
UP2DATE: Safe and secure over-the-air software
updates on high-performance mixed-criticality

systems

Irune Agirre∗, Peio Onaindia∗, Tomasso Poggi∗, Irune Yarza∗, Francisco J. Cazorla†, Leonidas Kosmidis†,
Kim Grüttner‡, Mohammed Abuteir§, Jan Loewe¶, Juan M. Orbegozo‖, and Stefania Botta∗∗

∗IKERLAN, Spain; †Barcelona Supercomputing Center, Spain; ‡OFFIS Institute for Information Technology, Germany;
§TTTECH, Austria; ¶IAV GmbH, Germany; ‖CAF Signalling, Spain; ∗∗Marelli, Italy

Abstract—Following the same trend of consumer electronics,
safety-critical industries are starting to adopt Over-The-Air
Software Updates (OTASU) on their embedded systems. The
motivation behind this trend is twofold. On the one hand,
OTASU offer several benefits to the product makers and users
by improving or adding new functionality and services to the
product without a complete redesign. On the other hand, the
increasing connectivity trend makes OTASU a crucial cyber-
security demand to download latest security patches. However,
the application of OTASU in the safety-critical domain is not
free of challenges, specially when considering the dramatic
increase of software complexity and the resulting high computing
performance demands. This is the mission of UP2DATE, a
recently launched project funded within the European H2020
programme focused on new software update architectures for
heterogeneous high-performance mixed-criticality systems. This
paper gives an overview of UP2DATE and its foundations, which
seeks to improve existing OTASU solutions by considering safety,
security and availability from the ground up in an architecture
that builds around composability and modularity.

Keywords—OTASU, mixed-criticality, safety, security, availabil-
ity, heterogeneous computing.

I. INTRODUCTION AND BACKGROUND

In recent years, the safety-critical industry has witnessed
a striking increase of critical functions realized by soft-
ware [3], [15]. The automotive domain is a clear example
of this trend, where a growing number of Advanced Driver-
Assistance Services (ADAS) are already embedded in cars in
conjunction with features that make vehicles more intelligent
and autonomous [9]. This results in a dramatic increase of
software complexity that inevitably requires hardware plat-
forms with higher computing power. As a direct consequence,
it is more and more difficult to guarantee at design time
that all security flaws and system errors associated to the
electronic system component are prevented or duly mitigated
in such a way that the system will be sufficiently safe and
secure at operation time. These challenges lead to the need of
continuously improving the system based on the experience
acquired over its service-life. In this regard, the advent of
new connection technologies (e.g., 5G) bring a new range
of capabilities such as exchanging real-time data about the

system and the environment and downloading regular software
updates [9], [20]. Unfortunately, the extended connectivity also
brings potential cyber-security threats and it is essential to keep
the system up-to-date with the latest security patches.

Over-The-Air Software Updates (OTASU), a common tech-
nology in consumer electronics like the mobile market, allow
the execution of remote updates from user-level applications
down to firmware and offer several benefits in terms of
bug fixing, adding new functionality and solving security
vulnerabilities [18]. These benefits make OTASU a key tech-
nology to stay competitive in many safety-critical markets.
For instance, in the automotive domain it is not rare to find
automakers that perform regular over-the-air updates of the
entertainment system software [21]. The next natural step is to
extend OTASU to the whole vehicle, including safety-critical
software, an area where for the moment most mainstream
manufacturers stand aside. This is due to the potential severe
consequences of their malfunction and the strict certification
requirements of such systems [21], [20].

The UP2DATE project seeks to address the main depend-
ability challenges brought by OTASU to the critical domain,
with special focus on safety, security, availability, and plat-
form complexity:

• Safety: The current practice to guarantee functional
safety is by strict development processes usually dictated
by safety standards that aid in achieving system certifi-
cation prior to operation. Once the system is certified
and deployed, modifications are rather uncommon, as
they might involve high re-certification efforts and costs.
However, OTASU allows performing regular software
adaptations and often demands system re-configuration
(e.g., task schedule, resource allocation, Operating Sys-
tem (OS) upgrades). Current safety standards do not
capture OTASU and there is not a clear procedure to
guarantee that the system remains safe after the update.

• Security: While OTASU eases the application of security
patches and it is a practice required by security stan-
dards [18], they shall be applied with extra care to prevent
the downloading of fraudulent software into the system.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. DOI: 10.1109/DSD51259.2020.00063



Fig. 1. Main UP2DATE project building blocks and results.

This may not only affect the security of the system but
also its safety. Accordingly, it is essential to address these
issues with a safety and security co-engineering approach.

• Availability: During updates the system is commonly not
available. While this is just inconvenient for mainstream
devices, it may not be acceptable for fail-operational
systems that must remain active during operation (e.g.,
a pacemaker). Therefore, OTASU shall consider dynamic
software updates, to safe and securely update software at
runtime, without stopping or restarting the system.

• Platform complexity: The increasing demands of the
software can only be reasonably satisfied by using
more complex hardware platforms based on multicore
processors and accelerators (e.g., Graphics Processing
Unit (GPU)). The higher computing performance pro-
vided by these platforms allow integrating several control
units, often of different safety and security implica-
tions (a.k.a. mixed-criticality), in one single platform. In
such complex Mixed Criticality Cyber-Physical Systems
(MCCPS), applications are subject to intricate depen-
dencies in their functional and non-functional behaviour.
Both have a negative impact in system safety and security.

This paper summarizes the UP2DATE project for simul-
taneously addressing these challenges in a novel software
architecture to support OTASU. The rest of this paper is
organized as follows. Section II defines the project mission
and its objectives. Section III describes the main innovations
and concepts around which the UP2DATE architecture of
Section IV will be built. Section V presents the industrial
use-cases for the evaluation of the project. Finally, the paper
concludes with a summary of the project in Section VI.

II. PROJECT MISSION AND OBJECTIVES

The mission of UP2DATE is bringing together the trend
towards OTASU and heterogeneous computing platforms in
MCCPS. Accordingly, the overall goal is to develop a new
software paradigm that guarantees the safety and security of
a mixed-criticality system able to execute regular software

updates. To this end, UP2DATE has the following technical
objectives and the expected results represented in Figure 1.

O.1 Safety and Security (SASE) of complex platforms.

Since the design of applications running on heterogeneous
computing platforms is not well covered by current safety
and security methodologies, the first objective of the project
is to lay the basis for the safe and secure integration of
mixed-criticality applications on such platforms. This objective
will focus on the identification of safety risks and security
threats of mixed-criticality systems and on the definition of
countermeasures according to safety and security standards.
This objective will result on a evaluation of the feasibility
of implementing these countermeasures on specific heteroge-
neous platforms like the Zynq UltraScale [24] or NVIDIA
JETSON [19] and permit, in this way, a safe and secure mixed-
criticality integration (R1 in Figure 1).

O.2 Design-by-contracts for modularity and composability.

The second objective of UP2DATE is to design an up-
date concept based on modularity and composability. The
availability of a modular and composable update architecture
enables doing partial software updates, while guaranteeing
independence and a shift in the concept of integration testing:
from design time to online integration testing or even self-
aware integration testing. To this end, UP2DATE will use the
concept of design-by-contracts [2] (R2 in Figure 1), further
explained in Section III-A, to ensure that software modules
can be updated (i) without incurring unaffordable validation
and verification costs; and (ii) ensuring the SASE properties
of the already integrated mixed-criticality software.

O.3 Observability, controllability and feedback strategies.

During and after the deployment of a software update, the
project has the objective to monitor the safety and security
properties, adapt hardware and software configuration to the
new update and to collect operation time behaviour data to
optimize the design (R3 in Figure 1). To this end, UP2DATE



will rely on event monitors present in most modern archi-
tectures [16] to check at runtime if the SASE contracts of
the update are satisfied. This information will be additionally
analysed to constantly improve the design in the new updates
based on operation time data.

O.4 UP2DATE software architecture.

This objective seeks to implement previous concepts in the
UP2DATE architecture (R5 in Figure 1) comprising:

• Secure communication library (R4 in Figure 1): security
mechanisms that allow secure over-the-air transmission
of the update and operation time data.

• U2D middleware (R8 in Figure 1): services to support
the entire update cycle starting with the update packet
preparation and over-the-air download at server side and
i) compatibility and integration checking, ii) update de-
ployment and iii) monitoring, controllability and feedback
services at target side.

O.5 Industrial use-cases.

The fifth objective of UP2DATE is to evaluate the
UP2DATE architecture in a laboratory-controlled environment
applied to two real-world case-studies: railway and automotive
(R6 and R7 respectively in Figure 1).

O.6 Future safety and security certifiability.

The final technical objective of UP2DATE is to carry out
an assessment of the future certifiability of main UP2DATE
concepts and architecture. In other words, this objective seeks
to evaluate with certification authorities that the designed
dynamic software update technology does not compromise the
safety and security properties of the MCCPS. Where needed,
UP2DATE will propose updates to current safety standards to
consider the proposed technology.

III. KEY UP2DATE INNOVATIONS

UP2DATE will reach previous objectives by introducing the
following key technological innovations to current OTASU
approaches.

A. Safety and Security (SASE) contracts concept

UP2DATE will adopt the design-by-contracts concept [2]
to allow the execution of modular and composable updates
without compromising overall system SASE properties. Until
now, contracts remained in the realm of software, between two
entities only, and static (i.e., used at design time only, specified
once and never touch during system life time). UP2DATE will
work towards an innovative use of contracts supporting the
safe and secure update and monitoring of software components
and its associated contracts during the operation phase of a sys-
tem. In contrast to common design-by-contracts approaches,
in UP2DATE, hardware resource allocation requirements and
safety and security constraints become an integral element of
the contracts. To this end, UP2DATE defines the concepts of
horizontal and vertical contracts (see Figure 2):

Fig. 2. Horizontal and vertical SASE contracts.

• Horizontal contracts cover the dependencies between
connected software components (e.g., timing and causal-
ity properties in a chain of software components).

• Vertical contracts define the interfaces with the underly-
ing system software and hardware to ensure that software
modules get access to the resource they need to fulfil its
SASE requirements.

Contracts will be used as part of the UP2DATE OTASU
strategy, to compare the SASE requirements (e.g., timing,
performance, energy consumption and criticality) of any new
application update against the current status of the MCCPS
load before applying the update. The innovative combination
of horizontal and vertical contracts permits the execution of
modular updates able to replace individual functions and not
necessarily the entire firmware or control unit. In addition,
it is done in a composable manner, that is, guaranteeing
independence and avoiding the need to test the whole system
but just the updated module.

B. Software update continuum

UP2DATE defines the software update continuum of Fig-
ure 3 to cover a grey scale from a simple to more complex
OTASU. The complexity of performing an update depends on
its location on the update continuum, that spans a design space
defined over the three different axes of Figure 3:

• Criticality refers to whether the software element to
update does have functional safety implications and se-
curity relevance. In the case of non-critical software
update, the main challenge rests on guaranteeing that the
update does not affect the critical software running on
the system. To this end, UP2DATE will rely on the SASE
properties defined in the horizontal and vertical contracts.
For critical software, in addition to this, the project will
need to focus on safety-security co-engineering to define
the procedures to test, validate and update safety software.

• Dynamicity relates to the fact that updates can take place
at different system states. In the simplest scenario, the
update can be deployed when the system is in a safe



Fig. 3. Software Update Continuum.

state (e.g., a vehicle is stationed). At the other end is the
situation of dynamic updates that take place while the
system is under operation without the need of a halt and
restart. The timing of the update has a direct impact on
system availability. UP2DATE will work on solutions to
keep critical tasks available during the update process.

• Domain specificity has to do with the abstraction of the
update architecture. While the project will first focus on
domain-independent approaches, in final phases of the
project the concepts will be tailored to the automotive
and railway domains.

The safe and secure OTASU paradigm promoted by
UP2DATE will incrementally combine these three properties
together with next generation heterogeneous platforms. While
there are extensive works addressing OTASU with any of
these elements separately [17], [18], [22], UP2DATE will
rely on the contract concept to build an update framework
capable of handling all these aspects together. Additionally,
UP2DATE will study how to exploit the higher computing
performance properties of heterogeneous platforms to enable
dynamic updates and their implications on safety and security.

C. Development and Operations (DevOps) practice

Traditionally, the safety-critical development process has
followed a sequential approach as that illustrated in Fig-
ure 4(a): it starts with requirements specification, followed
by design and implementation of the complete solution and
finishing with testing prior to its release and deployment. In
recent years, however, it has become evident that the com-
plexity of software functions and hardware used in MCCPS
is creating significant issues for creating an efficient design
and guaranteeing a comprehensive testing of all possible
conditions that can arise at operation time. Software timing
analysis is a clear example of the limitations of the current
development process: guaranteeing the worst-case execution
time of a function without being overly pessimistic has become
an arduous task where measurement-based approaches seem
to be the only viable solution [23]. Still, in complex platforms,
timing behaviour cannot be verified to a sufficient extent with
end-to-end measurements due to complex interactions among
hardware resources [16].

(a) Traditional software development process

(b) DevOps software development process

Fig. 4. Traditional vs. DevOps development practices.

For this reason, it is becoming increasingly common to
combine operation time data with the design phase to improve
the design and the testing of the software. In UP2DATE, this
single design phase approach illustrated in Figure 4(a) will be
replaced by the interactive process depicted in Figure 4(b) that
relies on event monitors for enhancing the testing with runtime
checks and uses the collected operation time data to optimize
the non-functional properties of the applications (e.g., timing
and power consumption). This process matches well with the
recently proposed DevOps software development practice that
combines software development (Dev) and information tech-
nology operations (Ops) to shorten the system development
cycle [10].

In this interactive process, every OTASU is preceded by
a Design Phase (DPi) in which the required assessments
are performed on the validity of the update. In case it is
accepted, in the next Operation Phase (OPi) the system will
deploy the software update. Note the concurrent nature of the
phases: the design phase DPi + 1 is carried out during the
execution of OPi, without halting the system and with the
continuous feedback from the application and platform states.
To that end, the information collected during OPi will be
sent to the backside to assess whether tasks are using their
timing or Energy, Power and Temperature (EPT) budget. This
information will be obtained by event monitors that capture
the exact execution conditions in which the task is executed,
as opposed to the pessimistic ones created during system tests
at design time. The usage of event monitors in the software
design is still in its infancy, with some techniques using few of
them to regulate for instance traffic to memory [16]. However,
current hardware platforms have in the order of hundreds of
event counters that can be used to gain more confidence on
derived bounds [4]. This provides very valuable and reliable
feedback on whether derived bounds are over-estimated. In
such scenario, the UP2DATE architecture will safely decrease
those bounds allowing to optimize the contracts and augment
the load that can be safely put on the system.

IV. UP2DATE ARCHITECTURE

Previous innovative concepts will be consolidated in the
form of a software architecture supporting high-performance
hardware platforms. Figure 5 presents the UP2DATE architec-
ture comprised of the following six main building blocks.



Fig. 5. UP2DATE software architecture components.

A. New SASE concept for OTASU in mixed-criticality hetero-
geneous computing platforms

This first building block relates to the safety and security
certifiability of the UP2DATE approach and takes a pivotal
role in the project, as the safety and security concerns and
solutions worked throughout this module drive the activities
across all other components and shape the UP2DATE ar-
chitecture. This activity is motivated by the rapid evolution
of hardware and software in MCCPS, which has surpassed
the capabilities of current safety and security oriented design
methodologies. Generally, functional safety standards reflect
the state of practice in industry rather than the state of art.
As a result, they do not evolve as fast as technology and
they do not provide explicit guidance for next generation
architectures yet [1]. UP2DATE will pave the way towards
mixed-criticality integration and certification in next gener-
ation heterogeneous computing platforms and will reconcile
the conservative safety-related requirements coming from stan-
dards with the disruptive nature of OTASU.

To this end, UP2DATE will follow an incremental strategy
to define safe and secure design concepts and the required
argumentation and evidences to support the future certification
of the UP2DATE architecture. The safety-security concepts
will define a safe and secure architecture based on arguments
for mixed-criticality integration, dynamic updates, contracts,
platform monitoring and diagnosis. These concepts will un-
dergo a review process by an external certification authority
with respect to selected industrial functional safety (e.g., IEC
61508 [11], ISO 26262 [13], EN 5012x [5], [6], [7]) and
security (e.g., IEC 62443 [12]) standards.

B. Vertical and horizontal contracts model

Contracts are associated to an executable of a software
module and they contain metadata that specifies its functional
(e.g., allowed value ranges) and non-functional (e.g., causality,
timing, resource usage or power consumption) requirements
on the environment in which the module shall be integrated.

UP2DATE builds upon the following modularity properties of
the software:

• Logical architecture: the connection (dependencies and
interaction) among functions and their decomposition
(i.e., a function contains sub-functions).

• Technical architecture: the mapping of functions to soft-
ware components and the relation (and configuration) of
software components to a run-time environment (e.g.,
AUTOSAR). Furthermore, it specifies the allocation of
software components to hardware resources.

In UP2DATE these properties are managed in two axes: the
horizontal and vertical contracts respectively. In the execution
of a software update, horizontal contracts describe the inte-
gration with the remaining (not updated) system. It consists of
assumptions on the activation of input data from neighbouring
components and provides guarantees about the activation of
its output data to other neighbouring components. Vertical
contracts describe “constraints” under which the horizontal
contracts shall be fulfilled. They include information about re-
quired communication, configuration, computation and mem-
ory resources on the target hardware platform.

As a key property, SASE contracts are composable, al-
lowing their application in a hierarchical manner to different
sub-modules (or sub-applications) and from there derive the
properties for the umbrella module (application). This heavily
reduces the computation needs for the validation and provides
scalability of the UP2DATE approach because integration tests
only have to be conducted for the updated module and not for
the entire system.

C. SASE criteria for contracts

In addition to the logical and technical architecture pre-
sented in previous subsection, UP2DATE will also integrate
safety and security constraints into the contracts. This aims to
guarantee that neither safety nor security are jeopardized upon
the execution of an update. Adopting these non-functional
properties in the contracts allows supervising these properties
at runtime (before, during and after an update) by associated
monitoring services (see Section IV-F). In particular, this
module covers the definition of:

• Safety properties such as timing, energy, power, temper-
ature, time and space independence needs and resource
usage. The formal definition of these properties will
be guided by i) their relevance for the assessment of
non-functional safety according to standards; and ii) the
possibility to measure them with monitoring services.

• End-to-end security properties for OTASU, starting from
the download of the update up to its deployment and
sending back the monitoring data. In addition, the security
contracts will be used to define fingerprints that capture
the nominal timing and energy profile of applications.
Then this profile will be constantly checked against the
behaviour of the application at operation time to detect
possible intrusions.



D. UP2DATE middleware

The UP2DATE middleware comprises services to support
the entire update cycle starting with the over-the-air download
of the update from a server, the target platform specific update
compatibility and integration testing, the deployment of the up-
date on the target platform, and finally the update monitoring.
This process entails the following minimum services:

• Compatibility and integration checking service. Before
deploying an update on the target platform, an update
acceptance check must be executed. This service defines
a self-aware contract-based integration checking in the
update continuum. To this end, it will test the compati-
bility of the downloaded update with the specific target
system and its configuration.

• Update service. Once the update is accepted, UP2DATE
will support two alternative deployment strategies:

1) Online deployment: the update is deployed on the
target platform when the system is in a safe-state
(i.e., currently not used but online). It replaces an
existing software component or functions with a
new function (e.g., by replacing the program or
flashing the entire data and instruction memory).
Store and restore of state information across func-
tion updates will be handled by a dedicated state
restoration service. Deployment information (e.g.,
in which partition(s) or on which processor(s) the
updated functions shall be executed) is provided
through vertical contracts within the update meta-
data.

2) Run-time deployment: software updates are trig-
gered while the system is in use, i.e., without
interrupting or stopping the execution while the
update is in progress. In order to guarantee system
safety, for a predefined period of time, this run-
time deployment service is executed and verified
in parallel to the normal operation of the system
(i.e., in a quarantine mode). Once the quarantine
period ends, this service will include a glitch switch
between the old and the new function. For the
realization of this run-time update deployment well-
known techniques for software live-patching (e.g.,
the Linux kernel live patching [14]) will be applied.

• Monitoring service. This middleware service is the
responsible of monitoring the correct deployment of
updated software modules. This monitoring will check
the ports and interfaces of each module (to other neigh-
bouring software modules and to the hardware platform).
The update monitoring will be realized in two flavours:

1) Dynamic online checks with rollback: The updated
function is stimulated with test data to check pre-
defined corner cases on the target platform, similar
to built-in-self-tests. This check will be performed
for the online deployment strategy.

2) Parallel and monitored operation in quarantine
mode: The “old” and the updated software modules

are executed in parallel for a predefined amount of
time. The updated software module is executed in
so-called quarantine mode until it has been approved
to be working correctly according to a predefined
confidence level. This check will be performed for
the run-time deployment strategy.

For an efficient collection and traceability with the system
requirements (which have been expressed through con-
tracts), this middleware service will acquire information
from horizontal and vertical observers: the horizontal
contract observers check for possible violations of logical
integration conditions of a function with its environ-
ment. The vertical contract observers will check if the
underlying operating system and middleware provides
the assumed computation, communication and memory
resources.

E. Secure communication

This module will define and implement the security com-
munication mechanisms and library at the base of the software
updates. It will allow the secure transmission of both the
update (binaries, configuration files and UP2DATE contracts)
from the server side to the target platform and the continuous
feedback information collected by the monitoring module from
the target to the server. In the process of sending the new
software and the contracts from the server to the target, at
least the following security requirements shall be considered:

• Authentication: ensure that the information is sent from
a trusted server.

• Confidentiality: guarantee that the information sent is
kept confidential by using encryption mechanisms.

• Integrity: detect any corruption in the data in the trans-
mission process by for instance hashing algorithms.

The project will try to implement these mechanisms with
the support of hardware security accelerators such as crypto-
graphic modules and key management features.

F. Monitoring and controllability

This module gathers the information required to execute
the monitoring service at the middleware and configures the
hardware platform to host new updates. It works on three
separate lines:

• Observability. It implements a model-based monitoring
system that relates safety and security properties required
by contracts to low level event monitors. Those monitors
have to be operated to create the proper abstractions such
as ‘resource partition’. For instance, contracts will work
with the concept of ‘resource capacity’ so that tasks can
be given a capacity of each resource. In providing this
abstraction, it is required to define it for each resource like
buses, GPUs or caches. Likewise, the observability mod-
ule will integrate the monitoring of the required events
to create and detect variations in security fingerprints.

• Controllability. The module permits to configure the
hardware by applying predefined setups. The different



setups will be used during the validation of a new
software integration. For each update a new hardware set-
up might be needed to accommodate new functionalities.

• Feedback. The module supports the analysis of the
applications’ resource usage during operation. The col-
lected information is sent back to the server and used
to determine whether in the new software update the
application can be given fewer (optimized) resources
without affecting its SASE properties.

V. USE-CASE APPLICATIONS

The project outcomes will be evaluated in two industrial
use-cases for intelligent, autonomous and high-performance
applications from the railway and automotive domains. For
the different reasons stated in the subsections below, both use-
cases are based on a centralized mixed-criticality node that
apart form executing critical control tasks, acts as a gateway
that manages OTASUs in several end-devices (see Figure 6).

(a) Railway use-case (b) Automotive use-case

Fig. 6. High level UP2DATE use-case architectures.

A. Railway use-case

The railway use-case is based on the railway signalling
product range. It will integrate the UP2DATE architecture in a
gateway device that centralizes the simultaneous downloading
of updates on all the railway devices in a facility. The
UP2DATE solution can bring great savings in the installation
phase and through the product service life in the maintenance
activities or when evaluation new test versions:

• In the installation phase, it is frequently necessary to
adjust the configuration parameters and some software
functionalities. Typically, these changes affect more than
one device of the system, with different criticality levels.

• In the maintenance phase, uploads are less frequent, but
the impact is greater. In this phase, security updates
to keep the security level through the long product
service life are especially important. Currently devices
are updated in situ by specialized technicians, generating
extra travel costs. In addition, when updating safety
related devices, the current approach require the physical

presence of a member from the railway administration
infrastructure manager. The update procedure includes
upgrading devices, performing conformance tests and
managing the documentation.

• In a scenario where the system is in service, uploading
a test version involves coordinating several teams per-
forming simultaneous downloads on all the system. The
tests are carried out at night, when the train service is
suspended. After completing the tests, for re-establishing
normal operation the previous approved versions have to
be restored again. It is estimated that the cost of loading
one version is equivalent to 15 specialized technicians
working during the night.

The architecture proposed for the railway use-case (Fig-
ure 6(a)) is based on the introduction of an UP2DATE (U2D)
railway node with three main purposes: (i) the simultaneous
and coherent update of the multiple railway end-devices, (ii) to
allow the secure transmission of data from an open network
(server - U2D node) to a proprietary network (U2D node -
end-devices) in compliance to the EN 50159 standard [8], and
(iii) to integrate multiple applications with different criticalities
and reduce in this way the number of control units distributed
across the line. The UP2DATE server could be located together
with the current Traffic Management System. Here the soft-
ware and the configuration files for all the railway signalling
equipment are generated from a common source for a given
version and this coherency shall be maintained throughout the
complete update process.

B. Automotive use-case

The automotive use-case will demonstrate the effectiveness
of the UP2DATE approach on updating the software control-
ling a power train unit satisfying SASE requirements.

The new functionalities proposed in the context of the
project are very interesting topics in the automotive market
for the great benefits that they can bring to the management
of software product evolutions during the post production and
service phases. In the post production and service phase it is
frequently necessary to adjust the configuration parameters and
some software functionalities: currently devices are updated
in situ (customer production or service sites) by specialized
technicians, generating significant extra costs. In addition, a
service/recall campaign involves public and users’ communi-
cations that cause a brand image damage. The application of
UP2DATE will allow to perform these activities in a lighter
and more flexible way producing great savings through the
product life-cycle maintenance activities.

The automotive industrial demonstration will take place in
the context of the next generation of connected automotive in-
car computing architectures. Today’s cars contain more than
a hundred computerized Electronic Control Unitss (ECUs).
This number is increasing with every new car generation since
a new function requires a new ECU, e.g., engine control,
infotainment, driving assistance. An architecture containing so
many, low-performance, separate control units is not able to



address the future requirements on high-performance, yet safe
and secure, computing for autonomous and connected driving.

As a solution, the automotive use-case presented in Fig-
ure 6(b) will integrate the UP2DATE (U2D) automotive
Centralized Computing Platform (CCP) to integrated several
ECUs in a single platform with high-computational power
connected to a reliable high-speed network. In addition, this
automotive CCP will act as a gateway that communicates
with the specific back-end infrastructure (private cloud) and
distributes the information through the in-vehicle network to
the corresponding end-device.

VI. CONCLUSIONS

This paper provided an overview of the recently started
UP2DATE European project which has the main goal of
implementing a new architecture to allow the execution of
over-the-air updates of mixed-criticality software on complex
platforms without jeopardizing system safety and security.
Given the early stage of the project, the paper does not
include project results yet. Instead, we explained the main
current limitations for achieving the goal of adopting OTASU
in the critical domain and we defined the objectives and key
technological innovations that will guide the project towards
them. In summary, the main challenges in which the project
will focus are related to safety, security, availability and the
increasing platform complexity. UP2DATE proposes a new
software architecture based on a novel adoption of the design-
by-contracts approach to foster modularity and composability
of updates together with runtime monitoring strategies. This
architecture allows obtaining safety and security guarantees
before, during and after an update. In addition, the proposed
architecture follows an interactive development process where
the software design is optimized with runtime data in each
software update.

UP2DATE will bring the OTASU technology closer to
safety-critical industries in two ways: first by evaluating the
project outcomes in representative industrial scenarios from
the railway and automotive domains and second by conducting
a review of the main project concepts and design by a
certification authority to pave the way towards the future
certification of the UP2DATE architecture.

ACKNOWLEDGMENTS

The research presented throughout this paper has re-
ceived funding from the European Community’s Horizon 2020
programme under the UP2DATE project (grant agreement
871465) and the European Research Council (ERC) under
the European Unions Horizon 2020 Research and Innovation
programme (grant agreement No. 772773).

REFERENCES

[1] I. Agirre, J. Abella, M. Azkarate-Askasua, and F. J. Cazorla. On the
tailoring of CAST-32A certification guidance to real COTS multicore
architectures. In 2017 12th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 1–8, June 2017.

[2] Albert Benveniste, Benoı̂t Caillaud, Dejan Nickovic, Roberto Passerone,
Jean-Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-
Vincentelli, Werner Damm, Tom Henzinger, and Kim Guldstrand Larsen.
Contracts for Systems Design: Methodology and Application cases.
Research Report RR-8760, INRIA, July 2015.

[3] Ankita Bhutani and Shubhangi Yadav. Global Market
Insights. Automotive Electronics Market, report ID: GMI183.
https://www.gminsights.com/industry-analysis/automotive-electronics-
market, 2018.

[4] Francisco J. Cazorla, Jaume Abella, Javier Jalle, Mikel Fernandez,
Leonidas Kosmidis, Luca Fossati, and Marco Zulianello. PMCs for
real-time multicore systems: analysis of the state of the art and initial
proposal. European space Agency software system division and data
division final presentation days, 2014.

[5] EN50126. EN50126:2012 - railway applications: The specification and
demonstration of dependability, reliability, availability, maintainability
and safety (RAMS), 2012.

[6] EN50128. EN50128:2011 - railway applications: Software for railway
control and protection systems, 2011.

[7] EN50129. EN50129:2005 - railway applications. communication, sig-
nalling and processing systems. safety related electronic systems for
signalling, 2003.

[8] EN50159. EN50159:2011 - railway applications. communication, sig-
nalling and processing systems. safety-related communication in trans-
mission systems, 2011.

[9] Kersten Heineke, Alexandre Ménard, Freddie Sdergren, and Martin
Wrulich. Development in the mobility technology ecosystem how
can 5G help? https://www.mckinsey.com/industries/automotive-
and-assembly/our-insights/development-in-the-mobility-technology-
ecosystem-how-can-5g-help, 2019.

[10] Michael Httermann. DevOps for Developers. Apress, Berkeley, CA, 1
edition, 2012.

[11] IEC. IEC 61508 Functional safety of Electrical/Electronic/Pro-
grammable Electronic safety-related systems (Second edition), April
2010.

[12] IEC. ISA/IEC 62443 series of standards on industrial automation and
control systems security, 2010.

[13] International Organization for Standardization. ISO/DIS 26262 Road
Vehicles – Functional Safety, 2009.

[14] Paul Jacobs. History of Linux Kernel Live Patching.
https://www.howtoforge.com/history-of-linux-kernel-live-patching/,
2019.

[15] S. Liu, J. Mu, D. Zhou, and A. G. Hessami. Model safety standard of
railway signaling system for assessing the conformity of safety critical
software based weighted factors analysis. In 2017 4th International
Conference on Transportation Information and Safety (ICTIS), pages
779–783, Aug 2017.

[16] E. Mezzetti, L. Kosmidis, J. Abella, and F. J. Cazorla. High-Integrity
Performance Monitoring Units in Automotive Chips for Reliable Timing
V&V. IEEE Micro, 38(1):56–65, January 2018.

[17] I. Mugarza, J. Parra, and E. Jacob. Cetratus: Towards a live patching
supported runtime for mixed-criticality safe and secure systems. In 2018
IEEE 13th International Symposium on Industrial Embedded Systems
(SIES), pages 1–8, June 2018.

[18] Imanol Mugarza, Jorge Parra, and Eduardo Jacob. Analysis of existing
dynamic software updating techniques for safe and secure industrial con-
trol systems. International Journal of Safety and Security Engineering,
8:121–131, 01 2018.

[19] NVIDIA. Jetson TX2 Developer Kit and Modules.
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-tx2/.

[20] John R. Quain. With benefits and risks software updates are com-
ing to the car. https://www.digitaltrends.com/cars/over-the-air-software-
updates-cars-pros-cons/, 2018.

[21] Michael Smith. Over-the-Air Updates - Is OTA the Future of
Cars? https://www.autocreditexpress.com/blog/ota-updates-the-future-
of-cars/, 2018.

[22] M. Steger, C. A. Boano, T. Niedermayr, M. Karner, J. Hillebrand,
K. Roemer, and W. Rom. An Efficient and Secure Automotive Wireless
Software Update Framework. IEEE Transactions on Industrial Infor-
matics, 14(5):2181–2193, May 2018.

[23] Reinhard Wilhelm. Mixed Feelings About Mixed Criticality (Invited
Paper). In Florian Brandner, editor, 18th International Workshop on
Worst-Case Execution Time Analysis (WCET 2018), volume 63 of
OpenAccess Series in Informatics (OASIcs), pages 1:1–1:9, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[24] XILINX. Zynq UltraScale+ MPSoC.
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html.


