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Abstract

We present a phase field model to simulate brittle fracture in an initially
straight Euler-Bernoulli beam, with generalization to curved beams. We
start from formulating the problem with the principle of minimum potential
energy in a 3D solid, with the displacement field and the phase field as
primary arguments. We then select, for each cross section, representative
fields that characterize the said cross section, including the beam deflection
and rotation, and two independent ansatz variables within the cross section to
represent the phase field. The problem then reduces to a minimization with
only one-dimensional field variables. A feature of the proposed method is,
without discretizing the phase field within the cross section, it can represent
its variation within the cross section, allowing to simulate cracks partially
going through the thickness due to bending as well as axial loads.

Keywords: Phase field, Euler-Bernoulli beam, Brittle fracture, Dimension
reduction

1. Introduction

The study of fracture behavior of a slender column or beam with cracks
is a problem of practical interest and of crucial importance to aerospace,
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mechanical and civil engineering. According to Irwin and Paris [1], the stress
near crack tips is concentrated and thus induces a local reduction in the
sti↵ness of the structure member which, in turn, alters the static and dynamic
behaviors of the structure. Following this idea, Okamura et al. [2] proposed
the local flexibility approach, in which the local flexibility due to an edge
crack is modeled by a massless rotational spring connecting two pristine
parts. The sti↵ness of the rotational spring is expressed in terms of stress
intensity factors derived from linear elastic fracture mechanics.

Christides and Barr [3] modified the Euler-Bernoulli beam theory to in-
clude the e↵ect of one or more pairs of symmetric open cracks in a structural
member of simple geometric form. In Bouboulas et al. [4], a cracked beam
finite element for the modeling of fractured skeletal structures is introduced.
The sti↵ness matrix of the cracked beam element is derived by using the
direct sti↵ness method, which is a function of the crack depth and position.
Vo-Duy et al. [5] modeled the damage by the reduction of longitudinal and
transverse Young’s moduli of a specific beam layer of a laminated composite
beam structure.

As beam and shell formulations are both dimension-reduction ones, below
we review some of the recent works on shell fractures. Areias and Belytschko
[6] developed an extended finite element procedure for analyzing arbitrary
crack propagation in shells. Areias et al. [7] then made significant improve-
ments to the aforementioned method. Nevertheless, in both contributions,
the cracks are assumed to be through the thickness.

The phase field approach is an alternative method to model crack initi-
ation, propagation, and branching without any ad hoc criteria or the need
to track the complex geometry. This approach was proposed by Bourdin et

al. [8] based on the variational formulation of brittle fracture by Francfort and
Marigo [9]. The main idea is using a di↵usive auxiliary scalar field, called
the phase field, to represent intermediate states between the fully broken
and intact material states. The phase field, along with displacement field,
is determined from a minimization principle in the static case. For a more
detailed review of the phase field method, see Ambati et al. [10].

Due to the advantages mentioned above, a few researchers have applied
the phase field method to plate and shell fracture. Modeling the shell as an
assembly of flat finite elements, Ulmer et al. [11] decompose the strain ten-
sor into membrane and bending parts, and then also split the strain energy
accordingly. Amiri et al. [12] presented a phase field model for fracture in
thin shells, which possesses a number of distinct features. First, the shell
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geometry is represented by a scattered point sets based on statistical learn-
ing techniques. Second, both the displacement field and the phase field are
interpolated with the local maximum-entropy meshfree method. However,
in [12], the phase field is assumed constant within the thickness of the shell,
precluding the representation of progressive damaging of the shell sections in
bending-dominated cases.

A more recent contribution to this issue is addressed by Areias et al. [13].
To recover a physically meaningful behavior in bending, they introduced two
independent phase fields to identify damage at the upper and lower faces of
a shell, respectively. In the discretization step, these two phase fields are
interpolated separately within their own surface, while between the upper
and lower surfaces, linear interpolation is adopted.

Ambati et al. [14] applied the phase field approach to model fracture
in a solid-shell with tension-compression split according to either [15] or
[16]. Kiendl et al. [17] proposed a new approach, where both tension term
and compression term depend on the total strain consisting of membrane
and bending deformation. In contrast to previous developments, Reinoso et

al. [18] presented a phase field model for large deformation analysis of thin-
walled structures using an enhanced strain-based formulation, coupling with
the displacement and the incompatible strain fields.

In this paper, we develop a one-dimensional formulation for modeling the
brittle fracture in an Euler-Bernoulli beam under bending load, with the
aim of generalizing it to plate and shell problems. This formulation is one-
dimensional in the sense that all primary variables are functions of only x,
the coordinate along the beam axis. Moreover, we restrict the cracks to be
perpendicular to the beam axis, and also the deformation to be plane strain
in a plane that contains the beam axis.

With such restrictions, this model is capable of taking into account cracks
emanating from the edge and extending only a fraction of the beam height,
such as those caused by bending load. This is accomplished by a non-constant
phase field across the thickness. More precisely, we introduce a specially de-
signed phase field ansatz, a double-sigmoid function, to represent the phase
field variation across the thickness. The ansatz expression only as two pa-
rameters to be determined, themselves being functions of x. The idea to
adopt a double-sigmoid form is twofold. First, their limiting behavior as the
transition widths of the sigmoids vanish resembles piecewise constant func-
tions with desired values of 0 and 1. Second, this transition width at finite
values can be tied to the length-scale parameter of the phase field method in

3
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the bulk form.
The ability to handle part-through cracks seems contradictory to the as-

sumptions of small cross section induced in the Euler-Bernoulli theory. In
fact, the purpose of doing so is to test the double-sigmoid ansatz in the sim-
plest setting; the formulation is applicable to any displacement assumptions
such as the Timoshenko beam theory, and with appropriate generalizations,
also to shell fracture problems.

The structure of the remainder of the paper is as follows: Section 2 re-
capitulates the bulk formulation of phase field models for brittle fracture.
Section 3 specializes the formulation to the Euler-Bernouli beam, including
the ansatz for the phase field. In Section 4 implementation details of the
method are provided, while in Section 5 numerical examples with straight
and curved beams that showcase the capability of the proposed model are
given, including a comparison with bulk computation. Finally, in Section 6,
conclusions are drawn concerning the results of the proposed approach.

2. Recapitulation of a phase field model for brittle fracture

This section recapitulates a phase field model for brittle fracture in the
quasi-static setting. The reader is referred to [19, 9, 8] for more variations
and analysis of similar models.

Consider a bounded Lipschitz continuous domain ⌦ ⇢ Rn, n = 2 or 3.
The boundary of this domain, @⌦, is divided into Dirichlet boundary �D

and Neumann boundary �N such that �D [ �N = @⌦ and �D \ �N = ;. In
the quasi-static case, the model is based on minimizing the system’s total
potential energy functional of u 2 H

1(⌦,Rn), the displacement field, and
d 2 H

1(⌦), the phase field. This energy functional takes the following form:

⇧[u, d] :=

Z

⌦

 ["(u), d] d⌦�
Z

�N

tN · u d��
Z

⌦

b · u d⌦

+gc

Z

⌦

�(d,rd) d⌦,
(1)

where the surface density function per unit volume of the solid is introduced
as

�(d,rd) = d
2

2`
+
`

2
|rd|2. (2)

Note that in the work of [8], for example, the phase field v is defined as
1 � d in our notation. Here vector fields uD : �D ! Rn, tN : �N ! Rn,

4
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and b : ⌦! Rn are prescribed displacement, traction, and body force fields,
respectively. Scalars gc and ` are the critical energy release rate and the phase
field length scale parameter, respectively. Tensor " is the strain defined as

"(u) :=
1

2

⇣
ru+ (ru)T

⌘
.

In this work, we consider a strain energy density  ["(u), d] that takes the
following form:

 (", d) = (1� d)2 +(") +  �("). (3)

Scalar functions  + and  � are the strain energy densities due to tension
and compression, respectively, which must satisfy

1.  +("), �(") � 0 for all ";
2.  +(") +  �(") =  0("), where  0 is the strain energy density function

of a pristine elastic solid. For a linear isotropic model,  0 is given by

 0(") =
�

2
(tr ")2 + µ" : ",

where � and µ are Lamé constants which satisfy µ > 0 and �+2µ > 0.

From (3), the stress-strain relation is given by

�(", d) =
@ (", d)

@"
= (1� d)2�+(") + ��("), (4a)

where �±(") := @ ±(")/@".
The choice of  +("), and thus  �("), is not unique in the literature.

Earlier works such as [8, 20, 21, 22] essentially set  +(") =  0("), leading
to an analytic expression of  (", d). Nevertheless, this model treats ten-
sion and compression alike, resulting in unphysical crack propagation due to
compression.

In contrast, Amor et al. [15] and Miehe et al. [16] proposed models that
split the contribution to the internal energy from tension (or dilatation) and
compression. In this work, we will adopt the model proposed in [16], which
reads

 +(") =
�

2
htr "i2+ + µ

3X

i=1

h"ii2+, (4b)

where "i, i = 1, 2, 3, are principal strains, and hxi+ := (x + |x|)/2 is the
McCaulay bracket.

5
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3. Specialization to an Euler-Bernoulli beam

In this section, we specialize the phase field formulation (1) to the case
in which ⌦ takes the geometry of a prismatic beam. We set the origin of
an orthonormal basis (ex, ey, ez) to the centroid of one of the basal planes
of the beam, with ex along the beam axis. Let ⌦ = A ⇥ (0, L), where L is
the length of the beam and the open set A ⇢ R2 is the cross section in the
yz-plane.

To focus on the main idea, we make the problem essentially two-dimensional
in the xy-plane by further assuming that A, and thus ⌦, is symmetric about
the plane z = 0, and that all transverse loads are applied within the xy-plane,
see Figure 1.

𝒆

𝒆
𝒆

Figure 1: Orthonormal basis for a beam. In this work, we assume that the beam is
symmetric about the xy-plane, and that all transverse loads are applied in this plane.
These render the problem two-dimensional in the xy-plane.

The goal of this section is to render the formulation essentially one-
dimensional, i.e., all primary variables depending only on x. To attain this,
we restrict all cracks to be perpendicular to ex.

3.1. Kinematics for an initially straight beam

We adopt the Euler-Bernoulli beam theory here for simplicity, but the
proposed phase field formulation can easily be generalized to the Timoshenko
beam theory, for example. This theory assumes that the cross section A: (1)
is rigid in its own plane, the yz-plane, (2) remains plane after deformation,
and (3) is normal to the deformed axis of the beam.

6
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The Euler-Bernoulli assumptions lead to the following kinematic ansatz
on the displacement field u : ⌦! R2:

u(x, y, z) = �(y � yna)v
0(x)ex + v(x)ey, (5)

where yna = yna(x) is the y-coordinate of the neutral axis of the cross section
A(x), v(x) is the sectional displacement, and v

0 := dv(x)/dx. In the clas-
sical Euler-Bernoulli beam theory, when the section is made of an isotropic
homogeneous material, yna ⌘ 0. However, in our case, due to the possible
existence of cracks in the cross section, the neutral axis may not go through
the centroid of A, but needs to be determined from force equilibrium, see
Section 3.4 for more details.

From (5), the strain field is given by,

"(x, y, z) = �(y � yna)(x)ex ⌦ ex, (6)

where

(x) = v
00(x),

is the sectional curvature about axis ez.

3.2. Constitutive response for an initially straight beam

Specializing the constitutive model (4) for the beam model described in
Section 3.1, in particular, the strain field (6) and the condition � = 0 and
µ = E/21, leads to

 +(") =
E

2
h�(y � yna)i2+,

and hence the following constitutive response:

 (x, y, z) =
1

2
⇣(d,, y, yna)E

2(y � yna)
2
, (7)

�(x, y, z) = �⇣(d,, y, yna)E(y � yna)ex ⌦ ex, (8)

where the sectional degradation factor ⇣(d,, y, yna) takes the expression as
follows,

⇣(d,, y, yna) = H[(y � yna)] + (1� d)2H[�(y � yna)].

Here H(·) is the Heaviside function defined as H(x) = 1 if x > 0, H(x) = 0
if x < 0 and H(x) = 1/2 if x = 0.

1This corresponds to the case of a vanishing Poisson’s ratio.

7
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3.3. Ansatz for the phase field over the cross section

To obtain a formulation with the primary fields only dependent on the
axial variable x, we assume that the phase field d takes a specific functional
form within the cross section, i.e., an ansatz as a field on the beam cross
section. To be consistent with the two-dimensional assumption, we will also
assume that d does not depend on z.

The simplest possible ansatz for the phase field is a constant function
over the cross section, i.e., d(x, y) = d(x). Nevertheless, this ansatz can only
represent complete fracture over the cross section, but is unable to describe
partial fracture, say fracture caused by a bending load.

To overcome this limitation, we propose a double-sigmoid ansatz that
takes the following form:

d(x, y) = 1� 1

2
S [⇠L(x, y)] +

1

2
S [⇠U(x, y)] , HL  y  HU , (9)

where HL := infA y and HU := supA y. The sigmoid function S 2 C
3(R) is

such that

S(�⇠) = �S(⇠), 0 < S
0(⇠)  1, S(⇠)! ±1 as ⇠ ! ±1, S

0(⇠) = 1 i↵ ⇠ = 0.

These conditions imply that S(0) = 0 and �1 < S(⇠) < 1 for all ⇠ 2 R. Here

⇠L(x, y) :=
2

`
[y � yL(x)], ⇠U(x, y) :=

2

`
[y � yU(x)].

This ansatz is based on the following assumptions:

1. Cracks only emanate perpendicular to the beam axis from the top or
bottom of the beam.

2. The phase field d generally assumes extreme values 0 or 1, except over
transition regions with a size of order `.

3. The partial derivative @d/@y evaluated at y = yL or yU almost equals
1/`. This is to match the phase field solution in the bulk case, i.e.,
d = exp(|y|/`), where the y-axis is perpendicular to the crack with
y = 0 on the crack path.

For concreteness, we have chosen

S(⇠) = tanh ⇠

8
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in this work. In addition, regularization parameter ` is required to satisfy
`  (HU � HL)/4. An illustration of this ansatz is given in Figure 2. Here
yL and yU are ansatz variables which, when lying inside the range (HL, HU),
represent roughly the y-coordinate of the crack front emanating from the
bottom and the top, respectively. In principle, yL and yU can assume values
of all real numbers with the restriction yL < yU (yL � yU means complete
breakage of the cross section). However, to render a tangent sti↵ness matrix
with a manageable conditioning, we require HL � �`  yL < yU  HU + �`

where � ⇡ 1. The case of yL = HL�` and yU = HU+` is plotted in Figure 3,
which shows that the resulting phase field is already very close to a constant
zero profile, a profile corresponding to the pristine state of the solid.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d

-0.5

-0.3

0

0.3

0.5

y

HU =

yU =

yL =

HL =

Crack zone

Pristine zone

Crack zone

Figure 2: Phase field profile corresponding to a particular choice of ansatz variables yL =
�0.3, yU = 0.3 and ` = 0.01, for a unit beam height HU �HL = 1. The phase field takes
on extreme values except in transition regions near y = yL and y = yU .

3.4. The neutral axis and the moment of inertia

The location of the neutral axis of any cross section is determined from
the axial force equilibrium at that cross section. Since there is no axial load
applied, Z

A

�xx(x, y, z) dydz = 0,

9
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d

-0.5

0

0.5

y

HU =

HL =

Figure 3: Phase field profile corresponding to extreme values of the ansatz variables yL =
HL � ` and yU = HU + `. Here ` = 0.01, for a unit beam height HU � HL = 1. The
resulting phase field is almost constant zero and thus will be regarded as representing the
pristine state of the material throughout the cross section.

which reduces to
Z

A

[y � yna(x)] ⇣[d,(x), y, yna(x)] dydz = 0, (10)

by virtue of (8). Equation (10) then uniquely determines yna for any x.
From (7), the strain energy density (per unit length) at x takes the form

1

2
E(x)2

Z

A

[y � yna(x)]
2
⇣[d,(x), y, yna(x)] dydz.

As a result, the sectional moment of inertia I(x) is given by

I(x) =

Z

A

⇣[d,(x), y, yna(x)] [y � yna(x)]
2
dydz. (11)

Sanity check. In the case of a pristine cross section, d ⌘ 0, then ⇣(d,, y, yna) ⌘
1. In this case, (10) and (11) reduce to their classical form.

3.5. Statement of the problem

Without loss of generality, we consider a cantilever beam occupying x 2
[0, L] subjected to essential boundary conditions v(xV ) = v0 and v

0(x✓) = ✓0.
Moreover, let a concentrated bending momentMez be applied at xM 2 [0, L],

10
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a point load Fey be exerted at point xF 2 [0, L], and distributed load wey,
w : [0, L]! R, be acting on the entire beam.

Then the total potential functional is given by

⇧̂`[v, yL, yU ] = ⇧`[v, d(yL, yU)]

=
1

2

Z L

0

EI(x; v, yL, yU)(x)
2
dx�Mv

0(xM)� Fv(xF )�
Z L

0

w(x)v(x)dx

+

Z L

0

Z

A

gc�[d(x, y; yL, yU),rd(x, y; yL, yU)] dydz dx.

(12)
We then define

Y = H
1(0, L),

V =
�
f 2 H

2(0, L)
��f(xV ) = v0, f

0(x✓) = ✓0

 
,

V0 =
�
f 2 H

2(0, L)
��f(xV ) = 0, f 0(x✓) = 0

 
.

(13)

Finally, let the initial conditions be

yL(x, t = 0) = y
0
L(x), yU(x, t = 0) = y

0
U(x). (14)

The quasi-static evolution of the coupled problem can be stated as: For
a given load history {v0, ✓0,M, F, w} dependent on a time-like variable t 2
[0, T ], T > 0, and initial conditions (14), find (v, yL, yU) 2 V ⇥ Y ⇥ Y , as
the minimizer of total potential functional (12), subjected to irreversibility
constraints

8x 2 [0, L], yL(x, t1)  yL(x, t2), yU(x, t1) � yU( t2), whenever t1 < t2,

(15)
until either (a) t = T or (b) the early termination criterion yL � yU is
satisfied at some x.

This constrained optimization problem is the basis of the numerical im-
plementation to be detailed in Section 4.

On the strong form. Some of the equations in the strong form, in the simple
case of M = F = 0 and xV = x✓ = 0, can be obtained as

d
2

dx2
[EI(x)(x)]� w(x) = 0,

v(x = 0) = v
0(x = 0) = 0,

v
00(x = L) = v

000(x = L) = 0.

11
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The remaining equations are those for the ansatz variables yL and yU . Never-
theless, these equations are omitted here as they are too lengthy and tedious
to show, although they can be obtained as Karush-Kuhn-Tucker systems
using standard procedures of Euler-Lagrange equations.

3.6. Generalization to a curved beam

This section aims to generalize the kinematics of a straight beam to a
curved beam. The geometry of the curved beam are characterized by the
curvilinear coordinate system (s, r) depicted in Figure 4. Here s and r denote
the coordinates along the tangential and thickness directions, respectively.
We let R = R(s) represent the radius of curvature at the mid-line of the
beam. Angle � is the physical rotation of the section, as shown in Figure
4. Let u and v be the tangential and normal displacements of the neutral
axis. Following Gan [23], the displacement field of the curved Euler-Bernoulli
beam is given by,

u(s, r) = �r✓(s)� v
d�

ds
,

v(s, r) = v(s),

✓(s) =
dv

ds
.

Then, the normal strain field is given by,

"s = �r
d✓

ds
+

v

R(s)
.

In the simulation, we use the non-uniform rational B-spline (NURBS) to
parameterize the curved beam. The other treatments are very similar to the
case of a straight beam. In particular, we use RL and RU as the phase field
ansatz parameters, playing the roles of yL and yU , respectively.

4. Numerical implementation

This section details the numerical implementation of the proposed model.
In this section, we will first introduce the spatial discretization of the problem
in Section 4.1, and then the staggered scheme to solve the coupled problem
in Section 4.2.

12
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Figure 4: A general curved Euler-Bernoulli beam.

4.1. Finite element discretization of the primary variables

As a reminder, the primary variables of the model are the transverse dis-
placement field v and the phase field ansatz variables yL and yU , all functions
over [0, L]. From (13), v requires C1 continuity while yL and yU require only
C

0. The corresponding lowest order polynomial elements are the Hermit cu-
bic element and the P1 element, respectively, which are the basis functions
we have adopted.

The same quasi-uniform mesh is used for v, yL, and yU , whose largest
element length he should satisfy he  `/2 according to [19]. Usually we
prefer the choice with he  `/4.

Now let

v(x) =
nvX

i=1

viNi(x), yL(x) =
ndX

j=1

yLj�j(x), yU(x) =
ndX

j=1

yUj�j(x), (16)

where Ni 2 V , i = 1, . . . , nv, and �j 2 Y , j = 1, . . . , nd. The discrete nonlin-
ear optimization problem to be solved can then be obtained by substituting
(16) into (12), subjected to the irresversibility constraints (15) at the nodes,
and with the early termination criterion

yLj � yUj, 9j = 1, . . . , nd. (17)

13
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Determination of yna. In general, yna has to be determined from (10) itera-
tively. Note that we always have ⇣ > 0, implying that the values HL and HU

always bracket the root of (10). Then any standard root-finding algorithm
such as the Pegasus method introduced in [24] is able to obtain the root
within a reasonable number of iterations. Alternatively, yna = yna(x) can
also be treated as an independent field, whose minimizer of (12) coincides
with (10).

Numerical integration along the beam height. The key issue in the implemen-
tation is the integration to obtain the residual vector (see Appendix A) and
tangent sti↵ness matrix over the beam height, for each Gauss point for x. A
single Gauss integration rule will likely miss the regions with rapidly varying
integrands; an adaptive integration rule would be too expensive. Here as
we observe that the integrands vary near yL and yU . When yU � yL > 4`,
we collect critical points {yL ± 2`, yU ± 2`, yna} and divide the beam height
[�h/2, h/2] with such critical points, see Figure 5. Each of the resulting
intervals will be integrated using up to four Gauss points.

Figure 5: Multi-sections of integration.

4.2. Staggered scheme with the active set method

To begin, we divide the total load history into NLS load steps, i.e., 0 =
t0 < t1 < . . . < tNLS = T and solve for the solution at each load step tk,
k = 1, . . . , NLS. The entire algorithm is given in Algorithm 1.

For a typical coupled problem, there is usually a decision between a mono-
lithic solution scheme versus a staggered scheme. Here we adopt the latter,
which consists of solving two sub-problems alternately until convergence, one
for the displacement field and one for the phase field. For the displacement
sub-problem, we use the Newton-Raphson method, while for the phase field
sub-problem, we use the Newton-Raphson method along with a version of
the active set method [25] to enforce the inequality constraints (15).

14
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For each update of yL and yU , if (17) is satisfied at any cross section of
the beam, the program is terminated, as the corresponding cross section has
completely broken.

5. Numerical examples

To better illustrate the proposed methodology, we present several numer-
ical examples. The model material is polymethyl methacrylate, which has a
Young’s modulus E = 2.74 GPa and a critical energy release rate gc = 482
J/m2 [26]. Note that for the most part of a beam, the initial condition can
be set as

yL = HL � �`, yU = HU + �`,

except for the locations where initial cracks are to be modeled.

5.1. An initially pristine cantilevered beam

We first investigate a pristine cantilevered beam with an upward displace-
ment load imposed at the tip, as depicted in Figure 7.

The displacement load is increased until complete breakage of the cross
section near the clamped root. The length parameter ` = 20 mm and � = 1
is adopted. The numerical experiment is carried out with element sizes he =
20, 10, 5, 2.5 mm respectively. We expect that for a small enough he/` the
e↵ect of the mesh size will be insignificant. The comparison of load-deflection
curves for di↵erent mesh sizes is shown in Figure 8. We can observe that
the results are overall mesh independent. The evolution of the phase field,
represented by the variation of yL and yU , is shown in the left column of
Figure 9 where crack initiation and propagation could be observed.

We also compare the 1D beam model with 2D bulk model by using the
same material parameters, with Poisson’s ratio ⌫ = 0, ` = 20 mm, and mesh
size he = 5 mm. The expression of the strain energy density given by (4b) is
adopted. The right column of Figure 9 shows the results under an increasing
tip displacement load. The load-displacement curves from the 2D bulk-form
phase field method and 1D proposed method are compared in Figure 6. It
can be shown that qualitatively these two models behave the same, hence
e↵ective sti↵ness and toughness properties for the 1D model could be derived
and modified so as to match the 2D curve, if accurate quantitative analysis
is needed.

15
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Algorithm 1: Staggered scheme combined with the active set
method
Initialize v and {yL, yU} with initial conditions and set k = 1. Define
tolv and told as the tolerances of the normal of residual for
displacement and phase field sub-problem, respectively;
Set 0 = t0 < t1 < . . . < tNLS = T ;
Let v, yL, and yU denote collections of nodal degrees of freedom of
v, yL, and yU , respectively;
while k  NLS do

Update the loads {v0, ✓0,M, F, w} for t = tk;
repeat

/* Fix the phase field and update the displacement
field */

Compute tangent sti↵ness matix Kv and residual Rv of the
displacement sub-problem;
v v �K�1

v Rv;
/* Fix the displacement field and update the phase

field */
Set AL = AU = {j 2 N : 1  j  nd};
repeat

Set flag  false;
Compute tangent sti↵ness matix Kd and residual
Rd = {RT

L,R
T
U}T of the phase field sub-problem;

Set AL  AL [ {j : RLj < 0};
Set AU  AU [ {j : RUj > 0};
For all j such that yLj < y

k�1
Lj , set AL  AL \ {j} and

yLj  y
k�1
Lj ;

For all j such that yUj > y
k�1
Uj , set AU  AU \ {j} and

yUj  y
k�1
Uj ;

Update {yLj : j 2 AL} [ {yUj : j 2 AU} using
Newton-Raphson iteration;
if for any j, yLj � y

k�1
Lj and yUj  y

k�1
Uj then

flag  true
end

until flag = true;
until (kRd|AL[AUk  told and kRvk  tolv) or yLj > yUj for

some j = 1, . . . , nd;
k  k + 1;

end 16
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Figure 6: Load-displacement curves from 2D bulk-form phase field method and proposed
method.

𝐿

Tip displacement 𝑤
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Figure 7: Configuration of a cantilevered beam with transverse displacement load applied
at the tip. The beam length is L = 1000 mm and the beam height H = 100 mm.
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Figure 8: Load-deflection curves for di↵erent mesh sizes. Load F is normalized by the
maximum load before crack initiation, denoted as Fmax, and the deflection w is normalized
by beam length L.

5.2. A cantilevered beam with two initial cracks at the root

In this example, we consider a cantilevered beam with two initial cracks
near the root to verify that cracks in the proposed model behave di↵erently
under tension and compression.

The geometric setup as well as the loading are depicted in Figure 11. Lo-
cated on both sides of the neutral axis, the upper crack is under compression
while the lower crack under tension. The beam is loaded up to the collapse
of Section A.

The cantilevered beam is subjected to an incrementally increasing dis-
placement load. The displacement field at selected load steps are depicted
in Figure 12. Starting from tip displacement w = 14.0 mm, a brutal crack
growth can be observed by noticing that the graph of the displacement field
as a function of x almost becomes a straight line to the right of the cracks.
The corresponding phase fields, represented by yL and yU , are depicted in
Figure 14, where yL and yU can roughly be interpreted as crack fronts.

We can only observe gradual propagation of the crack when the tip dis-
placement is small; after a certain load, the crack will brutally propagate.
Hence to observe the crack growth process the displacement increments need
to be carefully adjusted.
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Figure 9: Results of the proposed model for the initially pristine cantilevered beam test:
(a) w = 11.6 mm; (b) w = 11.8 mm; (c) w = 12.1 mm, at which the crack length is 0.06
mm; (d) w = 12.14 mm, with crack length 0.09 mm.
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Figure 10: Comparison between the 1D beam model (left column) and the 2D bulk model
(right column) for an initially pristine cantilevered beam. The loadings are adjusted so
that the crack lengths on the same row are similar. Loadings of the left column: (a)
w = 11.6 mm; (c) w = 11.8 mm; (e) w = 12.1 mm; (g) w = 12.14 mm. Loadings of the
right column: (b) w = 14.5 mm; (d) w = 15.5 mm; (f) w = 16.0 mm; (h) w = 22.0 mm.
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Figure 11: Configuration of a cantilevered beam with two initial cracks, with beam length
L = 1.0 m, crack distance from the root d = 0.05 m, the initial length of the crack is 0.015
m and the beam height H = 0.1 m.
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Figure 12: Cantilevered beam with two initial cracks at the root. Displacement field at
each load step. Load step 1: tip displacement w = 13.0 mm; load step 2: w = 13.5 mm;
load step 3: w = 13.7 mm; load step 4: w = 14.0 mm. Length scale parameter `/L=0.02,
mesh size hd/L=hv/L=0.01, � = 1.0.
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Figure 13: Results of proposed model for cantilevered beam with two initial cracks test:
(a) w = 0; (b) w = 13.0 mm; (c) w = 13.7 mm; (d) w = 14.0 mm.
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Figure 14: Comparison between 1d-model and 2d bulk form model for a cantilevered
beam with two initial cracks test: (a) w = 0 mm; (c) w = 13.0 mm; (e) w = 13.7 mm; (g)
w = 14.0 mm for mesh size he = 10 mm; (b) w = 0 mm; (d) w = 14.0 mm; (f) w = 14.68
mm and (h) w = 14.690 mm.
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Clamped
Displacement load

Figure 15: Configuration of a fully clamped beam with one initial crack, under downward
displacement loading. The mesh size he = 0.01 mm, the length parameter ` = 0.0125 mm,
and � = 1.

5.3. A fully clamped beam with one initial crack at the middle

In this numerical example, we set the geometry parameters of fully fixed
two ends of the beam, as depicted in Figure 15. We choose the material
parameters as follows: E = 20.8 kN/mm2, and gc = 5 ⇥ 10�4kN/mm. The
crack propagates as in Figure 16.

In the sequel, we verify the proposed method with the results from Zhang
et al. [27] with another example of a fully clamped beam with an initial
crack, by using the same parameters and boundary conditions, i.e., E =
268kN/mm2, and gc = 50N/m. The comparison is shown in Table 1, indi-
cating that the di↵erence is acceptable.

proposed method Zhang et al. [27]
Tip displacement (m) 0.04 0.05

Table 1: Comparison with results in the literature using the tip displacement at the same
crack length (almost complete fracture).

5.4. A cantilevered curved beam with two initial cracks

In this numerical example, we choose a quarter-circle beam that is fixed
at one end and loaded with a transverse tip displacement load at the top end.
The problem is depicted in Figure 17. We choose the material parameters
as follows: E = 106 kN/mm2, and gc = 0.4kN/mm, the height of beam is
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Figure 16: Phase field parameters yL and yU for a fully clamped beam with one initial crack
at the middle. The tip displacements are: (a) w = 0, (b) w = 0.20 mm, (c) w = 0.3262
mm, (d) w = 0.32629 mm.

25



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0.2 m, the radius of the mid-line R is 1 m, ` = 0.01, and � = 2. The crack
propagates as in Figure 18.

Figure 17: Configuration of a curved-beam with one initial crack.

6. Conclusions

In this paper, we have developed a one-dimensional variational formu-
lation for modeling the brittle fracture in an Euler-Bernoulli beam, which
has the ability to handle part-through cracks emanating from the beam edge
and orthogonal to the beam axis, typically caused by a bending load. To
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Figure 18: Phase field parameters RL and RU (playing the roles of yL and yU , respectively)
for a curved beam with one initial crack at the upper boundary. The tip displacements
are: (a) w = 0, (b) w = 5.5⇥ 10�2, (c) w = 5.8⇥ 10�2, and (d) w = 5.9⇥ 10�2.
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this end, We introduced a specially designed family of ansätze to the phase
field within a cross section. A typical ansatz of the family utilizes two one-
dimensional variables to describe the crack extensions. We demonstrated the
performance of the proposed beam fracture formulation by means of repre-
sentative numerical examples with straight and curved beams.
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Appendix A. Useful formulas

A necessary condition for minimization of the total potential energy func-
tional ⇧` in (12) is that its first variation vanishes. Thus, we give the expres-
sion of the first variation of �⇧`.

�⇧̂`[v, yL, yU ] = �⇧`[v, d(yL, yU)]

=
1

2

Z L

0

E(x)2 �I(x; v, yL, yU) dx+

Z L

0

EI(x; v, yL, yU)(x)�v
00(x) dx

�M�v
0(xM)� F �v(xF )�

Z L

0

w(x)�v(x)dx

+

Z L

0

Z

A

gc ��[d(x, y; yL, yU),rd(x, y; yL, yU)] dydz dx.

Here the expression of �� can be obtained from (2)

��[d(x, y; yL, yU),rd(x, y; yL, yU)]

=
d(x, y; yL, yU) �d(x, y; yL, yU)

`
+ `�|rd(x, y; yL, yU)|2.

With (9), �d and �|rd|2 are given by

�d(x, y; yL, yU) =
1

2
S
0[⇠L(x, y)] �yL(x)�

1

2
S
0[⇠U(x, y)] �yU(x)

�|rd(x, y; yL, yU)|2 =
2

`2
�

⇢
S
0[⇠L(x, y)]

dyL

dx
� S

0[⇠U(x, y)]
dyU

dx

�2

+
2

`2
� {S 0[⇠L(x, y)]� S

0[⇠U(x, y)]}2 ,
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which can be made explicit in terms of d(�yL)/dx and d(�yU)/dx by using

�S
(m)[⇠L(x, y)] = �

2

`
S
(m+1)[⇠L(x, y)]

d�yL

dx
,

and the corresponding formula for yU , where S(m) denotes the mth derivative
of S.

On the other hand, from (11),

�I(x; v, yL, yU) =

Z

A(x)

[y � yna(x)]
2
�⇣[d,(x), y, yna(x)] dydz,

where �⇣[d,, y, yna] is given by

�⇣[d,, y, yna] = �2(1� d)H[�(y � yna)] �d(x, y; yL, yU), a.e. (A.1)

Note that by stating a.e. (almost everywhere) in (A.1) we have left out
the expressions for the case of y = yna, since they will be always multiplying
(y � yna) in the expressions of �I.

First variation of yna. As stated in Section 3.4, we can either treat yna as
dependent on the other fields, and determine it from (10) as needed. Alterna-
tively, we can also treat yna as an independent field. For the latter case, the
first variation of yna(x) is given by taking the first variation of (10), which
yields

�yna(x) =

R
A(x)[y � yna(x)]�⇣[d,(x), y, yna(x)] dAR

A(x) ⇣[d,(x), y, yna(x)] dA
.
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