, as mentioned above, experienced shocks may also reduce the future adaptive capacity 
of communities. If a typhoon were to completely destroy the infrastructure of a community, a social system 
might struggle to adapt in a timely manner. As a consequence of the lack of adaptation, people’s livelihoods 
deteriorate.  
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Furthermore, vulnerability to climate change arises from certain socio-economic conditions, such as the 
economic capability of households or the existing infrastructure (Shackleton et al., 2014). While a typhoon 
may completely destroy the harvest of a rural farmer, resulting in debt and poverty, an urban resident whose 
shop is destroyed may find employment in a local factory. These examples of typhoon recovery show the 
complex relationship of shocks and stressors on one side and socio-economic change on the other side. Their 
relationship is mediated by the extent of human adaptation and (proactive) risk management, which in itself 
depends on current adaptive capacities and economic capabilities. 

Figure 1 Impact of climate change and socio-economic change 

Source: own figure. 

For these reasons, measuring changes in socio-economic conditions is highly important for politicians, urban 
planners, and policy makers alike. Frequently, censuses or population surveys are employed to measure 
changes in socio-economic conditions (Lech et al., 2018). Yet, these forms of data collection are expensive 
and usually conducted only every five or 10 years. This static data collection lacks the temporal resolution to 
measure dynamic socio-economic changes, particularly if these changes are caused by sudden-onset climate 
events such as tropical storms. An emerging alternative to measuring and tracking socio-economic changes 
is the use of remote-sensing (RS) geospatial data. 

RS data are collected via some type of sensor (similar to a camera) attached to a satellite, aeroplane or drone 
(Kerle, 2015). RS techniques can be used to measure most structural features of the outer layer of the earth, 
including elevation and topography, vegetation cover, and infrastructure, to mention just a few. This makes 
RS ideally suited to map the land cover over large areas. Moreover, satellites orbit the earth on regular and 
short temporal intervals, which allows for an effective monitoring of changes in surface features (e.g., 
changes in building structures or vegetation coverage). Satellites have been orbiting the earth for decades 
now, and the archived RS data allows a detailed study of changes over long periods of time.  

Advances in technology over the past 15 years have made RS data increasingly promising as an effective tool 
to measure disaster impacts and recovery. For example, the spatial resolution has increased from 10–15 m 
per pixel (ASTER, SPOT satellites) to c. 0.5 m (e.g., WorldView, GeoEye satellites), which can provide detail 
necessary to assess structural damage and land-cover changes. In addition, the revisit time (minimum time 
between two observations) has declined from several weeks to a few days, meaning that data are now often 
available within hours after an event. 

In DRM, optical images are the primary source of information as they allow detailed information on structural 
changes and damages. Usually these RS images are captured during daylight hours but, recently, night-time 
images have emerged as a useful source of information. The Defense Meteorological Satellite Program 
(DMSP) generates night-time images that provide insightful time series of mainly anthropogenic light 
emissions (mainly corresponding to exterior illumination such as street lamps). Drastic declines in local light 
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emission have been linked to disaster damage (Li et al., 2018), while the subsequent increase in light may be 
used as a proxy for recovery (Andersson et al., 2015; Ghaffarian et al., 2018). 

As an alternative to optical images, thermal sensors can be used to measure irregular sea-surface 
temperature increases, which have been linked to stronger tropical storms. Similar, ambient temperatures 
can be used to monitor the threat of heatwaves and wildfires. In addition to optical and thermal images, 
electromagnetic radiation can be used to measure detailed topographic features. As an example, in the 
Philippines, researchers used detailed topographic information to recalculate the storm-surge hazard 
following a major tropical storm (Lagmay and Kerle, 2015). 

The fact that RS primarily captures the physical environment can be seen as a severe limitation when the 
socio-economic situation or changes therein are of interest. However, many socio-economic parameters can 
be readily linked to physical proxies that are in turn observable in RS data. For example, the number of 
buildings correlates with population number, while actual location, size, building/roof materials, state of 
repair (as far as visible), building density etc. can be linked to the socio-economic condition of their 
inhabitants (Sliuzas and Kuffer, 2008). Likewise, progress has been made to approximate crops grown, the 
method of planting and care, and crop yield from RS data (Bolton and Friedl, 2013; Mulla, 2013) and to link 
it to the socio-economic reality on the ground; automated monitoring systems exist for some of these. 

For example, in response to adverse climate change, RS data may be used to measure crop destruction and 
productivity losses in flooded areas, or the declining number of livestock as a result of prolonged drought. 
Moreover, recent studies have used RS data to identify and characterize slums and similarly deprived areas 
(Kohli et al., 2012, 2013; Gevaert et al., 2017). Being able to locate such sub-standard dwellings in turn can 
be linked to both physical and social vulnerability (e.g. Ebert et al., 2009). 

However, correctly classifying RS data to capture socio-economic conditions and changes is methodologically 
challenging. One promising approach that we explore in this study is the use of machine-learning algorithms. 
These algorithms allow a computer to “learn” how to recognize certain patterns from a large set of examples, 
including patterns not even known to the researcher. For example, to capture evidence of disaster damage, 
we may provide the computer with a large number of damage examples. This enables the machine-learning 
algorithm to understand the desired damage class in its varying forms and allows it to accurately classify 
disaster damage across diverse geographic locations and settings (Duarte et al., 2018; Vetrivel et al., 2018). 

3. THE PROXY-BASED APPROACH TO MEASURE SOCIO-ECONOMIC
CHANGE

As briefly outlined in Section 2, changes in physical attributes may be used as proxies to evaluate socio-
economic changes. As such, this study employs “proxies”, or indirect measurements, following initial studies 
to assess vulnerability (Flax et al., 2002; Morrow, 1999), resilience (Burton, 2012), damage (Bevington et al., 
2010; Bradshaw, 2004), and recovery (Rubin et al., 1985).  

Figure 2 provides a flow chart to depict the proxy-based approach to measuring post-disaster recovery. Two 
main steps can be distinguished. The first step constitutes the damage assessment. In this step, evaluators 
extract RS data shortly before (T0) and directly after (T1) the disaster took place. This allows the detection of 
damage caused by the disaster. In the second step, evaluators then extract RS data directly after the disaster 
took place (T1) as well as after a longer period of time (Tn), which then allows the detection of the degree of 
post-disaster recovery. The subscript “n” indicates that recovery may be measured at multiple time points, 
such as two (T2) or three years (T3), depending on the type of infrastructure observed, as reconstruction may 
take varying amounts of time. 
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Figure 2 The conceptual framework for post-disaster recovery assessment using remote sensing-based 
proxies 

Source: own figure. 

The conceptual framework of the proxy-based approach was developed generically to be applicable across 
study sites, disaster types, and geo-spatial contexts (Kerle et al., 2019). Changes in different physical features 
are associated with different changes in the socio-economic conditions of the local population. Table 1 
provides a selection of proxies as well as a brief description of what is measured, and the socio-economic 
dimension that is approximated. 

Table 1 Examples of proxy indicators computed from RS data 

Proxy Proxy Name Description of measurement Approximation of socio-economic 
dimension 

1 Buildings The area covered by buildings. 
Changes in this measure permit an 
estimation of the damage inflicted and 
the scale of reconstruction needed 

Economic loss and recovery 

2 Proportion of 
built-up area 

Area covered by buildings expressed 
as proportion of total area 

Measure of the level of 
urbanization 

3 Impervious 
surface 

Changes in this measure permit a 
computation of the amount of debris 
covering the surface 

Debris as obstacle for economic 
business operations 

4 Large-scale 
industry 

Measurement of buildings associated 
with large scale-industry 

Indicator of industrial capacity and 
local labour market 

5 Vehicles The number of vehicles Economic activity 

6 Boats The number of boats Level of economic activity in 
fisheries sector 

7 Arable land Measurement of the area that can be 
used for agricultural production 

Use of agriculture for livelihood 
recovery 

8 Proportion 
vegetated area 

Area covered by vegetation expressed 
as a proportion of total area 

Measure of access to natural 
resources 

Proxies map extracted  
just after disaster 

Proxies map extracted 
before disaster 

Proxies map extracted 
after disaster 

TimeDisaster

T0 T1 Tn

Change-detection for 
damage assessment 

Change-detection for 
recovery assessment
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Proxy Proxy Name Description of measurement Approximation of socio-economic 
dimension 

9 Roof material Measurement of the texture and 
colour of roofs 

Roof material is associated with 
housing quality and income level of 
occupants. It may be used as 
indicator of slum areas and 
presence of poverty. 

Source: own table. 

A few examples help to illustrate the proxy-based approach (see also, Kerle et al., 2019). The difference in 
the area covered by buildings (Proxy 1) before and after a disaster can be used to measure the degree of 
structural damage in a given community. When the average economic value of buildings in a neighbourhood 
is known, we can assess the economic losses caused by a natural disaster (Bevington et al., 2010; Chen et al., 
2003). Change in the impervious surface area allows us to detect if debris is blocking roads (Proxy 3). We can 
then use this information to approximate the economic losses due to an obstruction of important 
transportation networks (Ghaffarian et al., 2018; Kerle and Hoffman, 2013). In terms of recovery processes, 
the number of boats on lakes/ocean/coastline near a specific barangay (Proxy 6) or the number of vehicles 
on a given street (Proxy 5) can be used to approximate the degree of economic activity in a region. If a 
population fully recovers from a disaster, we would anticipate that at least the same number of boats and 
vehicles are present after a sufficiently long recovery period (Brown et al., 2010; Platt et al., 2016). Similarly, 
RS data can be used to measure the presence of irregular clusters of a specific roof types (Proxy 9). Such 
indicators can be used as a proxy to measure the expansion of squatter settlements or slums (de Almeida et 
al., 2016; Ghaffarian et al., 2018). 

4. CASE STUDY OF DISASTER RISK MANAGEMENT IN THE PHILIPPINES

4.1 Study Context

4.1.1 Climate Change in the Philippines 

Climate change will lead to an increase in the frequency and severity of extreme weathers events such as 
tropical cyclones and floods, associated with substantial socio-economic cost and in most cases also loss of 
life (Combest-Friedman et al., 2012). Recently, Löw (2018) highlighted that total economic losses caused by 
weather catastrophes in 2017 totalled approximately USD 330 billion. According to the MunichRE study, the 
Asia-Pacific region accounted for approximately 44% of all natural disasters, but more than 65% of all 
fatalities (Löw, 2018). 

Given these figures, it is not surprising that the Philippines is especially affected by the burdens of natural 
disasters and severe weather events (Jha et al., 2018). For decades, the Philippines has been among the top 
five countries in terms of annual number of natural disasters. Its geographic location makes it highly exposed 
to severe weather events such as tropical cyclones but also geophysical hazards. Since 1990, more than 565 
natural disasters have affected the Philippines and caused more than 70,000 casualties. Among these are 
approximately 20 typhoons, which strike the Philippine archipelago on an annual basis (GFDRR, 2017). While 
not every occurrence of a typhoon is a catastrophic event, and not all Philippine regions are exposed to the 
same degree to the potential adverse effects, the numbers underline the burden caused by such events. 
According to figures by Jha et al. (2018) based on the EM-DAT database for the Philippines, between 2000 
and 2016 natural disasters claimed more than 23,000 lives and injured over 173,000 persons; average annual 
damage came to approximately USD 1.2 billion. 
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4.1.2 Disaster Risk Management in the Philippines 

It is thus not surprising that DRM plays an important role in the Philippine public administration. As a reaction 
to these challenging conditions, national policies for disaster risk mitigation were formulated (Government 
of the Philippines, 2010) and have consequently been mainstreamed into guidelines for urban and land-use 
planning (Jha et al., 2018; MSU-Iligan Institute of Technology et al., 2015). Furthermore, the process of 
implementing functional DRM was supported by a multitude of international donor organizations, which 
contributed to capacity development for DRM in addition to local stakeholders, provided equipment and 
machinery, and engaged in larger technical measurements to reduce disaster risk, specifically for coastal 
hazards. While this was applied throughout the Philippines, the Eastern Visayas Region has been a focal area 
for these support measures. 

The relatively strong focus on improving capacities in the field of DRM in the Visayas area is therefore not 
surprising. Tacloban City and its adjacent municipalities are frequently affected by tropical cyclones passing 
through the Philippine archipelago. One of the most severe events occurred on 7–9 November 2013, when 
typhoon Haiyan made landfall in Eastern Samar, before passing through San Pablo Bay and Leyte. Official 
estimates approximate the number of casualties at 6,300, with a further 1,000 people missing (Del Rosario, 
2013). Following the destruction caused by the typhoon, the region received the lion’s share of post-disaster 
reconstruction support (both nationally and internationally). However, even before typhoon Haiyan triggered 
a substantial development effort in DRM, the Philippines, and specifically the socio-economically 
disadvantaged Visayas region, were recipients of international and German donor-support schemes. 

The German Gesellschaft für Internationale Zusammenarbeit (GIZ) and its predecessor organizations have 
been the main German development organizations involved in capacity development of Philippine 
municipalities and provincial planning authorities in the field of land-use planning, natural resource 
management as well as DRM. Since 2005, the technical components of the German contribution to DRM in 
the Philippines were implemented through the Environment and Rural Development (EnRD) programme of 
Philippine–German cooperation. It was mandated by the German Federal Ministry for Economic Cooperation 
and Development (BMZ), and implemented from 2005 to 2015. The aim of the programme was to foster 
sustainable rural development in the Philippine Visayas Region by means of support in policy fields such as 
Environmental Protection, Food and Nutrition, DRM, and improved municipal land-use planning (GIZ, 2014). 
The programme was later complemented by a post-Haiyan reconstruction support component to provide 
immediate support to tackle the effects of typhoon Haiyan in November 2013. 

While the Natural Resource Governance (NRG) component of the EnRD programme aimed at integrating 
DRM-sensitive planning into provincial and municipal land-use planning, the DRM component included more 
immediate measures, such as the implementation of flood early warning systems and mitigation measures 
such as reforestation and slope stabilization (Table 2). Land-use planning can significantly enhance the 
mitigation of disaster risks, by imposing regulations on settlement in disaster prone areas, and by enforcing 
building standards, making constructions able to withstand the effects of natural disasters (Becker et al., 
2010). At the same time, planning-related measures usually take time to materialize and do not show 
immediate results (Leppert et al., 2018). 
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Table 2 An overview of the relevant goals of the EnRD programme for DRM measures 

Disaster Risk Management 
(DRM) 

Natural Resource Governance 
(NRG) 

Support for reconstruction in Haiyan-
affected areas 

Establishment of Flood Early 
Warning Systems, including 
precipitation pattern data 

Development and approval of 
Provincial Development and 
Physical Framework Plans 

Development and revision of disaster 
and conflict preventive reconstruction 
plans 

Establishment of Risk 
Mitigation measures such as 
Slope Stabilization and 
Reforestation 

Development approval of 
Comprehensive Land-Use 
Plans (CLUP) 

Implementation of reconstruction 
plans in cooperation with 
governmental, civil and non-
government agencies and 
stakeholders. Reconstruction efforts 
include, for example, shelter, streets, 
schools, health and evacuation 
centres, waste management, energy 
and water supply, and the 
revitalization of the economy 

Increased stakeholders’ 
awareness for DRM 

Development and approval of 
5-year Barangay Development
and Annual Investment Plans

Capacitated LGU include DRM 
in munici-pal land-use and 
development planning 

Establishment of Capacity 
Development Networks 

Source: GIZ (2014). 

4.1.3 Study Region 

Three barangays10 in each of seven municipalities in the greater Tacloban area were selected. These 
barangays were covered in DEval’s impact evaluation of enhanced land-use planning.  

The survey of the impact evaluation covered a large area (the whole province of Leyte as well as neighbouring 
provinces). In the study region, many municipalities were affected by typhoon Haiyan to some extent. 
However, we limit this study to seven municipalities due to the following reasons. First, we needed to ensure 
that for the geographic area very high-resolution images were available. Second, RS data come at a cost, and 
budget constraints required us to narrow the selection. Despite these limitations, the case-study region and 
the selected barangays offer a unique combination in terms of their affectedness by typhoon Haiyan in 2013 
and their status as recipients of German development support (Figure 3). We used a combination of multi-
temporal RS imagery, ranging from before typhoon Haiyan to the phase immediately after the event, as well 
as imagery of the reconstruction phase in the following years. More details on the RS imagery is provided in 
section 4.2.1.1. 

10 A barangay is the Philippine equivalent of a village or a part of a city/municipality. It represents the smallest official administrative units in the 
administrative hierarchy. The barangay captain is the official head of the village, elected for a period of three-years, and responsible for all 
administrative duties in the village. 
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Figure 3 Seven municipalities selected for the case study 

4.1.4 Objectives 

The objective of the case study is to demonstrate the process involved in analysing high-resolution RS 
imagery to measure socio-economic changes such as disaster resilience. We explore the potential for using 
automated methods (e.g., machine learning), and for integrating RS analysis into existing evaluation 
approaches. 

4.2 Data and Methods 

4.2.1 Data 

Remote Sensing Data 

The imagery used in this case study was collected by commercial satellites, in particular WorldView 2 and 3 
(Satellite Imaging Corporation, 2018a), Geoeye-2 (Lockheed Martin Space Systems, 2018), and Pleiades 
(Satellite Imaging Corporation, 2018b). We purchased the data from European Space Imaging Corps for four 
time points (March 2013, November 2013, April 2016, March 2017) for seven municipalities at a cost of about 
USD 10 per km2. The multi-spectral images are very high resolution, with a pixel size ranging from 0.5 m 
(panchromatic images) to 2.0 m (multispectral images). See Annex A for detailed source information 
regarding the purchased images. 

Survey Data 

To demonstrate the application of RS data in evaluations, we linked the geospatial information with survey 
data collected during the DEval impact evaluation on enhanced land-use planning in the Philippines (Leppert 
et al., 2018). For the evaluation, extensive panel survey data at the household, barangay, and municipal levels 
were collected. In 2012, the baseline survey covered a total of 37 GIZ intervention municipalities and 63 
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comparable control municipalities (N=100).11 Control municipalities were selected from all available 
municipalities in the two study regions using a propensity-score matching technique (Garcia Schustereder et 
al., 2016). Within each municipality, three barangays were randomly selected. Either the barangay captain 
or, in their absence, a senior member of the barangay council was interviewed, resulting in a total of N=300 
barangay-level interviews. In each of the barangays, 10 households were randomly selected (N=3,000). The 
same municipalities, barangays, and households were revisited in 2016 for endline data collection. Attrition 
at household level was negligible at 5%, with no attrition at the other levels (e.g., barangay, municipality). 
For more detail on the survey data see Leppert et al. (2018). In the following analysis, we will mostly refer to 
the data collected at the barangay (village) level, while other analyses refer to municipal-level data. 

With regard to the RS data analysis, we were only able to process RS data for N=20 selected barangays due 
to budget constraints and the complicated processing structure. This number was further reduced to a 
minimum of N=13 barangays for some analyses due to cloud coverage and cloud shadow rendering the 
computation of some RS-based proxies infeasible. We purposely selected barangays that had been badly 
affected by typhoon Haiyan. While we tried to include both intervention (SIMPLE-treated municipalities) and 
control municipalities in the selection for the case study, because of the way the GIZ intervention had rolled 
out, with many intervention municipalities located near Tacloban City, SIMPLE-supported barangays are 
over-represented in our case study. 

The survey data at the barangay-level contain extensive information on planning, DRM and previous 
exposure to disasters. Several items provided information on the barangays’ affectedness by typhoon Haiyan. 
The barangay dataset was completed by socio-economic and demographic information derived from the 
Department for the Interior and Local Governance (DILG), including structural characteristics of barangays in 
2012, such as the municipal income class and other socio-demographic information.  

4.2.2 Data Processing and Variable Construction 

Remote Sensing Data Processing and Development 

For the measurement of disaster effects and recovery processes with very high-resolution RS imagery, we 
needed to classify a very large number of pixels. In order to detect disaster-related patterns in land cover and 
land use (e.g., debris, structural damage to buildings), we employed machine-learning algorithms. 
Specifically, we used a certain type of Gradient Boosting Method (GBM). GBM is a supervised classification 
technique that belongs to regression and classification tree models (Friedman, 2001). The GBM-based 
methods are widely used for RS data analysis, such as scene classification (Chan and Paelinckx, 2008; Zhang 
et al., 2016). However, the traditional GBMs need to be tuned for several parameters and are more likely to 
suffer from overfitting than other machine-learning algorithms such as Support Vector Machines (SVM). In 
2008, (Chen and Guestrin, 2016) developed the Extreme Gradient Boosting (XGBoost) method, which can be 
considered a regularized version of GBM that overcomes most of its limitations. The superiority of the 
XGBoost-based approaches for LCLU classification of very high-resolution RS images was shown in recent 
studies (Georganos et al., 2018; Ren et al., 2017). Given these advantages, we used the XGBoost method to 
compute proxy maps from very high-resolution satellite images in this study (Kerle et al., 2019). 

The computation of the RS-based proxies of social and economic change was a four-step procedure, as 
outlined graphically in Figure 4. The four distinct steps are: pre-processing, land-cover and land-use 
classification, post-processing, and extraction of proxies (Kerle et al., 2019). 

1. Pre-processing: Satellite images obtained at different time points may have different inclination angles
of the sensor as well as inaccuracies in geo-referencing, leading to the coordinates not necessarily
matching perfectly. We therefore had to rectify and register the images to allow for a correct comparison
between LCLU maps obtained at different points in time. In addition, we merged satellite image tiles

11 Between 2012 and 2016, eight of the 63 control municipalities started receiving the intervention and therefore “switched” to the intervention 
group. The size of the intervention group at endline was therefore 44, the size of the control group was 56.  
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(mosaicking) to completely cover the particular region of interest (ROI). Finally, we employed shapefiles 
for ROIs to clip the rectangular raster images to the barangay boundaries, and used those for the image 
classification described next. All pre-processing steps were conducted using ArcGIS software. 

2. LCLU classification: We employed the XGBoost algorithm for the land-cover and land-use classification.
In order to recognize patterns for an accurate classification, the XGBoost algorithm requires “training
areas”. These training areas were selected using Environment for Visualizing Images (ENVI) image analysis
software, and used as input for the main classification model, which was developed in a programming
environment (Python script).12 We improved the classification precision by providing the XGBoost
algorithm not only with spectral information (e.g., different colour bands) but also with information on the
texture of a given land-cover and land-use (LCLU) class. To this end, we employed Local Binary Patterns
(LBPs) as an effective textural information extraction method (Kuffer et al., 2016; Mboga et al., 2017).
Based on a grey-level co-occurrence matrix, LBP (5 x 5 kernel) computes simple textural information, such
as mean, variance, homogeneity, and entropy for each image. To differentiate building types, the roof
colours were detected, based on the brightness values of the pixels.

3. Post-processing: Post-processing involved removal of pixels in areas obscured by clouds as well as the
modification of mixed classes.

4. Extraction of proxies: We first obtained the number of pixels for each LCLU class for a given barangay.
We then computed the coverage area (in m2) for relevant LCLU classes and expressed this number as a
percentage of the total barangay area. However, some proxies, such as the presence of vehicles and boats,
which could not be extracted from the LCLU maps, were extracted manually using both panchromatic
(grayscale) and multispectral (multicolour) images.13

Proxies were extracted at various time points: before disaster (T0), just after disaster (T1), and two years (T2) 
and three years (T3) after the disaster. As discussed in Section 3, computing changes between these time 
points allows us to assess disaster damage and recovery processes.  

Although the developed approach provided overall good accuracies for LCLU classifications, we observed 
some inaccuracies in the results due to a number of reasons. First, the presence of clouds led to 
misclassifications. Similarly, the algorithm had difficulties in correctly classifying pixels in areas where cloud 
shadow influenced the visual appearance of the landscape. Second, different radiometric and spectral values 
in the merged images for one barangay led to inaccurate classification results for trees, crops, and grass 
lands. 

Survey Data 

The survey data used in this study was collected during DEval’s impact evaluation on comprehensive land-
use planning in the Philippines (Leppert et al., 2018). For the impact evaluation, the survey data was cleaned 
and processed (for details see Leppert et al., 2018). Table 3 provides summary statistics of the relevant socio-
economic and demographic variables that we obtained from Leppert et al. (2018) and employed in this study. 

12 The selection of the training areas was challenging for some classes, particularly for the land-use classes. For examples, distinguishing large-scale 
industrial buildings from formal buildings without using auxiliary data was difficult. Hence, we used our knowledge of the area and the 
panchromatic images, in addition to multispectral images, to select the training areas as accurately as possible. 

13 The vehicles and boats were counted manually because there is not yet an efficient and accurate method for automated extraction. 
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Table 3 Summary statistics of relevant socio-economic and demographic variables 

Variable N Unit Mean SD 

Structural characteristics 

Municipal income 20 1 = High, 0 = Low 0.85 0.366 

Level of urbanization 20 1 = City, 0 = Rural 0.150 0.366 

Subsidies (Internal Revenue 
Allotment) 

20 Philippine Pesos 115,000,000 15,400,000 

DRM-related characteristics 

Perceived disaster preparedness 20 Scale: 1 = Low, 10 = High 7.3 2.27 

Previous disaster experience 19 1 = Yes, 0 = No 0.737 0.452 

Reconstruction support 15 Philippine Pesos 16,100,000 23,300,000 

DRM activities 20 Scale: 0 = Low, 10 = High 5.41 3.20 

Local governance 

Experienced Barangay Captain 20 1 = Yes, 0 = No 0.550 0.510 

Experience of Mayor 20 Years in office 3.4 2.50 

Perceived corruption 20 Scale: 0 = Low, 10 = High 4.55 2.781 

Donor support 

SIMPLE intervention 20 1 = Yes, 0 = No 0.850 0.366 

SIMPLE intervention start 17 1 = Late, 0 = Early 0.471 0.514 

Recipient of other donor-support 20 1 = Yes, 0 = No 0.850 0.366 

Source: own table. 

We made use of a number of variables outlining the structural characteristics of the barangay. First, we 
classified barangays according to the income classification of their respective municipality as high (≥PHP 25 
million) and low (< PHP 24.99 million). We further expressed the level of urbanization by classifying barangays 
as located in a city or rural area. The urbanization classification was derived from official Philippine statistical 
classification and allowed a distinction to be made between barangays located in the provincial capital of 
Tacloban City and adjacent “rural” municipalities. In addition, the variable “subsidies” captured the amount 
of DILG Internal Revenue Allotment (IRA) subsidies that a particular municipality received. 

A second group of variables captured DRM-related characteristics. These variables are derived from the DEval 
survey in 2012 (and 2016 for the amount of post-Haiyan reconstruction support). We used the self-reported 
information to try to assess the perceived degree of preparedness of barangays for future disasters. The 
variables measure, for a given barangay, the perceived disaster preparedness of the captain (Scale: 1=low, 
10=high), whether a natural disaster had previously been experienced (1=yes, 0=no), the amount of 
reconstruction support received (in Philippine Pesos), and an index of technical and planning-related disaster 
risk management activities (Scale: 0=low, 10=high).  

Governance-related variables seek to differentiate barangays based on administrative capacity. These are 
approximated by work (years in office) and political experience (more than one tenure) of mayors and 
barangay captains, as well as their self-reported assessment of corruption (Scale: 0=low, 10=high). 

Lastly, control variables related to donor-support try to allow for a differentiation between “supported” and 
“not-supported” municipalities and barangays, based on GIZ’s land-use planning and disaster risk 
management intervention “SIMPLE”. We accounted for the time spent on project implementation and 
potential achievements by classifying barangays according to the start of the intervention as early (pre-2009) 



A Proof-of-Concept of Integrating Machine Learning, Remote Sensing, and Survey Data in Evaluations     13 

Deval Discussion Paper 1/2020 

and late (between 2009 and 2012). Finally, we captured other donor support received by a barangay from 
other international agencies (not including GIZ). 

4.2.3 Statistical Approach 

In order to analyse the relationship between changes in LCLU patterns derived from RS data and socio-
economic characteristics, factors related to local governance, DRM, and donor support, we relied on basic 
statistical tests. Specifically, we employed group-mean T-test statistics and ordinary least squares (OLS) 
regressions with robust standard errors. Using these tests, we could assess which factors and local conditions 
were statistically associated with damage caused by typhoon Haiyan, and which factors were associated with 
disaster resilience and recovery performance. 

Because all variables derived from the RS analysis (dependent variable) have a continuous level of 
measurement, the type of socio-economic variable (independent variable) determined the applied statistical 
test. We used OLS regressions with robust standard errors in cases where both the dependent and 
independent variables were continuous. Group-mean T-tests were applied in cases where the independent 
variable was nominal to detect significant statistical differences between the two groups. Due to the small 
sample size (N<20), we considered p < 0.10 a significant relationship. The statistical tests were computed 
using Stata version 13.1. 

4.3 Case Study Results and Discussion 

4.3.1 Land Use and Land Cover Proxies 

Using the XGBoost machine-learning algorithm, we extracted nine RS-based social and economic proxies for 
four time points: before disaster (T0), just after the disaster (T1), two years after the disaster (T2) and three 
years after the disaster (T3). Computing changes between the various time points permitted us to assess 
recovery performance in the statistical analysis. As an illustrative example, we have given the results of the 
proxy computation for one barangay. We selected barangay 69 (located north of Tacloban City) because it 
contained most of the relevant LCLU classes. Figure 4 provides a visual depiction of the results of the LCLU 
classification. 
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Figure 4 LCLU classification of barangay 69 before and after typhoon Haiyan 

(a) Original image 
before disaster (T0) 

(b) LCLU classification
before disaster (T0)

Source: own figure.  

As can be seen in Figure 4, typhoon Haiyan caused a massive change in the surface of barangay 69. The 
most striking difference is the change in detectable debris/rubble (colour: red). While no debris was 
detectable before the disaster (T0), almost 44% of the surface was covered by debris shortly after Haiyan 
(T1). 

Table 4 shows the final extracted proxies (for a description of the proxies and what socio-economic dimension 
is approximated, see Table 1 in Section 3). The proxies can be used to compute various damage and recovery 
statistics. For example, difference in the area covered by buildings provides insights into structural damages. 
After typhoon Haiyan, 91% (1-(36076/3236)*100) of buildings in Barangay 69 were collapsed/damaged 
(proxy 1). About three years after Haiyan (T3) roughly 74% of the original building stock had been rebuilt 
((26852/36076)*100). 

Large-scale industry (proxy 4) was hit particularly hard by Haiyan, resulting in widespread damage, leaving 
only about 8% of the original infrastructure in place (1036/12396). Recovery was much slower than for 
regular buildings, and three years after Haiyan (T3) only 23% (2840/12396) of the pre-disaster industry had 
been rebuilt. As such, we can assume that only a fraction of the former workplaces were available to the 
population, with potentially severe consequences for livelihoods and income-generation opportunities. 

Deval Discussion Paper 1/2020 
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Increase in impervious surface area (proxy 3) after the disaster either from the removal of debris on the roads 
or the reconstruction of new ones, plus an increase in the number of vehicles on the road (proxy 5), indicated 
a positive recovery of transportation facilities and road network. 

An increase in the number of boats (proxy 6) by about 69% ((22/13-1)*100) after three years indicated a 
positive recovery of livelihood. Similarly, more arable land was available for livelihood pursuits at the end of 
the recovery period, perhaps as a result of areas formerly used for industry and buildings being repurposed 
for agricultural production. 

Those areas identified as slums (based on a certain type of roof material such as cardboard or metal sheets) 
near the coast were entirely wiped out by the storm, although other slum neighbourhoods suffered only 
limited damage (proxy 9). Slum areas re-emerged, but remained about 19% ((1-(3484/4284))*100) smaller 
in size after three years of recovery (T3). A smaller number of people living in informal settlements can be 
considered a positive outcome; it most likely results from government interventions or aid provided by 
international donors or organizations. 

Table 4 The extracted results for the selected proxies for Barangay 69, Tacloban 

Proxy No. Proxy Name Unit T0 T1 T2 T3 

1 Buildings m2 36,076 3,236 25,236 26,852 

2 Proportion of built-up area % 26 2 28 29 

3 Impervious surface 12,132 3,236 28,482 28,270 

4 Large-scale industry 12,396 1,036 2,564 2,840 

5 Vehicles count 9 1 15 10 

6 Boats count 13 2 32 22 

7 Arable land 2,422 16,740 13,998 6,106 

8 Proportion vegetated area % 71 41 61 64 

9 Roof material m2 (slum area) 4,284 0 3,138 3,484 

Note: typhoon Haiyan hit the Philippines on 7–9 November 2013; T0 = before disaster (satellite: World View 2), T1 = just after 
disaster (satellite: Geo Eye 1), T2 = two years after disaster (satellite: Geo Eye 1), T3 = three years after disaster (satellite: World 
View 2). 
Source: own table. 

While all nine RS-based proxies were constructed during the analysis, we employ only a selection of three 
proxies as dependent variables in our statistical analysis. Specifically, we computed changes (T0–T1) in 
buildings (damaged buildings), impervious surface (debris), and large-scale industry (damaged industrial 
areas) and expressed these changes in percentage of the total area. “Damaged buildings” as well as “debris” 
are used to approximate damage to urban areas. The proxy indicator “damaged industrial areas” serves to 
gain insights into the extent to which the regional economy might be affected. For example, directly after 
Haiyan made landfall, an average of 54% of all buildings showed substantial damage. 

We also computed the difference between the local condition just after the disaster (T1) and two years after 
the disaster (T2), as well as the difference between the local condition two years after the disaster (T2) and 
three years after the disaster (T3). These differences allowed us to capture growth rates of building 
reconstruction (proxy 1) and industry recovery (proxy 4). For example, between the time just after typhoon 
Haiyan struck and two years later, the building stock had increased by 348%, indicating a sizeable damage 
recovery. Table 5 provides summary statistics of the employed RS-based proxies. 

m2 

m2 

m2 
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Table 5 Summary statistics of selected RS-based socio-economic proxies across all study barangays 
employed in the statistical analysis 

Variables ∆ Time N Unit Mean SD 

Damaged Buildings T0 - T1 13 % total building area 54.1 29.4 

Debris T0 - T1 14 % total building and industrial area 21.4 20.4 

Damaged industrial areas T0 - T1 14 % total industrial area 47.9 28.7 

Building reconstruction T1 - T2 15 % growth rate of building area 347.7 496.3 

Building reconstruction T2 - T3 17 % growth rate of building area 18.0 33.4 

Industry recovery T1 - T2 13 % growth rate of industrial area 397.9 652.9 

Industry recovery T2 - T3 13 % growth rate of industrial area 25.0 38.9 

Note: typhoon Haiyan hit the Philippines 7-9 November 2013; T0 = before disaster, T1 = just after disaster, T2 = two year after disaster, 
T3 = three years after disaster. 
Source: own table. 

4.3.2 Integration of RS Analysis into Evaluative Work 

Damage Assessment 

As the first part of our analysis, we investigated the association between disaster damage and socio-
economic characteristics. Table 4 shows the relationship between our outcome measures (damaged 
buildings, debris, and damaged industrial areas) and various socio-economic determinants, including 
municipal income, previous disaster experience, perceived disaster preparedness, and the level of experience 
of the barangay captain.  



A Proof-of-Concept of Integrating Machine Learning, Remote Sensing, and Survey Data in Evaluations     17 

Deval Discussion Paper 1/2020 

Table 6 Damage by socio-economic status, disaster risk management and local governance 

Variable 
name 

Damaged buildings (n=12) Debris (n=13) Damaged industrial areas (n=9) 

beta Mean 
(m2) T (sig.) Mean 

(m2) T (sig.) beta Mean 
(m2) T (sig.) 

Municipal income 

High 63 -2.3
(***)

26 
-1.4 (*) † 

Low 25 8 

Level of urbanization 

City 93 -3.9
(***)

50 -3.7
(***)

96 
-3.0 (***)

Rural 42 14 55 

Previous disaster experience 

Yes 52 
1.0 (n.s.) 

22 
0.5 (n.s.) 

67 
-0.0 (n.s.)

No 70 29 67 

Perceived disaster preparedness 

3.7 1.1 (n.s.) 1.6 0.7 (n.s.) 4.2 1.4 (n.s.) 

Experienced captain 

Yes 62 -1.3
(n.s.) 

28 -1.4
(n.s.) 

77 
-1.2 (n.s.)

No 41 14 57 

*p < 0.10; **p < 0.05; ***p < 0.01, n.s. = not significant, † = not calculated due to insufficient data. T0 = before disaster, T1 = just after
disaster, T2 = two years after disaster, T3 = three years after disaster. 
Source: own table. 

We found a highly significant difference in the extent of typhoon damage by level of urbanization. Generally, 
urban areas experienced much more destruction than rural areas. We also found some statistically significant 
relationships by wealth level, with the largest destruction in the wealthiest barangays. These relationships 
can be largely explained by the storm track. Typhoon Haiyan passed Tacloban City approximately 20 km to 
the south. The wind speed and rotation of the storm caused a substantial storm surge in the San Pablo bay 
area and was the main driver for extensive damage observable in the provincial capital. The extent to which 
buildings and industrial infrastructure was damaged by the storm was not related to the experience and 
perception of the barangay administrators. As such, the physical force of the storm determined entirely the 
damage caused, and good governance or prior experience and perception of the barangay leadership could 
not mitigate these effects. 

Recovery Performance by Socio-Economic Status 

After an assessment of damage caused by typhoon Haiyan, this sub-section focuses on determinants of 
recovery performance. We generally differentiated between the early recovery phase (T1–T2) and the later 
recovery phase (T2-T3). We focused on building reconstruction and industry recovery as outcome variables. 
We found few significant socio-economic determinants on recovery performance, and these were for the 
early recovery phase (Table 7). For example, in the early recovery phase (T1–T2) building reconstruction was 
much stronger in urban areas than in rural areas, while there was no significant difference in the later 
recovery phase (T2–T3). The important function of Tacloban City (the prime urban area) as an economic and 
transport hub, and its coordination function in the immediate recovery process, might explain its stronger 
recovery performance. For example, Tacloban City’s airport functioned as the main hub for international 
relief goods and support. 

beta
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Table 7 Recovery status by socio-economic status 

Variable 
name 

Building reconstruction (n=15) Industry recovery (n=13) 

T1  T2 T2  T3 T1  T2 T2  T3 

beta 

Mean 
growth 

rate 
(%) 

T (sig.) beta 

Mean 
growth 

rate 
(%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) 

Municipal income 

High 407 -0.9
(n.s.)

19 0.9 
(n.s.) 

505 -1.1
(n.s.)

28 -0.5
(n.s.)Low 111 36 40 15 

Level of urbanization 

City 1109 -4.7
(***)

9 0.9 
(n.s.) 

704 -0.9
(n.s.)

30 -0.2
(n.s.)Rural 158 26 306 24 

Subsidiesa 

2.2 2.6 
(**) -0.054 -2.5

(**) 1.03 1.3 
(n.s.) 0.008 0.2 

(n.s.) 

*p < 0.10; **p < 0.05; ***p < 0.01, n.s. = not significant. T0 = before disaster, T1 = just after disaster, T2 = two years after disaster, T3 
= three years after disaster. asubsidies variable was scaled to million Pesos.
Source: own table. 

Municipal income had no influence on recovery performance, but the amount of subsidies, IRA, was 
positively associated with building recovery in the early recovery phase. However, for the later recovery 
phase (T2–T3) the relationship became negative. While IRA subsidies are usually associated with weaker 
financial performance, the subsidies are likely to have played an important role in financing immediate 
reconstruction efforts. Yet, the subsidies were unable to support recovery in later years. Industry recovery 
was not determined by municipal income, urbanization level, or availability of subsidies. 

Recovery Performance by Disaster Risk Management (DRM) 

In this section, we focus on a group of variables that reflect disaster risk management (DRM) capacities, 
including previous disaster experience, perceived disaster preparedness, financial reconstruction support, 
and DRM-related activities in the barangay (Table 8). 
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Table 8 Recovery performance by disaster risk management 

Variable 
name 

Building reconstruction (n=15) Industry recovery (n=13) 

T1  T2 T2  T3 T1  T2 T2  T3 

beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T 
(sig.) beta 

Mean 
growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) 

Previous disaster experience 

Yes 222 2.5 
(**) 

13 
1.8 (*) 

370 0.7 
(n.s.) 

12 3.3 
(***) No 910 42 728 87 

Perceived disaster preparedness 

17.0 0.5 
(n.s.) -2.7 -0.8

(n.s.) -93.4 -1.2
(n.s.) 6.9 1.3 

(n.s.) 

Reconstruction supporta 

-0.3 -0.23
(n.s.) -1.0 -5.7

(***) -1.1 -0.5
(n.s.) -0.3 -0.4

(n.s.)

DRM activities 

-19.0 -0.7
(n.s.) 0.5 0.2 

(n.s.) -73.4 -1.3
(n.s.) -6.3 -1.6

(n.s.)

*p < 0.10; **p < 0.05; ***p < 0.01, n.s. = not significant. T0 = before disaster, T1 = just after disaster, T2 = two years after disaster,
T3 = three years after disaster. asubsidies variable was scaled to million Pesos.
Source: own table. 

Previous disaster experience was significantly associated with both building reconstruction and industry 
recovery. Barangays with previous disaster experience generally showed lower recovery rates. 

Financial reconstruction support led to significantly slower building reconstruction in the later recover phase 
(T2–T3). This finding may be explained by building policies. It is possible that government reconstruction 
support was coupled with policies that required storm-proof, high-quality construction material and building 
types. Compared to light-build housing construction in other regions without reconstruction support, high-
quality buildings took more time, resulting in the negative association. 

Neither perceived disaster preparedness nor DRM activities in the barangay influenced the rate of building 
reconstruction or industry recovery. 

Recovery Performance by Local Governance 

Quality and performance of local government officials can make a large difference in the recovery 
performance of municipalities in a post-disaster situation. Good governance supports the implementation of 
planning according to guidelines and safety standards, and improves reliability of public governance. 
Furthermore, well-implemented and enforced DRM-planning requires coherent and reliable leadership as 
well as political commitment to the public good. 
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Table 9 Recovery performance by local governance 

Variable 
name 

Building reconstruction  (n=15) Industry recovery  (n=13) 

T1  T2 T2  T3 T1  T2 T2  T3 

beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) 

Experienced barangay captain 

Yes 317 0.3 
(n.s.) 

18 0.6 
(n.s.) 

195 1.2 
(n.s.) 

32 0.7 
(n.s.) No 394 27 634 17 

Perceived corruption 

-8.2 -2.5
(**) 0.6 2.9 (**) -7.1 -1.5

(n.s.) 0.2 1.3 
(n.s.) 

Experience of Mayor 

-87.3 -2.1 (*) -3.4 -1.1
(n.s.) -125.8 -2.0 (*) -0.6 -0.1

(n.s.)

*p < 0.10; ** p < 0.05; ***p < 0.01, n.s. = not significant. T0 = before disaster, T1 = just after disaster, T2 = two years after disaster, 
T3 = three years after disaster. 
Source: own table. 

However, this beneficial effect of good governance is only partially reflected in our data (Table 9). For 
example, an increase in the experience of the local mayor (years in office) led to slower building 
reconstruction and slower industry recovery. Similarly, during the early years, recovery was strongest in those 
barangays with less perceived corruption. This highlights the importance of trust and accountability of 
government officials in the early recovery years. Yet, in the later years of adaptation, the sign of the 
relationship switched, and barangays perceived as more corrupt demonstrated higher building 
reconstruction rates. Generally, the Philippines is still characterized by relatively high rates of corruption 
among local governments. At the same time, local governments possess substantial regulatory autonomy 
with regards to the Local Government Code (Yilmaz and Venugopal, 2013).  

Recovery Performance by Donor Support 

International donor support played an important role in technical-planning capacity development in the 
Tacloban area. This included also a focus on planning for natural-disaster events. We investigate the influence 
of donor support separately for the SIMPLE intervention and support by other (not GIZ) donor interventions 
(Table 10). 
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Table 10 Recovery performance by donor support 

Variable 
name 

Building reconstruction (n=15) Industry recovery (n=13) 

T1  T2 T2  T3 T1  T2 T2  T3 

beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) beta 
Mean 

growth 
rate (%) 

T (sig.) 

SIMPLE intervention 

Yes 337 0.2 
(n.s.) 

16 2.2 
(**) † † 

No 416 61 

SIMPLE intervention start 

Late 524 
-1.5 (*) 

16 0.0 
(n.s.) 

787 -2.2
(**)

7 1.3 
(n.s.) Early 120 17 50 27 

Recipient of other donor-support 

Yes 85 1.3 
(n.s.) 

28 -0.3
(n.s.) 

870 
-1.5 (*) 

-16 2.5 
(**) No 443 21 256 37 

*p < 0.10; ** p < 0.05; ***p < 0.01, n.s. = not significant, † = not calculated due to missing data. T0 = before disaster, T1 = just after 
disaster, T2 = two years after disaster, T3 = three years after disaster. 
Source: own table. 

We found slower building reconstruction rates among barangays that received the German-supported 
SIMPLE intervention. While the general trend is similar for both time periods, the effect was statistically 
significant only for the later recovery period (T2–T3). Among those that implemented the SIMPLE 
intervention, barangays that adopted the programme later showed stronger building and industry recovery 
rates. The evolving nature of the programme and the increasingly climate-risk-aware political context may 
have led to higher quality and better outcomes in the later phase of implementation. 

The existence of other donor support proved effective for industry recovery but only for the early recovery 
phase (T1–T2). However, in later recovery years we observed signs of a switch in the relationship, with those 
barangays that did not receive other donor support showing higher recovery rates. 

5. DISCUSSION AND CONCLUSION

5.1 Summary of Case Study Results

In this discussion paper we have demonstrated the integration of RS data and related machine-learning-
based analysis with survey data for complex evaluations. Using this method, we were able to evaluate 
damage and the effectiveness of recovery processes following typhoon Haiyan, which made landfall on the 
Philippines in 2013. Our analysis revealed strongest damage in the urban barangays of Tacloban City and 
areas with large shares of disadvantaged populations (usually the coastal barangays).  

Our analysis of recovery performance showed that the barangays that recovered fastest where those that 
had no prior disaster experience and were provided with sufficient government support (subsidies). We 
found that the GIZ-supported SIMPLE programme was related to recovery performance only to some extent. 
We generally observed strong recovery during the first two years, but substantially slower recovery effects 
for later years. In addition, we found a stronger recovery performance for industrial areas than for buildings. 
This tendency may be explained by the strong focus of the government and international organizations on 
economic capacity and performance. 
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5.2 Outlook: Strengths and Limitations of the Approach 

Combining remote sensing and machine learning with survey data offers many advantages but also has some 
limitations. These have important implications for future research (see also, Kerle et al., 2019). In general, 
we see the most promising applications of RS technologies and data within mixed-methods and multi-method 
evaluation designs. Rather than a stand-alone tool, RS is best seen as a promising addition to the evaluators’ 
toolbox that allows viewing problems from a different angle and thereby broadens the evidence base of 
evaluations. With this preamble in mind, we now discuss advantages and disadvantages of the use of RS in 
evaluations: 

Advantages: As a first advantage, machine-learning-based analysis of RS data permits the measurement of 
physical changes over comparably large areas and across multiple time points. Natural disasters are hard to 
predict, and if the goal is to evaluate disaster-recovery processes and programmes, it is almost impossible to 
collect baseline survey data before the disaster event. In such a case, RS data offers a convenient way to 
obtain relevant pre-disaster information on local conditions. Moreover, satellites now orbit the earth with 
increasing frequency, and their wide coverage makes it possible to measure change processes more precisely 
and across larger areas. Given the wide coverage of most RS data products, cross-regional, or even cross-
country evaluations are possible. This case study has shown that RS data can be used to construct proxy 
indicators of social and economic conditions and to use these proxies for machine-learning-based 
classification. This is of particular relevance to the evaluation community, as politicians and policy makers 
are frequently concerned with the socio-economic conditions of the population in relatively large areas. 
Moreover, as we have shown in this article, it is possible to join RS data with data from surveys and qualitative 
interviews. Such a fusion allows the contextualization of the RS data and an exploration of the underlying 
mechanism of change, and also helps to gain more human-centred insights into patterns of change. 

Limitations and future prospects: Our study also revealed a number of disadvantages of RS data. First, the 
very high-resolution data we employed are very expensive. RS data costs about 10 USD per km2 for a single 
time-period, resulting in substantial costs for large areas. Usually, it is not possible for implementing agencies 
to spend a sizeable amount of their limited budget on the purchase of RS data. Even in our analysis we were 
only able to purchase RS data for a small selection of barangays for which we had survey data available. This 
limited the sample size of our analysis and prevented us from using advanced statistical methods. However, 
it was the goal of this study to demonstrate the use of RS data in evaluations rather than to make 
comprehensive use of all survey data available.  

It is important to mention that many geo-data sources are freely available. For example, the European Space 
Agency makes multi-spectral RS data from the Sentinel 2 satellite available free of charge. While its resolution 
is much coarser (10 m) than the data used in this study (0.5 m), it still provides a useful source to measure 
changes in physical environment. Many other RS data products are freely available and often have specific 
applications. This includes night-time lights (Li et al., 2018), vegetation indices, topographic information, and 
land cover and land use (LCLU) classifications of the US Geographical Survey (USGS). New data providers are 
also entering the market. For example, Planet Labs recently launched a constellation of some 200 small 
CubeSat satellites that provide approximately daily imagery free for non-commercial use at a spatial 
resolution of 3 m. 

A second limitation of the use of RS data by the average evaluator is the steep learning curve involved in 
working with the specialized software and format of RS data. Future research should develop user-friendly 
statistical tools, enabling evaluators and practitioners to easily generate the relevant proxy indicators 
employed in this study. 

A third limitation is the substantial time commitment required for pre- and post-processing of the RS data. 
Currently, this work requires a GIS expert for geo-rectification of the images, merging of image tiles 
(mosaicking), detection and removal of parts of images that are contaminated by clouds or cloud shadows. 
Similarly, it is necessary in a post-processing step to manually check that the LCLU classifications are assigned 
correctly. Given the complexity of these tasks and geospatial analysis in general, an evaluation team wishing 
to integrate RS data would have to employ a GIS expert, which could substantially increase staff costs. Future 



A Proof-of-Concept of Integrating Machine Learning, Remote Sensing, and Survey Data in Evaluations     23 

Deval Discussion Paper 1/2020 

work should aim at automating pre- and post-processing steps, since automation for large areas can become 
economical, especially when compared with expensive field-based studies. In the meantime, the 
collaboration with GIS experts at universities or research institutions may be an alternative. While such 
collaboration comes with their own potential challenges (alignment of research interests and evaluation 
objectives, different priorities and time schedules, time required for supervision), costs may be lower 
compared to employing a GIS expert. 

A fourth limitation is the problem of distinguishing and classifying structural rubble (which represents 
evidence of building damage) from debris (which includes flotsam and other washed-up material that can be 
quickly cleaned up). The potential for misclassification remains, and if damage is overestimated, the rate of 
recovery is also overestimated, since recovery is defined as the change vector from the post-disaster damage 
state. 

Finally, RS data are one type of so-called “Big Data” resources. It is often not possible to work on regular 
desktop computers with this type of data. Rather, multi-core servers or super-computers with large amounts 
of RAM are necessary, particularly when computing intense machine-learning algorithms (e.g. Convolutional 
Neural Networks) to assign LCLU classifications and to generate the relevant proxy indicators. Rather than 
purchasing costly hardware, an emerging alternative is computing platforms such as Google Earth Engine 
(GEE) (Gorelick et al., 2017). GEE, for example, is based on cloud computing, meaning that the analysis 
procedures are programmed in the web interface, and the processing is done in the cloud, eliminating the 
need to download vast amounts of data. Moreover, because the actual image data are not made available 
for download, fewer copyright restrictions apply. GEE is designed to be used by non-experts in RS data 
analysis and may become a viable resource for evaluators. However, without additional costs, GEE provides 
only medium-resolution datasets that are primarily suitable for analyses on the national, regional, and global-
level scale. 

Outlook: The above discussion has shown that integrating RS data has distinct strengths and weaknesses. 
Yet, satellite technology, cloud computing, and processing speed and power are improving every year, and 
most of the above limitations will likely be overcome within the next decade. It is therefore the right time for 
evaluation units and institutes to explore uses and applications of RS data. RS data will be a valuable resource 
to measure programme impacts that leave a mark on the surface of the earth. Yet, similar or more important, 
machine-learning-based analysis of RS data can be used to approximate social and economic change. 
Enhanced machine-learning algorithms and standardized packages, as well as sets of validated proxies for 
socio-economic change, will increase automation and thus allow for the classification of larger land areas. 
This discussion paper was intended to provide a real-world example of machine-learning-based analysis of 
RS data in evaluation and, thus, to sensitize the evaluation community to the potentials and uses of RS data. 
The future will be technological and driven by “Big Data” and we hope that this paper helps to encourage the 
use of RS data and technologies in evaluations. 
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7. ANNEX
Annex A: Specifications and Acquisition Times of the Images Used for Proxy Extraction 

Study area Satellite Acquired date 
Spatial resolution 

Multispectral 
image (m) 

Panchromatic 
image (m) 

Tacloban WorldView2 2013-03-17 2 0.5 

Tacloban WorldView2 2017-03-18 2 0.5 

Tacloban GeoEye1 2013-11-10 2 0.5 

Tacloban GeoEye1 2013-11-12 2 0.5 

Tacloban GeoEye1 2013-11-13 2 0.5 

Tacloban GeoEye1 2016-04-24 2 0.5 

South Leyte WorldView2 2013-03-25 2 0.5 

South Leyte WorldView2 2013-04-02 2 0.5 

South Leyte WorldView2 2014-01-07 2 0.5 

South Leyte WorldView2 2014-07-16 2 0.5 

South Leyte WorldView2 2014-09-11 2 0.5 

South Leyte WorldView2 2014-10-21 2 0.5 

South Leyte WorldView2 2014-12-01 2 0.5 

South Leyte WorldView2 2016-01-24 2 0.5 

South Leyte WorldView2 2016-06-24 2 0.5 

Basey WorldView2 2013-05-18 2 0.5 

Basey WorldView2 2013-05-18 2 0.5 

Basey WorldView2 2013-09-01 2 0.5 

Basey WorldView2 2013-11-19 2 0.5 

Basey WorldView2 2013-11-21 2 0.5 

Basey WorldView3 2014-12-09 1.3 0.31 

Basey WorldView3 2015-01-10 1.3 0.31 

Basey WorldView2 2016-06-04 2 0.5 

Basey WorldView2 2016-06-04 2 0.5 

Lawaan WorldView2 2013-05-18 2 0.5 

Lawaan WorldView2 2013-05-18 2 0.5 

Lawaan WorldView2 2014-01-07 2 0.5 

Lawaan WorldView2 2014-01-07 2 0.5 

Lawaan WorldView3 2014-10-07 1.3 0.31 

Lawaan WorldView2 2015-11-24 2 0.5 

Source: own figure. 
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