
Causal canonical decomposition of hysteresis systems
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Abstract

Hysteresis is a special type of behavior found in many areas including magnetism, mechanics, bi-
ology, economics, etc. One of the characteristics of hysteresis systems is that they are approximately
rate independent for slow inputs. It is possible to express this characteristic in mathematical language
by decomposing hysteresis operators as the sum of a rate independent component and a nonhysteretic
component which vanishes in steady state for slow inputs. This decomposition -called canonical decom-
position- is possible for a class of hysteresis operators for which a continuous input leads to a continuous
output and a continuous hysteresis loop. The canonical decomposition can be obtained using the concept
of confluence which is an equation that continuous hysteresis operators should verify.

On the other hand, hysteresis systems are causal which means that their output depends on the current
and/or previous values of the input but not on the future values of that input. Are the components of
the canonical decomposition also causal? The answer is en general negative. The lack of causality
of these components means that they cannot be written in the form of differential equations, integro-
differential equations, partial differential equations, partial integro-differential equations and many other
useful structures.

This paper proposes a new decomposition of hysteresis operators called causal canonical decomposition
in which the rate independent component and the nonhysteretic component are both causal. The main
tool to obtain the causal canonical decomposition is a new mathematical equation that we call uniform
confluence. Using this equation we show that the causal canonical decomposition is unique. The concepts
introduced in the paper are applied to the hysteretic scalar semilinear Duhem model as a case study.
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1. Introduction and problem statement

The formal definition of causality. Let U,X, Y be arbitrary sets. Let U be the set of all
functions u : R+ → U , X the set of all functions x : R+ → X, and Y the set of all functions y : R+ → Y .
Then for any (u, x0) ∈ U ×X we define H(u, x0) = T ◦ [Φ(u, x0)] where Φ is a function (called operator
in this work) Φ : U ×X → X , and T : X → Y is a function, so that H : U ×X → Y .5

The elements of U are called inputs, and the argument t ∈ R+ of the input u is called time. This
means that the value of the input u at time t is u(t). The function H(u, x0) : R+ → Y is called the output
that corresponds to the input u ∈ U and the initial state x0 ∈ X. The function Φ(u, x0) : R+ → Y is
called the state that corresponds to the input u ∈ U and the initial state x0 ∈ X. If T is the identity
function, then the state is also the output.10

Definition 1. Let U1 ⊂ U and X1 ⊂ X. We say that the operator Φ is (U1, X1)–causal if the following
holds. For all u1, u2 ∈ U1, all x0 ∈ X1 and all t ∈ [0,∞[ we have: if ∀τ ∈ [0, t], u1(τ) = u2(τ), then
∀τ ∈ [0, t],

[
Φ(u1, x0)

]
(τ) =

[
Φ(u2, x0)

]
(τ) [8, p. 60].
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What Definition 1 says is that, if Φ is causal, then
[
Φ(u, x0)

]
(t) is independent of the values u(τ) for

τ > t. In other words, if we know x0 and the restriction of u to the time interval [0, t] then we know the15

restriction of Φ (u, x0) to the time interval [0, t].
An example of a causal system is the differential equation ẋ = f(x, u) and x(0) = x0 when it has a

unique solution. The same can be said of any partial differential equation or partial integro-differential
equation that has a unique solution for a given initial condition.

Finally, observe that if Φ is causal then H also is causal.20

The canonical decomposition of hysteresis systems. The issue ‘what is hysteresis’ is reviewed
extensively in our paper [4, Section 2]. Hysteresis consists in that slow inputs produce a loop in the
steady-state part of the graph output-versus-input.

In this paper we consider the class of hysteresis systems for which continuous inputs produce con-
tinuous outputs and continuous hysteresis loops. This class is studied in Ref. [5] using the concept of
confluence introduced by the author. It is shown that any confluent operator Φ can be decomposed as

Φ = Φ◦ +Φ‡, (1)

where Φ◦ is rate independent and Φ‡ vanishes in steady state for slow inputs [5, Theorem 6.1]. Rate
independence means that the graph output-versus-input of Φ◦ is invariant under a change in time scale.25

Equation (1) is called the canonical decomposition of the confluent operator Φ. The operator Φ◦ is
called the rate-independent component of Φ, and Φ‡ the nonhysteretic component of Φ.

However, even when Φ is causal, the rate-independent components Φ◦ and Φ‡ may not be causal.
Is the lack of causality of the components Φ◦ and Φ‡ a problem? Whether physical sys-

tems are all causal or whether there are noncausal physical processes is an interesting question. However,30

this issue is not relevant to our study. What we can assert is that when Φ◦ and Φ‡ are not causal, they
cannot be written in the form of differential equations, integro-differential equations, partial differential
equations, partial integro-differential equations and many other structures that have a unique solution
for any given initial condition. In the context of hysteresis systems, causality is a customary assumption,
see for example Ref. [8, p. 60].35

We formulate two problems inspired from Equation (1):

(i) The direct problem that we call ‘causal model construction’: given a rate independent and
confluent causal operator Φ1, combine it to other operators in order to obtain a rate-dependent
causal and confluent operator Φ such that, for slow inputs, we have Φ ≃ Φ1 in steady state.

(ii) The inverse problem that we call ‘causal canonical decomposition’: given a causal and confluent40

operator Φ, find a rate independent causal and confluent operator Φ⋆ such that, for slow inputs,
we have Φ ≃ Φ⋆ in steady state.

An example of a solution to the causal model construction problem (i) is proposed in [5, Section 7].
Aim of the paper. Our purpose is to propose sufficient conditions on Φ so that the causal canonical

decomposition problem (ii) has a solution. Moreover, we provide a way to construct that solution.45

Organization of the paper. Section 2 provides the notations that are used throughout the paper.
Section 3 provides those results of Ref. [5] that are relevant to the present paper. Section 4 introduces the
concept of uniform confluence. The main result of this paper is Theorem 16. An example that illustrates
the concepts introduced in this paper is presented in Section 5. Comments on the obtained results are
given in Section 6. Conclusions are provided in Section 7.50

2. Mathematical notation

The restriction of a function f to a set S is denoted f |S .
An ordered pair a, b is denoted (a, b) whilst the open interval {t ∈ R | a < t < b} is denoted ]a, b[. The

set of nonnegative integers is denoted N = {0, 1, . . .} and the set of nonnegative real numbers is denoted
R+ = [0,∞[.55

We say that a subset of R is measurable when it is Lebesgue measurable. Consider a function
g : I ⊂ R+ → Rn where n ∈ N\{0} and I an interval. We say that g is measurable when {x ∈ I : g(x) > a}
is measurable for all a ∈ R. For a measurable function g : I → Rn, ∥g∥ denotes the essential supremum
of the function |g| where | · | is the Euclidean norm on Rn.
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C0(I, J) denotes the set of continuous functions defined from the interval I ⊂ R+ to the topological60

space J .
We consider the Sobolev space W 1;∞(R+,Rn) of absolutely continuous functions u : R+ → Rn. For

this class of functions, the derivative u̇ is measurable, and we have ∥u∥ < ∞, ∥u̇∥ < ∞.
Let a ∈ Z and b ∈ R. Define the set Ja,∞J= {k ∈ Z | k ≥ a}. Let f : Ja,∞J× ]b,∞[→ R. We say

that
lim

(k,γ)→∞
f(k, γ) = 0

if ∀ϵ > 0, ∃kϵ ∈ Ja,∞J, ∃γϵ ∈ ]b,∞[ such that ∀k ∈ Jkϵ,∞J,∀γ ∈ [γϵ,∞[ we have |f(k, γ)| ≤ ϵ.
Let a1, a2 ∈ Z. Then we define the set Ja1, a2K = {k ∈ Z | a1 ≤ k ≤ a2}.65

For any γ ∈ ]0,∞[ define the linear change is time scale sγ : R → R by sγ(t) = t/γ, ∀t ∈ R.
For any a ∈ R define the translation τa : R → R by τa(t) = t+ a,∀t ∈ R.
A function u ∈ C0(R+,Rn) is said to be T–periodic, where T ∈ ]0,∞[, if u(t+ T ) = u(t),∀t ∈ R+.
For any T ∈ ]0,∞[ we define ΩT as the set of all T–periodic functions u ∈ C0(R+,Rn), and Ω =

∪T∈]0,∞[ΩT .70

3. Background results from Ref. [5]

This section presents a summary of those results of Ref. [5] that are relevant to the present work.

3.1. Time-scale change

Let T ∈ ]0,∞[ and γ ∈ ]0,∞[. Let fT ;γ ∈ C0(R+,R+) be a function that satisfies (a)–(c).

(a) fT ;γ is strictly increasing on R+.75

(b) fT ;γ(0) = 0, limt→∞ fT ;γ(t) = ∞, and fT ;γ(t+ kγT ) = fT ;γ(t) + kT, ∀t ∈ [0, γT ],∀k ∈ N.
(c) f−1

T ;γ ∈ C0(R+,R+), and f−1
T ;γ(t+ kT ) = f−1

T ;γ(t) + kγT, ∀t ∈ [0, T ],∀k ∈ N.

The set of all such functions fT ;γ is denoted IT ;γ .
For any γ ∈ ]0,∞[ define the set IT ;1 ◦ sγ = {fT ;1 ◦ sγ , fT ;1 ∈ IT ;1}.

Proposition 2. IT ;1 ◦ sγ = IT ;γ .80

Proposition 2 provides a practical way to construct the set IT ;γ : pick all elements of IT ;1 and compose
each element with sγ to get all elements of IT ;γ .

For any T ∈ ]0,∞[ define the set s 1
T
◦ I1;1 ◦ sT = {s 1

T
◦ f1;1 ◦ sT , f1;1 ∈ I1;1}.

Proposition 3. s 1
T
◦ I1;1 ◦ sT = IT ;1.

Proposition 3 provides a practical way to construct the set IT ;1: pick all f1;1 ∈ I1;1 and compute s 1
T
◦85

f1;1 ◦ sT to get all elements of IT ;1.

Corollary 4. IT ;γ = s 1
T
◦ I1;1 ◦ sγT .

3.2. The frame

Let Ξ be a Banach space with norm | · |. Let T ∈ ]0,∞[, then C0
(
[0, T ],Ξ

)
is a Banach space with

respect to the norm ∥·∥ defined by ∥a∥ = supt∈[0,T ] |a(t)| for any a ∈ C0
(
[0, T ],Ξ

)
. For any w ∈ C0

(
R+,Ξ

)
90

define ∥w∥ = supt∈R+
|w(t)|. Define the set B(R+,Ξ) =

{
w ∈ C0

(
R+,Ξ

)
| ∥w∥ < ∞

}
.

Let n,m ∈ N \ {0}. We consider an operator Φ : C0(R+,Rn) × Ξ → C0(R+,Ξ), an operator H :
C0(R+,Rn) × Ξ → C0(R+,Rm), and a continuous function T : Ξ → Rm such that for any (u, x0) ∈
C0(R+,Rn)× Ξ we have H(u, x0) = T ◦ [Φ(u, x0)].

We also set that [Φ(u, x0)](0) = x0 for all (u, x0) ∈ C0(R+,Rn)× Ξ.95
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3.3. Confluence
Define the set Id ∈ S ⊂ I1;1 where Id : R+ → R+ is the identity function defined by Id(t) = t, ∀t ∈ R+.

For any T, γ ∈ ]0,∞[ define the set

ST ;γ = {fT ;γ = s 1
T
◦ f1;1 ◦ sγT , f1;1 ∈ S} = s 1

T
◦ S ◦ sγT .

Then sγ ∈ ST ;γ ⊂ IT ;γ .
Define also the set

ST =
∪

γ∈]0,∞[

ST ;γ .

Definition 5. Let (T, u, x0) ∈ ]0,∞[×ΩT × Ξ. We say that the operator Φ is confluent with respect
to (u, x0,S) if there exists a function αu;Φ;x0;S ∈ C0

(
[0, T ],Ξ

)
such that the following holds. Define the

function ℘Φ : N×]0,∞[→ R+ ∪ {∞} by

∀(k, γ) ∈ N×]0,∞[,

℘Φ(k, γ) = sup
fT ;γ∈ST ;γ

∥∥∥(Φ(u ◦ fT ;γ , x0) ◦ f−1
T ;γ ◦ τkT

)
|[0,T ] − αu;Φ;x0;S

∥∥∥
Ξ;[0,T ]

.
(2)

Then, lim
(k,γ)→∞

℘Φ(k, γ) = 0. (3)

Proposition 6. The function αu;Φ;x0;S does not depend on the set S.
Owing to Proposition 6 we use the notation αu;Φ;x0 instead of αu;Φ;x0;S.
When Φ is confluent with respect to (u, x0,S), the set

Qu;Φ;x0
=
{(

u(t), αu;Φ;x0
(t)
)
, t ∈ [0, T ]

}
(4)

is called the hysteresis loop of the operator Φ with respect to (u, x0).100

Proposition 7. If Φ is confluent with respect to (u, x0,S) then H is confluent with respect to (u, x0,S)
and αu;H;x0

= T ◦ αu;Φ;x0 .

Proposition 7 says that H is confluent whenever Φ is confluent. This is why we focus on the study of
Φ in this paper.

3.4. Some inferences from Ref. [5]105

Proposition 8. Let T ∈ ]0,∞[, u ∈ ΩT , and x0 ∈ Ξ. If the operator Φ is confluent with respect to
(u, x0,S) then there exists γu;x0 ∈ ]0,∞[ such that ∀γ ≥ γu;x0 we have the following: ∀fT ;γ ∈ ST ;γ ,Φ(u ◦
fT ;γ , x0) ∈ B(R+,Ξ). In particular ∀γ ≥ γu;x0 ,Φ(u ◦ sγ , x0) ∈ B(R+,Ξ).

Proposition 9. Let u0 ∈ Rn and x0 ∈ Ξ. Define u0 ∈ ΩT=1 by u0(t) = u0,∀t ∈ R+ (observe that the
function u0 can be considered 1–periodic). If the operator Φ is confluent with respect to (u0, x0,S) then110

there exists ℓ ∈ Ξ such that limt→∞
[
Φ(u0, x0)

]
(t) = ℓ. Moreover, ∀t ∈ [0, 1], αu0;Φ;x0

(t) = ℓ.

Definition 10. Let U ⊂ C0(R+,Rn), W a set of homeomorphisms of R+, and X ⊂ Ξ. We say that Φ
is (U ,W ,X )–rate independent if ∀u ∈ U ,∀f ∈ W ,∀x0 ∈ X we have Φ(u ◦ f, x0) = Φ(u, x0) ◦ f .
Observe that if Φ is (U ,W ,X )–rate independent then H is also (U ,W ,X )–rate independent.

Theorem 11. The statements (a) and (b) are equivalent.115

(a) The operator Φ is confluent with respect to (u, x0,S) for all (u, x0) ∈ Ω× Ξ.

(b) There exist unique operators Φ◦ : Ω× Ξ → Ω and Φ‡ : Ω× Ξ → C0(R+,Ξ) such that (i)–(iii) hold.

(i) Φ = Φ◦ +Φ‡.
(ii) ∀T ∈ ]0,∞[, Φ◦ is (ΩT ,

∪
γ∈]0,∞[ ST ;γ ,Ξ)–rate independent.

(iii) Let T ∈ ]0,∞[ be arbitrary. For all u ∈ ΩT and all x0 ∈ Ξ we have120

(iii-1) Φ◦(u, x0) is T–periodic.

(iii-2) lim
(k,γ)→∞

(
sup

fT ;γ∈ST ;γ

∥∥Φ‡(u ◦ fT ;γ , x0)|[kγT,∞[

∥∥) = 0.

The operator Φ◦ is constructed as follows:[
Φ◦(u, x0)

]
(t+ kT ) = αu;Φ;x0(t),∀(t, k, T, u, x0) ∈ [0, T ]× N× ]0,∞[×ΩT × Ξ.
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4. Uniform confluence

This section introduces the concept of uniform confluence which is a sufficient condition for obtaining
a causal decomposition of the operator Φ. The section is organized into three subsections: Section 4.1125

provides the definition of uniform confluence along with some propositions needed to get the decomposi-
tion. Section 4.2 presents the causal canonical decomposition of Φ which is the main result of the paper.
Some consequences of this decomposition are analyzed in Section 4.3.

4.1. Preliminary results

Proposition 12. Let T ∈ ]0,∞[, u ∈ ΩT , x0 ∈ Ξ, and Id ∈ S ⊂ I1;1. Suppose that (i)–(ii) hold.130

(i) The operator Φ is confluent with respect to (u, x0,S).
(ii) ∃βu;Φ;x0

∈ C0(R+,Ξ) such that

lim
γ→∞

(
sup

fT ;γ∈ST ;γ

∥∥∥Φ(u ◦ fT ;γ , x0) ◦ f−1
T ;γ − βu;Φ;x0

∥∥∥) = 0. (5)

Then (a)–(d) hold.

(a) βu;Φ;x0 ∈ B(R+,Ξ).

(b) For any k ∈ N define the function βu;Φ;x0,k ∈ C0
(
[0, T ],Ξ

)
by βu;Φ;x0;k = (βu;Φ;x0

◦ τkT ) |[0,T ]. Then
we have

lim
k→∞

∥βu;Φ;x0,k − αu;Φ;x0∥ = 0. (6)

(c) βu;Φ;x0(0) = x0.

(d) Let u0 be the function of Proposition 9. Then ∀t ∈ R+ we have
[
Φ(u0, x0)

]
(t) = βu0;Φ;x0

(t) = x0.135

Proof. (a) From Proposition 8 there exists γu0;x0
∈ ]0,∞[ such that ∀γ ≥ γu0;x0

we have ∀fT ;γ ∈
ST ;γ ,Φ(u0 ◦ fT ;γ , x0) ∈ B(R+,Ξ). Then (ii) gives (a).

(b) Since Φ is confluent with respect to (u0, x0), it comes that ∀ϵ > 0,∃kϵ ∈ N,∃γϵ ∈ [γu0;x0
,∞[ such

that ∀γ ∈ [γϵ,∞[,∀k ∈ Jkϵ,∞J we have

sup
fT ;γ∈ST ;γ

∥∥∥(Φ(u0 ◦ fT ;γ , x0) ◦ f−1
T ;γ ◦ τkT

)
|[0,T ] − αu0;Φ;x0

∥∥∥ ≤ ϵ

2
. (7)

On the other hand, by Equation (5) there exists γ′
ϵ ∈ [γu0;x0

,∞[ such that ∀γ ∈ [γ′
ϵ,∞[ and ∀k ∈ N we

have
sup

fT ;γ∈ST ;γ

∥∥∥(Φ(u0 ◦ fT ;γ , x0) ◦ f−1
T ;γ ◦ τkT

)
|[0,T ] − (βu0;Φ;x0

◦ τkT ) |[0,T ]︸ ︷︷ ︸
βu0;Φ;x0,k

∥∥∥ ≤ ϵ

2
. (8)

Taking γ = max(γϵ, γ
′
ϵ), Equations (7) and (8) show that ∀k ∈ Jkϵ,∞J we have

∥βu0;Φ;x0;k − αu0;Φ;x0
∥ ≤ ϵ which proves (b).

(c) Equation (5) and
[
Φ(u0 ◦ fT ;γ , x0) ◦ f−1

T ;γ

]
(0) = x0 provide (c).140

(d) In this case T can be taken to be 1 and u0 can be considered 1–periodic. Taking fT ;γ = sγ
Equation (5) reduces to

lim
γ→∞

∥∥Φ(u0, x0) ◦ s 1
γ
− βu0;Φ;x0

∥∥ = 0. (9)

Thus, ∀ϵ > 0,∃γϵ ∈ [γu0;x0
,∞[ such that

∀γ ∈ [γϵ,∞[,∀t ∈ R+,
∣∣Φ(u0, x0) ◦ s 1

γ
(t)− βu0;Φ;x0(t)

∣∣ ≤ ϵ. (10)

Taking t = 0 in Equation (10) gives[
Φ(u0, x0)

]
(0) = βu0;Φ;x0

(0) = x0. (11)

Taking t ∈ ]0,∞[ in Equation (10) gives

∀σ ∈ [γϵt,∞[,
∣∣[Φ(u0, x0)

]
(σ)− βu0;Φ;x0(t)

∣∣ ≤ ϵ. (12)
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Proposition 9 along with Equation (12) show that there exists ℓ ∈ Ξ such that

∀t ∈ ]0,∞[, βu0;Φ;x0(t) = ℓ. (13)

The continuity of βu0;Φ;x0
ensures that βu0;Φ;x0

(0) = ℓ so that ℓ = x0.
Now, suppose that there exists t0 ∈ ]0,∞[ such that

[
Φ(u0, x0)

]
(t0) ̸= x0. Define the quantity

ϵ1 = |[Φ(u0, x0)](t0)− x0| /2. There exists γϵ1 ∈ [γu0;x0 ,∞[ such that Inequality (10) holds with ϵ1
instead of ϵ. Taking t = t0/γϵ1 and γ = γϵ1 in (10) leads to a contradiction.

145

Proposition 13. Let T ∈ ]0,∞[, u ∈ ΩT , x0 ∈ Ξ, and Id ∈ S ⊂ I1;1. Suppose that ∃βu;Φ;x0 ∈ C0(R+,Ξ)
such that Equation (5) holds. Then the assertions (i) and (b) of Proposition (12) are equivalent.

Proof. (i) ⇒ (b) is proved is Proposition 12.
(b) ⇒ (i). Take ϵ ∈ ]0,∞[, then ∃kϵ ∈ N such that ∀k ∈ Jkϵ,∞J we have∥∥(βu;Φ;x0

◦ τkT )|[0,T ] − αu;Φ;x0

∥∥ ≤ ϵ

2
. (14)

From Equation (5) it comes that ∃γϵ ∈ ]0,∞[ such that ∀γ ∈ [γϵ,∞[ we have

sup
fT ;γ∈ST ;γ

∥∥∥(Φ(u ◦ fT ;γ , x0) ◦ f−1
T ;γ ◦ τkT

)
|[0,T ] − (βu;Φ;x0 ◦ τkT )|[0,T ]

∥∥∥ ≤ ϵ

2
,∀k ∈ N. (15)

Combining (14) and (15) we get (3).

Definition 14. Let Id ∈ S ⊂ I1;1. Let Ω′ ⊂ Ω be such that u ◦ ST ⊂ Ω′ for all u ∈ Ω′ ∩ ΩT . Let Ξ′ ⊂ Ξ.150

We say that Φ is uniformly confluent with respect to (Ω′,Ξ′,S) if (P0)–(P2) hold.

(P0) Φ is
(
Ω′,Ξ′)–causal.

(P1) ∀(u, x0) ∈ Ω′ × Ξ′, the operator Φ is confluent with respect to (u, x0,S).
(P2) ∀(T, u, x0) ∈ ]0,∞[×ΩT ∩ Ω′ × Ξ′,∃βu;Φ;x0

∈ B(R+,Ξ) such that

lim
γ→∞

(
sup

fT ;γ∈ST ;γ

∥∥∥Φ(u ◦ fT ;γ , x0) ◦ f−1
T ;γ − βu;Φ;x0

∥∥∥
Ξ;R+

)
= 0. (16)

Proposition 15. Let Id ∈ S ⊂ I1;1. Let Ω′ ⊂ Ω be such that u ◦ ST ⊂ Ω′ for all u ∈ Ω′ ∩ ΩT .
Let Ξ′ ⊂ Ξ. Suppose that Φ is uniformly confluent with respect to (Ω′,Ξ′,S). Define the operator155

b : Ω′ × Ξ′ → C0(R+,Ξ) by b(u, x0) = βu;Φ;x0 . Then (a)–(c) hold.

(a) b is
(
Ω′,Ξ′)–causal.

(b) ∀T ∈ ]0,∞[, the operator b is (ΩT ∩ Ω′,ST ,Ξ′)–rate independent.
(c) Let x0 ∈ Ξ′. Suppose that ∃u0 ∈ Rn such that ∀t ∈ R+ we have u(t) = u0, and u ∈ Ω′. Then

∀t ∈ R+ we have
[
b(u, x0)

]
(t) = x0.160

Proof. (a) Let x0 ∈ Ξ′, θ ∈ R+ and u, v ∈ Ω′. Suppose that ∀t ∈ [0, θ], u(t) = v(t). Then ∀γ ∈ ]0,∞[,∀t ∈
[0, θ],

[
Φ(u ◦ sγ , x0)

]
◦ s 1

γ
(t) =

[
Φ(v ◦ sγ , x0)

]
◦ s 1

γ
(t) since Φ is

(
Ω′,Ξ′)–causal and u ◦ sγ , v ◦ sγ ∈ Ω′.

Then, (a) follows from Equation (16).
(b) ∀λ, γ ∈ ]0,∞[, if fT ;λ ∈ ST ;λ then fT ;λ ◦ s γ

λ
∈ ST ;γ . Let u ∈ ΩT ∩ Ω′ then u ◦ fT ;λ ∈ ΩλT ∩ Ω′. From

Equation (16) we get

lim
γ→∞

∥∥∥Φ(u ◦ fT ;λ ◦ s γ
λ︸ ︷︷ ︸

fT ;γ

, x0) ◦ sλ
γ
◦ f−1

T ;λ︸ ︷︷ ︸
f−1
T ;γ

−βu;Φ;x0

∥∥∥ = 0, (17)

lim
γ′→∞

∥∥∥Φ(u ◦ fT ;λ︸ ︷︷ ︸
v

◦sγ′ , x0) ◦ s 1
γ′

− βu ◦ fT ;λ︸ ︷︷ ︸
v

;Φ;x0

∥∥∥ = 0, (18)

Taking γ′ = γ/λ and combining Equations (17) and (18) it comes that βu◦fT ;λ;Φ;x0
◦ f−1

T ;λ = βu;Φ;x0
which

gives (b).165

(c) is a direct consequence of Proposition 12 (d).
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4.2. The causal canonical decomposition

Theorem 16. Let Id ∈ S ⊂ I1;1. Let Ω′ ⊂ Ω be such that u ◦ ST ⊂ Ω′ for all u ∈ Ω′ ∩ ΩT . Let Ξ′ ⊂ Ξ.
The statements (i) and (ii) are equivalent.

(i) Φ is uniformly confluent with respect to (Ω′,Ξ′,S).170

(ii) There exist unique operators Φ⋆ : Ω′ × Ξ′ → C0(R+,Ξ) and Φ† : Ω′ × Ξ′ → C0(R+,Ξ) such that
(ii-a)–(ii-d) hold.

(ii-a) Φ = Φ⋆ +Φ†.
(ii-b) Φ⋆ and Φ† are (Ω′,Ξ′)–causal.
(ii-c) ∀T ∈ ]0,∞[, Φ⋆ is (ΩT ∩ Ω′,ST ,Ξ′)–rate independent.175

(ii-d) ∀(T, u, x0) ∈ ]0,∞[×ΩT ∩ Ω′ × Ξ′ we have

(ii-d-1) lim
γ→∞

(
sup

fT ;γ∈ST ;γ

∥∥Φ†(u ◦ fT ;γ , x0)
∥∥) = 0,

(ii-d-2) the sequence
{(

Φ⋆(u, x0) ◦ τkT
)
|[0,T ]

}
k∈N converges in C0

(
[0, T ],Ξ

)
.

Proof. (i) ⇒ (ii)
Existence. Take Φ⋆ = b and Φ† = Φ− b. Then (ii-a)–(ii-d) hold by Propositions 12 and 15.180

Uniqueness. Suppose that (ii-a)–(ii-d) hold for the pair (Φ⋆,Φ†). Then Equation (16) along with (ii-a),
(ii-c) and (ii-d) lead to Φ⋆(u, x0) = βu;Φ;x0

for all (u, x0) ∈ Ω′ × Ξ′. Thus Φ⋆ = b so that Φ† = Φ− b.
(ii) ⇒ (i)
Let (T, u, x0) ∈ ]0,∞[×ΩT ∩Ω′ × Ξ′. Observe that

∥∥Φ†(u ◦ fT ;γ , x0)
∥∥ =

∥∥Φ†(u ◦ fT ;γ , x0) ◦ f−1
T ;γ

∥∥ so that
(ii-d-1) gives

lim
γ→∞

(
sup

fT ;γ∈ST ;γ

∥∥Φ†(u ◦ fT ;γ , x0) ◦ f−1
T ;γ +Φ⋆(u ◦ fT ;γ , x0) ◦ f−1

T ;γ︸ ︷︷ ︸
=Φ⋆(u,x0)

−Φ⋆(u, x0)
∥∥) = 0 (19)

which gives Equation (16) by taking βu;Φ;x0 = Φ⋆(u, x0). Then (P1) is obtained from Equation (16) and
(ii-d-2). Proposition 8, (P1), and Equation (16) show that βu;Φ;x0

∈ B(R+,Ξ) which gives (P2). Finally185

Φ is
(
Ω′,Ξ′)–causal owing to (ii-b).

The operator Φ⋆ is called the causal rate-independent component of Φ whilst the operator Φ† is called
the causal nonhysteretic component of Φ. Equality (ii-a) is called the causal canonical decomposition of
Φ.190

Remark 17. Let Id ∈ S ⊂ I1;1. Let Ω′ ⊂ Ω be such that u ◦ ST ⊂ Ω′,∀u ∈ Ω′ ∩ΩT . Let Ξ′ ⊂ Ξ. Suppose
that Φ is uniformly confluent with respect to (Ω′,Ξ′,S). Then ∀(u, x0) ∈ Ω′ × Ξ′,

[
Φ⋆(u, x0)

]
(0) = x0 by

Proposition 12 (c). This means that ∀(u, x0) ∈ Ω′×Ξ′,
[
Φ†(u, x0)

]
(0) = 0. Also, let u0 ∈ Rn and x0 ∈ Ξ′.

Define u0 ∈ Ω by u0(t) = u0,∀t ∈ R+, and suppose that u0 ∈ Ω′. Then, by Proposition 12 (d) we have
∀t ∈ R+,

[
Φ†(u0, x0)

]
(t) = 0.195

4.3. Some properties of uniformly confluent operators

In this section, we assume that Φ satisfies the semigroup property. That is,

Assumption 18. ∀(u, x0) ∈ C0(R+,Rn) × Ξ define x = Φ(u, x0). Then ∀t1, t2 ∈ R+ such that t1 ≤ t2
we have x(t2) =

[
Φ
(
u ◦ τt1 , x(t1)

)]
(t2 − t1) [8, p. 60].

Our aim is to analyze the consequences that derive from Assumption 18.200

Proposition 19. Suppose that Φ is
(
C0(R+,Rn),Ξ

)
–causal, and that Φ satisfies Assumption 18. More-

over, let Id ∈ S ⊂ I1;1. Let Ω′ ⊂ Ω be such that u ◦ ST ⊂ Ω′,∀u ∈ Ω′ ∩ ΩT and u ◦ τt ∈ Ω′,∀u ∈ Ω′ ∩ ΩT .
Suppose that Φ is uniformly confluent with respect to (Ω′,Ξ,S).

Then (a)–(d) hold.
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(a) Let (θ1, θ2, u0, u, x0) ∈ R+×R+×Rn×C0(R+,Rn)×Ξ be such that 0 ≤ θ1 < θ2 and u(t) = u0,∀t ∈205

[θ1, θ2]. Then ∀t ∈ [θ1, θ2] we have
[
Φ(u, x0)

]
(t) =

[
Φ(u, x0)

]
(θ1). In other words: whenever the

input u is constant on the interval [θ1, θ2], the corresponding output Φ(u, x0) is also constant on the
same interval.

(b) Let (θ, u0, u, x0) ∈ R+ ×Rn ×C0(R+,Rn)×Ξ be such that u(t) = u0,∀t ∈ [θ,∞[. Then ∀t ∈ [θ,∞[
we have

[
Φ(u, x0)

]
(t) =

[
Φ(u, x0)

]
(θ). In other words: whenever the input u is constant on the210

interval [θ1,∞[, the corresponding output Φ(u, x0) is also constant on the same interval.

(c) Let (T, θ1, θ2, u0, u, x0) ∈ ]0,∞[×R+ × R+ × Rn × ΩT ∩ Ω′ × Ξ be such that 0 ≤ θ1 < θ2 ≤ T
and u(t) = u0,∀t ∈ [θ1, θ2]. Then ∀t ∈ [θ1, θ2] we have

[
Φ⋆(u, x0)

]
(t) =

[
Φ⋆(u, x0)

]
(θ1). Also, let

k ∈ N, then ∀t ∈ [θ1 + kT, θ2 + kT ] we have
[
Φ⋆(u, x0)

]
(t) =

[
Φ⋆(u, x0)

]
(θ1 + kT ). In other words:

whenever the input u is periodic and constant on the interval [θ1, θ2], the causal rate-independent215

component Φ⋆(u, x0) is also constant on the same interval. This means that the nonhysteretic
component Φ†(u, x0) is also constant on the same interval.

Proof. (a) Define the function v ∈ C0(R+,Rn) by v(t) = u(t),∀t ∈ [0, θ1] and v(t) = u(θ1),∀t ∈ [θ1,∞[.
Since Φ is

(
C0(R+,Rn),Ξ

)
–causal we have

∀t ∈ [0, θ2],
[
Φ(u, x0)

]
(t) =

[
Φ(v, x0)

]
(t). (20)

On the other hand, by Assumption 18 (semigroup property) we have

∀t ∈ [θ1,∞[ ,
[
Φ(v, x0)

]
(t) =

[
Φ
(
v ◦ τθ1 ,

[
Φ(v, x0)

]
(θ1)

)]
(t− θ1). (21)

Since v ◦ τθ1(t′) = u(θ1),∀t′ ∈ R+ it follows from Proposition 12 (d) that

∀t′ ∈ R+,
[
Φ
(
v ◦ τθ1 ,

[
Φ(v, x0)

]
(θ1)

)]
(t′) =

[
Φ(v, x0)

]
(θ1). (22)

Combining Equations (22) and (20) it comes that

∀t′ ∈ R+,
[
Φ
(
v ◦ τθ1 ,

[
Φ(v, x0)

]
(θ1)

)]
(t′) =

[
Φ(u, x0)

]
(θ1). (23)

Taking t ∈ [θ1, θ2] in (20)–(21) and t′ = t− θ1 in (23) we get (a).
(b) is a direct consequence of (a).
(c) By (a) it comes that ∀γ ∈ ]0,∞[,∀t ∈ [θ1, θ2],

[
Φ(u ◦ sγ , x0)

]
◦ s 1

γ
(t) =

[
Φ(u ◦ sγ , x0)

]
◦ s 1

γ
(θ1). Then,220

(c) follows from Equation (16).

5. Case study

In this section we use the scalar semilinear Duhem model as a case study to illustrate the concept of
uniform confluence. The main result of this section is Theorem 21.225

The scalar semilinear Duhem model is composed of a state equation (24a)–(24b) and an algebraic output
equation (24c) such that [6]:

ẋ(t) = g1
(
u̇(t)

)(
A1x(t) +B1u(t) + E1

)
+ g2

(
u̇(t)

)(
A2x(t) +B2u(t) + E2

)
for almost all t ∈ R+, (24a)

x(0) = x0, (24b)

y(t) = Cx(t) +Du(t),∀t ∈ R+. (24c)

In Equations (24) we have A1, A2 ∈ R with A1 < 0 < A2; B1, B2, E1, E2, D ∈ R, 0 ̸= C ∈ R. We consider
that u ∈ W 1;∞(R+,R) whereas the properties of y : R+ → R and x : R+ → R will be analyzed in
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Theorem 20. The functions g1 : R → R and g2 : R → R are continuous and satisfy g1(w) = 0 for w ≤ 0,
g2(w) = 0 for w ≥ 0. Define

ḡ1(w) =
g1(w)

|w|
,∀w ̸= 0, (25)

ḡ2(w) =
g2(w)

|w|
,∀w ̸= 0. (26)

As in Ref. [6] we assume that1

lim
w↓0

ḡ1(w) = 1 and lim
w↑0

ḡ2(w) = −1. (27)

A unique absolutely continuous solution of (24a) exists on R+ [4, Section 11.1].

Theorem 20. [3] Consider the semilinear Duhem model given by Equations (24). Then we have x, y ∈
W 1,∞(R+,R).

Define the operator Φ : W 1,∞(R+,R)× R → W 1,∞(R+,R) by the relation Φ(u, x0) = x.
Define the set

S =
{
f1;1 ∈ I1;1 | f1;1, f−1

1;1 ∈ W 1;∞(R+,R+)
}
.

For any d ∈ [1,∞[ and any T, γ ∈ ]0,∞[ define the set

S∗T ;γ;d =
{
fT ;γ = fT ;1 ◦ sγ where fT ;1 = s 1

T
◦ f1;1 ◦ sT | f1;1 ∈ S, ∥ḟ1;1∥ ≤ d and ∥

˙︷ ︷
f−1
1;1 ∥ ≤ d

}
. (28)

Note that Id ∈ S∗1;1;d, ∥ḟT ;1∥ ≤ d, and ∥
˙︷ ︷

f−1
T ;1∥ ≤ d.230

Define also the set
S∗T ;d =

∪
γ∈]0,∞[

S∗T ;γ;d.

Theorem 21. Φ is uniformly confluent with respect to
(
W 1;∞(R+,R) ∩ Ω,R,S∗1;1;d

)
. We have

[ ˙︷ ︷
Φ⋆(u, x0)

]
(t) = u̇(t)

(
A1

[
Φ⋆(u, x0)

]
(t) +B1u(t) + E1

)
,

for almost all t ∈ R+ such that u̇(t) ≥ 0, (29a)[ ˙︷ ︷
Φ⋆(u, x0)

]
(t) = u̇(t)

(
A2

[
Φ⋆(u, x0)

]
(t) +B2u(t) + E2

)
,

for almost all t ∈ R+ such that u̇(t) ≤ 0, (29b)[
Φ⋆(u, x0)

]
(0) = x0. (29c)

Also, Φ◦(u, x0) satisfies (29a)–(29b) substituting Φ⋆ by Φ◦. However, the initial condition
[
Φ◦(u, x0)

]
(0)

may be different from x0.

Proof. We have to prove Properties (P0), (P1), and (P2) of Definition 14.
Proof of (P0).
It is shown in [4, Section 11.2] that Φ is

(
W 1;∞(R+,R

)
,R)–causal.235

Proof of (P2).
Let (T, u, x0) ∈ ]0,∞[×W 1,∞(R+,R) ∩ ΩT × R. For any γ ∈ ]0,∞[ let fT ;γ ∈ S∗T ;γ;d. Define

xγ = Φ(u ◦ fT ;γ , x0),

x̄γ = xγ ◦ f−1
T ;γ .

(30)

1If lim
w↓0

ḡ1(w) = b1 ̸= 0 and lim
w↑0

ḡ2(w) = −b2 ̸= 0, the constants b1 and b2 are incorporated into the matrices A1 and A2

respectively.
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Then, by [5, Proposition Appendix A.1] we get

ḟT ;γ

(
f−1
T ;γ(t)

)
˙̄xγ(t) = g1

(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)(
A1x̄γ(t) +B1u(t) + E1

)
+ g2

(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)(
A2x̄γ(t) +B2u(t) + E2

)
,

for almost all t ∈ R+.

(31)

Since ∥
˙︷ ︷

f−1
T ;1∥ ≤ d it comes that ḟT ;γ

(
f−1
T ;γ(t)

)
can be zero or undefined only on a set of measure zero.

Thus,

˙̄xγ(t) =
1

ḟT ;γ

(
f−1
T ;γ(t)

)[g1(ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)(
A1x̄γ(t) +B1u(t) + E1

)
+ g2

(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)(
A2x̄γ(t) +B2u(t) + E2

)]
, for almost all t ∈ R+,

x̄γ(0) = x0.

(32)

We discuss two cases:
Case 1: g1(w) = max(0, w),∀w ∈ R and g2(w) = min(0, w),∀w ∈ R. Then Equation (32) is equivalent
to

˙̄xγ(t) = u̇(t)
(
A1x̄γ(t) +B1u(t) + E1

)
, for almost all t ∈ R+ such that u̇(t) ≥ 0, (33a)

˙̄xγ(t) = u̇(t)
(
A2x̄γ(t) +B2u(t) + E2

)
, for almost all t ∈ R+ such that u̇(t) ≤ 0, (33b)

x̄γ(0) = x0, . (33c)

Equations (33) are independent of γ and of fT ;γ so that we can write x̄γ = ζ = Φ(u, x0) ∈ W 1;∞(R+,R).
Thus, Property (P2) of of Definition 14 holds with βu;Φ;x0

= ζ.
Case 2: One of the equalities g1(w) = max(0, w),∀w ∈ R or g2(w) = min(0, w),∀w ∈ R fails. Observe
that

ḟT ;γ

(
f−1
T ;γ(t)

)
=

1

γ
ḟT ;1

(
f−1
T ;1(t)

)
so that

g1

(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)
= g1

(
1

γ
ḟT ;1

(
f−1
T ;1(t)

)
u̇(t)

)
.

Since ∥ḟT ;1∥ ≤ d and u ∈ W 1,∞(R+,R) it comes that ∥(ḟT ;1 ◦ f−1
T ;1) · u̇∥ ≤ d∥u̇∥ so that by (27) it comes

that ∃γ0 ∈ ]0,∞[ such that for all t ∈ R+ such that ḟT ;1

(
f−1
T ;1(t)

)
u̇(t) > 0 we have

1

2
≤ ḡ1

(
1

γ
ḟT ;1

(
f−1
T ;1(t)

)
u̇(t)

)
≤ 3

2
,∀γ ∈ [γ0,∞[, (34)

and for all t ∈ R+ such that ḟT ;1

(
f−1
T ;1(t)

)
u̇(t) < 0 we have

1

2
≤ ḡ2

(
1

γ
ḟT ;1

(
f−1
T ;1(t)

)
u̇(t)

)
≤ 3

2
,∀γ ∈ [γ0,∞[. (35)

Let γ ∈ [γ0,∞[. Define the Lyapunov function Vγ : R+ → R+ by Vγ(t) = 1
2 x̄

2
γ(t),∀t ∈ R+. Then, for

almost all t ∈ R+ we have

V̇γ(t) =
g1

(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)
ḟT ;γ

(
f−1
T ;γ(t)

) [
2A1Vγ(t) +

(
B1u(t) + E1

)
x̄γ(t)

]

+
g2

(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)
ḟT ;γ

(
f−1
T ;γ(t)

) [
2A2Vγ(t) +

(
B2u(t) + E2

)
x̄γ(t)

] (36)
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Taking into account (34)–(35) the following holds.240

For almost all t ∈ R+ such that u̇(t) > 0 we have

V̇γ(t) ≤ u̇(t)

A1Vγ(t) +
3

2

(
|B1| · ∥u∥+ |E1|

)
︸ ︷︷ ︸

= a1

√
Vγ(t)

 . (37)

For almost all t ∈ R+ such that u̇(t) < 0 we have

V̇γ(t) ≤ u̇(t)

A2Vγ(t)−
3

2

(
|B2| · ∥u∥+ |E2|

)
︸ ︷︷ ︸

= a2

√
Vγ(t)

 . (38)

For almost all t ∈ R+ such that u̇(t) = 0 we have

V̇γ(t) = 0. (39)

Equations (37)–(39) lead to

V̇γ(t) ≤ |u̇(t)|
[
A3Vγ(t) + a3

√
Vγ(t)

]
, for almost all t ∈ R+,∀γ ∈ [γ0,∞[ (40)

with A3 = max(A1,−A2) < 0 and a3 = max(a1, a2) ≥ 0. The differential inequality (40) leads to

|x̄γ(t)| ≤ a4 = max

(∣∣∣∣ a3A3

∣∣∣∣ , |x0|
)
,∀t ∈ R+,∀γ ∈ [γ0,∞[. (41)

Define ηγ = x̄γ − ζ, then for almost all t ∈ R+ such that u̇(t) ≥ 0 we have

η̇γ(t) = A1u̇(t)ηγ(t) + ε1;γ(t), (42)

ηγ(0) = 0, (43)

ε1;γ(t) =

g1
(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)
ḟT ;γ

(
f−1
T ;γ(t)

) − u̇(t)

(A1x̄γ(t) +B1u(t) + E1

)
, (44)

and for almost all t ∈ R+ such that u̇(t) ≤ 0 we have

η̇γ(t) = A2u̇(t)ηγ(t) + ε2;γ(t), (45)

ηγ(0) = 0, (46)

ε2;γ(t) =

g2
(
ḟT ;γ

(
f−1
T ;γ(t)

)
u̇(t)

)
ḟT ;γ

(
f−1
T ;γ(t)

) − u̇(t)

(A2x̄γ(t) +B2u(t) + E2

)
. (47)

Consider the Lyapunov function Wγ : R+ → R+ by Wγ(t) =
1
2η

2
γ(t),∀t ∈ R+. Using an argument similar

to the one used to obtain (40) we get

Ẇγ(t) ≤ |u̇(t)|
[
2A3Wγ(t) + max

(
∥ε1;γ∥, ∥ε2;γ∥

)√
2Wγ(t)

]
,

for almost all t ∈ R+,∀γ ∈ [γ0,∞[,

(48)

so that

∥ηγ∥ = ∥x̄γ − ζ∥ ≤
max

(
∥ε1;γ∥, ∥ε2;γ∥

)
|A3|

√
2

,∀γ ∈ [γ0,∞[. (49)
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Taking into account (27) and (41) we have

lim
γ→∞

∥ε1;γ∥ = lim
γ→∞

∥ε2;γ∥ = 0. (50)

Combining and (50) and (49) we get Property (P2) of Definition 14 with βu;Φ;x0
= ζ.

Proof of (P1).
Owing to Proposition 13, (P1) is equivalent to Property (b) of Proposition (12). The latter property has
been established in Ref. [3, Theorem 1].

Remark 22. When the periodic input is composed of a strictly increasing part and a strictly decreasing245

part, it is possible to find the explicit expression of the initial condition
[
Φ◦(u, x0)

]
(0), see Ref. [4, Section

11.3].

Remark 23. The rate-independent hysteresis process given by Equations (29) belongs to a class of hys-
teresis models introduced by Duhem in 1896 [2]. One of the earliest mathematical studies of the existence
and uniqueness of periodic solutions for Duhem’s hysteresis model has been done by Babuška in 1959 [1].250

6. Comments

Comment 1. This paper uses the decomposition Φ = Φ◦ + Φ‡ introduced in Ref. [5] and the
decomposition Φ = Φ⋆+Φ† proposed in the present work. Both operators Φ◦ and Φ⋆ are rate independent
and they both approximate Φ in steady state for slow periodic inputs. What is the main difference between
Φ◦ and Φ⋆?255

Consider that the input u is T–periodic, that it (u, x0) ∈ ΩT × Ξ. Then owing to Property (iii-1) of
Theorem 11 the component Φ◦(u, x0) is also periodic. It has been explained in the Introduction (Section
1) using a simple example that the periodic component of the solution of the considered differential
equation is not causal. This lack of causality is due to the fact that the periodic solution depends on the
whole periodic input u which means that this periodic solution cannot be obtained from the restriction260

of u to an interval [0, t] with t < T .
A similar phenomenon happen with the operator Φ◦. The output Φ◦(u, x0) depends in general on

the whole function u. This means that we cannot get
[
Φ◦(u, x0)

]
(t) using the mere knowledge of the

restriction of u to the interval [0, t] when t < T . This fact means that the operator Φ◦ is not causal in
general.265

On the other hand, the component Φ⋆(u, x0) is not periodic in general. Indeed, the initial condition[
Φ⋆(u, x0)

]
(0) is equal to x0 =

[
Φ(u, x0)

]
(0), see Remark 17.

As a conclusion, even though Φ◦ ≃ Φ⋆ ≃ Φ in steady state for slow periodic inputs, the transient
behaviors of Φ◦ and Φ⋆ may be quite different. This is how Φ⋆ is causal whilst Φ◦ is not.

Comment 2. Uniform confluence is not a necessary condition to obtain the decomposition Φ =270

Φ⋆ +Φ†. Indeed, consider the model of Figure 1 proposed in [5, Section 7]:

u -

-

-

H1(·, ξ1)

H2(·, ξ2)

���?

6

-
+

+

L(·, ξ3) - f(·) - y
v

w1

w2

z

Wiener component H3(·, ξ3)

H(·, x0) where x0 = (ξ1, ξ2, ξ3)

H12(·, ξ12) where ξ12 = (ξ1, ξ2)

Figure 1: Flowchart of the model.
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where we choose H1 to be a causal rate-independent operator, H2 a causal operator that vanishes in
steady state for slow inputs, L a stable linear system (which is causal by construction), and f a continuous
function. Then H is causal and confluent, and H ≃ H1 in steady state for slow inputs [5, Section 7].

We now show that H is not uniformly confluent in general.275

Indeed, take H2 = 0. Suppose furthermore that H1 is uniformly confluent and satisfies Assumption 18
(the semigroup property). An example of such H1 is the semilinear rate-independent Duhem model (29).
Suppose that the input u is periodic. Then by Proposition 19 (c), if u is constant on some time interval
[θ1, θ2] then the output w1 = v is also constant on the same time interval. However this does not imply
necessarily that y is constant on [θ1, θ2] because of the presence of the dynamic linear process L. Since280

H satisfies Assumption 18 but not Property (c) of Proposition 19 it cannot be uniformly confluent.
Figure 2 illustrates the results of this comment.

+

Confluent operators

Model of Figure 1

Causal and uniformly

confluent operators

Causal confluent operators

Figure 2: The model of Figure 1 is not uniformly confluent in general.

7. Conclusions

To the best of our knowledge, this is the first research work that addresses the causal decomposition
of hysteresis systems into a causal rate-independent component and a causal nonhysteretic component285

that vanishes in steady state for slow inputs.
We presented a sufficient condition -uniform confluence- to obtain the causal decomposition of causal

confluent operators. We provided a way to construct that causal rate-independent component as a
uniform limit of specified functions, and we illustrated this construction using the hysteretic semilinear
Duhem model. We also proved that uniform confluence is not a necessary condition to get a causal290

decomposition. The problem of finding necessary and sufficient conditions for a causal decomposition of
confluent operators is an open problem.
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