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Abstract—This paper exposes a flexibility management algorithm to 
optimize the operation of behind-the-meter charging infrastructure 
in a building including external flexibility requests from the local 
distribution system operation. It includes the electricity cost 
minimization including drivers’ comfort cost and it uses the limited 
information available in conventional slow charging points like 
electricity consumption and charging point status. 

Index Terms—Electric vehicle; Smart charging; Energy management 
system; demand response; 

I. NOMENCLATURE 

A. Sets 
𝑇𝑇 Set of time periods in the planning horizon 
𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 Sub-set of constrained periods according to the DSO request 
𝑉𝑉 Set of electric vehicle charging points 
𝐺𝐺 Set of photovoltaic generation units 
N Set of charging point sessions per charging point 

 

B. Parameters 
Prosumer model parameters: 
𝑃𝑃𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏 Price at energy part of retail contract for buying electricity in 

period t [€/kWh] 
𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏 Price at energy part of grid contract for buying electricity in 

period t [€/kWh] 
𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉 Parameter that adds VAT to the amount bought [fraction] 
𝑃𝑃𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Price at energy part of retail contract for selling electricity in 

period t [€/kWh] 
𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Price at energy part of grid contract for selling electricity in 

period t [€/kWh] 
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐 Maximum import capacity [kWh] 
𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 Maximum export capacity [kWh] 
𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜 Periods per hour [#] 

 
Charging point model parameters: 
𝑊𝑊𝑣𝑣 ,𝑡𝑡

𝐶𝐶𝐶𝐶 Baseline charging schedule for EV v in period t [kWh] 
𝑇𝑇𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Arrival time of each EV charging point v of session n [#] 

𝑇𝑇𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒 Departure time of each EV charging point v of session n [#] 

𝑃𝑃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 Price for deferring 1 kWh energy demand for one time period for 

charging point v [€/kWh] 

𝑃𝑃𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑁𝑁𝑁𝑁 Price for non-supplying 1 kWh of the expected charging demand 

of charging point v of session n by the end of the charging 
sessions [€/kWh] 

𝐹𝐹𝐹𝐹𝑡𝑡 DSO flexibility request per period t as the maximum 
consumption for all charging points [kWh] 

 
Photovoltaic generator model parameters: 
𝑊𝑊𝑔𝑔,𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔 Baseline production from generation unit g in period t [kWh] 
𝑃𝑃𝑔𝑔,𝑡𝑡
𝐺𝐺,𝑟𝑟 Price of reducing generation output of the unit g during period t 

[€/kWh] 

C. Variables 
Prosumer model variables 
𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 Amount of electricity bought in period t [kWh] 

𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Amount of electricity sold in period t [kWh] 
𝛿𝛿𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 Binary variable = 1 if site is importing/buying electricity in 

period t, else 0 
𝛿𝛿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Binary variable = 1 if site is exporting/selling electricity in 

period t, else 0 
 
Charging point model variables: 
𝜃𝜃𝑣𝑣,𝑡𝑡
𝑒𝑒𝑒𝑒  Amount of electricity supplied to the EV unit v in period t 

[kWh] 
𝜃𝜃𝑣𝑣,𝑡𝑡
𝑐𝑐ℎ Amount of electricity charged to EV unit v in period t [kWh] 
𝜃𝜃𝑣𝑣,𝑡𝑡
𝑐𝑐𝑐𝑐 Amount of demanded electricity to the EV unit v in period t 

(charging demand) [kWh] 
 
Photovoltaic generator model variables: 
𝜓𝜓𝑔𝑔,𝑡𝑡 Amount of electricity produced from generating unit g in 

period t [kWh] 
 
Flexibility costs: 
𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Total cost for utilizing internal flexibility [€] 
𝜁𝜁𝐸𝐸𝐸𝐸,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Total cost for utilizing EV flexibility in the planning horizon 

[€] 
𝜁𝜁𝐸𝐸𝐸𝐸,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 Cost for shifting EV charging [€] 
𝜁𝜁𝐸𝐸𝐸𝐸,𝑁𝑁𝑁𝑁 Cost for non-supplied EV charging [€] 

II. INTRODUCTION 
The current amount of electric vehicles (EVs) in the Dutch 
distribution systems is raising doubts about their feasible massive 
penetration in the forthcoming years. Different initiatives are 
designing innovative solutions to reduce the need of grid 
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reinforcements and grid tariff price increase. One of these 
initiatives is the INVADE H2020 project [1]. It aims to develop a 
centralized platform managed by a flexibility operator (FO) which 
interacts with distribution system operators, balance responsible 
parties and EV charging stations. The FO is responsible of a 
subpart of the aggregator activities e.g. pooling small flexibilities 
of customers or network users through the centralized platform in 
order to make use of their flexibility in the grid management or 
participating in energy markets. 
 
A framework of the opportunities and challenges of EV 
technologies connecting with the grid was presented by Liu et al. 
[2]. 
 
An important part of the literature studies how to optimally 
manage EV charging sessions in residential-smart buildings thanks 
to Home Energy Management Systems (HEMS) including 
vehicle-to-grid potential. Jin et al. [3] presented a problem of 
scheduling EV charging session from an electricity market 
perspective, having into account the aggregator energy trading in 
the day-ahead and real-time markets. A communication protocol 
is described for interactions among the aggregator and EVs. 
Mohseni et al. [4] studied an energy consumption model of a 
residential microgrid with EVs, based also on the day-ahead 
energy management. 
 
Sattarpour et al. [5] developed a multi-objective HEMS function 
where the EV can charge and discharge at home and the SOC of 
the EV’s battery at the arrival time is a known parameter. A 
decentralized charging control strategy assuming to know the EV 
battery SOC is presented by Hu et al. [6]. Thomas et al. [7] also 
managed a bi-directional EV energy trading in an office building 
considering a stochastic EVs’ driving schedule. Lamedica et al. [8] 
focused on smart buildings that use batteries of EV present in the 
parking areas as supplementary storage systems. The algorithm 
controls EVs bi-directional power flows individually. Paterakis et 
al. [9] determined the optimal day- ahead appliance scheduling of 
a household under peak power-limiting having into account EVs. 
The degradation of the EV battery is neglected. [10] evaluated a 
dynamic-pricing and peak power limiting-based DR strategies 
with a bi-directional utilization possibility for EV. The objective 
is to minimize the total daily cost of electricity consumption. 
 
Unlike other literatures, this paper presents a novel model that can 
be used in real application by aggregators, flexibility operators or 
retailers, to schedule EVs with limited information from cloud-
based platforms. The current available information by third-parties 
is coming from charging points and it is only about the energy 
consumed, the charging point status which is used to know the past 
arrival and departure times. It is not possible to know the EV 
battery SOC, capacity or vehicle ID through the vast majority of 
slow charging points, which complicates the use case significantly. 
Therefore, it is necessary to include forecasting algorithms capable 
of predicting the future based on the past events.  
 
The paper is structured as follows: Section 2 presents the Dutch 
pilot case study, section 3 presents the optimization problem 
mathematical formulation, section 4 shows the inputs and outputs 
obtained and the section 5 includes the paper conclusions. 

III. CASE STUDY 
The current case study is the ElaadNL headquarter located in 
Arnhem, The Netherlands. It is part of the INVADE Dutch pilots, 
covering the small-scale public office use case. This office 
building of 3.062 m2 houses around 100 full-time employees. It 
has installed 4 kWp of photovoltaic panels and a central battery of 
100 kWh and 200 kW. Moreover, the building has several EV 
charging points (CP) but only nine of them are considered in the 
scope. Eight CPs charge only one EV during the day and one 
charges two EVs. A general overview of the case study site is 
shown at Figure 1.  The white boxes represents metering and sub-
metering points. 
 

 
Figure 1.  Components of the case study. 

The algorithm presented in this paper is an EV flexibility 
management system (EV-FMS) dedicated to apply smart charging 
control signals for congestion management and maximum power 
control (kWmax control) [11]. However, the stationary battery is 
operated locally with the purpose of reducing the peak load. 
However, the battery is not sufficient in some cases like in the case 
study and the building needs to include smart charging control. 
Therefore, this paper is focused on managing EVs and the battery 
is inflexible from the EV-FMS point of view. The FMS could 
include the battery in the decisions but in some cases it could be 
beneficial to use the local battery control if it includes a 
specifically designed battery aging model capable of taking better 
decisions than a third-party cloud platform. 
 
Simultaneous EV charging can cause grid congestions or voltage 
limit violations in weak or remote areas. In such situations, the 
DSO could be interested in offering, through the FO, economic 
discounts to EV drivers if they delay or even reduce their charging 
load when there is grid scarcity. 
 
Figure 2. shows the sequence to prevent network congestion. The 
DSO measures the load on the local electricity network and based 
on its maximum capacity, the DSO sends out the maximum 
available capacity for EV charging to the Charging Station 
Operator (CSO). Then, the CSO redirects the available capacity to 
the Capacity Management System (CMO), which calculates the 
aggregated optimal EV charging profile for the whole charging 
station (CS). Based on this charging profile, the CSO can tell its 
charging points their maximum charging power for the next period 
of time.  
 
This sequence is based on the Open Capacity Management 
Protocol (OCMP) [12] standard for exchanging information 
between the Charging Station Operator (CSO) and the DSO. The 
goal of this new standard is to define a protocol for smart charging 



electrical vehicles based on available capacity that is provided by 
the DSO. OCMP is a development name to the INVADE pilot 
project specific version of the Open Smart Charging Protocol 
(OSCP). This protocol will be used as input for the new OSCP 2.0 
protocol to be published also by the Open Charge Alliance. 
 

 
Figure 2.  Sequence diagram of the OCMP in which the DSO distributes capacity 

to a CSO. 

In the considered case study, the DSO sends a maximum available 
capacity for EV charging of 10 kW from periods 30 to 40. At the 
same time, the building is limited to consume a maximum of 
260 kW in total for each period, including the EVs. 
 
The generation and total inflexible load data of the studied office 
are obtained from ElaadNL monitoring system. The used data 
belongs to the 25th July 2018. This data is not open source. 
However, specific data for the charging sessions of the office is 
not yet available. To solve this, 10 alternative real charging 
profiles from ElaadNL are used. They are selected from the open 
data sets that can be downloaded from the ElaadNL platform [13]. 
 
In order to avoid the effect of energy price variability, the used 
energy prices are constant for the whole optimization window. In 
addition, this is the most common end-user energy tariff type used 
in The Netherlands. 

IV. FLEXIBILITY ALGORITHM 
The algorithm is structured according to Figure 3. There are two 
main data sources: historic time series about the main meter load 
and generation values, and the external data about the weather 
forecast, electricity prices, and charging booking if available. 
 

 
Figure 3.  EV-FMS algorithm inputs and outputs. 

This data is used in the INVADE integrated platform to generate 
the forecasted values needed in the EV-FMS. Therefore, the 
optimization model creates decisions and the CSO sends the 
corresponding control signals to each CS or directly to each CP. 
The EV-FMS is executed only once based on the forecast received 
at 12 am. The optimization horizon is 24 hours ahead. 
 
The objective function is presented in (1) and it represents the cost 
of buying (𝑃𝑃𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏) and selling (𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ) energy including 

taxes (𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉 ), and the flexibility cost ( 𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ). Therefore, the 
decision variables are 𝜒𝜒𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏,𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 . 

 
𝑚𝑚𝑚𝑚𝑚𝑚 z = ��𝑃𝑃𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉  − 𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�+ 𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑡𝑡∈𝑇𝑇

 (1) 

Being buying and selling costs obtained from (2) and (3) as the 
composition of the retailer contract price (𝑃𝑃𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏,𝑃𝑃𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
and the grid operator contract price (𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏 ,𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). The 

flexibility cost in the EV-FMS considers only the EV flexibility 
cost equation (4) and it is composed by the shifting cost (𝜁𝜁𝐸𝐸𝐸𝐸,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖) 
and the non-supplied energy (𝜁𝜁𝐸𝐸𝐸𝐸,𝑛𝑛𝑛𝑛𝑛𝑛−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). The shifting cost 
(6) is a penalty (𝑃𝑃𝑣𝑣

𝐶𝐶𝐶𝐶,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖) for the energy shifted from the baseline 
between the arrival time (𝑇𝑇𝑣𝑣

𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ) and every time period t. 
Moreover, there is a cost (𝑃𝑃𝑣𝑣

𝐶𝐶𝐶𝐶,𝑁𝑁𝑁𝑁) for the curtailed energy (𝜃𝜃𝑣𝑣,𝑛𝑛
𝑐𝑐𝑐𝑐 −

𝜃𝜃
𝑣𝑣,𝑇𝑇𝑣𝑣,𝑛𝑛

𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒 ) at departure time in (7). 

 
𝑃𝑃𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑃𝑃𝑡𝑡

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑏𝑏𝑏𝑏𝑏𝑏 (2) 

𝑃𝑃𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑃𝑃𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (3) 

𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜁𝜁𝐸𝐸𝐸𝐸,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (4) 
𝜁𝜁𝐸𝐸𝐸𝐸,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜁𝜁𝐸𝐸𝐸𝐸,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜁𝜁𝐸𝐸𝐸𝐸,𝑛𝑛𝑛𝑛𝑛𝑛−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (5) 

𝜁𝜁𝐸𝐸𝐸𝐸,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = � � � 𝑃𝑃𝑣𝑣
𝐶𝐶𝐶𝐶,𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 � �𝑊𝑊𝑣𝑣,𝑡𝑡

𝐶𝐶𝐶𝐶 − 𝜃𝜃𝑣𝑣,𝑡𝑡
𝑐𝑐ℎ� 

𝑡𝑡

𝑇𝑇𝑣𝑣
𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡=𝑇𝑇𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛∈𝑁𝑁(𝑣𝑣)𝑣𝑣∈𝑉𝑉𝑐𝑐

 (6) 

𝜁𝜁𝐸𝐸𝐸𝐸,𝑛𝑛𝑛𝑛𝑛𝑛−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = � � 𝑃𝑃𝑣𝑣𝐶𝐶𝐶𝐶,𝑁𝑁𝑁𝑁(𝜃𝜃𝑣𝑣,𝑛𝑛
𝑐𝑐𝑐𝑐 − 𝜃𝜃𝑣𝑣,𝑇𝑇𝑣𝑣,𝑛𝑛

𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒
𝑒𝑒𝑒𝑒 )

𝑛𝑛∈𝑁𝑁(𝑣𝑣)𝑣𝑣∈𝑉𝑉𝑐𝑐
 (7) 

 
The site energy balance constraint is (8) and it relates the inflexible 
load (𝑊𝑊𝑡𝑡

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), PV generation (𝜓𝜓𝑔𝑔,𝑡𝑡) and the grid energy import 
(𝜒𝜒𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏) and export (𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). It includes the set v for each CP and g 
for each generation unit in the same site.  
 

�𝜓𝜓𝑔𝑔,𝑡𝑡 +
𝑔𝑔∈𝐺𝐺

𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 = �𝜃𝜃𝑣𝑣,𝑡𝑡

𝑐𝑐ℎ +
𝑣𝑣∈𝑉𝑉

𝑊𝑊𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , ∀ 𝑡𝑡 ∈ 𝑇𝑇 (8) 

 
The CP model and constraints are based on the assumption of the 
previously mentioned forecasted input parameters as the unique 
information available from the FO point of view. Forecasted 
values are translated into: 
- EV CP status: 𝑉𝑉𝑣𝑣,𝑛𝑛

𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑉𝑉𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑇𝑇𝑣𝑣,𝑛𝑛

𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑇𝑇𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒      

- EV CP baseline consumption: 𝑊𝑊𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶   

 
Therefore, the total expected energy consumption per CP v and 
charging session n (𝜃𝜃𝑣𝑣,𝑛𝑛

𝑐𝑐𝑐𝑐 ) is calculated in (9). Notice expected 
energy consumption is from the CP point of view and there is no 
efficiency to be considered. The total energy decided to supply to 
each v at period t (𝜃𝜃𝑣𝑣,𝑡𝑡

𝑒𝑒𝑒𝑒 ) is calculated in (10) and it is updated 
according to the previous period value and the charging control 
signal at t (𝜃𝜃𝑣𝑣,𝑡𝑡

𝑐𝑐ℎ). 𝜃𝜃𝑣𝑣,𝑡𝑡
𝑒𝑒𝑒𝑒  is initialized at the beginning of each charging 

session N(v). Equation (11) is a disjunctive constraint to limit the 
CP power control signal between a maximum (𝑄𝑄𝑣𝑣

𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚 ) and 
minimum value (𝑄𝑄𝑣𝑣

𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚). Finally, the total energy supplied per 
CP v and session n is limited to the expected energy consumption 
in (12). 

� 𝑊𝑊𝑣𝑣,𝑡𝑡
𝐶𝐶𝐶𝐶

𝑉𝑉𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡=𝑉𝑉𝑣𝑣,𝑛𝑛
𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝜃𝜃𝑣𝑣,𝑛𝑛
𝑐𝑐𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐,∀𝑛𝑛 ∈ 𝑁𝑁(𝑣𝑣) (9) 

𝜃𝜃𝑣𝑣,𝑡𝑡
𝑒𝑒𝑒𝑒 = 𝜃𝜃𝑣𝑣,𝑡𝑡−1

𝑒𝑒𝑒𝑒 + 𝜃𝜃𝑣𝑣,𝑡𝑡
𝑐𝑐ℎ , ∀𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐,∀𝑛𝑛 ∈ 𝑁𝑁(𝑣𝑣), 𝑡𝑡 ∈ [𝑇𝑇𝑣𝑣,𝑛𝑛

𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑇𝑇𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒] (10) 

𝑄𝑄𝑣𝑣
𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜� ≤ 𝜃𝜃𝑣𝑣,𝑡𝑡
𝑐𝑐ℎ ≤ 𝑄𝑄𝑣𝑣

𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜�   ∨ (𝑂𝑂𝑂𝑂)  𝜃𝜃𝑣𝑣,𝑡𝑡
𝑐𝑐ℎ = 0,

∀𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐, 𝑡𝑡 ∈ 𝑇𝑇 
(11) 



𝜃𝜃𝑣𝑣,𝑡𝑡
𝑒𝑒𝑒𝑒 ≤ 𝜃𝜃𝑣𝑣,𝑛𝑛

𝑐𝑐𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉𝑐𝑐,∀𝑛𝑛 ∈ 𝑁𝑁(𝑣𝑣), 𝑡𝑡 = 𝑇𝑇𝑣𝑣,𝑛𝑛
𝐶𝐶𝐶𝐶,𝑒𝑒𝑒𝑒𝑒𝑒 (12) 

 
The PV model cannot be remotely curtailed as the present 
framework does not allow DSO send downregulation flexibility 
requests as [14]. Therefore, the PV generation (𝜓𝜓𝑔𝑔,𝑡𝑡) is equal to the 
forecasted PV value (𝑊𝑊𝑔𝑔,𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) in (13). 
 

𝜓𝜓𝑔𝑔,𝑡𝑡 = 𝑊𝑊𝑔𝑔,𝑡𝑡
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, ∀ 𝑔𝑔 ∈ 𝐺𝐺𝑖𝑖 , 𝑡𝑡 ∈ 𝑇𝑇 (13)  

 
The buy and sell decisions are limited due to the kWmax control 
to a maximum import (14) and export capacity (15) and they 
cannot happen simultaneously (16). 
 

𝜒𝜒𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝛿𝛿𝑡𝑡

𝑏𝑏𝑏𝑏𝑏𝑏𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖−𝑐𝑐𝑐𝑐𝑐𝑐, ∀ 𝑡𝑡 ∈ 𝑇𝑇 (14) 

𝜒𝜒𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝛿𝛿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒−𝑐𝑐𝑐𝑐𝑐𝑐 , ∀ 𝑡𝑡 ∈ 𝑇𝑇 (15) 

1 ≤ 𝛿𝛿𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 + 𝛿𝛿𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (16) 

 
The DSO flexibility request (𝐹𝐹𝐹𝐹𝑡𝑡) for the CPs is included in (17) 
as a limitation to the aggregated consumption of all CPs. Notice it 
does not consider the building consumption. 
 

� 𝜃𝜃𝑣𝑣 ,𝑡𝑡
𝑐𝑐ℎ

𝑣𝑣∈𝑉𝑉𝑐𝑐
=  𝐹𝐹𝐹𝐹𝑡𝑡,         𝑡𝑡 ∈ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (17) 

V. SIMULATION AND RESULTS  
The case study problem results in the control signals to all charging 
points as shown in Figure 4. The charging points are listed in 
ascending shifting cost from 0.1 EUR/kWh in steps of 10% 
increase. Therefore, CP1 is shifted more periods than CP9. As the 
electricity price is constant, 𝜁𝜁𝐸𝐸𝐸𝐸,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the only decision factor in 
this specific case study and results are easier to understand. 
 
The DSO EV charging request constraints CPs from 30 (7:30 am) 
to 40 (10 am). To meet the request, CPs 2, 3, 4, 6, 7, 8 are shifted 
to later periods. For instance, CP2 and CP6 are totally shifted to 
period 40. In contrast, CP7 and CP8 are barely reduced and CP9 is 
not shifted.  
 
According to Figure 5. , during the periods 50 and 51 the base net 
load is above the limit of 65 kWh per quarter. Thus, CP1, 2, 4, and 
8 are shifted or partially curtailed in the optimized result to meet 
the 260 kW limitation. Therefore, the optimal EV scheduling 
produces a constant consumption at 65 kWh per quarter between 
periods 42 and 58 reducing the peak load. 
 
TABLE I shows charging points data from ElaadNL office. All 
profiles correspond to arrival and departure times within typical 
office working hours and at least they have 2 hours of flexibility 
time. It also shows how the decisions allow to charge the EVs 
completely because the non-supplied energy penalty (𝑃𝑃𝑣𝑣

𝐶𝐶𝐶𝐶,𝑁𝑁𝑁𝑁) is 
5 €/kWh. The transaction ID is included for comparing results in 
future works. 

VI. CONCLUSIONS 
The present paper exposes a novel decision-making problem of 
scheduling EVs in frameworks of limited information. In such 
cases, it is necessary to rely on forecasting tools to take decisions. 
Related to communication standards, OCMP standard allows 
DSOs to send flexibility requests referred only to the aggregated 
EV load within a grid connection point. EVs are very attractive to 
reduce building load peaks and reduce grid congestions. The 

optimization algorithm presented in this paper shows a scheduling 
EV model considering this load limitation and the maximum 
consumption per grid connection. The results of the case study 
highlight the possibility of managing EV charges considering 
capacity limitations and DSO restrictions even though the limited 
available information. It is difficult to take better decisions without 
additional data like EV battery state of charge. 
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Figure 4.  Charging points consumption including the arrival (dashed line) and departure times (dotted line). 

 
Figure 5.  Building energy consumption. 

TABLE I.   Charging points and sessions from ElaadNL database 

Charging 
point ID 

Transaction 
ID Arrival time Departure time 

Connected 
time 

[hours] 

Charge 
time 

[hours] 

Flexibility 
time 

[hours] 

Expected 
energy 

consumption 
[kWh] 

Delivered 
energy 
[kWh] 

Shifting 
flexibility 

cost 
[EUR/kWh] 

1 2528680 03/06/2017 9:55 03/06/2017 13:32 3.62 0.83 2.79 8.73 8.73 0.100 
2 2504887 25/05/2017 9:20 25/05/2017 14:04 4.73 2.50 2.23 25.01 25.01 0.110 
3 2714942 26/06/2017 9:34 26/06/2017 15:02 5.48 2.68 2.80 25.98 25.98 0.121 
4 2625991 26/07/2017 9:05 26/07/2017 18:40 9.59 4.48 5.10 48.34 48.32 0.133 
5 2595472 07/07/2017 6:25 07/07/2017 10:58 4.55 1.30 3.25 11.13 11.13 0.146 
6 2567142 22/06/2017 7:23 22/06/2017 11:45 4.37 1.00 3.37 6.36 6.36 0.161 
7 2668532 23/08/2017 7:41 23/08/2017 16:02 8.34 4.55 3.79 27.28 27.28 0.177 
8 2605666 13/07/2017 7:06 13/07/2017 10:45 5.71 2.00 3.71 18.71 18.71 0.195 
8 2592317 05/07/2017 11:36 05/07/2017 15:56 4.34 1.06 3.28 10.15 10.15 0.195 
9 2346509 14/04/2017 10:47 14/04/2017 15:58 5.17 2.17 3.00 17.37 17.37 0.214 
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