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Abstract We introduce non-binary IPP set systems with traceability prop-
erties that have IPP codes and binary IPP set systems with traceability ca-
pabilities as particular cases. We prove an analogue of the Gilbert-Varshamov
bound for such systems.
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1 Introduction

Consider a distribution model where a dealer uses a broadcast channel to
transmit some digital content to a wide audience. In order to restrict the
access to the distributed content only for the authorized users (who paid for
the access) the distributor should use broadcast encryption schemes. For the
first time such schemes were considered in [14]. In what follows we will be
interested in broadcast encryption schemes resistant to the so-called collusion
attacks [6]. Such type of attacks can be described as follows.

To prevent unauthorized users from accessing the data, the distributor
encrypts the data blocks with session keys and gives each authorized user the
corresponding personal decoder, consisting of the personal set of keys needed to
decrypt the data. Note that different users receive different decoders. Malicious
users, who want to resell the access to the distributed content without revealing
their identities, can form a group (coalition of traitors) and, based on their
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common knowledge (present keys and decoders), create a forged decoder. This
type of forgery constitutes the main idea of a collusion attack. So, assuming
that the cardinality of a possible coalition is not grater than some integer t, the
main problem is to construct such set of decoders (for authorized users) that
for a given unauthorized decoder (pirate version), the distributor will be able
to identify at least one of the sources of the leakage even if this unauthorized
copy was produced by a coalition.

The problem of data protection against such collusion attacks has given
rise to the well known concept of tracing traitors (TT) [6]. As a base of TT-
schemes, in [6] it was proposed to use different types of perfect secret sharing
schemes (SSS, for short), which were discovered in [5] [23]. For the moment
three main tracing traitor schemes are known. Historically the first scheme is
known as codes with the identifiable parent property (IPP codes). Such scheme
is based on the simplest (n, n)-threshold SSS and was proposed in [6], then, it
was further developed in [17,2,1,24]; interested reader may address to the de-
tailed overviews [3,19,18]. Another known scheme, based on arbitrary (w, n)-
threshold SSS, was proposed in [25,7] and is known under the name of set
systems with the identifiable parent property (IPP set systems). The most re-
cent results can be found in [11,16,10,15,12]. The generalization of these two
schemes was proposed in [9]. It is also based on (w, n)-threshold SSS as for
IPP set systems but uses an encryption process similar to one used for IPP
codes. In this paper we shall call this generalized scheme as non-binary IPP
set systems.

In this paper we investigate the particular case of IPP-type schemes, known
as tracing traitors schemes with traceability property or traceability schemes,
for short. The main idea of traceability schemes is to create such set of de-
coders that a malicious user (participant of the coalition) can be found as the
“nearest” decoder to the forged one. In fact, the first tracing traitors schemes
constructed in [6] have the traceability property, namely, the malicious users
can be recovered as the nearest in Hamming metric codevector to the forged
vector (decoder). They were further studied in [20,4]. The systematic study
of traceability set systems has been started in [25,26]. An original approach
to construction of traceability set systems via constant-weight codes was pro-
posed in [22]. Unfortunately there were some mistakes in evaluation of error-
correcting codes parameters, which led to wrong results as it was remarked
in [21]. The correct version of constructing traceability set systems via binary
constant-weight codes was given in [11].

The non-binary IPP set systems with traceability constitutes the subject
matter of this paper. Our main result is the existence of such schemes with non-
vanishing rate. This paper is organized in the following way. In section 2 we
propose a short reminder of the basics of non-binary IPP set systems, namely,
we show how (w, n)-SSS is incorporated in it and explain the traceability
paradigm for such scheme. In section 3 we prove GV-bound for non-binary
IPP set systems with traceability. In section 4 we define the effective rate
of IPP-schemes what allows to compare different schemes with traceability
property. In the conclusion we formulate an open problem.
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2 Non-binary IPP set systems

Consider the following broadcasting scenario where the distributor delivers
some digital content x to M users. In order to prevent illegal redistribution, the
distributor transmits the content x in an encrypted form z = ϕ(x, σ) obtained
by using some secret key σ ∈ K, which serves as a session key and should be
changed for distributing another portion of digital content. Firstly the key σ is
matched with the set of shares s1, . . . , sn according to perfect (w, n)-threshold
Secret Sharing Scheme [5,23]. Let us recall that a secret sharing scheme is
called a perfect (w, n)-threshold secret sharing scheme if any w shares out of n
are enough to recover the secret σ and any less number of shares provides no a
posteriori information about the secret. Initially, in [6] authors proposed to use
perfect (n, n)-SSS and then encrypt each share on q different keys. Different
shares are encrypted on different sets consisting of q keys, i.e., overall there
are nq encrypted shares and q encrypted versions of each share. This idea gave
rise to a notion of IPP codes [17]. Then, general case of w-out-of-n threshold
perfect SSS was used in [25,7] for constructing IPP set systems. For such model
each share is encrypted using only a single key. Different shares are encrypted
on different keys, so, overall, there are n encrypted shares.

In [9] it was proposed to combine the main ideas of these two schemes.
More precisely, it was proposed to use w-out-of-n threshold perfect SSS and
encrypt each share on q different keys as it was done in [6]. Formally, the
share si is encrypted q times on the keys from the set Ai = {α1

i , ..., α
q
i }.

Encrypted version of shares are transmitted along with the encrypted content
z. During the initial stage (before the transmission) the j-th user receives the
set consisting of w decryption keys that are then used to decrypt w shares and,
so, to decrypt the secret key σ (according to the chosen SSS). Formally, j-th
user receives the subset Dj ⊂

⋃
i∈[n]Ai consisting of w different keys needed

to decrypt w different shares, i.e., |Dj | = w and |Dj ∩ Ai| ≤ 1 for all i ∈ [n].

In what follows we will move from subset representation of users’ decoders
to vector representation. Indeed, consider some ordering of keys for each set
Ai and map each key to a symbol of q-ary alphabet A∗q = {1, 2, ..., q}, for

example by mapping αk
i to k ∈ A∗q for all i ∈ [n]. Define also the (q + 1)-ary

alphabet Aq = {0, 1, ..., q}. Then, instead of considering the subset Dj we will
consider the corresponding characteristic vector c(j) ∈ An

q such that its i-th

coordinate c
(j)
i = k if αk

i ∈ Dj and c
(j)
i = 0 if Dj ∩ Ai = ∅ (absence of the

key for i-th share). Note that the resulting vector c(j) has exactly w non-zero
coordinates, i.e., it has weight wt(c(j)) = w over q + 1-ary alphabet Aq.

For this model the collusion attack proceeds in the following way. A ma-
licious coalition U ⊂ An

q in order to create a working forged “decoder” has
to collect at least w different keys that can decrypt w different shares. The
participant of the coalition can do so by taking at least w different keys among
those keys that belong to them. Thus, the set of all forged decoders that the
coalition U can create equals to
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〈U〉w = {y ∈ P ∗1 (U)× ...× P ∗n(U) : wt(y) ≥ w}, (1)

where
P ∗i (U) = {ui : u ∈ U} ∪ {0} (2)

is the i-th “projection” of the coalition U . Informally, it means that the par-
ticipants of the coalition can take one of the keys among those that they have
for any given share. If no one has a key for a particular share, then we assume
that they cannot guess the possible key.

2.1 Set systems with identifiable parent property

Now we are ready to formulate the identifiable parent property for such scheme.

Definition 1 [9] A (q + 1)-ary constant-weight code C ⊂ An
q of weight w is

(t, w, q)-IPP code if for any vector y ∈ An
q s.t. wt(y) ≥ w either⋂

U⊂C: y∈〈U〉w, |U |≤t

U 6= ∅, (3)

or there is no U ⊂ C such that |U | ≤ t and y ∈ 〈U〉w.

Such property guarantees that at least one malicious user will be identified
correctly. Note that if w = n then the definition 1 transforms to a definition of
t-IPP codes [17], and for the case q = 1 it transforms to (t, w)-IPP set systems
[7].

2.2 Set systems with traceability property

In order to formulate the traceability concept for the new type of tracing
traitors schemes, i.e., q-ary IPP set systems, we need the following “proximity
measure” S(x,y) between two vectors x,y ∈ An

q defined as

S(x,y) = |{i | x(i) = y(i) 6= 0}|, (4)

i.e., S(x,y) is the number of coinciding non-zero coordinates. The function
S(x,y) is obviously related to the Hamming distance dH(x,y), namely,

dH(x,y) = wt(x) + wt(y)− 2S(x,y)− J(x,y), (5)

where J(x,y) = {l : xl 6= 0, yl 6= 0, xl 6= yl}.
The traceability property can be formulated as follows.

Definition 2 A (q + 1)-ary constant weight code C ⊂ An
q of weight w is

called a (t, w, q)-traceability set system ((t, w, q)-TSS code, for short) if for
any coalition U ⊂ C, |U | ≤ t and any y ∈ 〈U〉w, it holds

S(y,v) < max
u∈U

S(y,u) (6)

for any v ∈ C \ U .
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On non-binary traceability set systems 5

Remark 1 Note that for the case w = n this definition is equivalent to the
definition of t-IPP codes with the traceability property. For the case q = 1 this
definition is equivalent to the definition of t-IPP set systems with traceability
property. In the general case the given definition is more convenient than a
similar one based on the Hamming distance as we can see from the next lemma.

The following lemma establishes a sufficient condition on a (t, w, q)-set sys-
tem to have t-traceability property, which is similar to the original approach
of [6]:

Lemma 1 A (q + 1)-ary constant-weight code C ⊂ An
q of weight w is a

(t, w, q)-TSS code if for any u,v ∈ C it holds

S(u,v) < w/t2. (7)

Proof Consider any coalition U ⊂ C, |U | ≤ t and any y ∈ 〈U〉w. Then,
maxu∈U S(u,y) ≥ w/t since wt(y) ≥ w. On the other hand, for any v ∈ C \U ,

S(v,y) <
∑
u∈U

S(v,u) < t · w
t2

=
w

t
,

which concludes the proof.

According to Remark 1, Lemma 1 gives for IPP codes the same results as in
[6], namely, a q-ary code C with the minimal code distance dH(C) > (1−t−2)n
has the t-traceability property. As for t-IPP set systems, Lemma 1 coincides
with Lemma 61 from [26].

Let Mq(n, t, w) denote the maximal possible cardinality of (t, w, q)-TSS
code of length n. Define the lower asymptotic bound on the rate of best
(t, w, q)-TSS code as

Rt(ω, q) = lim inf
n→∞

n−1Mq(n, t, bnωc). (8)

We will be interested in the maximal possible rate of q-ary t-IPP set sys-
tems with traceability as

Rt(q) = max
ω

Rt(ω, q). (9)

In the next section we will establish the Gilbert-Varshamov type bound on
the size of (t, w, q)-TSS codes.
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6 Elena Egorova et al.

3 Gilbert-Varshamov bound for non-binary IPP set systems

Let Lq(n,w, T ) denote the maximum possible number of codewords in a (q+1)-
ary code C of length n and constant weight w with S(u,v) < T for any
u,v ∈ C. To establish the lower bound for Lq(n,w, T ) we employ Gilbert-
Varshamov type bound similar to GV-bound for constant weight codes.

Define the “ball” Bz(n,w, T ) of radius T with the center at z as the set of
all vectors x of weight w such that S(x, z) ≥ T . Let us denote the “size” of
the ball as B(n,w, T ) since it is the same for all z s.t. wt(z) = w. It is easy to
see that

B(n,w, T ) =
∑

s,u:s≥T,s+u≤w

(
w

s

)(
w − s
u

)(
n− w

w − (s+ u)

)
(q − 1)uqw−(s+u),

(10)
where s = S(x, z) and u = |{l : xl 6= 0, zl 6= 0, xl 6= zl}|. The standard
Gilbert-type arguments show that

Lq(n,w, T ) ≥
(
n
w

)
qw

B(n,w, T )
, (11)

From Lemma 1 and the equation (??) we have the following theorem

Theorem 1

Mq(n, t, w) ≥
(
n
w

)
qw

B(n,w,wt−2)
(12)

We shall use the following simple upper bound on the size of the ballBz(n,w, T )

B(n,w, T ) ≤ n2 max
s,u: s≥T,s+u≤w

[(
w

s

)(
w − s
u

)(
n− w

w − (s+ u)

)
(q − 1)uqw−s−u

]
(13)

and the well known approximation of binomial coefficient(
n

k

)
= 2n(H(k/n)+o(1)) for k ≤ n/2,

where H(x) = −(x log2 x+ (1− x) log2(1− x)) is the binary entropy function.
Then from (12), by substituting w = ωn, s = yw, u = zw, next corollary
follows:

Corollary 1

Rt(ω, q) ≥ H(ω)− max
y,z: y≥t−2,y+z≤1,z≥0

Fq(ω, y, z), (14)

where

Fq(ω, y, z) = ωH(y) + ω(1− y)H

(
z

1− y

)
+ (1− ω)H

(
ω(1− y − z)

1− ω

)
+

+ωz log2(q − 1)− ω(y + z) log2 q. (15)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



On non-binary traceability set systems 7

Remark 2 It is easy to see from (5), (10) and (11) that in the case of t-IPP
codes, which corresponds to w = n, s + u = w, the GV-type bound (12)
coincides with the result of [6]. In the case q = 1 we have t-IPP set systems
and the bound (14) was obtained in [11].

For the next simple case q = 2 the optimization problem (14) transforms
to

Rt(2) = max
ω

min
y,z

H(ω) + ω(y + z)−

−
(
ωH(y) + ω(1− y)H

(
z

1− y

)
+ (1− ω)H

(
ω(1− y − z)

1− ω

))
(16)

subject to ω, z ≥ 0, y ≥ t−2, y + z ≤ 1, and t is integer greater than 1. The
corresponding numerical optimization gives that for t = 2

R2(2) ≥ 0.03602,

which is achieved for ω = 0.1156, i.e. for w/n = 0.1156, and for t = 3

R3(2) ≥ 0.006314

which is achieved for ω = 0.048.
Consider also the case q = 3. The corresponding numerical optimization

gives that for t = 2

R2(3) ≥ 0.05369,

which is achieved for ω = 0.172, and for t = 3

R3(3) ≥ 0.00946

which is achieved for ω = 0.073. Note, that numerical results for the case
q = 1, i.e., the case of t-IPP set systems, can be found in [11,12].

4 How to compare tracing traitors schemes?

In order to compare different tracing traitors schemes we need to return to the
origin of this subject, namely to [6], where it was suggested to consider the
total number N = nq of transmitted “blocks” containing encrypted shares, i.e.,
consider N as the “block length” and correspondingly calculate the effective
rate of (t, w, q)-TSS code C as

Reff = N−1 log2 |C|.

In the case of IPP set systems (q = 1) the effective rate equals to the ordinary
code rate, since q = 1 and N = n.

Define the maximal possible effective rate of (t, w, q)-TSS codes as

Reff
t = max

q
Reff

t (q),
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8 Elena Egorova et al.

where Reff
t (q) = q−1Rt(q).

Let us compare numerically the new traceability scheme with the known
ones in the particular case of coalitions of size two and three. For t = 2
and q = 1 in [11] it was proved that Reff

2 (q = 1) = 0.0181, this bound
was later improved in [12] using combinatorial methods, and the best known
bound for today is Reff

2 (q = 1) = 0.0219. For the case t = 3 from [12]
we have Reff

3 (q = 1) = 0.00365. As for the new scheme from (16) we have
Reff

2 (q = 2) = 0.018, Reff
2 (q = 3) = 0.0179, it can be shown that Reff

2 (q) de-
creases with the growth of q. If we consider 2-IPP traceability codes (w = n)
the corresponding effective rate achieves its maximum at q = 18 and is equal
to 0.0162, and for the case t = 3 the maximum is at q = 43 and is equal
to 0.00301. So, we can conclude that for now the best effective rate Reff

t for
t = 2 is achieved at q = 1 and is equal to 0.0219 which is due to binary 2-IPP
set systems with traceability property [12]. The same can be said for the case
t = 3, the best effective rate is also due to binary 3-IPP set systems with
traceability and is equal to 0.00365.

5 Conclusion

In this paper we introduced generalized IPP-schemes with the traceability
property that allow to investigate uniformly t-IPP codes and t-IPP set systems
with the traceability property as two marginal cases of non-binary IPP set
systems.

How the effective rate of the best general t-IPP schemes with traceability
behaves for t→∞ is an open question. It is known that the effective rate of t-
IPP set systems with traceability Reff

t (q = 1) = t−4+o(1). Indeed, it was proved
in [16] that t-traceability set systems is a t2-cover-free family [13], therefore, it
follows from the known upper bound on the cardinality of t-cover-free families,
see [13], [8], thatRt(1) = O(t−4+o(1)). On the other hand, the GV-bound shows
that Rt(1) ≥ c1t−4, where c1 > 0 is some constant.

We conjecture that for large t

Reff
t = t−4+o(1).
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