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Sciences Dept., Barcelona Supercomputing Center, Spain xavier.martorell@bsc.es

Abstract. Static code analysis tools are designed to aid software devel-
opers to build better quality software in less time, by detecting defects
early in the software development life cycle. Even the most experienced
developer regularly introduces coding defects. Identifying, mitigating and
resolving defects is an essential part of the software development process,
but frequently defects can go undetected. One defect can lead to a minor
malfunction or cause serious security and safety issues. This is magnified
in the development of the complex parallel software required to exploit
modern heterogeneous multicore hardware. Thus, there is an urgent need
for new static code analysis tools to help in building better concurrent
and parallel software. The paper reports preliminary results about the
use of Appentra’s Parallelware technology to address this problem from
the following three perspectives: finding concurrency issues in the code,
discovering new opportunities for parallelization in the code, and gener-
ating parallel-equivalent codes that enable tasks to run faster. The paper
also presents experimental results using well-known scientific codes and
POWER systems.
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1 Introduction

Static code analysis tools are highly specialized to detect one or more defects,
typically categorized into similar types of defects. These tools fulfill a group of
specific needs of software developers. It is only recently that heterogeneous multi-
core systems have been adopted in a wide-range of hardware in industrial sectors
such as automotive, wireless communication and embedded vision. Therefore it
is increasingly important to develop new static code analyses that address the
fundamental problem of concurrency, which means that many tasks running at
the same time on the same hardware can lead to unpredictable and incorrect
behaviour. Identifying and fixing issues related to concurrency and parallelism
is one of the most time-consuming and costly aspects of parallel programming.
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However, static code analysis tools that detect defects related to parallel pro-
gramming are at a very early stage.

This papers presents an experimental evaluation of Appentra’s Parallelware
static code analysis tools on POWER systems, which go beyond the state of
the art by addressing the problem of concurrency and parallelism from three
different perspectives: finding concurrency issues in the code, discovering new
opportunities for parallelization in the code, and generating parallel-equivalent
code that enables tasks to runs faster. In the rest of the paper, Section 2 describes
the current set of Parallelware tools, namely, the Parallelware development li-
brary, Parallelware Analyzer (BETA) and Parallelware Trainer. Next, Section 3
presents early results from the analysis of the SNU NPB Suite [6], a C version
of the NAS Parallel Benchmarks [5], using POWER systems available at the
Jülich Supercomputing Centre and at Appentra headquarters. Finally, Section 4
presents conclusions and future work.

2 Parallelware Tools

Appentra is a Deep Tech global company that delivers products based on the
Parallelware technology [4,1], a unique approach to static code analysis for con-
current and parallel programming. It is based on an engine for the detection of
parallel patterns such as forall, scalar reduction, sparse forall and sparse reduc-
tion. These patterns are used to detect software issues related to concurrency
and parallelism, discover parallelism and generate parallel-equivalent code. The
current portfolio of tools based on Parallelware technology is as follows:

– Parallelware developer library, which offers the static code analysis ca-
pabilities of the Parallelware technology. It provides an Application Program
Interface (API) that is the basis of Parallelware Analyzer and Parallelware
Trainer, and that is designed to enable the integration in third-party software
development tools. It supports the C programming language, the OpenMP
4.5 [8] and OpenACC 2.5 [7] directive-based parallel programming inter-
faces, and the multithreading, offloading and tasking parallel programming
paradigms.

– Parallelware Analyzer (BETA) [3] is designed to speed up the devel-
opment of parallel applications and to enforce best practice in parallel pro-
gramming for heterogeneous multicore systems. It helps software developers
by finding software defects early in the parallelization process and thus in-
creases productivity, maintainability and sustainability. It is available as a
set of command-line tools to enable compatibility with Continuous Integra-
tion and DevOps platforms.

– Parallelware Trainer [3] is an interactive, real-time code editor that en-
ables scalable, interactive teaching and learning of parallel programming,
increasing productivity and retention of learning. It is available for Win-
dows, Linux and MacOS operating systems.



3 Experimental results

This section presents experimental results obtained on POWER systems using
Parallelware tools. More specifically, Section 3.1 presents the report generated
by Parallelware Analyzer and Section 3.2 presents experimental results of codes
parallelized using Parallelware Trainer.

3.1 Report generated using Parallelware Analyzer

The report shown in Table 1 was generated by the Parallelware Analyzer tool
after analyzing codes written in the C programming language from the SNU
NPB Suite [6,5] benchmarks (NPB-SER-C and NPB-OMP-C implementations).
The structure of the report is as follows: Benchmark, the software application;
Files, number of source code files; SLOC, source lines of code calculated by the
sloccount tool; Time, runtime of the Parallelware Analyzer tool in milliseconds;
Software issues, number of issues found in the code related to concurrency and
parallelism; and Opportunities, number of loops found in the code that have
opportunities for parallelization using multithreading and SIMD paradigms. The
last row of the table provides total numbers for all the analyzed benchmarks.

The current tool setup reports five software issues related to concurrency
and parallelism: Global, use of global variables in the body of a function; Scope,
scalar variables not declared in the smallest scope possible in the code; Pure, pure
functions free of side effects not marked by the programmer; Scoping, variables
in an OpenMP parallel region without an explicit data scoping; and Default,
OpenMP parallel region without the default(none) clause. More information
about each one of them can be found in the Appentra Knowledge website [2].The
tool also reports two types of opportunities for parallelization: Multi, outer loops
that can be parallelized with the multithreading paradigm; and SIMD, inner
loops that can be parallelized with the SIMD paradigm.

Parallelware Analyzer successfully analyzed a total of 192 source files of code,
containing 39890 lines of code written in the C programming language, in less
than 13 seconds. In terms of software issues related to concurrency and paral-
lelism, the tools detected a total of 296 uses of global variables in the body of
functions. There are 2082 declarations of scalars in a scope bigger than neces-
sary. Moreover, a total of 9 pure functions that are free of side effects but not
marked as such were found. Finally, 329 variables with an implicit datascoping
and 117 OpenMP parallel regions having a default one were detected. In terms of
opportunities for parallelization, a total of 312 outer loops and the same number
of inner loops can be parallelized using the multithreading and SIMD paradigms
respectively.

3.2 Report generated using Parallelware Trainer

The Parallelware Trainer tool was used to automatically generate several paral-
lel versions of a code that computes the Mandelbrot sets. Four parallel versions



of Mandelbrot are considered in this work: Sequential, serial version (see List-
ing 1.1, ignoring the OpenMP directives); Multithreading, OpenMP version us-
ing multithreading paradigm (see Listing 1.1, which contains directives#pragma
omp parallel for); Taskwait, parallel version using OpenMP 3.0 tasking paradigm
(see Listing 1.2, which contains directives #pragma omp task and #pragma omp
taskwait); Taskloop, parallel version using OpenMP 4.5 tasking paradigm (see
Listing 1.3, which contains directives#pragma omp taskloop). It should be noted
that a software engineer with little experience used the tool to generate and test
all the parallel versions for correctness and performance in less than one hour.

Experiments were conducted on two POWER systems: a compute node of
the Juron supercomputer at Jülich Supercomputing Centre and the Appentra
server available at Appentra’s headquarters. In Juron, the hardware setup of
each compute node consists on a IBM S822LC system with 2x 10-core SMT8
POWER8NVL CPUs, offering a total of 160 threads. It provides a CentOS Linux
7 (AltArch) Linux operating system with a GCC 4.8.5 compiler. In Appentra
server, the hardware setup consists on a RaptorCS Talos II system equipped
with an 8-core SMT4 POWER9 processor, offering a total of 32 threads. It runs
a Debian 10 (buster) Linux with a GCC 8.3.0 compiler. In both systems, GCC
compiler flags were used as follows: -O2 for sequential execution and -fopenmp

-O2 for OpenMP-enabled parallel execution.
Table 2 shows the runtimes and speedups for a problem size of 20000. Its

structure is as follows: Version, serial or parallel version of the code, one of Se-
quential,Multithreading, Taskwait and Taskloop; No. Threads, number of OpenMP
threads; Time, runtime in seconds, and Speedup, speedup calculated with respect
to the sequential version, for each POWER system. The Taskwait version is the
fastest code both in Juron (maximum speedup is 56 for 160 threads) and Ap-
pentra’s POWER9 server (maximum speedup above 28 for 32 and 64 threads).
The Multithreading version is also fast, but the speedup is below Taskwait be-
cause the OpenMP code generated by Paralellware Trainer includes the clause
schedule(auto) which defaults to schedule(static). Note that since the workload
of Mandelbrot is not constant, different threads are assigned different workloads.
Therefore, schedule(static) is not the better choice and should be replaced by
schedule(static,1) or schedule(dynamic). Finally, note that the Taskloop version
does not scale with the number of threads. This needs to be further investigated
as we expected Taskloop to also decrease the execution time on both systems.

4 Conclusions and Future Work

Preliminary results show evidences that Parallelware tools have the potential to
help software developers to build better quality parallel code. On the one side,
Parallelware Analyzer was used to evaluate the SNU NPB Suite, a C implemen-
tation of the NAS Parallel Benchmarks. The static code analysis capabilities
of Parallelware technology reported the existence of data scoping issues in the
codes as well as the existence of pure functions which were not marked as such to
provide additional hints to the compiler. Additionally, the tool also reported the



existence of sequential loops that could be parallelized using the multithreading
and SIMD paradigms.

On the other side, Parallelware Trainer provides a GUI that facilitates the
generation of parallel version of a code, as well as the testing of those version
for correctness and performance. In less than one hour, a software engineer with
little experience in parallel programming generated several OpenMP-enabled
parallel versions of the Mandelbrot algorithm using multithreading and tasking
paradigms. Performance tests showed significant speedups on both Juron and
Appentra POWER systems.

As future work, we plan to further develop Parallelware tools to support C++
and Fortran, as well as other task-based parallel versions tuned for execution on
GPUs and FPGAs. We also plan to extend the number of software issues related
to concurrency and parallelism detected by the Parallelware tools and run them
on a wider set of scientific and engineering software.
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Benchmark Files SLOC Time Software issues Opportunities
(ms) Global Scope Pure Scoping Default Multi SIMD

NPB3.3-SER-C/BT 17 2608 557.97 13 143 0 0 0 24 44
NPB3.3-SER-C/CG 3 521 143.69 3 20 1 0 0 13 10
NPB3.3-SER-C/DC 11 2725 430.67 10 0 3 0 0 13 0
NPB3.3-SER-C/EP 2 175 88.61 1 0 0 0 0 2 0
NPB3.3-SER-C/FT 7 625 238.77 4 0 1 0 0 0 0
NPB3.3-SER-C/IS 2 463 69.3 4 0 0 0 0 4 0
NPB3.3-SER-C/LU 19 2389 739.86 15 298 0 0 0 29 59
NPB3.3-SER-C/MG 3 873 648.68 11 2 0 0 0 4 2
NPB3.3-SER-C/SP 19 2056 683.6 19 381 0 0 0 28 91
NPB3.3-SER-C/UA 13 5576 2181.73 53 163 0 0 0 77 69
NPB3.3-SER-C/common 0 296 174.19 0 0 0 0 0 0 0
NPB3.3-SER-C/config 0 0 28.71 0 0 0 0 0 0 0
NPB3.3-SER-C/sys 1 759 182.71 2 0 0 0 0 0 0

NPB3.3-SER-C 97 19066 6168.48 135 1007 5 0 0 194 275

NPB3.3-OMP-C/BT 17 2693 568.03 13 144 0 41 9 8 4
NPB3.3-OMP-C/CG 3 627 171.77 5 20 1 16 5 9 3
NPB3.3-OMP-C/DC 11 2754 425.05 10 0 3 0 0 13 0
NPB3.3-OMP-C/EP 2 198 92.4 1 0 0 4 3 0 0
NPB3.3-OMP-C/FT 3 649 163.39 12 0 0 10 8 0 0
NPB3.3-OMP-C/IS 2 634 88.15 6 4 0 7 4 4 0
NPB3.3-OMP-C/LU 20 2542 778.31 17 295 0 55 9 5 0
NPB3.3-OMP-C/MG 3 923 662.07 11 2 0 19 10 4 2
NPB3.3-OMP-C/SP 19 2147 693.33 19 381 0 45 13 8 4
NPB3.3-OMP-C/UA 14 6549 2749.03 65 229 0 132 56 67 24
NPB3.3-OMP-C/bin 0 0 29.25 0 0 0 0 0 0 0
NPB3.3-OMP-C/common 0 349 178.34 0 0 0 0 0 0 0
NPB3.3-OMP-C/config 0 0 28.47 0 0 0 0 0 0 0
NPB3.3-OMP-C/sys 1 759 179.29 2 0 0 0 0 0 0

NPB3.3-OMP 95 20824 6806.88 161 1075 4 329 117 118 37

Totals 192 39890 12975.36 296 2082 9 329 117 312 312

Table 1. Parallelware Analyzer report.



Juron Appentra’s server

Version No.Threads Time (secs) Speedup Time (secs) Speedup

Sequential 4 89.50 1 178.92 1
Multithreading 4 32.85 2.72 37.94 4.72
Taskwait 4 23.30 3.84 24.38 7.34
Taskloop 4 133.31 0.67 37.99 4.71

Sequential 8 89.52 1 178.92 1
Multithreading 8 31.77 2.82 38.96 4.59
Taskwait 8 17.91 4.99 21.57 8.29
Taskloop 8 143.22 0.63 38.82 4.61

Sequential 16 89.51 1 178.93 1
Multithreading 16 14.42 6.21 20.96 8.54
Taskwait 16 7.67 11.67 12.02 14.89
Taskloop 16 86.44 1.04 20.99 8.53

Sequential 32 89.51 1 178.93 1
Multithreading 32 8.57 10.45 10.93 16.37
Taskwait 32 4.97 19.01 6.31 28.36
Taskloop 32 99.93 0.89 11.05 16.19

Sequential 64 89.52 1 178.92 1
Multithreading 64 4.24 21.11 7.80 22.94
Taskwait 64 2.60 34.43 6.33 28.27
Taskloop 64 86.45 1.04 7.70 23.24

Sequential 80 89.53 1
Multithreading 80 3.50 25.58
Taskwait 80 2.34 38.26
Taskloop 80 86.45 1.04
Sequential 128 89.51 1
Multithreading 128 2.59 34.56
Taskwait 128 1.64 54.58
Taskloop 128 86.46 1.04
Sequential 160 89.53 1
Multithreading 160 2.53 35.39
Taskwait 160 1.60 55.96
Taskloop 160 86.42 1.04

Table 2. Execution times (in seconds) and speedups of Mandelbrot in Juron (2x 10-
core SMT8 POWER8 processors) and in Appentra’s POWER server (8-core SMT4
POWER9) for problem size of 20000.



Listing 1.1. OpenMP-enabled parallel version of Mandelbrot using multi-
threading paradigm. Parallel code automatically generated by Parallelware
Trainer.

1 i n t mand e l b r o t ( i n t max i t e r , i n t h e i g h t , i n t wid th ,
double ∗∗ ou tpu t , double r e a l m i n , double r e a l ma x ,
double imag m in ,

2 double imag max ) {
3 double s c a l e r e a l = ( r e a l m a x − r e a l m i n ) / w id t h ;
4 double s c a l e i m a g = ( imag max − imag m in ) / h e i g h t ;
5

6 #pragma omp p a r a l l e l d e f a u l t ( none ) shared ( height ,
imag min , max iter , output , rea l min , sca le imag ,
s c a l e r e a l , width )

7 {
8 #pragma omp f o r schedu le ( auto )
9 f o r ( i n t row = 0 ; row < h e i g h t ; row++) {

10 f o r ( i n t c o l = 0 ; c o l < wid t h ; c o l++) {
11

12 double x0 = r e a l m i n + c o l ∗ s c a l e r e a l ;
13 double y0 = imag m i n + row ∗ s c a l e i m a g ;
14

15 double y = 0 , x = 0 ;
16 i n t i t e r = 0 ;
17 whi le ( x ∗ x + y ∗ y < 4 && i t e r < ma x i t e r )

{
18 double xtemp = x ∗ x − y ∗ y + x0 ;
19 y = 2 ∗ x ∗ y + y0 ;
20 x = xtemp ;
21 i t e r ++;
22 }
23 o u t p u t [ row ] [ c o l ] = i t e r ;
24 }
25 }
26 } // end p a r a l l e l
27 return 0 ;
28 }



Listing 1.2. OpenMP-enabled parallel version of Mandelbrot using tasking
paradigm of OpenMP version 3.0 (task/taskwait). Parallel code automatically
generated by Parallelware Trainer.

1 i n t mand e l b r o t ( i n t max i t e r , i n t h e i g h t , i n t wid th ,
double ∗∗ ou tpu t , double r e a l m i n , double r e a l ma x ,
double imag m in ,

2 double imag max ) {
3 double s c a l e r e a l = ( r e a l m a x − r e a l m i n ) / w id t h ;
4 double s c a l e i m a g = ( imag max − imag m in ) / h e i g h t ;
5

6 #pragma omp p a r a l l e l d e f a u l t ( none ) shared ( height ,
imag min , max iter , output , rea l min , sca le imag ,
s c a l e r e a l , width )

7 #pragma omp s i n g l e
8 {
9 f o r ( i n t row = 0 ; row < h e i g h t ; row++) {

10 #pragma omp task
11 {
12 f o r ( i n t c o l = 0 ; c o l < wid t h ; c o l++) {
13 . . .
14 o u t p u t [ row ] [ c o l ] = i t e r ;
15 }
16 } // end t a s k
17 }
18 #pragma omp taskwa it
19 } // end p a r a l l e l
20 return 0 ;
21 }

Listing 1.3. OpenMP-enabled parallel version of Mandelbrot using tasking
paradigm of OpenMP version 4.5 (taskloop). Parallel code automatically gen-
erated by Parallelware Trainer.

1 i n t mand e l b r o t ( i n t max i t e r , i n t h e i g h t , i n t wid th ,
double ∗∗ ou tpu t , double r e a l m i n , double r e a l ma x ,
double imag m in ,

2 double imag max ) {
3 double s c a l e r e a l = ( r e a l m a x − r e a l m i n ) / w id t h ;
4 double s c a l e i m a g = ( imag max − imag m in ) / h e i g h t ;
5

6 #pragma omp p a r a l l e l d e f a u l t ( none ) shared ( height ,
imag min , max iter , output , rea l min , sca le imag ,
s c a l e r e a l , width )

7 #pragma omp s i n g l e
8 {
9 #pragma omp task loop

10 f o r ( i n t row = 0 ; row < h e i g h t ; row++) {
11 f o r ( i n t c o l = 0 ; c o l < wid t h ; c o l++) {
12 . . .
13 o u t p u t [ row ] [ c o l ] = i t e r ;
14 }
15 }
16 } // end p a r a l l e l
17 return 0 ;
18 }
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