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Non-Hermitian systems exploiting the synergy between the properties of closed-conservative 

systems and open-dissipative (gain/loss) systems have recently become the playground to 

uncover unsuasul physical phenomena. Indeed, the spatial symmetry breaking in such systems 

allows tailoring the wave propagation at will.  Inspired by such property, we propose a feasible 

approach based on local Hilbert transform to control the field flows in two- or higher 

dimensional non-Hermitian systems. Moreover, we invent an iterative procedure to reduce the 

dimensionality of complex refractive index parameter space to two, one or zero dimensions, 

restricting the complex refractive index within practical limits. The proposal provides a 

flexible way to systematically design local PT-symmetric systems realizable with a limited 

collection of realistic materials. 

  Subject Areas: Optics, Photonics 

I. INTRODUCTION

Physical causality is closely related with the celebrated 

Hilbert Transform (HT). In optics, the HT is well known 

as the Kramers-Kronig (KK) relations, connecting the real 

and imaginary parts of the spectrum of the response 

function of a system [1] in a way that it ensures that 

response must occur at a later (not earlier) time of its 

excitation. Such a HT breaks the time symmetry, and 

accounts for the “invisibility” of the future.    

Recently, an analogous HT was proposed in space to 

define the spatial profile of the complex susceptibility of 

a system to non-Hermitically engeener a nonistrotropic 

response, thus breaking the spatial symmetry. In one-

dimension (1D), space and time are both scalars and 

therefore the HT in space and time are mathematically 

equivalent [2]. The invisibility of the future or the absence 

of the flow of information to the past may be regarded as 

analogous  to the absence of scattering, say backscattering 

irradiating in the direction opposite to the illumination [3-

5]. In two- and three-dimensions, however, the situation 

becomes more engaged as backscattering (unidirectional 

invisibility) can be eliminated from different directions. 

For instance, in a two-dimensional (2D) space, it is 

possible to manipulate the scattering of an object towards 

particular directions [6,7] by correspondingly modifying 

its spatial susceptibility function via the HT. 

The spatial symmetry breaking of the system response, on 

the global scale is extensively studied in the context of 

Parity-Time (PT)-symmetry to explore novel physical 

effects [8-18]. Moreover, such symmetry breaking of the 

spatial response may occur locally, i.e. being different at 

different spatial positions, which allows engineering of 

complex directionality fields, with particular topologies 

such as axisymmetry [19] or following arbitrary vector 

fields being the background potential from periodic, 

quasiperiodic, to random [20]. 

Despite some attempts [7,21], yet a practical realization of 

the HT in space, either in global or local sense, remains a 

grand challenge. Actual realizations of the spatial HT are 

severely restricted by the limited available materials that 

can satisfying the required complex refractive index 

requirements Re Im( , ).n n With the development of 

metamaterials, which response function relies on their 

subwavelength artificial structures rather than to chemical 

compositions, the possible regime of refractive index 

profile has been greatly expanded. Thus, metamaterials 

bring about the opportunity to realize a precise relation 

between the real and imaginary parts of the response 

function required by the spatial HT. For instance, 

metamaterials based on a particular collection of 

“metachips”, satisfying a given response spectra, allow a 

spatial HT profile in the microwave regime [22]. 

However, it is not possible to realize arbitrary relations 

between real/imaginary parts of susceptibility from a 

limited collection of real materials. In semiconductor 

microstructures, the situation is also similar, as actual 

active materials have a specific relation between index and 

gain-loss Re Im( , )n n . 

The fundamental question that arises is if an actual field 

of unidirectionality can be implemented, either with a 

global or local topology, using the HT approach within 

restricted (realistic) range of complex susceptibility of a 

material. Arbitrary unidirectional vector fields can be 

designed by locally modifying the complex susceptibility 

(or complex refractive index) using the local Hilbert 

transform. As an example, Fig.1 illustrates such 

directionality field consisting of a sink and a source. 

However, the resultant complex index profile demands a 

large number of actual materials for the practical 



realization due to the continuous variation of complex 

index values in space [see Fig. 1(b) and 1(c)]. To resolve 

this issue, we propose to introduce restrictions for the 

complex index values, constraining them around certain 

particular values or confining them in some particular 

areas of the parameter space Re Im( , )n n . Such a restriction 

may possibly not limit the field unidirectionality or total 

invisibility, resulting into a basic scattering reduction. We 

propose an iterative procedure, to include such constraints 

to design the locally PT-symmetric systems with realistic 

index and gain/loss values.  

FIG. 1. (color online) Locally modified nonhermitian media providing 

the local Hilbert transform: (a) Scattering potential of the media, 

Re ( , )n x y , modified by local HT to mold the flow of light in the desired 

direction. Here, the optical media is specifically tailored to create source 

and sink fields, which involves gain-loss regions, Im ( , )n x y .The  

constructed two-dimensional complex potential Re Re( , ) in x y n n 

holds PT-symmetry locally, i.e., at each spatial location in the space to 
provide a precise control over directional flow (b) 2D complex refractive 

index profiles of the modified HT media requiring a large number of 

materials corresponding to different spatial point (c) cross-sectional 
profile of the complex index. 

II. DIMENSIONALITY RESTRICTIONS

Typical restrictions of the non-Hermitian media to 

engineer the local HT considered in our study are the 

following: 

(1) HT media as a mixture of two different materials with

two different complex refraction indices. Restricting the

total filling factor of two materials leads to a 1D manifold

in the refractive index in complex refraction index

parameter space, while limiting the total filling factor of

two materials to some upper bound results in a general 2D

manifold of available complex refraction indices, a

surface [Fig. 2(a)]. Mixing of chemical components or/and

manipulating porosity is a common practice to vary the

refraction indices in desired range typically between 1.2 to

2.1 in vapor deposition techniques [23,24].

(2) HT media as a metamaterial build from a continuous

family of size-scaled metachips in microwave range [22],

which restricts the complex refraction index space to a

ring [Fig. 2(b)].

(3) HT media as a “poor man” collection of the discretely

size-scaled resonators (for instance, of Helmholtz

resonators in acoustics, or microwave metachips),

corresponding to a discrete set of points in the complex

index space [Fig. 2(c)].

In this way, to show the universality of the method to 

engineer the desired HT profiles in the restricted 

parameter space, we analyze these distinct cases, which 

entail reducing the dimensionality in parameter space of 

complex refractive indices. For instance, Fig. 2 illustrates 

the kind of the dimensionality reductions of the three 

proposed restrictions (a) 2D→2D, (b) 2D→1D and (c) 2D

→0D.

FIG. 2. (color online). Restrictions of the local HT for different 
restriction dimensionalities: (a) mixture of two different materials with

1n , 2n ; for instance fixing the total density 1 2n n d  (solid or liquid 

–like) gives a line, and mixture of two materials restricting the maximal 

density 1 2n n d  , gives an area in complex space, (b) continuum of

scalable metachips gives an available ring in n-complex space, and (c)  

limited collection of scaled-in-size meta-atoms gives a set of points in 
complex space (five points in this case).  

III. RESULTS

A. Restricted Hilbert Transform

To implement the proposed schemes, we apply an iterative 

procedure. First, we perform a local HT on an arbitrary 

background potential to create desired directionality flows 

such as a sink, which requires a large area of 

real/imaginary values of  .n r Second, we shift the 

unallowed values of complex of  n r to the restriction 

area. As this process partially breaks the HT, then we 

perform the HT again and repeat the procedure. We repeat 

this iterative procedure until the index values converge. 

We define a correlation coefficient for the generated 

vectorial potentials with different restriction 

dimensionalities to characterize the accuracy and 

convergence of the restricted HT, which confirm that this 

iterative approach leads to the converging results in all 

cases studied. To verify the directionality effect in 

restricted HT, we perform numerical simulations using the 

Schrödinger equation (for paraxial optics) for linear 



systems with given complex vectorial potentials. We also 

perform the full wave simulations to demonstrate the 

functionality of the proposal beyond the paraxial 

approximation (see Supplemental Material). 

As an example of a possible realization of a restricted HT 

media, we consider an initial real-valued hexagonal 

profile,  Ren r [see top-left panel in Fig. 3] and generate 

the corresponding gain-loss profile,  Imn r , by applying 

the local HT transform [20] to ensure the converging 

directionality field in form of sink:  p r r r  . The 

parameter space of complex refractive index Re Im( , )n n

provides different material parameters as functions of the 

spatial location [see Fig. 3(a)]. To realize such complex 

profiles with available materials, we apply local HT 

iteratively to restrain the complex index values within 

physical limits. The results for different restriction 

dimensionalities are shown in Fig. 3(b-d). The index 

values in complex space Re Im( , )n n illustrate that the

iterative procedure precisely limits the refractive indices 

within the designated area, ring or a set of points on a ring 

[see the third row of Fig. 3]. The corresponding density 

distributions of complex index, plotted in the last row of 

Fig. 3, also show the spreading of restricted values inside 

the desired bounds. Note that the restricted HT provides 

many possible ways to restrict the complex indices during 

the iterative procedure and some of them are discussed in 

Supplemental Material.   In addition, the procedure is 

independent of the background potential profile and can 

be applied to arbitrary initial distribution i.e. 

quasiperiodic, random, localized etc [see Supplemental 

Material for random background medium]. Note that 

iterative procedure can be applied to exlude the gain to 

achieve analogous directionality fields with only losses in 

restricted parameter space, thus increasing the feasibility 

for practical realization. 

B. Covergence of Restricted Hilbert transform

To analyze the robustness and convergence of the iterative 

procedure, we determine the correlation coefficients in 

FIG. 3. (color online) Complex refractive index distributions for sink directionality (a) local HT (b,c,d) Restricted local HT (b,c,d) with 
hexagonal background pattern. In restricted HT cases, the complex index profiles are obtained after fifteen iterations. The first row presents 

the real part of refractive index, second row depicts the imaginary part obtained from the local HT, and third and fourth rows depict the 

corresponding restricted index values and density distribution in complex space, respectively. 



terms of flow of complex potential generated by HT under 

different restrictions. We define the correlation coefficient 

as: 
2 22 2( ). ( ) ( ) . ( )k kC p r f r dr p r dr f r dr  where  p r

is the reference flow and    * *

k k k k kf r i U U U U    is the 

potential flow after k iterations with the restrictions. For 

the cases shown in Fig. 3, we assume sink directionality to 

generate the complex vectorial potentials. Therefore, the 

reference flow is kept with the form of the sink: 

 p r r r   to determine the correlation coefficient.   

FIG. 4. (color online) Convergence of restricted local Hilbert transform 

(a-c) first and second rows depict refractive indices in complex space 
after 1st  and 12th iterations, respectively. The red and blue color illustrate 

the desired and computed restricted complex refractive index values 

obtained from local HT, respectively. (d) Correlation coefficients ( 0C

solid line ; 1C dotted line) in terms of flow of the complex potential 

generated by HT during iterative procedure for different restriction 

dimensionalities (⬜) 2 D→2D, (○)2D→1D, (*) 2D→0D. 

We expect that the constraints have a weak influence on 

the pattern of potential flows with reference to sink. Here, 

we compute two correlation coefficients namely 0C  and 

1C for which  kf r is calculated from complex refractive

distribution obtained by applying HT  before and after the 

restriction at k iteration, respectively. The difference 

between 𝐶0 and 𝐶1 estimates the accuracy of the proposed

restricted HT. To illustrate the difference of applying the 

HT before and after restrictions, we present the refractive 

indices in complex space after 1st and 12th iterations in 

Figs. 4(a-c). The second row in Figs. 4(a-c) shows the 

convergence of values of refractive index values in 

complex space for all cases. In (a), the restricted HT 

accurately limit the complex refractive indices in desired 

ranges. However, for (b,c), the refractive indices somehow 

spread around the ring and the chosen discrete points. This 

spreading behavior due to restrictions in complex space 

may be associated with uncertainty principle i.e. the 

smaller the restricted area, the larger the spreading. The 

correlation coefficients 0C  and 1C , calculated during the

iterative procedure, are plotted in Fig. 4(d). In the square 

case, we obtain exactly the same values for both 

correlation coefficients after fifteen iterations ensuring 

100% accuracy. However, we found ~ 1% and ~ 5% 

difference in correlation coefficients for ring and discrete 

cases, respectively. Note that the difference between 

correlation coefficients, for the considered restrictions, 

remains the same regardless of background pattern but the 

exact correlation values, 0C and 1C  , depend on the

background pattern. For instance, in pure sinusoidal 

pattern, these values are close to one but lower than unity 

in the considered hexagonal pattern. We note that the 

convergence of correlation coefficients requires more 

iterations when the restriction area shrinks. In the square 

case, the large restriction area leads to a fast converge, as 

compared to ring and discrete case. However, the iterative 

procedure converges after ten iterations in all cases as 

depicted in Fig. 4(d). 

C. Field evolution in Restricted HT media

To validate the “Restricted Hilbert transform” proposal, 

we performed numerical simulations using paraxial 

equation of diffraction (equivalent to the Schrodinger 

equation for a quantum wave function) expressed in the 

form: 

       2, , ,
t
A r t i A r t iU r A r t        (1) 

where  ,A r t is slowly varying complex field envelop 

distributed in space,  ,r x y and evolving in time, t . 

     Re ImU r n r in r  is the non-Hermintian potential

being  Ren r the real refractive index profile and  Imn r

the corresponding imaginary part of the potential obtained 

from local HT with sink directionality.  

We numerically solve Eq. (1) using the split step method 

for HT media with different restrictions. For the complex 

refractive index profiles shown in Figs. 3(a–d), the 

simulated steady-state field distributions are provided in 

Fig. 5, where a gaussian source is initially placed at an 

arbitrary position within the modified structure as show in 

Fig. 5a(i). The system shows initially the transients as 

depicted in Fig. 5a(ii) but eventually the field is efficiently 

concentrated around the center in a(iii), due to the sink 

directionality. The final localized states for different 

restrictions are shown in (b-d) [see Supplemental Movie 

for evolution of the field in HT media with different 

restrictions].  



FIG. 5. (color online) Field evolution in modified HT media for sink 
directionality. The system is excited with a gaussian beam placed at an 

arbitrary position within the structure as shown in a(i).  Numerically 

calculated transient and final localized states are shown in a(ii) and a(iii), 
respectively.  The steady state distributions for restricted cases are: (b) 

square area (c) ring (d) a set of discrete points on the ring. The results 

indicate that gaussian source, initially located at arbitrary position, 

localizes around the center in all cases after sufficient propagation time. 

IV. CONCLUSIONS

To conclude, we propose a restricted Hilbert transform for 

the generation of feasible systems holding local PT-

symmetry to manage arbitrary field flows in higher 

dimensional non-Hermitian systems under a realistic 

parameter space. In particular, we study restrictions of 

different dimensionalities from 2D to 1D and 0D to 

achieve the refractive indices for locally PT-symmetric 

systems within desired ranges. The procedure provides a 

substantial control over the chosen index values as 

compared to conventional spatial Kramers-Kronig 

relation, and the constructed index profiles can be 

experimentally realized with limited collection of realistic 

materials by locally tuning the real and imaginary part of 

dielectric media. It is worth mentioning that discrete HT 

transform requires minimum three different materials, 

three unaligned points in susceptibility complex plane for 

realization. It also offers a general design strategy to 

implement any desired field configuration in a broad class 

of non-Hermitian systems conceptually different from 

existing coordinate transformation approaches[25-28]. 

We believe that the proposal opens new possibilities to 

practically realize the wave dynamics of linear and 

nonlinear physical systems based on engineered HT media 

with realistic index and gain/loss values. 
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