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Abstract—In this paper, a robust economic model predictive
controller is proposed for a water transport network. Con-
sidering that forecast of demand is required in the drinking
water network (DWN) for future predictions of states in the
MPC formulation, robustification of the proposed controller
is undertaken considering demand uncertainties as unknown
but bounded in a zonotopic set. Based on this uncertainty
description, a robust MPC controller is designed that ensures
that robust constraint satisfaction, stability and performance
under uncertainties is guaranteed. The proposed approach is
satisfactorily tested in a part of the Barcelona water transport
network.

Index Terms—Economic Model Predictive Control, Fault
tolerance, Robustness, Drinking Water Network, Zonotopes

I. INTRODUCTION

Model predictive control (MPC) stands out as the
predominant modern controller used in industry, mainly due
to its inherent ability to ensure closed-loop stability and
constraint satisfaction whilst satisfying specific defined cost
functions tailored to solving particular industrial problems.
Recently, the concept of incorporating directly an economic
stage cost of industrial processes in a MPC design termed
economic MPC has garnered interest with a plethora of
applications as proposed in [12], [11] showing promising
results. This procedure involves an update of the generic cost
function which normally involves tracking a set-point to one
which explicitly involves economic terms such as energy
and cost of production, enabling an improvement during
transients and the ability to manipulate control variables
to satisfy various economic requirements. The problem of
stability in economic MPC has been extensively studied in
[13]. As the name suggests, there exits economic entities
(such as e.g. cost, price or demand) that serves as exogenous
variables in the design of the MPC with an objective of
either maximizing or minimizing these expressed economic
terms arriving at an optimal outcome. These variables
are undoubtedly subject to stochastic variations which
requires further control design considerations for suitable
operation. For example, in the design of an economic
MPC with variable demand as done in [10], a forecast of
demand to enable future predictions of states in the MPC
optimization loop is required. But forecasted demand as
a variable is subject to human behaviour which can be
described as uncertain at best. Therefore, there is the need to

ensure that controllers are built robust to design variations,
which are inevitable in real life situations. Methods of
stochastic MPC [5], the Min-Max robust formulation [9],
the tree-based method [8] and other proposed concepts have
been successfully applied to problems of uncertainties in
MPC optimization formulations, but most of these methods
yields computationally demanding problems. [6] provides a
comprehensive overview of robust MPC, highlighting recent
trends, limitations and proposed future research directions.

The prime objective of a DWN operation is to ensure that
demand nodes in a network are served with quality water at
desired pressures whilst minimising operational cost. EMPC
in the area of water supply has been extensively studied. In
[4], the large number of actuators (i.e. decision variables)
in the DWN was parameterized to minimize the number of
decision variables in the optimization loop ensuring a faster
run-time. [10] designs a two level control scheme, where
the upper level controls the complete system via a nonlinear
MPC scheme and the lower level, a pump scheduling scheme
through mixed integer programming, but these proposed
schemes fails to account for uncertainties in the forecasted
demand which may affect controller performance.

Stochastic MPC for uncertainties at demand nodes
of a DWN has been studied by [5] showing promising
results of maintaining tractability and performance of the
system subject to uncertainties but provides a somewhat
computational expensive solution.

In this paper, a robust EMPC is designed for a DWN,
specifically the case of the Barcelona Drinking Water Net-
work, considering uncertainties in forecasted demand. The
variations in demand are considered unknown but bounded,
and are described to vary in a zonotopic set. Zonotopic sets
show desirable characteristics of less complexity, flexibil-
ity and reliable computation of linear transformation and
Minkowski sums compared to other geometric counterparts
such as interval or ellipsoidal sets, among other [3]. The
associated effect of the uncertainty in the demand on the
states and inputs are described offline, taking advantage of
the affine dependence of these variables on the demand
as given in the model description of the DWN. Hence, a



reachable set is constructed offline. The offline description of
these sets provides a similar formulation of an optimization
problem to the nominal controller, therefore offering similar
optimization complexity. However, it must be noted that even
though a robust MPC is achieved after this procedure, there
is a certain degree of robustness for some magnitude of
disturbance beyond which the optimization problem ceases
to be feasible. The constraint formulations are then updated
to ensure robust constraints satisfaction as well as a local
LQR feedback control designed to mitigate the effect of the
uncertainty on the predicted states as done in [2].

The rest of this paper is structured as follows: a mathe-
matical preliminary to the concept of zonotopes will be given
in Section 1. Then, a description of a linear DWN model to
be used for the controller design is presented in Section 2.
Section 3 presents the design of the robust MPC scheme
and finally results and conclusions after application of the
developed scheme is discussed in Section 4.

II. DWN CONTROL-ORIENTED MODEL

DWN comprises of a complex network of hydraulic
elements that convey water from supply to demand [1].
These elements work interactively to satisfy demands
at desired pressure and of good water quality during
transportation. The network can thus be categorized into
the supply, treatment, transport and distribution sub-levels.
Active hydraulic elements (pumps and valves) control flow
and/or pressure in specific paths in the network, interactively
working with passive elements such as pipes and tanks
which act as transport and storage elements respectively
to satisfy the broader network requirements in terms of
meeting demand as well as ensuring water supply security
by storing adequate water reserves in the network tanks.

There have been several attempts in literature to model
DWNs which captures key dynamics at different levels of
the drinking water network architecture. Through graph
theory, some works consider flow directions of water at
network nodes as well as interactions at the tanks [1] leading
to a simple flow-based model description of the network,
whilst other studies [5] consider both flow and pressure
specifically taking into account the interactions when flow
and hydraulic head equations are considered in the modelling
process. Considering only the transport layer, the flow-based
model offers an easier option to work with, largely due
to its linearity but fails to capture key pressure dynamics
which is important to present a complete mathematical
behaviour of the network. Inclusion of pressure in the DWN
dynamics introduces non-linearity from the pressure-flow
affine equality equation into the optimization problem
constraints formulation resulting in a non-convex problem.
Some works have been successful in designing nonlinear
MPC [14] for the control of these nonlinear models, whilst
works such as [15] considers nonlinear constraint relaxation
to produce a set of linear inequality constraints for a linear
economic MPC formulation. Despite its complexity, the
nonlinear pressure-flow model offers a more realistic case

to work with. The purpose of this paper is to only illustrate
the ability of a set-based method (zonotope) of robust MPC
to ensure suitable controller performance under demand
uncertainties, hence the comparatively less complex flow
based model will be used. [7] presents a flow-based model
on the Barcelona water network. Basic relationships between
elements considering mass balance at tanks and equilibrium
of flow directions at nodes, give rise to a discrete time
dynamics as follows:

xk+1 = Axk +Buuk +Bddk, (1)

0 = Euuk + Eddk. (2)

xk ∈ R+
nx is the vector of system states, denoting tank

volumes at each time instant k. uk ∈ Rnu denotes the
manipulated input from actuators affecting changes in states
in combination with the non-negative model disturbance
dk ∈ R+

nd , that represents the consumer demand. A, Bu,
Bd, Eu and Ed are time-invariant matrices of suitable
dimensions. From equation (3), it can be inferred that
the control variable u does not take its value from Rnu

but in a linear variety. This inference enables an affine
parameterisation of the control variables in terms of a
minimum set of disturbance, mapping the control problem
to a space with a smaller decision vector and with less
computational burden due to the elimination of the equality
constraint, (3) [10].

Assumption 1: Considering that there are more variables
than algebraic equations (i.e. nq < nu), the matrix Eu in
(3) has a maximal rank. Therefore, it can be expressed in a
reduced staggered form using the Gauss-Jordan elimination.

From Assumption 1, the control variable is parameterized
such that:

uk = P̃ M̃1ûk + P̃ M̃2dk. (3)

The model can be represented as a difference equation (5)
by replacing (4) into equation (2), given as:

xk+1 = Axk + B̂ûk + B̂ddk, (4)

where B̂= BP̃ M̃1 and B̂d= BP̃ M̃2 + Bd.
For an in-depth understanding on how the control variables
are parameterized, reader is referred to [10].

III. PROBLEM FORMULATION

The problem of designing a robust MPC controller must
be such that the designed controller satisfies the tenets of
robust stability, robust constraint satisfaction and robust
performance for all realization of a system Σ = f(u, x, d),
albeit any variations of function variables. Assuming demand
uncertainty in the system, the effects of these uncertainties
on the exogenous demand variable dk, ∆dk ⊆ δd results
in a subsequent variation in state ∆xk ⊆ δX and input
variables ∆uk ⊆ δU as described in the affine relationships
of equations (2) and (3). Model variables, (d, x, u) can
subsequently be decomposed into an uncertainty free and



uncertain dependent component, with the latter involving a
realization of variables at each time instant from bounded
uncertainty sets, (δd, δU , δX). Thus, the state and input
uncertainty sets (δX , δU ) described as a zonotope are
generated from the known zonotopic bounded set of the
demand variation δd with the aid of the algebraic difference
equations (4)-(5).

Assumption 2. The states x and demands d are considered
observable at each time instant k and the pair (A,B̂) is
controllable.

δd is bounded using a zonotope that can be formulated
from a symmetric interval set considering bounded demand
uncertainty such that ∆di ∈ [-∆di, ∆di], where i denotes
a particular demand node. The set δd can therefore be
represented in a zonotopic form as:

δdk = 0⊕Hdzd. (5)

where 0 is a column vector of dimension nd (nd is the
number of demand nodes), considered as the center the
zonotope and Hd is a diagonal matrix of the generators
represented as the bounds of variations at each demand node
i: zd ∈ Bnd , B= [-1 1]. Considering that x̃, ˜̂u and d̃ are
the real dynamic states, inputs and demand respectively,
which takes into account the uncertainty effects, appropriate
decomposition of model variables is therefore given as:
x̃ = x+ ∆x, ˜̂u = û+ ∆û and d̃ = d+ ∆d.
The DWN model considering uncertainty in the demand
variable is therefore given as from (2) and (3) as:

x̃k+1 = Ax̃k + B̂ ˜̂uk + B̂dd̃k, (6)

0 = Eu
˜̂uk + Edd̃k. (7)

Nominal states x ∈ R+
nx and inputs û ∈ R+

nu are
considered bounded in a compact polyhedron U and X
respectively, containing the origin in their interiors, with
û ⊆ U and x ⊆ X. In the presence of uncertainty, it
is desirable to generate a tube of trajectories, meaning a
sequence of robust invariant reachable sets such that per
every transition of states and inputs of the nominal system,
the resultant states and inputs after effect of uncertainty
remains in a closed and bounded set. A robust invariant tube,
X̃k = {X̃0, X̃1, ..., X̃N}, ∀ X̃k = xk ⊕ δXk and subsequent
control tube Ũk = {Ũ0, Ũ1, ..., ŨN}, ∀ Ũk = ûk ⊕ δUk, is
constructed either online or offline, with the offline procedure
offering lesser computational burden. xk and ûk are centers
of the respective propagated state and control invariant tubes.
The mismatch between nominal predicted states and real
states resulting from uncertainties are mitigated by a local
feedback controller K, in this case an LQR controller such
that the selection of this feedback gain K satisfies a system
with the assumption that d̃k = 0

∆xk+1 = (A+ B̂K)∆xk (8)

with ∆xk ⊆ δXk. The local controller ensures that the
deviation of the system dynamics in the closed loop with

(A + B̂K) is asymptotically stable. The primary aim is to
have an optimal control problem, which keeps trajectories
around the neighbourhood of the nominal optimal trajectory
in the presence of uncertainties, satisfying the cost function
under process constraints.

Assumption 3: Considering that (A + B̂K) is strictly
stable and x̃ = x + ∆x, such that the uncertain dynamic
part ∆xk+i+1 = (A + B̂K)∆xk+i + B̂d∆dk+i. If
(A + B̂K)δX ⊕ B̂dδd ⊆ δX , then it can be assumed
that the transition of states from one time instant
to another depends on the dynamics of the centers
xk+i+1 = Axk+1 + B̂ûk+1 + B̂ddk+1.

A. Offline computation of zonotopic reachable sets

The feedback gain K is computed and kept constant at
each time instant k throughout the prediction horizon of the
MPC controller to minimize the deviation of the perturbed
state as stated before. The following cost function is utilized
for the design of an optimal local controller for state error
minimization

J∞ =

∞∑
i=0

(x̃k − xk)TQ(x̃k − xk) +

∞∑
i=0

(˜̂uk)TR(˜̂uk). (9)

where Q and R are positive definite matrices of appropriate
dimensions, where x̃ is the real state at time k from the real
plant and ˜̂u, the actual inputs, with xk as the nominal state
prediction from the MPC at time instant k. From (7), the real
state, x̃k (i.e. x̃k = xk+∆xk) under conditions of uncertainty
as stated before can be decomposed into :

Certain component :

{
xk+1 = Axk + B̂ûk + B̂ddk.

Uncertain component :

{
∆xk+1 = (A+B̂K)∆xk+B̂d∆dk.

where ∆û = K∆x, from the local LQR controller. From the
uncertain component, a corresponding j ∈ Z>0 length of
tube is computed, where j is the selected prediction horizon
of the MPC controller. Therefore, realization of the deviation
∆x from the set δX assuming that initial deviation, ∆x0 = 0
can be described as:

δXk+j ⊆
j⊕

i=1

(A+ B̂K)j−iB̂dδd. (10)

Given that δd = 0⊕HdB
nd, and from Properties 1 and 2 of

the zonotope, it therefore follows that:

δXk+j ⊆ 0⊕Ψ1,jB
nd , (11)

Ψ1,j =

j⊕
i=1

(A+ B̂K)j−iB̂dHd. (12)

From (4) in the control parameterization as discussed in
Section 2, the auxiliary control variable ˜̂u at time instant
k can be described as:

˜̂uk = ûk +K∆xk, (13)



where ûk is the certain control variable at time k with asso-
ciated uncertainty, ∆ûk = K∆xk. K is the local controller
gain calculated from (10). From equation (4), and under
decomposition into certain and uncertain parts, considering
that the uncertain control variable ∆ûk is a value from a set
i.e. ∆ûk ∈ δU , the uncertain control set is given as:

δUk+j ⊆ P̃ M̃1KδXk+j ⊕ P̃ M̃2δd, (14)

By considering the control parameterization (4), the sequence
of cross-sections of the control tube can therefore be de-
scribed in a zonotopic form as

δUk+j ⊆ 0⊕ [P̃ M̃1KΨ1,j , P̃ M̃2Hd]B2nd . (15)

B. Terminal state constraint set

For robust stability and recursive feasibility, a terminal
constraint set is formulated. A minimal terminal robust
positive invariant set δXf is constructed as an outer approx-
imation of the exact equilibrium state set

X̃∗ =
∞⊕
j=0

(A+ B̂K)jB̂dδd, (16)

where X̃∗ ⊆ δXf . Given that (A + B̂K) = Â and B̂dδd =
W and under the assumption that Â is strictly stable, with
W ⊆ δd. An outer set approximation is assumed if there
exist a certain k ∈ Z>0 such that, (Â)k W ⊆ αW , ∀α =
[0, 1). The infinite Minkowski sum of sets (17) under strict
stability conditions ensures that convergence is guaranteed.
Considering the infinite Minkowski sum,
∞⊕
j=0

(Â)jW =
k−1⊕
j=0

(Â)jW⊕
2k−1⊕
j=k

(Â)jW⊕
3k−1⊕
j=2k

(Â)jW⊕ ...,

(17)
it can be simplified to achieve the condition (Â)k W ⊆ αW
as follows:

∞⊕
j=0

(Â)jW =
k−1⊕
j=0

(Â)jW ⊕
k−1⊕
j=0

(Â)j(Â)kW

⊕
k−1⊕
j=0

(Â)j(Â)2kW ⊕ ... (18)

From (Â)kW ⊆ αW , it can be stated that (Â)nkW ⊆ αnW .
Taking

⊕k−1
j=0 (Â)jW to be equal to Π and considering

equation (18), X̃∗ can be approximated from a truncation
of (18) as:

δXf = (1 + α+ α2 + ......)Π, (19)

which results in an approximated set as given below:

δXf ⊆ (1− α)−1Π, (20)

the set in a zonotope form is given as:

δXf ⊆ 0⊕ (1− α)−1Ψ2,jB
nd (21)

where

Ψ2,j =
k−1⊕
j=0

(Â)jB̂dHd.

Thus, the size of the set is dependent on the design parameter
α. The terminal state of the real system, x̃n under uncertainty,
belongs to an invariant set, X̃f ∀x̃n ⊆ X̃f . The uncertain
terminal state can henceforth be expressed in a decomposed
form as

xn ⊕∆xn ⊆ Xf ⊕ δXf . (22)

The constructed sequence of uncertain zonotopic sets will
then be used in the sequel for the design of the robust EMPC
by considering only alterations in the constraints.

C. Robust EMPC formulation

From Assumption 2, the optimization problem for the
economic cost minimization involves the minimization of
the centers of the tube, the cost function therefore involves
deterministic variables. According to [5], for the nominal
MPC synthesis of a DWN, the objective function L(k, û, x),
involves three terms:
• To account for variable electricity at the pumps and

production costs, the following term is included

JE(k) = (α1 + α2)T û(k), (23)

where α1 is a fixed cost related to the water production
and α2 is the time varying electricity cost.

• A penalty equal to the sum of the squares of the
deviation of the volume in each tank i from a predefined
safety threshold

Js(k) =
T∑

i=1

||ϕi(k)||2, (24)

where ϕi(k) denotes the deviation of the stored volume
in tank, i of T tanks below the desired minimum volume.

• A penalty on the square of the flow variations in the
actuators, i.e., the slew rate

J4U (k) = ||4û(k)||2, (25)

where 4û(k) = û(k)− û(k − 1).
The resultant objective function is given as follows:

∴ L(k, û, x) = λ1Js(k) + λ2J4Û (k) + λ3JE(k). (26)

where λ1, λ2 and λ3 are design weights for each objective
criterion.
The proposed robust approach only involves an update of
the constraints considering U⊕ δU ⊆ U , X⊕ δX ⊆ X and
Xf ⊕ δXf ⊆ X̃f

min
û(k),x(k)

N−1∑
i=0

L(k, û, x) (27a)

s.t. xk+i+1|k = Axk+i|k + B̂ûk+i|k + B̂ddk+i|k, (27b)

ûk+i|k ⊆ U 	 δUk+i|k, (27c)

xk+i+1|k ⊆ X 	 δXk+i|k, (27d)

xk+N |k ⊆ Xf , (27e)

x̃k − xk ⊆ δX. (27f)



At each time instant k, a state and control tube (δU and δX)
of length equal to the prediction horizon is formulated offline
based on the demand uncertainty for the MPC procedure (28).
Considering that the optimization problem is feasible, i.e.,
there exists a non-empty solution given by the optimal se-
quence of control inputs (û∗(0), û∗(1), ...û∗(N − 1)), where
N is the prediction horizon. From the principles of receding
horizon, only the first control action û∗(0|k) of the sequence
N values obtained from the solution of the MPC optimization
problem is applied to the plant.

û(k) = û∗(0|k), (28)

disregarding the rest of control actions. At the next time
instant k, the optimization problem is solved again using
the current measurements of states and disturbances, with
the most recent forecast of the latter over the next future
horizon. From the control parameterization (4), the control
input to the plant at every time instant k is given by

u∗(0|k) = P̃ M̃1û
∗(0|k) + P̃ M̃2d̃(k) +K∆x(k). (29)

where d̃(k) is the forecasted demand including uncertainty
measured at time instant k.

IV. RESULTS

A. Case study description

The proposed controller is applied to the aggregate model
of the Barcelona drinking water network, which consists of
17 tanks, 61 control variables (26 pumps and 35 valves), 11
nodes and 25 demand points. As discussed in the modeling
of the DWN, through control parametrization, the decision
variables are reduced to 50 from 61 to ease computational
burden and assist in formulating the uncertainty sets. The
weights λ, in the multi-objective problem, (27) are selected
such that more priority is placed on the minimization of the
economic cost against the other competing objective criteria
of maintaining proper levels of safety volumes and control
action smoothness. λ1, λ2 and λ3 are chosen as 100, 10 and
0.1 respectively. Real demand data at different demand nodes
are subsequently used as the forecasted model disturbance.

B. Results

In the simulations, the additive demand uncertainty is
taken as a variation between ±5% of maximum forecasted
demand at each node which is illustrated in Figure 2 for one
demand node C70PAL as shown in Figure 1, from which
the corresponding uncertain zonotopic set is formulated. The
prediction horizon is 24h, with a sampling time of 1h. The
MPC optimization problem (28) is solved with CPLEX® QP
solver, with Yalmip and Matlab® R2017b (64 bits) using a
PC with an Intel core i7 with 8 GB of RAM. To demonstrate
the capabilities of the proposed controller, it is compared
with a nominal EMPC controller of similar parameters but
ignoring the demand uncertainties. The dynamics of some
selected elements, Tanks - (d54REL, d110PAP & d125PAL)
and Actuators - (VALMA1, VALMA452, CPII3, CPIV4 &
BMS5) of the aggregate model with the actuators enumerated
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Fig. 1. Aggregate model of the Barcelona water network
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Fig. 2. Bounds on forecasted demand at C70PAL for 24 hrs

in order as listed in Figure 1 are shown for purposes of
comparison (Figures 3 and 4) between the proposed robust
and nominal EMPC controllers.
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Fig. 3. Comparison of selected actuator dynamics for Robust and Nominal
MPC

The robust controller is augmented with a local controller
to ensure that the deviation between nominal state and
perturbed state is minimized, which can be tuned accordingly
with Q and R of the LQR controller. From Figure 4, the
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Fig. 4. Level dynamics of tanks for Robust and Nominal MPC

robust EMPC enables convergence to a neighbourhood of
the nominal state in the presence of demand uncertainties,
maintaining an almost similar behaviour of the network tank
level as the nominal controller. The main control objective
of the predictive controller is to reduce operational cost due
to the actuator effort from the linear cost JE(k). Summation
of consumer demand occurs at nodes, therefore there is an
aggregation of additive uncertainties, ∆d on actuators that
effect flow when connected to such nodes in which case
demand variation is propagated to actuators in the network.
From Figure 3, the Robust EMPC shows similar control
efforts as the nominal controller, especially with pumps not
connected directly to demand nodes as the magnitude of
uncertainty is comparatively less. Deviations are also due to
the demand variations assumed measured for control inputs at
each sampling time arising from the control parameterization
(30). Also infeasible solutions were realised in the case of
the nominal EMPC controller under the same uncertainty
propagation.

V. CONCLUSIONS

This paper seeks to address the problem of model un-
certainty associated with the design of MPC, specifically
in relation to demand uncertainties in a drinking water
transport network. Uncertainties on demand are considered
unknown but bounded in a zonotope. Then, a robust EMPC
is designed based on this description, which shows similar
behaviour when compared to a nominal EMPC without
demand uncertainties satisfying intended control objectives
and most importantly the robust EMPC preserves stability
and feasibility. The optimization problem of the nominal
EMPC is observed to be infeasible when subjected to the
same magnitude of variation as the robust EMPC. As a future
work, it is planned to compared the proposed approach with
the chance-constraints approach introduced in [10] on DWNs.
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