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Abstract

Nowadays, Deep learning-based solutions and, in particular, deep neural networks (DNNs) are get-

ting into several core functionalities in critical real-time embedded systems (CRTES), like those in

planes, cars and satellites, from vision-based perception (object detection and object tracking) sys-

tems to trajectory planning. As a result, several deep learning instances are running simultaneously

at any time on the same computing platform.

However, while modern computing platforms offer a variety of computing elements (e.g., CPUs,

GPUs, and specific accelerators) in which those DNN instances can be executed depending on

their computational requirements and temporal constraints. Currently, most DNNs are mainly

programmed to exploit one particular computing element, regular cores of the GPUs. This lack

of variety causes a resource imbalance and under-utilization of the various computing element

resources when executing several DNN instances, causing an increase in DNN tasks’ execution time

requirements.

In this Thesis, (a) we develop different variants (implementation) of well-known DNN libraries

used in the Apollo Autonomous Driving software for each of the computing elements of the latest

NVIDIA Xavier system-on-chip. Each variant is configured to balance resource requirements and

performance: the regular CPU core implementation that can run on 2, 4, and 6 cores (always

leaving 2 cores free for other computations); the GPU with regular and Tensor cores variants that

can run on 4 or 8 GPU’s Stream Multiprocessors (SM); and 1 or 2 NVIDIA’s Deep Learning

Accelerators (NVDLA); (b) we show that each particular variant/configuration offers different

resource utilization/performance point. (c) we show how those heterogeneous computing elements

can be exploited by a static scheduler to sustain the execution of multiple and diverse DNN variants

on the same platform.
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Chapter 1

Introduction

Computing systems require functional correctness so that the outputs provided correspond to the

system specification. A subset of the computing systems, known as real-time systems, also needs

timing correctness. Timing correctness refers to the execution of the corresponding functionalities

before specific deadlines. For instance, a video decoding processor has to process each frame at a

given speed; otherwise, the user might see distortions on the result. Similarly, the braking system

of a car has to work with a tight deadline; if not, it might respond too late and cause a fatal

accident. The difference between these two examples is the criticality of the result; if the video

has a failure, it at most results in an inconvenience to the user, whereas if the brakes fail (either

functional error or missed deadline), it can result in a severe fatality. Therefore, the systems with

critical functionalities are called Critical Real-Time Embedded Systems (CRTES).

Nowadays, most cars include some systems to help drivers to drive better and in a safer way. These

cover basic things like the Anti-Lock Braking System (ABS) to more complex things like automated

parking or lane following assistance. As stated previously, these systems help the driver with the

control, but ultimately the driver always has to make the decisions; these are called Advanced

Driving-Assistance Systems (ADAS). Autonomous Driving (AD) is even more ambitious; it seeks

to relieve the driver from decision tasks and, ultimately, from any driving responsibility. AD

requires more sophisticated algorithms due to its complexity; for example, understanding a real-

world environment through sensors and acting according to it, this has to be done with Artificial

Intelligence (AI). For the most complex tasks, like object detection (computer vision), it is needed

the most powerful tool from AI, which is Deep Learning.

1.1 Motivation

Although deep learning algorithms have been around for more than three decades, in the past few

years, they revolutionized the computer science world due to the impressive accuracy improvement
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Chapter 1. Introduction

of DL over the traditional algorithms based on shallow learning [28, 33, 48]. This improvement,

caused it to spread rapidly to the mainstream computing domain in a wide variety of areas ranging

from pattern recognition to natural language processing, data science to new a few. CRTES are

not exception to other domains as they also follow this trend with DL-based algorithms used in

areas like robotics and AD.

In terms of the latter, AD software solutions heavily build on DNN-based solutions, with hundreds

of thousands of vehicles (only Tesla has sold more than 825,970 autopilot-capable vehicles [43]).

These vehicles are equipped with the DNN-based partial automation (level 2 and level 3 specified by

Society of Automotive Engineers [31]) and most car/truck manufacturers announcing their roadmap

towards (DNN-based) highly- and fully-automation in the near future (levels 4 and 5 according to

SAE International [31]). In fact, DL has emerged as the reference algorithmic solution for the

realization of several functionalities included in AD such as computer vision (e.g., object detection

and object tracking), path planning, driver-monitoring systems, gesture-activated AI assistants,

and voice-based command and control [40].

On the other hand, increased accuracy in DL algorithms came with a substantial increase in the

required computational demands. At the hardware level, high-performance platforms is required

to satisfy the massive computation needs of DL workloads [30, 46, 47], with GPUs at the forefront

of those solutions and lately being extensively evaluated by OEMs and top-tier companies in the

automotive domain [36]. At the software level, highly optimized tools, frameworks, and low-level

libraries are deployed to significantly improve the hardware utilization and facilitate the software

development process [1, 17,18,35].

Despite these efforts, autonomous driving – the target domain of this Thesis – still challenges the

computational capabilities of existing solutions. Just for ADAS, which arguably require much lower

performance than fully AD systems, ARM projects a 100x increase in computation needs from 2016

to 2024 [7]. Capturing these demands requires a computation capacity of tens of tera-operations

per second (TOPS), which can theoretically be achieved by having a variety of accelerators (special-

ized computing elements such as deep learning accelerators) in automotive system-on-chips (SoC)

and high-end GPU platforms with features such as Tensor cores [41] to accelerate deep learning

operations.

1.2 Problem Statement

Most of the AD systems consist of a set of sophisticated and highly-coupled modules. Each of the

modules implements a specific functionality of autonomous vehicles (AV). For example, Apollo1 AD

system [9] has complex modules such as Perception to identify the surrounding area around the

1Apollo is an industrial and practically implemented project with more than 130 industrial partners, most of them

top-tier AI and tech companies and car manufacturers.
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Chapter 1. Introduction

vehicle or Planning to plan the trajectory that the autonomous car has to take. Due to extensive use

of deep learning solutions in various of these modules for different AD functionalities, and according

to our observations in an industry-level AD system, several DL instances run simultaneously on

the underlying SoC.

For instance, while the object detector module analyzes the current time-frame, the tracking mod-

ule processes the objects recognized in previous time-frames and matches them with the objects in

the current time-frame. At the same time, the planning module calculates the best path trajectory.

In more sophisticated systems, each module can require several DNN instances to implement the

required functionality, and the module can be instantiated several times, one or several instances

per each input sensor, e.g., cameras, LiDARs2, and radars. However, while modern heterogeneous

platforms offer several types of (accelerating) computing elements (CE), current DL implemen-

tations mostly exploit the traditional elements, which at the time of writing this Thesis are the

regular (graphic) computing cores in a GPU. Regardless of the specific CE, the fact that just one

type of CE is used, heavily under-exploits current heterogeneous SoC computation capacity.

The ability to run DL-based variants, each using different CEs, would improve timing and through-

put, and would pay off the extra effort required to implement those different variants. Vendors such

as NVIDIA designed sophisticated SoCs in which they integrated powerful deep learning accelera-

tors (e.g., NVDLA) designed and specialized for DL workloads, high-end GPUs and state-of-the-art

multicore CPUs in a single chip. The GPUs are featuring new Tensor cores for DL inference, which

are capable of different data type operations, from int8 to fp16 and fp32, and provide massive

and flexible computation capacity.

1.3 Contributions

In this Thesis, we aim at providing efficient computation solutions for AD frameworks, focusing

on one of the most sophisticated and industry-level open-source AD framework, the Apollo AD

framework [9], when deployed on high-performance SoCs, such as the latest and state-of-the-art SoC

with multiple heterogeneous computing elements that NVIDIA designed for high-level automation,

the Xavier SoC [42]. Our main contributions are the followings:

1. We exploit the use of DL-based algorithms in Apollo AD system. We perform an analysis

of the number of DL instances that can be running during Apollo’s execution. We show

that, at least, seven instances can be active at the same time, and each instance comes with

different computation needs and are subject to different time constraints. Based on observed

indicators, we conclude that the number of DL instances is expected to increase in future AD

systems.

2LiDAR, which stands for Light Detection and Ranging, uses laser pulses to build a 3D model of the environment

around the car. Essentially, they help autonomous vehicles “see” other objects, like cars, pedestrians, and cyclists.
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Chapter 1. Introduction

2. We implement distinct variants of different DL libraries so that each of them can be executed

on different CEs in the NVIDIA’s Xavier SoC: CPU, GPU regular cores, GPU Tensor cores,

and NVIDIA’s specialized deep learning accelerator (NVDLA). Our variants are programmed

such that they can be executed under different thread-level parallelism (TLP) degrees, which

allows more flexibility when exploiting the existing CEs.

3. We make an in-depth analysis of the implications of running the different variants of the DL

libraries on the NVIDIA’s Xavier SoC and show that each implementation/TLP-setup offers

a different design point in terms of used resources and performance.

4. We model a multicore cyclic executive scheduler as a linear programming (LP) problem to

assess the increase in guaranteed performance enabled by heterogeneous resources. We show

how the variable execution requirements exhibited by tasks on the different heterogeneous

computing elements can be exploited to increase the number of advanced neural network-

based functionalities on the same SoC, with clear advantages in terms of reducing procurement

costs and reliability concerns.

1.4 Thesis Organization

The rest of this Thesis is structured as follows: Chapter 2 introduces DNNs, Apollo, and also

presents the main details of our target platform, the NVIDIA’s Xavier SoC. Chapter 3 analyzes

the DNNs used in Apollo and the projection in the use of DNN in CRTES. Chapter 4 details

the different implementations we developed for different DL libraries and their resource usage and

performance in the Xavier SoC. Chapter 5 shows how scheduling can benefit from these TLP-

configurable implementations to increase system load or adapt DL execution time requirements

to its allocated time budget. Chapter 6 presents the most relevant related works. Chapter 7

summarizes the main conclusions of this work, and, finally, Chapter 8 reviews the published part

of this Thesis.
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Chapter 2

Background

In this chapter, we first present a brief introduction to deep neural networks and their use in

autonomous driving systems. Then, we introduce Apollo autonomous driving software as our

reference framework in this Thesis. Lastly, we provide more detail on our reference state-of-the-art

hardware platform, NVIDIA AGX Xavier.

2.1 Introduction to Deep Neural Networks

Deep learning (DL) methods are part of the machine learning methods, which are mainly inspired

by the structure and function of the human brain, and are called artificial neural networks.
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Figure 2.1: Representation of a Neural Network

Deep Neural Networks (DNNs) follow a well-known DL architecture for those networks, which

has an input layer, an output layer and, at least, one hidden layer in between. Figure 2.1 is a
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Chapter 2. Background

representation of a Neural Network where it shows the input layer l1, the hidden layers (l2, l3 and

l4), and lastly, the output layer l5. Each of the nodes in Figure 2.1 are called a “neuron”. The value

of each neuron (node) is computed as presented in Equation 2.1, where ni,j indicates a neuron in

layer i position j, wi,k,j is the weight of the network between ni−1,k and ni,j , max(li) indicates the

last position of layer li and bi,j is a bias of ni,j .

ni,j = bi,j +

max(li−1)∑
k=1

ni−1,k × wi,k,j (2.1)

In Figure 2.1 as a particular example, each neuron is connected to all the neurons from the previous

layer, however, this might be different in other types of layers. Each layer performs specific types

of sorting and ordering in a process that some refer to as “feature hierarchy” [27]. These networks

have to go through a training process with labeled data to tune the appropriate weights in order

to work properly.

One of the key uses of these sophisticated neural networks is dealing with unlabeled or unstructured

data. DL, used to describe these (deep) neural networks, uses aspects of artificial intelligence which

seek to classify and order information in ways that go beyond simple input/output protocols. DNNs

provide high accuracy solutions in several domains including computer vision for functions such as

image classification and object detection. Nowadays, DNNs are widely used in a variety of areas,

and CRTES are not an exception to this.

Recurrent neural networks (RNNs) are another class of artificial neural networks (which have an

internal state with information from previous executions) that are very successful for history-based

workloads such as speech recognition, path planning, and machine translation. RNNs are used as

the state-of-the-art approach for path planning in industrial autonomous driving systems.

2.2 Apollo Autonomous Driving Software

We study an industrial autonomous driving software to illustrate the benefits of our DNN variant-

based approach. In particular, we use Apollo [9], an industrial and practically implemented project

with more than 130 industrial partners, most of them top-tier AI and tech companies and car man-

ufacturers. Apollo is arguably the most sophisticated open-source autonomous driving framework

available implementing the entire AD software stack and already deployed on a variety of vehicles

(such as Robo-taxies, trucks and passenger cars). It is also used as a representative case study in

research [3, 4, 49, 53]. Apollo has been widely used recently to help with the COVID-19 situation

in China [10]. Apollo supports state-of-the-art hardware such as latest LiDARs and cameras from

Velodyne and other vendors, as well as GPU acceleration.

In this Thesis, we study Apollo v3.0 which comprises 8 main modules and several sub-modules, as
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Chapter 2. Background

shown in Figure 2.2. These software modules operate in a software-pipelined fashion and work in

general at time-frame level:

M0 Speech recognizer processes the voice-based commands from the driver/passengers and trans-

mit them to the control unit.

M1 Perception identifies the surrounding area around the autonomous car.

M1.d The detection submodule is in charge of detecting obstacles and objects from different

sensors.

M1.f fusion takes the results of all detected objects from different sensors and combines them

by a sensor fusion algorithm.

M1.t tracker follows the detected objects and matches them with the objects detected in

previous frames.

M2 The Planning plans the spatio-temporal trajectory for the vehicle to take.

M3 Localization leverages information received from different input sensors to estimate the precise

position of the vehicle.

M4 The Map provides ad-hoc structured information regarding the roads.

M5 Prediction anticipates the future motion trajectories of perceived obstacles/objects.

M6 Control generates control commands such as accelerating/braking and steering.

M7 CAN Bus passes all the control commands to the vehicle hardware and provides information

back to the autonomous system.

In this Thesis, we used Apollo default input datasets which are real data from sensors of an AD car

collected and provided by the Apollo team. Besides, we used similar neural network architectures

that Apollo employs in its different stages.

2.3 The Jetson AGX Xavier and it’s Main Computing Elements

NVIDIA has recently introduced the Jetson AGX Xavier SoC [42] as the cornerstone of its auto-

motive platforms. Xavier delivers over 30 TOPS for DL applications while consuming less than 30

Watts. Xavier is, to date, the largest SoC ever built with more than 7 billion transistors.

Xavier comprises four main computing elements (CEs) capable of processing deep learning work-

loads: traditional CPU cores, GPU regular cores (known as CUDA cores), GPU Tensor cores, and

the NVDLAs. The Xavier SoC also integrates several other accelerators such as vision accelerator,

video encoder, etc. However, these accelerators cannot be used for DNN/RNN inference due to
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Chapter 2. Background

Figure 2.2: Modules, sub-modules and input sensors of Apollo.

their limited programmability. Therefore, in this Thesis, we focus only on CPU, GPU (regular and

Tensor) cores, and the NVIDIA Deep Learning Accelerators (NVDLA).

1. CPU cores. The CPU complex (CCPLEX) comprises eight homogeneous Carmel ARMv8.2

processors. Each core has its private instruction and data caches. In each cluster of two cores

(4 clusters in total), an L2 cache is shared between both cores. An L3 cache is shared between

all CPU cores.

2. GPU regular and Tensor cores. The Volta GPU microarchitecture comprises 512 regular

cores (CUDA cores in NVIDIA terminology) and 64 Tensor cores. The GPU is structured in

8 Streaming Multiprocessors (SMs) each containing 64 regular and 8 Tensor cores.

Tensor cores [41] accelerate large matrix operations, which are at the heart of many AI

functions. While each regular core can perform up to one single-precision multiply-accumulate

operation per 1 GPU clock, each Tensor core can perform one matrix multiply-accumulate

operation per 1 GPU clock. The Tensor core can multiply two fp16 4× 4 matrices and adds

the multiplication product fp32 matrix to the accumulator, which is also a fp32 4×4 matrix.

In each SM, threads can use either the regular cores or the Tensor cores. Hence, at most, 512

regular or 64 Tensor cores can be used in parallel.

3. NVDLA provides a flexible, robust inference acceleration solution. Xavier SoC has two NVD-

LAs which can be configured to run deep learning workloads. This is the very first work that

considers NVDLAs in the real-time domain to the best of our knowledge.

Overall, the NVIDIA Xavier SoC offers four different CEs (counting GPU Regular and Tensor cores

as separate CEs), as can be seen in Figure 2.3, that we use to illustrate our proposal’s benefits. In
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Figure 2.3: CEs in the Xavier SoC

Table 2.1: Configurations which we exploit Xavier’s CEs

CPU GPU NVDLA

1 cluster 4 SMs 1 instance

2 clusters 8 SMs 2 instances

3 clusters

order to reduce the exploration space, we only consider the configurations in which we explore each

CE, as shown in Table 2.1.

• At the CCPLEX level, we restrict our approach to core clusters. Also, since all DNN/RNN

instances using the GPU or the NVDLA are initiated from the CPU, we reserve 2 CPUs for

them. Overall, at the CPU level, a DNN/RNN instance can use 2, 4, or 6 of the remaining

cores.

• At the GPU level, we set up a minimum granularity of 4 SMs. Hence, a DNN/RNN task can

use either 4/8 SMs to exploit 256/512 GPU regular or 32/64 Tensor cores, respectively.

• Each task can use one or two NVDLA accelerators.

To sum up, the possible hardware configurations for a task are: 2, 4, or 6 CPU cores; 256 regular

or 32 Tensor cores, 512 regular or 64 Tensor cores; and 1 or 2 NVDLA instances.
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Chapter 3

Analysis of the Deep Learning

elements in Apollo

In the literature, we can find a wide range of DNNs and other DL algorithms. In this Thesis,

we focus on those generally used for DL-based solutions in AD systems. In this line, Table 3.1

shows different types of (state-of-the-art) neural networks widely used in key domains for AD

functionalities. We can observe that three modules (M0, M1, and M5) and 2 sub-modules (M1.d

and M1.t) use neural networks, DNNs and RNNs in particular. Table 3.1 shows:

Table 3.1: Neural networks used in different modules of the Apollo autonomous driving system.

Deep Learning Software Description

M0. Speech Voice Command A DNN-based accurate speech recognition

Recognition and Control application to process speech commands

Camera Object Detection A DNN-based algorithm to identify objects

and traffic signals from camera sensors

M1. Perception LiDAR object Detection A DNN-based algorithm to identify objects

from LiDAR sensors

Object Tracker A DNN-based algorithm to track identified

objects in consecutive frames

Lane sequences (RNN1) A RNN for lane sequence-based prediction

Obstacle status (RNN2) A RNN for obstacle status

M5. Prediction A RNN using the output A RNN to compute the probability of each

produced by RNN1 and RNN2 lane sequence based on RNN1 and RNN2

• The perception module, M1, relies on different DNNs for detecting (M1.d) obstacles and

objects from different sensors. The results of all detected objects are fused by a sensor fusion

algorithm (M1.f) that does not use DNNs. As the last step, an object tracker (M1.t) deploys
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a DNN to track and follow detected objects.

• The prediction module, M5, uses RNNs to build a model to predict the target lane that the

vehicle should take. One RNN model is for lane sequences and another RNN model for the

associated object states. The concatenation of these two RNNs is fed into another neural

network to estimate the probability for each lane sequence. Interestingly, the modules using

neural networks, Perception and Prediction, are the most compute-intensive modules: they

consume more than 70% of the time Apollo uses to process each frame.

• Some AD systems suggest deploying AI-assistant applications to be implemented inside the

cabin, which are all based on neural networks [40]. Such applications are proposed for driver-

monitoring, and command and control using gestures and voice.

Table 3.2 summarizes the modules using DNNs and RNNs.

Table 3.2: Modules of Apollo using DNNs (~) and RNNs (}).

M1 (Perception) Other Modules

Input M1.d M1.f M1.t M0 M2 M3 M4 M5 M6 M7

Camera ~

LiDAR ~ ~ ~ } } }

Radar

3.1 Real Execution Trace

Figure 3.1 shows part of a trace collected from the actual execution of Apollo when all DNN and

RNN instances in the different modules/sub-modules use the regular GPU cores in the Jetson AGX

Xavier. Each rectangle shows the span of execution of each DNN/RNN instance, i.e., since it starts

running (i.e., it is executable) until its execution finishes. As Figure 3.1 shows, at a given time

ti, several instances of different neural networks are executed concurrently. Also, each particular

DNN/RNN has diverse computational requirements with more than 12× variability among them:

the voice command runs for 4.5ms, whereas the different RNNs in the prediction module range from

48.61ms to 61.06ms; finally in the perception module DNN instances span goes from 38.96ms to

50.18ms. It is also the case that temporal constraints vary up to 10x across DNN/RNN instances.

This variance comes from the fact that the rate at which frames arrive across different input sensors

can vary from 10ms for Radars to 100ms for LiDARs.
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Figure 3.1: Concurrent execution of different modules or instances of a module in Apollo, an

industrial autonomous driving software.

3.2 DNN instances

Current trends in the sophisticated AD systems show that the number of concurrent neural network

instances can easily reach dozens. The main reasons for such an increase are the followings:

• More input sensors. Moving towards fully autonomous driving (Level 5 [31]) naturally requires

increasing the number of sensors to cover the car’s surrounding more accurately. Today, some

of the AD systems, which are still far from a Level 5 system, use more than 8 cameras and

radars (e.g., Telsa [19] uses 8 cameras and 12 ultrasonic sensors, and NVIDIA autopilot [40]

uses 8 high-resolution cameras, 8 radars and optionally up to 3 LiDARs). Therefore, more

DNN-based workloads have to be processed, increasing the computation demand significantly.

• More sophisticated algorithms. Perception submodules tend to use more sophisticated DNNs,

with a larger number of layers and higher computational needs for further improvements in

the accuracy of object and obstacle detection, especially in conditions with reduced visibility

such as fog night, rain, and snow. The Prediction module already uses 3 different neural

networks either to achieve higher accuracy or to cover more complex scenarios. Indeed, this

type of module usually uses sophisticated neural network architectures [57,58].

• More functionalities. Besides the main functions of an AD system, extra features are in-

troduced to improve driving quality and safety: from gesture detection and speech-based

command and control up to driver-monitoring to predict take-over readiness [21].

This trend towards exploiting multiple neural networks running in parallel and the increasing

number and type of accelerators we witness in modern GPUs motivate our idea of assessing the

benefits of DNN/RNN variants in modern GPUs.
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Deep Neural Network

Implementations

In this Thesis, we adapt the implementation of DNN-based Apollo modules in order to make it

work at any CE of the Xavier SoC with the best possible performance. To that end, we change

the implementation in the baseline source code, which is based on x86 and GPU. Depending on

the target CE, we need to use appropriate libraries and re-implement Apollo modules. In general,

DL workloads are implemented layer by layer by defining specific functions for each layer. Then,

depending on the layer and the highly-optimized low-level target library [51] (e.g., cuBLAS [35]),

input data needs to be transformed to match the proper format expected by the low-level library

function.

Apollo v3.0 which is used in this Thesis exploits only regular cores in the GPU for DNN inference.

The most computationally-intensive part of inference, such as convolution or fully connected layers,

can usually be reduced to GEneral Matrix Multiplication (GEMM), which are implemented with

cuBLAS.

For completeness, we have performed several experiments comparing the same DNN operations

using cuDNN and cuBLAS. Our results show that cuBLAS achieves very competitive results w.r.t.

cuDNN. However, note that the main idea of the Thesis, i.e., having diverse DNN implementations,

does not depend on the particular library used.

4.1 Specialized per-CE libraries

Table 4.1 presents the optimized libraries that we have used to implement our software. As it can

be seen, for each specific CE, we used different libraries. In addition, we modified the baseline

code in order to run the optimized code. We exploit CEs by implementing and adapting our target
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Table 4.1: Optimized libraries used to implement the Apollo software for each particular CE.

CE Optimized Libraries

CPU We used OpenMP [20] to implement all the functions to run on the CPU cores.

Our implementation allows fixing the maximum number of cores that can be used.

GPU Regular The baseline implementation targets regular cores to run the kernels.

Cores

GPU Tensor We used specific libraries and adapted our code to exploit the Tensor cores.

Cores Some of our target deep neural networks consist of 100+ layers.

The implementations of all the layers had to be modified.

NVDLA We adapted each neural network configuration to be compatible with TensorRT [37],

except the RNNs as they are not supported by NVDLA [38]. We use the TensorRT

framework to launch applications on the NVDLAs.

software for each particular CE. To obtain maximum performance benefits we use specific and

specialized library variants.

Along with the introduction of Tensor cores, NVIDIA provided some low-level libraries to support

their use. For using the NVDLA, the TensorRT [37] library should be used which is a platform

developed and provided by NVIDIA for high-performance deep learning inference. TensorRT offers

a DL inference optimizer and runtime that can deliver low latency and high-throughput for DL

applications.

It is worth mentioning that, to our knowledge, the version of Apollo that we studied in this Thesis

does not use TensorRT.

4.2 Implementation for different CEs

We illustrate the required effort to modify all the functions in the source code to run the entire

workload on a specific CE, by focusing on a small function performing a matrix multiplication

(GEMM) operation without transposing any of the operand matrices. It is worth noting that each

of the functions that implement the different layers of the neural networks is functionally different,

and therefore, each of them requires different modifications.

We chose GEMM since it is the function that consumes most of the execution time in the DNN

inference and is also one of the most parallelizable functions. In this example, the matrix multipli-

cation function builds on the following formulation, in which A, B, and C are matrices, and α and

β are floating-point coefficients.

C = αA×B + βC (4.1)
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4.2.1 CPU implementation

Figure 4.1 shows the CPU version of the matrix multiplication operation presented in Equation 4.1.

As input parameters the function takes ALPHA(α) and BETA(β) as shown in Equation 4.1; M ,

N , and K that are the dimensions of the matrices; and lda, ldb, and ldc are leading dimensions

of matrices A, B, and C respectively. In other words, lda, ldb, and ldc determine the forward

movement in memory when it reached the end of a row (in row-major order) or column (in column-

major). In fact, these parameters define strides that provide plenty of flexibility to work with

smaller tile sizes inside a larger matrix.

In the first loop, lines 4-8, the βC operation is executed according to Equation 4.1. In lines 10-17,

the main loops are implemented to perform the matrix operations. The OpenMP pragma at line

9 automatically parallelizes the outer loop so that independent loop iterations can be executed

simultaneously.

1 void OpenMPgemmNN( in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A, i n t lda , f l o a t const ∗B,

i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc )

2 {
3 i n t i , j , k ;

4 f o r ( i = 0 ; i < M; ++i ) {
5 f o r ( j = 0 ; j < N; ++j ) {
6 C[ i ∗ l d c + j ] ∗= BETA;

7 }
8 }
9 #pragma omp p a r a l l e l f o r

10 f o r ( i = 0 ; i < M; ++i ) {
11 f o r ( k = 0 ; k < K; ++k) {
12 r e g i s t e r f l o a t A PART = ALPHA∗A[ i ∗ lda+k ] ;

13 f o r ( j = 0 ; j < N; ++j ) {
14 C[ i ∗ l d c+j ] += A PART∗B[ k∗ ldb+j ] ;

15 }
16 }
17 }
18 }

Figure 4.1: CPU implementation of the reference matrix multiplication (gemm) operation.

4.2.2 GPU regular core implementation

Figure 4.2 shows the implementation for the GPU regular cores, with the function requiring the

same parameters as for the CPU version. Also note that in this example, we assume that the

matrices are already in the device’s memory space.

First, we get the device ID and check whether we have initialized a cuBLAS handle for it. If it is

not the case, we create a new one. Once we obtain the handle, we call cublasSgemm but with the

matrices in reversed order. This is because C/C++ assumes a row-major layout, whereas CUDA
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1 void GRCSgemmNN( in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A,

2 i n t lda , f l o a t const ∗B, i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc )

3 {
4 s t a t i c i n t i n i t [ 1 6 ] = {0} ; // Vector f o r i n i t i a l i z e d handles

5 s t a t i c cub lasHandle t handle [ 1 6 ] ; // Vector o f ac tua l handles

6 i n t i ;

7 cudaGetDevice(& i ) ; // Get cur rent dev i c e

8 i f ( ! i n i t [ i ] ) { // I f not i n i t i a l i z e d

9 cub lasCreate (&handle [ i ] ) ; // Creates the handle

10 i n i t [ i ] = 1 ;

11 }
12 cudaError t s t a tu s = cublasSgemm( handle [ i ] ,

13 CUBLAS OP N, CUBLAS OP N, // S e l e c t the non−t ranspose matr i ce s

14 N, M, K, // S i z e s o f the matr i ce s

15 &ALPHA,

16 B, ldb , // B and i t ’ s l e ad ing s i z e

17 A, lda , // A and i t ’ s l e ad ing s i z e

18 &BETA,

19 C, ldc ) ; // C and i t ’ s l e ad ing s i z e

20 i f ( s t a tu s != cudaSuccess ) // Check i f the re i s any e r r o r

21 p r i n t f ( ”CUDA Error : %s \n” , cudaGetErrorStr ing ( s t a tu s ) ) ;

22 }

Figure 4.2: GPU implementation for regular cores.

assumes a column-major layout, which means that CUDA is reading the matrices in a transposed

manner. Then, since everything is transposed, we can reverse the operators:

A×B = C ⇐⇒ B′ ×A′ = C ′

Finally, we check whether cuBLAS triggered any error during the GEMM.

4.2.3 GPU Tensor core implementation

Reprogramming the GPU code to be run on the Tensor cores requires to change the math mode

to CUBLAS TENSOR OP MATH. Nonetheless, this implementation builds on some preconditions to run

on the Tensor cores: K, lda, ldb, and ldc have to be multiple of 8, and N has to be multiple of 4.

Figure 4.3 shows the implementation for the GPU Tensor cores.

4.2.4 NVDLA

The steps we have followed to run the neural network workload on the NVDLAs are shown in

Figure 4.4. As a first step, the DNN configuration needs to be in the proper format, prototxt that

is compatible with TensorRT. To that end, we developed a script that goes layer by layer in the

configuration file of the neural network and changes its format to prototxt.
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1 void GTCSgemmNN( in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A, i n t lda , f l o a t const ∗B,

i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc )

2 {
3 s t a t i c i n t i n i t [ 1 6 ] = {0} ; // Vector f o r i n i t i a l i z e d handles

4 s t a t i c cub lasHandle t handle [ 1 6 ] ; // Vector o f ac tua l handles

5 i n t i ;

6 cudaGetDevice(& i ) ; // Get cur rent dev i c e

7 i f ( ! i n i t [ i ] ) { // I f not i n i t i a l i z e d

8 cub lasCreate (&handle [ i ] ) ; // Creates the handle

9 i n i t [ i ] = 1 ;

10 }
11 cublasSetMathMode ( handle [ i ] , CUBLAS TENSOR OPMATH) ; // Set math mode to enable

Tensor co r e s

12 cudaError t s t a tu s = cublasSgemm( handle [ i ] ,

13 CUBLAS OP N, CUBLAS OP N, // S e l e c t the non−t ranspose matr i ce s

14 N, M, K, // S i z e s o f the matr i ce s

15 &ALPHA,

16 B, ldb , // B and i t ’ s l e ad ing s i z e

17 A, lda , // A and i t ’ s l e ad ing s i z e

18 &BETA,

19 C, ldc ) ; // C and i t ’ s l e ad ing s i z e

20 i f ( s t a tu s != cudaSuccess ) // Check i f the re i s any e r r o r

21 p r i n t f ( ”CUDA Error : %s \n” , cudaGetErrorStr ing ( s t a tu s ) ) ;

22 }

Figure 4.3: GPU implementation for Tensor cores.

It is worth mentioning that some layers in the original format are translated into several layers in

prototxt. For instance, a Convolutional layer that has Batch Normalization and an activation of

type Leaky is divided into four different layers: a regular convolution, a Batch Normalization, a

scale, and a ReLU (Rectified Linear Unit) with negative slope.

Figure 4.4: The steps required to specify neural network layers in order to be run on the NVDLAs.

Following this step, we obtain a functional configuration file in the proper format. However, in

most cases, some layers are not supported yet by TensorRT. At the time of writing this Thesis,

several types of layers, especially for RNNs, are not implemented and cannot be executed on the

NVDLA. To overcome this limitation, we adapted some of the available layers using equivalent and

currently supported methods. The conflicting layers in our neural networks are Upsample layer

and Leaky ReLU layer. To solve this issue, we implemented the layers according to TensorRT

specifications. After these modifications, configuration files are in the correct format required by
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TensorRT. Using the generated configurations, TensorRT can parse and build the neural network

model and run it in the NVDLAs. Note that TensorRT can allow unimplemented layers to fallback

and run on the GPU cores. In our experiments for this Thesis, we avoid any fallback by adapting all

the unimplemented layers using other equivalent layers (this process does not include RNN layers

that are not supported), and the entire neural network is not supported running on the NVDLA.

4.3 Timing Analysis Results

We analyze the results obtained for each DNN variant under different CE and TLP levels: CPU

cores (2 cores, 4 cores, and 6 cores), GPU regular cores (4 SMs, 8 SMs), GPU Tensor cores (4

SMs, 8 SMs), and NVDLAs (1 or 2 NVDLAs). Note that we always reserve 2 cores of the CPU

for managing the operating system tasks and the tasks that are running in the GPU or NVDLA,

since their corresponding CPU processes also trigger them.

Figure 4.5 shows the timing results of different neural network instances of Apollo running on

each CE. Timing characterization has been performed with other DNN/RNN instances run in

parallel. While we did not run specific experiments to hit the worst-case timing interference among

computing elements, we assume the obtained results also factor in contention effects. We can derive

the following conclusions:
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Figure 4.5: Timing results of different Apollo neural network instances on different CEs.
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• For the camera object detector (M1.d), Figure 4.5a shows that using more CPU cores sig-

nificantly improves performance. Regarding the timings on GPU CEs, as expected for this

workload, Tensor cores provide better performance in comparison to the regular cores, with

8 SMs providing significantly higher performance in comparison to 4 SMs. Also, the NVDLA

accelerates this NN, achieving the best performance results.

• Figure 4.5b shows the results for (M1.d) under another configuration for the object detector

with the same neural network architecture, but with a higher camera resolution. As the

results show, we have the same trends as in Figure 4.5a; however, due to the increase in the

workload size, execution times increase.

• Figure 4.5c shows the results for the LiDAR object detector, M1.d. Similar to the previous

results, GPU CEs provide better performance than CPU cores, though this time, Tensor cores

do not result in significant improvements over GPU regular cores. NVDLA again provides

the best results. As the workload is smaller than for the camera detector, the times are

proportionally reduced.

• Figure 4.5d shows the timing results for object tracker, M1.t. For this specific workload, GPU

regular cores provide higher performance than the Tensor cores. After a detailed analysis and

designing some experiments, we find out that Tensor cores achieve worse performance than

regular cores whenever we run a GEMM of AM×KBK×N , in which N has a minimal value.

More specifically as Figure 4.6a shows for N ≤ 12 Tensor cores exhibit worse performance

than regular cores. This particular case directly affects the Object Tracker (M1.t) since all the

GEMMs performed by this DNN have N = 1. However, by increasing the value of N , (in this

particular experiment, for N > 12) Tensor cores provide considerably better performance, see

Figure 4.6b.
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Figure 4.6: Time spent in a GEMM (AM×KBK×N ) where M = K = 1024.

• Figures 4.5e, 4.5f, and 4.5g show the timing results for the three recurrent neural networks
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in the prediction module. Due to the nature of the RNNs, these workloads cannot highly

benefit from increased parallelization. We still observe a performance improvement using

more CPU cores or the GPU, but in the GPUs case, even though they provide an order of

magnitude better performance in comparison with CPUs, the utilization of the resources is

far from the full potential of the GPU. In terms of the NVDLA, since several key layers of the

RNN networks are not implemented in the TensorRT, we are unable to run these workloads

on the NVDLA [39].

• Finally, Figure 4.5h shows the speech recognizer module (M0), which uses a DNN as discussed

in previous sections. This DNN network improves performance by one order of magnitude with

GPU cores. Instead, the NVDLA, while better than the CPU cores, performs significantly

worse than the GPU cores.

Overall we can see that,

1. For some DNNs the NVDLA variant and the GPUrc (regular cores) and GPUtc (Tensor

cores) variants offer comparable performance.

2. In some cases the GPUrc variant provides better results than GPUtc.

3. It is also the case that, in some cases, the performance of CPU is relatively close (≈ 2x) of

that obtained with the GPUtc and GPUrc variants.

4. Across the different neural networks, we see that the CPU time requirements for some of

them (e.g. 4.5e, 4.5f, 4.5g, and 4.5g) is comparable to that required by others in the GPU

and NVDLA (e.g. 4.5a, 4.5b, 4.5c, and 4.5d).

This observations and obtained results makes it worth exploiting all CEs.

4.4 Other Considerations

TLP controllability. Fully exploiting variants requires exercising control on TLP as provided by

NVIDIA’s MPS (Multiprocessing Service). This control allows multiple kernels from different

processes to be executed concurrently in the GPU while limiting their resource usage, i.e., how

many SMs each kernel uses. The use of MPS has been shown to provide positive results in real-

time systems [55], which paves the way for its ubiquitous adoption in all GPUs. Furthermore, MPS

only requires driver updates. As this feature is not present in the Xavier SoC, we emulate its effect

in our experiments by executing the GPU tasks in isolation and using Xavier’s capability to enable

only a certain number of SMs in the GPU.

Contention effects on timing behavior is a widely studied topic in the real-time community mainly

for CPUs, with few proposed techniques for GPUs [16] to reduce contention bounds. Contention
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bounding techniques, e.g., [23, 34] produce a factor ∆cont to be added on top of the in-isolation

timing estimates. In this Thesis, we assume that the observed execution time factor in relevant

contention effects.

Accuracy. Different implementations may use different standards for floating-point (FP) number

representation (e.g., 16-bit or 32-bit representations), different FP operations, or, at least, differ-

ent FP operation orders. Due to rounding effects, this may lead to slightly different numerical

results, whose impact on the system-level functionality needs to be assessed. However, functional

results (i.e., objects detected, driving decisions, etc.) match since those tiny numerical variations

has no impact in the semantics of the framework. For instance, whether the probability of recog-

nizing an object varies by ±0.1% makes no practical difference in general (e.g., 90.7% vs. 90.8%).

Hence, despite the different implementations across CEs, the results of all implementations match

functionally.

Multi-CE variants. In our current implementation, each neural network instance exploits a single

CE. As future work, we consider adding a multi-CE capability so that a single instance can exploit

several CEs, e.g., 4 cores, 1 SM, and 1 NVDLA. While this offers more flexibility than our current

single-CE per neural network instance approach, it already shows significant improvements over

the baseline in which all instances use the same CE.
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Exploiting Diversity to Increase

Schedulability

With platforms supporting ‘diverse’ computing elements and TLP degrees, the timing behavior

of an application is inherently dependent on the deployed configuration. Applications exhibit dif-

ferent execution time bounds depending on the actual CE in which they are mapped. Thus, the

overall mapping strategy is fundamental to determine the schedulability of a given set of appli-

cations as a whole. The identification of optimal mapping strategy is not a specific requirement

for heterogeneous platforms [11], but is a well-studied problem at the basis of several scheduling

approaches for homogeneous systems, from partitioned to cyclic-executive scheduling approaches

(e.g., [22,29]). Computing an optimal partitioning is NP-hard in the general case: depending on the

complexity of the problem instance, provided solutions range from exact optimization frameworks

to heuristic-based approaches.

In this Thesis, we are interested in evaluating the benefits of system schedulability, that can be

appreciated with execution platforms supporting diverse CE/TLP configurations. As a common

characteristic, different DNN instances realizing AD framework functionalities can be modeled as

recurring applications that run periodically according to a given frame rate. The frame rate depends

on the frequency with which the inputs must be processed.

Static programming or cyclical-executive approaches are particularly suitable for these types of

systems: despite their known limitations in terms of flexibility and scalability, they are relatively

easy to implement and predictable, even in multi-cores. For this reasons, cyclic-executive is still

widely adopted in the critical embedded real-time system domains, and is at the basis of standard

frameworks (e.g., AUTOSAR [8], ARINC [6]) in critical embedded real-time system domains.

A static schedule results in the repeated execution of a sequence of intervals or frames. Tasks

associated with a frame must execute and complete within that frame (i.e., performance guarantees

are enforced at each frame boundary). A sequence of frames is then periodically repeated as part
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of a major frame, corresponding to the hyper-period. The repetitive behavior of the diverse DNN

instances (and the relative independence between them) is naturally modeled with a static schedule.

Constructing a schedule for a cyclic executive involves finding a task-to-core mapping that allows

all tasks to be completed within their frame (or, reciprocally, that the cumulative utilization of all

tasks in a frame does not exceed 1).

While there exist specific rules to define appropriate frame number and size, the schedulability of

cyclic executive systems reduces to showing that all computations have completed within the frame.

A common approach to construct a valid static schedules consists in formulating the scheduling

problem as a linear programming (LP) model.

In the scope of our evaluation, we model the problem of scheduling a heterogeneous workload of

several diverse DNN instances as a cyclic executive system.

We exploit a LP-based representation of the problem to assess the increase in schedulability that can

arise when multiple CE/TLP configurations are supported. Without loss of generality, we assume

in this Thesis that all DNN/RNN variants share a standard time frame: the ILP formulation allows

intercepting those deployment scenarios where it is impossible to schedule all the DNN variants

within a frame.

In the following, we first discuss our assumptions in terms of schedule constraints and LP formu-

lation and then present the experimental set-up.

5.1 Task Model

We consider a periodic task system T and we model DNN variants as a set of n independent

periodic tasks τ1, . . . , τn ∈ T that have to be statically scheduled on a multiprocessor platform,

comprising a set of heterogeneous m cores. We assume an implicit-deadline periodic task model

where each task τi is characterized by a period pi and a relative deadline di (in this work we assume

implicit-deadline tasks, thus di = pi).

Given the platform’s heterogeneous nature, a task cannot be associated with a single-valued com-

putational requirement. Moreover, it is not even sufficient to model the variation in the time as a

function of the specific core the task is executing on. As an example, the GPU in the Xavier SoC

include 8 Streaming Multiprocessors, which can be used as regular (CUDA) cores or can be config-

ured to exploit also the Tensor cores, and an application (e.g., a DNN instance) may be executed

on a variable number of SMs. Therefore, each task may exhibit different time bounds depending

on the computational element (and mode) it is executed, and the TLP degree that it is granted.

We capture this dimensions as a set of CE/TLP configurations CE := {ce1, . . . , cek} so that each

task τi is associated a set of time bound C = {ci,1, ci,2, . . . ci,k} with ci,j denoting the time of task

τi under configuration cej ∈ CE .
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In line with our assessment objective, we are not interested in modeling a full static schedule over

a full major frame. We limit our scope to finding a feasible schedule (if it exists) at the smallest

time interval (frame) with enforced timing constraints.

Given a set of tasks T ′ ⊆ T to be statically scheduled on a set of CE/TLP configurations CE within

a frame f , a static schedule for T ′ in f under configuration cej ∈ CE is valid only if the cumulative

task utilization does not exceed f .

5.2 Linear Programming Model

We modeled the cyclic executive scheduling problem on multiple CE/TLP configurations as an LP

problem. LP-based approaches have been exploited for deriving static schedules in both homo-

geneous [22] and heterogeneous [11] multiprocessor systems. While the considered optimization

problem is NP-hard [32], LP approaches are effective in most cases; heuristic-based methods have

been proposed to overcome scalability concerns.

An LP model comprises a set of decision variables (possibly constrained to assume only integer

values), a set of linear constraints, and an objective function. Constraints and objective function

are expressed as (linear) inequalities over the decision variables.

The cyclic executive schedule can be modeled as an instance of a 0/1 optimization, as the sought

solution models whether or not a task is mapped to a given computational element.

Intuitively, the objective function aims to minimize the total utilization, and if it fails to find

a solution to the LP problem, it means that the task set is not schedulable under any feasible

configuration. Other criteria can be specified in the form of weights to guide mapping decisions.

It is worth noting that, in our particular case, we are not interested in finding an optimal solution,

but only in proving or disproving the task set schedulability.

To instantiate the task model to the Xavier SoC, and consistently with the investigation con-

ducted in the Thesis, we consider a sub-set of all the supported CE/TLP configurations CEXavier =

{CPU, GPURC, GPURC−comb, GPUTC, GPUTC−comb, GPURC+TC, NVDLA, NVDLAcomb}. Here comb configurations

for the NVDLA and GPU cores hints at the possibility of being constrained to always use the

multiple instances of the CE as a block.

The set of tasks’ timing bounds per configuration is given in input to the ILP as a static bi-

dimensional matrix U [τi ∈ T ][cej ∈ CE ] holding the timing budget of task τi when deployed to node

cej . The main decision variable consists in a bi-dimensional boolean matrix B[τi ∈ T ][cej ∈ CE ]

representing whether τi is deployed to cej . Accordingly, the objective function would consist in

minimizing the cumulative utilization,
∑

τi∈T , cej∈CE U [τi][cej ] ∗B[τi][cej ].

A set of LP constraints has been defined to guarantee a task can only be mapped to one CE/TLP
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(we assume tasks cannot be deployed to multiple CEs) and to enforce the maximum utilization on

a CE/TLP configuration not to exceed 100% [22]. Constraints also handle the inter-correlations

between CE/TLP, such as the fact that while two applications can be mapped to NVDLA at the

same time, NVDLAcomb is a configuration that implies exclusive use of the NVDLA.

5.3 Experimental setup

In our experiments, we assess the impact of supporting different CE and thread-level parallelisms

(TLP) on the schedulability of several DNN instances on the same platform. We build on the

information we derived from the Apollo software to perform a scenario-based evaluation. We used

the timing profile of the applications analyzed in Chapter 4 to derive a predefined set of DNN

(or RNN) applications (DNN1−5, RNN1−3), with varying computational and timing requirements

under the different CE/TLPs configuration, where the set of CE/TLP configurations matches the

one considered in Chapter 4.

Each application is represented as a recurrent task with a worst-case execution time distribution, in

the range [Umax, Umin] milliseconds, which depends on the particular CE/TLP configuration. The

time interval has been derived by applying a ±15% inflation factor to the values observed on the

Xavier SoC reported in Figure 4.5. As observed in Section 4.3, those reference values also factor

in contention effects, and we assume the timing requirements are not changing depending on the

deployment configuration of co-running applications.

For each CE/TLP configuration, we generated 16,000 synthetic task sets under different overall

utilization thresholds (with a mechanism similar to UUnifast [14]). Task set were generated by

randomly selecting several instances of the diverse DNN/RNN types. The utilization of each

DNN/RNN is drawn from the intervals reported in Table 5.1 above (values are in milliseconds),

which is, in turn, built on the timing characterization results in Section 4.3.

DNN2, the object detector version working with high-resolution images in Figure 4.5, was not

included in the evaluation as it corresponds to a high-resolution variant of object detection appli-

cation that is clearly over-demanding for the target platform. We use instead DNN1, the object

detector working with standard resolution images.

Still on Table 5.1, it is also worth noting that applications (DNN1, DNN3, DNN4) could not be

scheduled on CPU cores (utilization larger than 100%), and RNNs execution is not supported on

NVDLA). This is supported in the ILP model by forcing B[τi][cej ] = 0 for specific combinations.

As commented above, focusing on a single scheduling frame is sufficient to fulfill our evaluation

objective. We assumed all applications to fit in the same frame, with a reference size of 100 ms.
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Table 5.1: Utilization distributions for the DNN/RNN types and CE/TLP, values represented in

milliseconds.

CPU
GPU

NVDLA
GPURC GPUTC

2 4 6 4 8 4 8 1 2

DNN1
Umax × × × 83.95 49.45 44.85 33.35 20.70 12.65

Umin × × × 62.05 36.55 33.15 24.65 15.30 9.35

DNN3
Umax × × × 27.60 17.25 25.30 17.25 12.65 8.05

Umin × × × 20.40 12.75 18.70 12.75 9.35 5.95

DNN4
Umax × × × 67.85 65.55 81.65 72.45 19.55 11.50

Umin × × × 50.15 48.45 60.35 53.55 14.45 8.50

RNN1
Umax 68.19 34.38 23.80 2.30 2.19 2.19 2.19 - -

Umin 50.41 25.42 17.60 1.70 1.62 1.62 1.62 - -

RNN2
Umax 21.05 11.62 8.28 2.19 2.07 2.19 2.07 - -

Umin 15.56 8.59 6.12 1.62 1.53 1.62 1.53 - -

RNN3
Umax 6.44 3.57 2.53 1.50 1.38 1.50 1.38 - -

Umax 4.76 2.64 1.87 1.11 1.02 1.11 1.02 - -

DNN5
Umax 24.50 13.46 10.35 1.50 1.27 1.50 1.15 4.72 3.45

Umax 18.11 9.95 7.65 1.11 0.94 1.11 0.85 3.49 2.55

5.4 Schedulability results

We used our LP formulation to assess the schedulability of the task sets under specific CE/TLP

configurations. All DNNs/RNNs are required to run concurrently on the same system, as observed

in Apollo’s case. A task set is considered to be infeasible if the LP problem admits no solution.

We consider different CE/TLP setting, ranging from single-CE configurations (CPU, GPURC, GPUTC,

and NVDLA only), to mixture configuration, up to the most flexible setting where all CE/TLP

configurations are supported.

The experiments aim at confirming that being able to configure and exploit different computing

elements with different task-level parallelism is a fundamental enabler for successfully deploying

multiple DNN variants on the same system.

We assess how support for different CE/TLP can be leveraged to sustain the schedulability of

systems that would have been not schedulable otherwise. Besides, when a system admits multiple

feasible schedules, the ILP could also be instructed to identify, among the existing feasible CE/TLP

configuration, the one satisfying a predefined criterion, such as maximizing performance.

To analyze the benefits of our neural network variant proposal, we use, as a baseline reference,

single-CE setups, where only one CE is exploited. We create several scenarios in which an increasing
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subset of all CEs are used (CPU, GPURC, GPUTC, NVDLA). In each scenario, the utilization thresholds

considered for the experiments are computed on the reference utilization of the CE providing the

highest performance.

The scenarios we addressed are the following:

• nvdla+gpu rc+gpu tc+cpu: takes NVDLAcomb as reference highest-performance CE, and con-

siders the CE/TLP configurations CPU, GPUTC, GPURC+TC, NVDLAcomb, NVDLA;

• gpu tc+gpu rc+cpu: takes GPUTC as reference highest-performance CE, and considers the

CE/TLP configurations CPU, GPUTC, GPURC+TC;

• gpu rc+cpu: only uses CPU and GPURC, with the latter being the highest-performing CE.

This approach lets us assess our variants approach under different scenarios with an increasing

number of supported CEs, each with specific performance characteristics. Additionally, we assess

the flexibility of considering all the units of the highest-performing CE as a single element with

their combined performance (NVDLAcomb) versus providing the scheduler the flexibility to allocate

NN instances to independent CE units (NVDLA).

As explained in Section 5.3, a large set of workloads with different NN instances has been gener-

ated for each scenario, using the cumulative utilization relative to the highest-performing CE as a

threshold. In all scenarios, we considered such threshold to vary in 100% to 400% utilization over

the scheduling interval.

NVDLA. Figure 5.1 shows the ratio of feasible task sets under the considered utilization thresholds

(relative to NVDLA) and CE/TLP configurations in the nvdla+gpu rc+gpu tc+cpu scenario.

Under 100% NVDLA utilization, the NVDLA alone can always schedule the task set: both in the

NVDLAcomb and NVDLA setups, we observed a 100% success ratio. This schedulability is obviously

the case for NVDLAcomb, as it is the scenario used to compute the utilization threshold. But it also

normally holds for two separate instances of NVDLA as the combined use of the NVDLAcomb does not

necessarily exploit full parallelism. Clearly, with increasing utilization, NVDLAcomb cannot schedule

any workload. NVDLA instead still exhibits a high success ratio at 120% utilization, which only falls

rapidly at 140% and becomes zero after 160%. This difference between NVDLAcomb and NVDLA, is

explained by the fact that the utilization is relative to the combined use of NVDLA, which does

not provide precisely double performance when compared to a single NVDLA instance.

Analyzing the benefits of our variants approach, we can see that enabling the use of other CEs

allows us to sustain the execution of all DNN instances (100% success ratio) for loads up to 2.8,

significantly beyond what is observed with NVDLAs only. In between 2.8 and 3.4, the flexibility of

CE/TLP deployment is exploited at most, allowing to schedule some task sets successfully.

The average numbers of DNN-base functionalities successfully scheduled under the considered work-
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Figure 5.1: Percentage of schedulable workload when the NVDLA is the highest-performance CE.

Table 5.2: Average number of DNN/RNN instances per workload in the nvdla+gpu rc+gpu tc+cpu

scenarios.

NVDLAcomb NVDLA NVDLA + GPUTC NVDLA + GPUTC+RC NVDLA + GPUTC+RC + CPU

1.0 12.16 12.16 12.16 12.16 12.16

1.2 × 14.66 14.66 14.66 14.66

1.4 × 16.50 17.23 17.23 17.23

1.6 × × 19.83 19.83 19.83

1.8 × × 22.46 22.46 22.46

2.0 × × 24.93 24.93 24.93

2.2 × × 27.56 27.56 27.56

2.4 × × 30.13 30.13 30.13

2.6 × × 32.63 32.63 32.63

2.8 × × 35.29 35.29 35.24

3.0 × × 38.46 38.31 38.13

3.2 × × 43.30 43.22 42.72

3.4 × × × × 49.50

loads and CE/TLP configurations are reported in Table 5.2. Within the feasibility region, all

scenarios behave quite similarly as the average task set population grows as long as the computa-

tional load increases. Still, within the feasibility region, the average number of instances does not

increase when adding more CEs. The only minimal variation happens at 140% utilization, where

enabling the GPU allows for one additional DNN-based functionality to be successfully deployed

in the average case. When the NVDLAs are saturated, the GPU elements alone are capable of

providing up to 340% utilization (NVDLA-defined) and changing the GPU configuration (enabling

regular CUDA cores) or introducing the CPUs is slightly affecting both schedulability and number

of allocated DNNs.

GPU Tensor cores. The ratio of feasible task sets under the gtc+grc+cpu scenario is reported

in Figure 5.2. The considered utilization thresholds are relative to the use of 8 GPUTC as a block.
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Similarly to the NVDLA, the more flexible configuration, where GPU cores are used as two separate

clusters, guarantees an improved schedulability ratio.
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Figure 5.2: Percentage of schedulable workload when GPUTC is the highest-performance CE.

Table 5.3: Average number of DNN/RNN instances per workload in the gpu tc+gpu rc+cpu

scenarios.

GPUTC−comb GPUTC GPUTC+RC GPUTC+RC + CPU

1.0 10.52 10.52 10.52 10.52

1.2 × 11.27 11.27 11.27

1.4 × 11.55 11.58 11.60

1.6 × 11.41 11.72 12.45

1.8 × 11.33 11.90 12.47

2.0 × × 13.00 14.10

2.2 × × × 9.00

The schedulability improvement is even more significant than in the NVDLA case, as the GPU’s

flexible use allows us to schedule more than almost 80% of the task sets even under a 150%

workload. When other CEs are enabled, as suggested by our approach, the schedulability ratio

further improves and reaches 85% at 160% utilization.

It is interesting to note the performance improvement obtained by moving from using only GPUTC

as two independent clusters to using potentially both GPUTC and GPURC. In fact, one would expect

regular cores not to bring any improvement over the Tensor cores scenario, being the Tensor a more

advanced accelerator than regular GPU cores. However, while being more advanced, Tensor cores

are also more specialized, and their use can be counter-productive for generic applications, as can

also be observed in Table 5.1. Exploiting the CPU, instead, allows a comparatively smaller increase

in computational power, as expected.

The average numbers of DNN-based functionalities successfully scheduled under the considered

workloads and CE/TLP configurations (see Table 5.3) show substantially similar values for all

configurations. The configuration using Tensor cores in clusters of four shows slightly different

values than those observed when enabling the regular cores and the CPU.
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Similarly to the NVDLA scenario, flexible use of the GPUTC alone allows sustaining up to 200%

utilization. Again, introducing the CPUs does not affect schedulability and does not allow a larger

number of DNN instances.

GPU Regular cores. As the final step in our incremental evaluation, we assess the benefits of our

approach in a CE/TLP configuration where only the CPU and the GPU regular cores are made

available. In this case, the benefit of the flexible approach GPURC over the combined GPURC−comb

is remarkable. Conversely, the benefit offered by enabling additional CEs is less consistent when

compared to the flexible use of the reference CE. The reason is that regular GPU cores do not

seem to support a reasonable degree of parallelism for DNN-based functionalities, as confirmed by

relatively close performance between using 4 or 8 GPU cores in Table 5.1. Enabling the use of

CPUs makes a negligible difference in the success ratio, which is explained by the relatively small

increase in computational power provided by the CPU cores.

The average number of DNN-based functionalities scheduled under these configurations (see Ta-

ble 5.4), confirms the trend observed for the NVDLA and Tensor cores scenarios. The number of

scheduled instances increases with utilization. Only a few DNN instances are added in the average

after enabling the use of CPUs.
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Figure 5.3: Percentage of schedulable workload when GPURC is the highest-performance CE.

Table 5.4: Average number of DNN/RNN instances per workload in the gpu rc+cpu scenarios.

GPURC−comb GPURC GPURC + CPU

1.0 9.59 9.59 9.59

1.2 × 10.54 10.54

1.4 × 11.35 11.45

1.6 × 11.96 12.08

1.8 × 12.49 12.65

2.0 × 12.88 13.39

2.2 × 14.01 14.71

2.4 × 18.00 18.35
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Related Works

In this Thesis, we focus on a particular AD framework, Apollo, since it is arguably one of the

most sophisticated open-source AD framework implementing the entire AD software stack and

has support from many top-tier companies. There are some other interesting open-source AD

frameworks such as Autoware [52], which claims to be a full-stack implementation, however, are

mainly developed in academia. NVIDIA Drive program is another interesting AD system from

NVIDIA. This framework implements all the software stack including OS oriented for AD, tools for

getting the information from sensors, and the processing of the data. Also, they system includes

some specific hardware designed for AD in which it is included in the Xavier SoC, but the software

is intended to work only on the more high-end chips such as the NVIDIA Drive PX Pegasus [36].

Furthermore, it is worth mentioning Tesla’s Autopilot, which is already deployed in many real cars

with boards that are variants from the Drive PX Pegasus but still are working on a level 2 of SAE

autonomy. Note the latter systems from NVIDIA and Tesla are not fully available in detail for the

sake of studies performed in this thesis.

DL techniques are increasingly used in CRTES as they deliver more precise functional results

than other approaches. GPUs are considered for the execution of DL software because of their

capability of performing massively-parallel general-purpose computations and efficiency supporting

DL libraries [13]. However, GPUs in CRTES bring several challenges for safety [2,50], and timing.

The latter, which can be categorized into three groups, have been addressed by different works:

1. Works with a focus on the implications of GPUs in the real-time properties of the system.

2. Works improving the utilization/efficiency of the existing DL and computer vision software.

3. Works that propose low-level modifications to support DL, such as scheduling algorithms or

hardware support.

Research on the real-time properties of GPUs has been conducted for almost a decade. Initial
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works focused on scheduling proposals for the peculiar timing behavior of GPUs, which is based on

interrupts [24], and deal with their non-preemptive nature, which requires task synchronization [26].

Multiple CPU-GPU allocation strategies have been considered in [25], where the authors evaluate

different partitioning and clustering schemes to enable sharing various instances of the same GPU

across multiple cores.

In our work, we deal with a heterogeneous set of accelerators and GPU regular/Tensor cores. We

consider a set of diverse parallel tasks that can be scheduled under various TLP through multiple

CPUs, GPU SMs, and other specialized accelerators; we study how their execution requirements

vary depending on the computing element on which they are scheduled.

More recent works have focused on exposing undocumented or miss-documented features of NVIDIA

GPUs and their benchmarking [5, 44, 55]. Moreover, [55] is the first real-time paper evaluating

NVIDIA’s MPS system, which allows multiple processes to execute kernels concurrently in the

GPU, containing their SM usage, which is an essential feature for our work. Similarly to our

work, [54] considers fine-grained vision-related schedulable entities that can be executed on CPU

or GPU, however, it does not contemplate several accelerators beyond the GPU’s SMs.

Authors in [56] apply sensor fusion and propose a supervised scheduling algorithm for multiple DNN

layers, considering each one as a separate dynamically schedulable entity on a GPU. Similarly to

our work, the proposed approach focuses on multiple DNN instances. The focus, however, is limited

to a single computational element and does not include the use of multiple elements and thread-

level parallelism configurations. Bateni et al. [12] proposed ApNet, an approximation-aware real-

time neural network, to guarantee that DNN workloads meet their deadlines by using an efficient

approximation. Despite the fact that their proposal can incur some accuracy loss, it can ensure

the timing predictability. Our work is orthogonal to the ApNet, and applying both approaches can

further improve resource utilization and performance.

In another work, Bateni et al. [13] proposed Predjoule, which is a timing predictable energy op-

timization framework. Predjoule targets DNN workloads and guarantees the latency and energy

efficiency of such workloads. We believe that this work can be extended to support various hardware

resources and, in combination with our work, could improve latency and energy consumption.

Capodieci et al. [15] presented a real-time scheduler for GPU activities on SoC systems such as

NVIDIA Jetson TX2. They implement and test the Earliest Deadline First (EDF) for GPU tasks,

which is enhanced with a Constant Bandwith Server (CBS) based timing isolation mechanism. On

the contrary, our work allows the co-scheduling of different computing resources such as CPU cores,

GPU cores and Tensor cores, and DL accelerators.

Overall, to the best of our knowledge, this is the first work to study the performance variability of

diverse DNN/RNN variants with different computing elements and TLP setups in the Xavier SoC.

Also, we exploit an LP model of a heterogeneous static scheduler to assess the platform’s capability

to sustain the execution of multiple DNN/RNN instances.
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Conclusions and Future Work

Timing correctness is one of the most crucial design constraints in Critical Real-Time Embedded

Systems. In this Thesis, we have focused on the utilization of all the available resources to either

be able to increase the software load or reduce the cost of the hardware, in CRTES such as AD.

As the number of DNN/RNN instances running in parallel continues to increase in future AD sys-

tems, so does the ability to exploit the heterogeneous computing elements in modern computing

SoCs. In this Thesis, in support of the first claim, we have analyzed the neural networks concur-

rently running in the Apollo AD and the current projections in their number. To sustain the latter

claim, instead, we have created distinct variants of the different neural-network libraries used in

Apollo.

Our results show high diversity in the performance obtained by each variant in each of the computing

elements of the Jetson AGX Xavier. This diversity provides an opportunity for exploiting the

scheduling strategy to deploy multiple NN-based instances on the same platform simultaneously.

We used an LP formulation for a multicore cyclic executive scheduler to demonstrate the perfor-

mance increase potentially enabled by different heterogeneous computing elements, and show how

this allows deploying multiple advanced NN-based functionalities SoC.

As a future work, we plan work on adapting the DNNs from other AD frameworks in a similar

way to see which resource is the most suitable among the others. Moreover, it would be interesting

to consider other heterogeneous hardware platforms with different resources to see which of the

resources can provide better performance for various specific modules.
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Chapter 8

Publications

Our main contributions in this Thesis has been published in the 31st Euromicro Conference on

Real-Time System (ECRTS):

Generating and Exploiting Deep Learning Variants to Increase Heterogeneous Re-

source Utilization in the NVIDIA Xavier [45]

Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume Abella and Francisco

J. Cazorla in Proceedings of the 31st Euromicro Conference on Real-Time Systems, ECRTS ’19,

(Dagstuhl, Germany),volume 133, pages 1–23, 2019.
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