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Abstract—Understanding the resource usage behaviors of
the ever-increasing machine learning workloads are critical
to cloud providers offering Machine Learning (ML) services.
Capable of auto-scaling resources for customer workloads
can significantly improve resource utilization, thus greatly
reducing the cost. Here we leverage the AI4DL framework [1]
to characterize workload and discover resource consumption
phases. We advance the existing technology to an incremental
phase discovery method that applies to more general types of
ML workload for both training and inference. We use a time-
window MultiLayer Perceptron (MLP) to predict phases in
containers with different types of workload. Then, we propose
a predictive vertical auto-scaling policy to resize the container
dynamically according to phase predictions. We evaluate our
predictive auto-scaling policies on 561 long-running containers
with multiple types of ML workloads. The predictive policy can
reduce up to 38% of the allocated CPU compared to the default
resource provisioning policies by developers. By comparing our
predictive policies with commonly used reactive auto-scaling
policies, we find that they can accurately predict sudden phase
transitions (with an F1-score of 0.92) and significantly reduce
the number of out-of-memory errors (350 vs. 20). Besides,
we show that the predictive auto-scaling policy maintains the
number of resizing operations close to the best reactive policies.

Keywords-Cloud Native; Machine Learning Service; Con-
tainer; Auto-scaling;

I. INTRODUCTION

Containers provide a lightweight, fast and isolated in-
frastructure to run applications. The container-based envi-
ronment, namely cloud-native, is becoming the de facto
standard for deploying services in the cloud, especially for
Cloud Machine Learning Services [2], [3], [4]. Machine
learning services deserve special attention when managing
resources as their resource usage behaviors differ signifi-
cantly from those traditional long-running services, such as
web services or databases. When machine learning work-
loads are containerized, multiple containers running different
tasks (training or inference) can co-locate on the same
machine and each alternate strides of data fetching and
data processing with dynamically varying resource usage.
On the other hand, container orchestration system such
as Kubernetes requires developers to declare a fixed size
for containers to run these jobs. Thus, developers tend to
over-provision resources for each container, and the cluster
ends up with very low resource utilization. Auto-scaling

containers vertically, according to the actual usage, would
improve resource efficiency. However, they may cause out of
memory (OOM) kill or Quality of Service (QoS) degradation
under sudden usage increase.

Proper auto-scaling of containers vertically requires un-
derstanding the dynamics of resource usage. No universal
heuristics can work for different types of workloads. Ma-
chine learning workload usually includes routines from data
loading to computation, showing random spikes in memory
and CPU usage, which cannot be captured by classical
time-series algorithms. Transitions of those behaviors can
be abrupt, complex, and shifting across different containers.
Studying phase transitions across multiple containers run-
ning different models and tasks can help learn in general
how phases in machine learning workload transit; however,
traditional time series prediction methods cannot achieve this
goal. Container auto-scaling itself is not an easy task. A tight
auto-scaling can lead to more frequent resizing operations,
while a slack auto-scaling needs fewer resizing operations
but results in more resources over-provisioned. Reactive
approaches[5], [6], in general, can only respond to a gradual
change and usually fail to foresee sudden behavior changes.

In this paper, we employ CRBMs and clustering tech-
niques in [1] to discover phases and extend it with an
incremental mechanism to apply to more kinds of workload,
e.g., voice recognition services, machine learning training,
and inference services. We propose to use MLPs to learn
sequences of phases discovered from multiple containers
running different types of workloads to predict sudden
behavior changes. Given the prediction of phases, we apply a
proactive policy to auto-scale the container size according to
the phase prediction. To reduce the number of unnecessary
resizing actions, we only scale containers if the forecast
foresees significant behavior changes.

To summarize, we find that CRBM based workload
characterization is suitable for modeling phase behaviors,
including sudden spikes or random burstiness. The proposed
iterative approach can incrementally discover new phases
for new types of workload. We also find that there exist
common patterns of phase transitions. Both MLP models
and LSTM models can well predict typical phase transitions.
The F1-score of MLP is 0.93 for one-step prediction and is
0.79 for a four-step prediction. Compared to reactive auto-
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scaling policies (560 OOMs), we find that our method (20
OOMs) can prevent 96% OOM kills while reducing the over-
provisioning up to 38% CPU .

II. RELATED WORK

Various challenges in workload characterization have been
addressed, including adaptive model selection[7] and adap-
tive time window selection[8]. [9] focuses on modeling
workloads to discover patterns and classify applications,
so heterogeneous workloads can be co-located to achieve
higher resource utilization. [10] is the first to use Conditional
Restricted Boltzmann Machines (CRBMs) and the Hidden
Markov Models to discover Spark applications’ profiles
in an unsupervised way. [1] further applies the CRBM
approach and the clustering method to identify phases in
resource usage of containerized Deep Learning (DL) training
workload. However, they did not fully take advantage of the
predictability in dynamic resource allocation.

Workload prediction is a known challenge. [11], [12],
[13]rely on such an assumption to address resource
management for cloud services and applications. They
mainly predict resource utilization based on the arrival of
queries or clients, using predictors, including regression[12],
ARMA [13], and ARIMA [11]. These models are well-
known for capturing time-dependent structures, such as
trends and seasonality. However, they are prone to fail when
resource usage consists of phases with irregular behaviors
and sudden transitions of phases. More recent work [14]
uses a more advanced model, namely an ensemble of various
ML models to predict future resource utilization based on
job arrivals and monitored past job runs. However, these
methods cannot be applied to the vertical auto-scaling of
containers, as each runs a single job.

Resource auto-scaling has been an active research field
for years. Many studies [15], [16], [17] focus on horizontal
auto-scaling, which automatically changes the number of
instances (containers or virtual machines) for a particular
application when the load fluctuates. A few others focus
on the vertical auto-scaling [18]. There are typically two
types of approaches, reactive and proactive auto-scaling. The
reactive approach usually adapts the size of the contain-
ers according to the real-time changes in resource usage,
such as Kubernetes vertical pod autoscaler (VPA) [6] and
[19]. Google’s Autopilot system [5] adopts an advanced
reinforcement learning approach to fine-tune the common
heuristics to both reduce the over-provisioning slacks and the
out of memory events. However, reactive strategies always
have delays in the container resizing when workload behav-
iors change abruptly. Proactive auto-scaling [20] focuses on
developing a good prediction model to resize an instance
based on predictions of future resource usage. However,
these prediction models can hardly capture sudden behavior
changes, which commonly occur in ML workloads.

III. METHODOLOGY

The proposed methodology extends and puts into practice
the profiling mechanism for behavior discovery and clas-
sification described in AI4DL [1]. AI4DL 1) monitors the
principal container resources to be provisioned in production
systems (i.e., CPU and Memory consumption, but also pos-
sible GPU and IO), 2) encodes these metrics to capture the
dynamics over time (behavior), 3) classifies those behaviors
by similarity, 4) reduces the whole execution to a sequence
of “behavior phases”, each with a unique resource consump-
tion profile. In this work, we predict the future transition of
phases from an ongoing execution, towards advancing that
profiling information and preemptively provision containers.

A. Overview of System Design
Figure 1 shows our proactive container auto-scaling sys-

tem. The AI4DL framework [1] collects workload traces
to learn a phase discovery model, extended here with an
incremental phase discovery method to accommodate more
types of workload. Each container’s resource consumption is
modeled as a sequence of phases, each phase with its statistic
profiling (e.g., maximum, average, standard deviation). A
phase prediction model is trained on phase sequences to
forecast phases for a running container. Once in production,
new applications are passed through the phase discovery
model, to obtain their current behaviors and forecast the next
phases. Given the prediction for the next execution interval,
proactive policies can decide how to resize the container
using the predicted phase profile.

Figure 1: The proactive auto-scaling system, using AI4DL,
incremental phase discovery and phase forecasting

B. Incremental Phase Discovery
The phase discovery process consists of the following

three main elements:
Trace encoding: Telemetry from containers is en-

coded using a Conditional Restricted Boltzmann Machine
(CRBM) [21], capable of encoding multi-dimensional time-
series into a features vector, where similar inputs produce
similar encoding. CRBM receives a time window of met-
rics, namely CPU and memory at time t, plus the history
t − 1 . . . t − d, where d is the CRBM delay (time-window
size as hyper-parameter). The output is a vector of size h
embedding the full window trace, capturing the dynamic



behavior or the resource usage for the given time window
t . . . t− d.

Phase identification: As CRBM-generated encoding vec-
tors have a “similarity” property, proximity-based clustering
methods like k-means are used to cluster similar behaviors,
each with a similar resource usage profile. The number k
can be determined during the clustering training through
classical methods (e.g., observing the Square Sum Within
clusters (SSW) [10]), or to be incremental.

Statistical profiling: By passing real-time container met-
rics through the encoding and clustering, we can identify
the current phase of execution at each time step. For each
phase discovered, we keep its profiling statistics to provide
information to resource allocation policies.

From an initial set of workloads, we can discover their
phases and phase profiles. However, when new containers
from a different kind of application arrive, new behaviors
are introduced into the system. When a behavior classified
in a specific phase differs largely from the usual center,
we should consider it as a new phase. As observed during
experimentation, the CRBM does not need to be retrained
when the new application shows an unidentifiable behavior,
but the clustering method does. Also, we can either create
a new clustering model for the application or split the
divergent clusters adding the new centers to the phase
identification model.

C. Phase Prediction
As previously seen in AI4DL [1], detecting the current

phase of a running container can provide better estimations
of resource usage than taking those from the previously
observed time window. However, forecasting the next phases
should be better if phase prediction is possible. We propose
Multi-Layer Perceptron (MLP) with time-windows to predict
the next sequence of phases given a running execution.
When comparing it with other predictors, such as a Long
Short-Term Memory (LSTM), we observed similar perfor-
mance for our benchmarking executions. We also studied
naı̈ve forecasting rules and simpler predictors, which obtain
lower accuracy with respect to MLPs and LSTMs.

Given a sequence of phases discovered from a running
container in a time window (t − d . . . t), we use the MLP
to produce (t + 1 . . . t + n). We use the statistics for each
predicted phase and decide to resize the container according
to the maximum resource usage observed. The prediction
model is trained on a collection of sequences of phases from
completed containers. All phases use the same interval, 15
seconds, to generate a phase ID. The phase prediction task
is cast as a classification problem. The classifier takes as
input a time window of phase values and predicts as output
the phase IDs in the next n time slots.

D. Container Auto-scaling Policies
When applying our phase-detection and phase-forecasting

in container auto-scaling, we explore two different types of

auto-scaling policies: reactive policies (e.g., as used in [5],
[1]) and proactive policies (policies based in forecasting).

Reactive policies: such policies resize containers accord-
ing to the information observed in the past. We evaluate
two strategies based on time windows statistics. The first
strategy makes a resizing decision according to the top 95th

percentile resource demands from the previous time window.
The second strategy makes a resizing decision based on the
95th percentile of resource demands from the phases profiles
in the time window.

Proactive policies: such policies allocate resources
through forecasting resource usage, i.e., predicting the next
several phases and using their profiles to resize the container
proactively. When a proactive policy decides how much to
provision, it takes into account the “next window” of pre-
dictions. Our policy chooses the maximum of the candidate
profiles for a future window. The forecasting window size
becomes a hyper-parameter to study.

Finally, we need to decide how frequently to predict and
resize the containers. Two strategies are available: 1) we
resize the containers periodically (e.g., each N minutes), or
2) we trigger the resizing only when necessary (e.g., the need
for more resources). In the IBM Cloud services, metrics can
be collected every 15 seconds as a “step” where a phase can
be detected (i.e., with d = 3, the CRBM + clustering can
detect a phase with a time window of 4 steps = 1 minute).
In AI4DL a periodical resizing policy is applied every 10
minutes according to their system requirement, while in
AutoPilot resizing is only triggered when the difference
between the resource usage and the limit exceeds a tolerance,
to prevent frequent unnecessary resizing operations.

Here we apply an auto-scaling policy that 1) at each time
step predicts phases in the next time window (1 minute), 2)
retrieves the required CPU and Memory resources from all
predicted phase profiles, and 3) determines the maximum
resource demand from all predicted phase profiles (taking
the percentile rule into account as mentioned above). If the
predicted resource demands indicate an increase over a given
tolerance (namely 10% of the current demand), the container
is scaled up with the predicted resources. And when the
predicted resources indicate a decrease of demand below
the current limit, we scale the container down with larger
tolerance to avoid some slight usage fluctuations causing
frequent scaling up and down.

IV. EXPERIMENTS

A. Incremental Phase Discovery

First, we evaluate the iterative approach for the incremen-
tal phase discovery by adapting phase models trained on
DLaaS workloads to VR workloads, in clusters that provide
the IBM Watson ML service. We use 5000 container traces
from DLaaS for training and 500 for validation, and 50
traces from VR (×100 longer than DLaaS traces) for testing
the model generalization and incremental updates.



A CRBM is defined by the number of inputs and the
number of hidden units. The model is trained for a specified
number of epochs using a gradient descent algorithm. We
use the Square Sum of the Error on data reconstruction
as the loss to stop learning.Let us denote by d the sliding
window size, and by t the time at which the sliding window
is placed (t − d, . . . , t). After an exploration of the loss of
CRBM, we chose the optimal delay to d = 3.Therefore, if
the sampling period in our cluster is 15 seconds, the time
window used to discover phase is one minute (of 15 seconds
+ 3 ∗ 15 = 45 seconds of history). By tuning the hyper-
parameters, we find the minimum loss with a learning rate
lr = 10−3, 2000 epochs, and 10 hidden units. To find the
different phases, we use a k-means, proved to work as well as
other sophisticated methods. K-means only requires tuning
the number of cluster k, selected by studying the Square
Sum Within clusters (SSW) [22]. In our data, most of the
SSW is explained with k = 5.

Figure 2 shows the phase discovery and detection results
for both the DLaaS workload and the VR workload. We first
train the model just on DLaaS container traces. Then, we
incrementally update the model and iteratively discover new
phases from the VR traces. We observe that for DLaaS work-
loads (in subfigure 2a) the most common behavior (gray
phase) has high and stable CPU consumption and steady
use of memory, while other phases display high variation of
Memory (yellow phase), CPU/MEM spikes (blue phase) or
low CPU/MEM usage (red phase). In Figure 2b, we show
how the default model trained on the DLaaS workload works
in the VR workload. We find that the most common behavior
is yellow phase with extremely high variance of resource
usage behaviors, indicating that such a phase may contain
unusual behaviors different from what is learned in DLaaS
workloads. When updating the k-means model by iteratively
splitting the yellow phase (using the same SSW procedure to
find a proper new k for the cluster subdivision), we observe
that a new set of phases are discovered for VR workload,
and added to the existing model as new centers.

B. Validation of the Phase Prediction

A crucial part of the active auto-scaling pipeline is to
predict future resource demands, which we encoded as
phases. We tested different models to predict the next phase
within a 1 minute time window (4 time-steps), including:
1) The most frequent observed phase as an expected phase
for the next time window; 2) the last observed phase as
an expected phase for the next time window; 3) an MLP
that predicts the next time window; and 4) a LSTM neural
network. Table I shows a comparison among the different
methods. Note that F1-score quality decreases as we increase
the number of steps. We observe that either MLP and LSTM
give the best results, but we will use MLP as it is simpler
and faster.

(a) Variation in detected phases for DLaaS containers

(b) Variation for VR containers, before and after updating the model

Figure 2: Variation of phases on training and updating
t=1 t=2 t=3 t=4

Last window mode estimator 0.654 0.614 0.579 0.554
Last observed phase estimator 0.730 0.689 0.648 0.613
One-hot-encoded MLP 0.926 0.876 0.827 0.786
LSTM 0.913 0.863 0.812 0.756

Table I: F1-scores of the prediction models

C. Overall System Performance

Finally, we evaluate the overall system performance under
different policies. Here we measure the total slack for the
different policies (amount of resource over-provisioning), the
number of container kills due to the OOM errors, and the
number of resizing actions produced by each policy.

Figure 3 shows the over-provisioning slacks of CPU and
Memory for different policies in the Cumulative Density
Functions. Note that the phase prediction based proactive
policy leads to a tighter resource provisioning with less
slack between the limit and the actual usage. Besides, the
proactive policy results in fewer container kills (20) due to
OOM errors, while both reactive policies result in over 500
container kills. Table II shows the results of auto-scaling
performance for each policy in comparison.
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Figure 3: Cumulative distribution of the over-provisioned
CPU and Memory for the predictive vs. reactive policies



Predictive Reactive-max Reactive-stats
Auto-scaling changes 3.74 33.28 3.40
OOM containers 20 402 357
CPU Over-provision 6.37e+08 10.20e+08 101.79e+08
Mem Over-provision 5.03e+07 3.74e+07 2.28e+08

Table II: Average number of events for each policy, and
over-provisioning in CPU hour and KBytes hour

We observe that the average number of auto-scaling
changes for the reactive-max strategy is very high, with 33
changes. In contrast, proactive and reactive-statistics policies
have a much lower number (around 3-4 changes) per con-
tainer. Note that both predictive and reactive make minimal
changes as the usage fluctuations are probably identified as a
particular phase. The proactive policy’s principal advantage
is to foresee potential phase transitions, avoiding container
kills due to OOM errors. Overall, our phase prediction
based proactive auto-scaling policy reduces the amount
of CPU over-provisioning from 10 · 108CPU × hour to
6 · 108CPU × hour. Besides, we find that our proactive
policy results in much fewer container kills (20) due to OOM
errors, while both reactive policies result in hundreds of
container kills, 357 (reactive- statistics), and 402 (reactive-
max) OOM errors, respectively. Therefore, our prediction
based proactive policy appears to be much safer than reactive
approaches with fewer resizing operations.

V. CONCLUSIONS

Inspired by prior work [10], [1], we here present a
proactive vertical auto-scaling method for containerized ma-
chine learning services. We enhance the CRBM based phase
discovery method with an iterative, incremental approach to
accommodate broader types of machine learning workloads.
Besides, via discovering phases for containers running dif-
ferent workload types, we find that typical phase transitions
widely occur across containers, contributing to the major-
ity of abrupt resource usage changes in machine learning
services. Capable of foreseeing such transitions can help
proactively resize containers to accommodate the sudden
changes in resource demands. By modeling phase transitions
using an MLP model, we prove that such sudden behavior
changes can be predicted via phases and can be leveraged
in a proactive auto-scaling policy. Evaluations show that
our proactive auto-scaling policy can significantly improve
resource efficiency more safely (from 65% of potential OOM
scenarios to 4%) while maintaining the same auto-scaling
amount changes than the best of the reactive policies.
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