
Demystifying Content-blockers: A Large-scale
Study of Actual Performance Gains

Ismael Castell-Uroz
Universitat Politècnica de Catalunya

Barcelona, Spain
icastell@ac.upc.edu

Josep Solé-Pareta
Universitat Politècnica de Catalunya

Barcelona, Spain
pareta@ac.upc.edu

Pere Barlet-Ros
Universitat Politècnica de Catalunya

Barcelona, Spain
pbarlet@ac.upc.edu

Abstract—With the evolution of the online advertisement and
tracking ecosystem, content-filtering has become the reference
tool for improving the security, privacy and browsing experience
when surfing the Internet. It is also commonly believed that using
content-blockers to stop unsolicited content decreases the time
needed for loading websites. In this work, we perform a large-
scale study with the 100K most popular websites on the actual
performance improvements of using content-blockers. We focus
our study on two relevant metrics for measuring the browsing
performance; page size and loading time. Our results show that
using such tools results in small improvements in terms of page
size but, contrary to popular belief, it has a negligible impact in
terms of loading time. We also find that, in the case of small and
lightweight websites, the use of content-blockers can even result
in increased loading times.

Index Terms—Content-filtering, adblock, advertisement, web
tracking, performance, page size, loading time

I. INTRODUCTION

The use of content-filtering tools has seen an exponential
increase since the initial development of AdBlock Plus [1]
in 2005, one of the most popular and widely used adblock-
ers. As recently shown in [2], one of the main motivations
to use content-filtering systems is to improve the browsing
experience. Almost one third of the users that install a
blocking system do it to increase the browsing performance.
Blocking advertisements and tracking systems is believed to
significantly reduce the bandwidth used, improving the website
loading time and, thus, the overall browsing experience.

In this paper, we present a comprehensive study of the ad-
vertisement and tracking ecosystem with special emphasis on
the performance gains resulting from using content-blockers
when surfing the Internet. Some previous works have analyzed
and compared the effectiveness of existing content-blockers
in terms of blocking accuracy [3]–[6]. However, very few of
them [7], [8] have tried to analyze their impact in terms of
browsing performance. To the best of our knowledge, this is
the first work to evaluate the actual performance improvements
of different content-blockers in terms of latency and bandwidth
with a large and diverse set of websites.

In particular, we measure the loading time and page size
when visiting the top 100K sites according to the Alexa
list [9]. We compare three different blocking approaches;
advertisement blocking, tracker blocking and generic content
blocking. For this purpose, we developed an open-source

highly parallel network measurement system [10] that loads
every website using one of the most relevant content-blockers
of each category and compares their performance.

We found that, although we can observe some improvements
in terms of effective page size, the results do not directly
translate to gains in loading time. In some cases, there could
even be an overhead to be paid. This is the case for two of the
studied plugins, especially in small and fast loading websites.
The measurement system and methodology proposed in this
paper can also be useful for network and service administrators
to evaluate the web performance observed by their users.

The rest of the paper is organized as follows. Section II
provides the necessary background as well as the related work.
Section III describes the methodology used to collect the data
and perform the experiments. Section IV presents and analyzes
the results in terms of page size and loading time. Lastly,
Section V concludes the paper and discusses the future work.

II. BACKGROUND AND RELATED WORK

A. Background

Advertisements have been used as a way to get benefits
from online resources since the foundation of the Internet. At
first, owners tried to add some advertisements to monetize
each site. Soon, the difficulty to attract user attention became
relevant [11]. To be able to stand out in such an environment,
companies started to use pop-ups and other intrusive methods
to reach their users. Lohtia et al. [12] studied the impact
of those methods on advertisement performance and user
perception. Such an environment became a nuisance for some
of the users, being the main motivation for the creation of the
first adblockers, a browser content-filtering plugin that tries
to block all the advertisement being shown in a website.

With the evolution of the Internet companies started to use
profiling mechanisms (e.g. HTTP cookies) over their users to
perform targeted advertisement campaigns and to support their
services. These primal web tracking techniques were more or
less harmless and very simple to avoid. Nowadays companies
use much more complex techniques (e.g. fingerprints, super-
cookies), collecting data not only from their own sites but from
other apparently non-related websites (third-party trackers).
This permits to extremely refine the information collected
about the opinions and preferences of their users. In [13]

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. DOI: 10.23919/CNSM50824.2020.9269094



Bujlow et al. show a summary of the different mechanisms
that can be used to track users and correlate their information.

Online tracking has raised serious privacy and surveillance
concerns. Consequently, a new method of content-filtering
appeared; tracking blockers. These plugins try to do the
same than adblockers do with advertisements but with the
tracking systems included in websites. Usually both of them,
adblockers and tracking blockers, use custom databases or
filter lists to distinguish between safe and non-safe content.
Two of the most important filter lists are EasyList [14]
and EasyPrivacy [15], each one of them dedicated to block
advertisements and tracking methods respectively. These lists
are maintained by the community and used by some of the
most popular content-filtering extensions on the market.

Since advertisement blocking and tracking blocking are
very similar, adblockers started to introduce at some level the
possibility to also block web tracking mechanisms. Note that
many online publishers have become part of the acceptable ads
program [16], which allows them to avoid being blocked by
some of the adblockers if their advertisements follow specific
guidelines that ensure them to be less intrusive.

Recently, a new type of content-filtering is gaining traction;
the generic content blocker. This blocker category tries
to intercept not only advertisements and trackers, but other
unneeded resources or security threats that could be detected
in the website loading process, like for instance Cross-Site
Scripting (XSS).

B. Related work

Krishnamurthy et al. [3] was one of the first to study the
impact of adblockers and other privacy protection mechanisms
in web browsing. The study included measurements of the
impact on page functionality and quality when using such
protection mechanisms. In [5] Wills et al. makes a comparison
between a set of adblockers and tracker-blockers, studying the
success rate of their methods to block the content of different
third-party trackers. Mazel et al. [4] compares 14 different
tracking protection measures, including content-filtering plu-
gins as well as other approaches like javascript blockers or
machine-learning based blockers. The comparison is not only
done for blocked content but on the differences between the
discovered content and their impact in website usability.

Pujol et al. [17] studied the usage of adblockers in a
European ISP and found that 22% of the most active users
used an adblocker. Malloy et al. [18] measured the percentage
of adblockers users in the U.S. and inferred that about 18%
was using it. The constantly increasing adoption rate and lose
of revenues made online publishers to start using different
techniques to try to bypass adblockers. In [19] Iqbal et al.
studied the anti-adblocking ecosystem and found it to be
continuously increasing.

In [20] Lerner et al. studied the prevalence of tracking
methods over the Internet. Also studied it’s increase over time
using the Wayback Machine. They found that almost 70% of
websites use some type of tracker, enforcing the use of privacy
protections like trackers blockers.

From the user’s perspective there are different reasons to
use a content-filtering plugin. Mathur et al. [2] studied the
different content-filtering group adoption (adblocker, tracker
blocker or general content blocker) as well as the different and
common motivations to use all of them. They found adblockers
to be the most prevalent blocker system (51.2%), with general
content blocker next (20.5%) and tracker blocker in the last
position (8.4%). The primary reason to use an adblocker or a
general content blocker (the two most adopted solutions) was
to improve the user experience (85-89%), and between the
most common given motivations was speedup loading times
with a 33.1% of acceptance. Other reasons were to improve
privacy (mainly by means of tracker blockers) and only a small
percentage used blockers to improve security.

In this paper, we analyze whether there is an actual improve-
ment in browsing performance when using content-filtering
tools, as one third of the plugin users seem to think. To the best
of our knowledge, there are only two previous works that tried
to address similar questions [7], [8]. Traverso et al. explored
in [8] the protection and performance improvement using an
adblocker with a population of only 100 websites (most of
them belonging to the same country). In [7], Newman et al.
used Amazon Mechanical Turk [21] to study the relationship
between loading time and quality of experience with a set of
1000 users, who analyzed a sample of 10 pages each from an
overall population of 965 web pages. In contrast, we show
(Section IV-B) that the actual impact of using a content-
blocker on page loading times is negligible in most cases with
a sample of 100K websites.

III. METHODOLOGY AND EVALUATION

To explore the performance gain introduced by content-
filtering plugins we will explore the principal parameters that
can represent an increase in the overall browsing performance;
effective page size and loading time. To be able to generalize
our results we have to accomplish several conditions.

A Test population: The number of websites to browse has
to be big enough to be able to extrapolate the results to
a bigger population, and the selected websites should be
representative enough of an usual browsing session.

B Browsing experience: The website has to be loaded with
each content-filtering plugin exactly as it would be done
if accessed by a real user. This will avoid websites to
detect automation scripts that would possibly make them
not to load all the resources.

C Loading interval restrictions: The same website loading
process using different content-filtering plugins should be
performed in a small time window to avoid whenever
possible different temporal conditions (e.g. rush hours,
periodic maintenance, etc).

D Experiments repetition: The number of repetitions
should allow us to discard possible non-reliable values,
especially in loading time experiments, where external
conditions can change from one execution to another.



E Browsing completion: We have to measure all the re-
sources being loaded, even third-party ones or resources
loaded dynamically and not included in the website code.

A. Test population

For the test population we decided to use the top 100K most
popular websites according to the Alexa list [9]. Scraping the
most popular websites give us a good approximation of what
a real user would access. Alexa’s list is part of the Amazon
ecosystem and has been used in several publications in the past
(e.g. [3], [22]). Note that we only examine the homepages of
each one of the websites included in the list but none of the
links and external resources available within them.

B. Browsing Experience

We developed our own highly parallelized system making
use of Selenium [23] for the automation process. This allows
us to run real browsers such as Mozilla Firefox or Google
Chrome that will present identical results to those a user
would normally get. This also permits us to customize all
the experiments using browser settings and network headers.
Selenium has been used in the past for automation of research
experiments in several different topics (e.g. [22], [24]).

The experiments are done browsing the 100K websites
using one plugin from each group presented in Section II-A;
AdBlock Plus (version 3.5.2) as an adblocker, Ghostery
(version 8.4) as a tracker blocker and uBlock Origin (version
1.19.6) as a generic content blocker. All of them have versions
available for the most common internet browsers like Google
Chrome or Mozilla Firefox.

AdBlock Plus is by far the most popular adblocker in
the market. It uses a combination of the EasyList [14] and
EasyPrivacy [15] pattern lists to block both, advertisements
and tracking systems (EasyPrivacy is disabled by default). Ad-
Block Plus is a supporter of the acceptable ads program [16],
allowing advertisements if they follow specific guidelines.

Ghostery was initially developed as a tracker blocker, but
evolved into a combination of adblocker and tracker blocker.
Unlike AdBlock Plus, Ghostery uses its own maintained
database to decide whether to block a content or not. It also
has its own monetizing program different from the acceptable
ads program. Instead permitting some advertisements to pass
through, Ghostery blocks all the original advertisements but
introduces some of their own non-intrusive advertisements.

Lastly, uBlock Origin is one of the most used generic
content-blockers in the web. Its functionality is very similar
to AdBlock Plus, using the same EasyList and EasyPrivacy
lists as the main method to discard content from the web.
Unlike AdBlock Plus, uBlock Origin does not permit any kind
of advertisement and blocks also other nuisances and privacy
threats like Cross Site Scripting (XSS) loaded resources. To
this end, it uses a combination of several different additional
pattern lists. A summary of the differences between them is
shown in Table I.

We decided to use Chromium (version 76.0.3809.100), the
open-source version of Google Chrome, as the base live to

TABLE I
CONTENT-FILTERING PLUGINS COMPARISON

AdBlock Plus Ghostery uBlock Origin
Ads blocking # # #
Allow some ads # # –
Track blocking 4 # #
EasyList # – #
EasyPrivacy Available – #
Others – Private Database Additional lists

compare all the observed information. Firefox was also tested
executing some experiments using a small data set. we found
performance to be almost equivalent. However, Firefox does
not provide an easy way to parse all the resources being loaded
by a website, forcing us to develop our own DOM parser to
search for embedded resources. Thus, we opted for Chromium
as it permits us to easily get information about all the network
communications being performed.

Regarding the plugins, we decided to use the default settings
for all of them, as usually users do not change them after
installation. Note that in AdBlock Plus the acceptable ads
program list is enabled by default and we leave it this
way. The only modification introduced is adding EasyPrivacy
subscription to AdBlock Plus. We have two main reasons for
those decisions. First, we want to test the three plugins in equal
conditions, blocking both advertisements and web tracking
mechanisms. Secondly, as observed in [17], AdBlock Plus
users usually activate EasyPrivacy list even if it is disabled
by default, but do not disable the acceptable ads program.

All the experiments where executed in a server operating an
Ubuntu 16.04 LTS over an Intel Xeon E5-2697 (18 cores, 36
threads) and 32GB of memory. The network connection used
pertains to a high speed academic network from Spain. We
found memory to be the limiting factor as the average CPU
and network usage was consistently below 50%.

C. Loading interval restrictions

Specially for loading time experiments we have to assure
that the measures are taken for all the plugins in a short period
of time, to avoid changing network conditions. Our developed
system opens the same website with 4 different browsers in
parallel, three of them loading the corresponding plugin and
the last one with a vanilla browser.

D. Experiments repetition

Our page size experiments compute the effective page size,
including the size of all the files loaded by the website. To
this end, it is enough to scrap the resources being loaded by
the browser once for each of the content-filtering plugins, and
once more using a vanilla. This gives us enough information
to compare the size improvement using each of the plugins.

For the loading time experiments the same website is
opened in parallel by the four browsers 5 times consecutively,
having a timeout setting of 30 seconds, usually bigger enough
to load all the resources given the network characteristics.
Between each repetition the browsing cache as well as the
cookies are deleted to obtain a clear browsing experience.



TABLE II
PERFORMANCE TIMING API

Grouping Event Stage
startTime
unloadEventStart
unloadEventEnd

Prompt for unload

redirectStart
redirectEnd Redirect

fetchStart AppCache
domainLookupStart
domainLookupEnd DNS

connectStart
secureConnectionStart
connectEnd

TCP

requestStart
responseStart Request

responseEnd Response
domInteractive
domContentLoadedEventStart
domContentLoadedEventEndR

eq
ue

st
tim

e

domComplete

Processing

loadEventStart

To
ta

l
lo

ad
in

g
tim

e

loadEventEnd Load

On top of that, if one of the browsers is unable to get 5
measures of the same website (e.g. network issues, hardware
issues, server miss-configurations, server performance issues),
all the measures are discarded, as it is not possible to compare
them reliably. To avoid interference from external network
circumstances we have discarded noisy samples where the 5
taken measures differed significantly using the interquartile
range measure. This permitted us to discard non-reliable
samples (0.66%) due to excessive changes in network condi-
tions during the measurements. This methodology makes the
system robust against the dynamic nature of the website. If
the included dynamic content always slows down the loading
process it is already considered in our measurements. On the
contrary, if there are only punctual issues, it will be discarded
by the interquartile range deviation. We have computed the
average for the rest of the 5 observations to obtain an ap-
proximation of the loading latency of each website. With this
system, from the initial population of 100K websites we ended
up scrapping successfully a total of 80.974 websites. All the
measures were taken in the period May-July of 2019. The
resulting dataset is publicly available at [25].

E. Browsing completion

Nowadays most websites include script files that load re-
sources dynamically. Moreover, almost all of them are ob-
fuscated or minifyed; a process that tries to reduce the size
of the script files and improve the loading time by removing
white-spaces, break-lines and shortening the names of the
variables. This prevents to get a list of the resources being
downloaded exploring the code in the traditional way. To solve
it we make use of Google’s DevTools Protocol to get access to
all the resources included inside the network communications
executed by the browser. We do it by enabling the logging

Fig. 1. Page size distribution (CDF)

capabilities of the browser and extracting the information
directly from the on-memory network logs in real time.

As for the loading time metrics, we use the Performance
Timing API [26], defined by the W3C and supported by the
majority of the current browsers, to extract the information
of all the loading events each website produces. In Table II
it is shown the events produced by the Performance Timing
API in execution order when a website loads. Using the time
difference between those events we can compute different
measures. The total loading time collects all the process
including the time to unload the current website as well as
the time spent in redirections. As we only want to account the
time difference between loading the website with and without
content-filtering plugin, we will be focusing our experiments
computing the request time, between the requestStart event
and the domComplete event. The request time gives us the total
loading time from the point when the browser makes the actual
request until it loads all the needed resources. In this way,
we avoid accounting undesired variability like the time spent
unloading the previous website, process mainly dependent on
the computer CPU speed and memory.

IV. RESULTS

A. Page size comparison

In this section, we analyze the website loading performance,
when using different content-filtering tools, in terms of the
effective page size once loaded all its resources. This includes
not only the resources loaded by the website itself, but also the
dynamic content loaded from third-party domains called inside
it. Intuitively, a vanilla browser will load all the resources
included in the website, while a browser with a content-blocker
will only load those that are not being blocked. Note that many
websites include dynamic content that can differ each time the
website is loaded. Moreover, some content embedded in the
website can only be filtered once already downloaded, not
incurring in size savings.

Fig. 1 shows the cumulative distribution function (CDF)
comparing the effective page size needed for loading the top
100K most popular websites. At first sight, we can see the
minimal difference between the three content-blockers. All of
them present almost the same distribution, resulting in a small
size improvement over the vanilla browser (10% to 20%).



Fig. 2. Size improvement/Page size

Fig. 3. Page size gain

Fig. 3 plots the absolute page size improvement, computed
as the difference in megabytes with the original size of the
website and all its resources. AdBlock Plus and Ghostery
follow almost the same distribution, while uBlock Origin
shows a slight improvement compared to the other tools. Note
that not all websites benefit from using a content-blocker.
There are between 10% and 20% of websites where the
performance decreases when using it.

To explore these results further, we analyzed the relationship
between the effective size gains and the total size in Fig. 2. As
websites smaller than 4 megabytes represent more than 80%
of the total population (Fig. 1), the page size is depicted in
logarithmic scale. Positive values correspond to the average
improvement obtained by the subset of websites where the
use of a content-blocker results in size savings. For instance,
the first interval corresponding to websites of only a few
kilobytes, shows an average improvement of 60% for the
subset of websites that have a page size improvement. On the
contrary, negative values represent the average overhead for
those websites where the use of a content-blocker results in
an increase of the total size of the website. Note that, as shown
in Fig. 3, the percentage of websites that benefit from using a
content-blocker (80%-90%) is much larger than those where it
introduces an overhead (10%-20%). Consequently the number
of instances with negative values is much smaller than the
instances with positive values. This is also reflected as bigger
interval errors present within the negative averages.

Fig. 2 shows a clear relationship between total page size and
size improvement. This is not unexpected because every major

Fig. 4. Request time

advertisement engine imposes some policies defining not only
the type of advertisements, but also limiting the placement and
number of advertisements visible per site. Consequently, for
usual websites using only one or two of those engines there is
an upper bound to the total size to be used for advertisements.
This upper bound is comparatively larger for small websites
than for larger websites, where the size improvement obtained
blocking the ads will result in lower size improvements.

B. Loading time comparison

Another metric that has an important impact on the brows-
ing performance is the time needed to load a website. If
introducing a content-filtering plugin represents an important
decrease in loading time, users can benefit not only from the
privacy and security benefits brought by such plugin, but also
from increased browsing speeds.

The loading time distribution resulting from our population
of 100K websites is shown in Fig. 4. Approximately 90%
of the websites have a loading time lower than 5 seconds,
being also this range the one that benefits more from using
a content-blocker. Nevertheless, as in the case of page size,
the difference is very small, with only 174 milliseconds of
average gain. Note that the curve presented by AdBlock Plus
is almost equal to the one of the vanilla browser.

Fig. 6 plots the CDF with the loading time improvement
in seconds for each of the three content-filtering plugins.
Unlike in the page size experiments, we can clearly see a
difference between the three of them. Ghostery and uBlock
Origin present an improvement in almost 50% of the websites,



Fig. 5. Improvement distribution

Fig. 6. Loading time improvement

and a loading time increase in a small percentage. In contrast,
AdBlock Plus improves the loading time in only about 30%
of the websites, but degrades it in almost 50% of them.

To study this performance penalty, we computed the average
improvement as a function of the total loading time of the
website. Fig. 5 shows the results for each content-blocker. In
the first column (less than 1 second), we can see that both
Ghostery (-7%) and AdBlock Plus (-13%) introduce a decrease
of performance. In the case of AdBlock Plus, this overhead
is still present in the range between 1 and 2 seconds. Even
uBlock Origin, while not suffering this performance penalty,
experiments only a small improvement in the 1 second interval.

Considering the percentage of websites that load faster
than 2 seconds (Fig. 4), we can observe that using one
of the two firsts content-filtering plugins, increases loading
time in more than half of the explored websites. This fact
initially contradicts the usual assumption that using a content-
filtering plugin improves the performance of the browsing
session. Overall, thanks to slow loading websites, AdBlock
Plus presents an average improvement of 53 milliseconds,
while Ghostery and uBlock Origin have an average loading
time improvement of 207 and 263 milliseconds, respectively.

Content-filtering plugins inherently introduce an overhead
to check in real time the resources being acquired by the
browser. Thus, their usage will only represent an improvement
in loading time if the time reduction gained by blocking
some resources is higher than the time spent by the plugin
checking all of them. Our results show that for very fast

loading websites the overhead introduced by the plugin itself is
not negligible. The main difference between the three explored
plugins lies on their advertisement management engine. While
uBlock Origin automatically blocks any type of content that
matches its pattern lists, Ghostery and AdBlock Plus allow
some advertisements to be shown to the user.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented the results of a comprehensive
measurement study that analyzes the actual performance gains
of using content-filtering plugins in terms of page size and
loading time. Contrary to common belief, our results show
that the improvements in terms of effective page size are small,
while speed ups in page loading times are almost negligible.

Regarding the relative performance among the analyzed
tools, we observed slight gain margins in both, page size
and loading time, for uBlock Origin against AdBlock Plus and
Ghostery. Moreover, we discovered interesting differences in
terms of loading time, where Ghostery and specially AdBlock
Plus introduced an overhead for fast-loading websites.

Based on our results, we can conclude that the use of
content-filtering plugins for performance reasons can still be
useful for slow connections with limited bandwidth, where
page size gains of about 10% can make a difference. This
could be of special importance on itinerant devices where the
volume of data downloaded can incur additional charges. On
the contrary, for normal connections where the throughput is
not a barrier an average loading time improvement between
50s and 250 milliseconds does not represent a fundamental
performance improvement.

As a future work, we plan to characterize the loading and
access times depending on the source and destination of the
connections, looking for differences between countries and
website content type. We also plan to investigate the content-
blocker performance in the mobile environment, where loading
time, and especially the page size can have a big impact.

The data set collected for this study has been made publicly
available at [25].

VI. ACKNOWLEDGMENTS

This work was supported by the Spanish MINECO under
contract TEC2017-90034-C2-1-R (ALLIANCE).



REFERENCES

[1] AdBlock Plus, “Adblock Plus,” vol. https://adblockplus.org/en/.
[2] A. Mathur, J. Vitak, A. Narayanan, and M. Chetty, “Characterizing

the Use of Browser-Based Blocking Extensions To Prevent Online
Tracking,” vol. Fourteenth Symposium on Usable Privacy and Security
(SOUPS 2018), pp. 103–116, USENIX Association, 2018.

[3] B. Krishnamurthy, D. Malandrino, and C. E. Wills, “Measuring privacy
loss and the impact of privacy protection in web browsing,” in Proceed-
ings of the 3rd symposium on Usable privacy and security, SOUPS ’07,
(Pittsburgh, Pennsylvania, USA), pp. 52–63, Association for Computing
Machinery, July 2007.

[4] J. Mazel, R. Garnier, and K. Fukuda, “A comparison of web privacy
protection techniques,” Computer Communications, vol. 144, pp. 162–
174, Aug. 2019.

[5] C. E. Wills and D. C. Uzunoglu, “What Ad Blockers Are (and Are Not)
Doing,” in 2016 Fourth IEEE Workshop on Hot Topics in Web Systems
and Technologies (HotWeb), pp. 72–77, Oct. 2016.

[6] A. Gervais, A. Filios, V. Lenders, and S. Capkun, “Quantifying Web
Adblocker Privacy,” in Computer Security – ESORICS 2017 (S. N.
Foley, D. Gollmann, and E. Snekkenes, eds.), Lecture Notes in Computer
Science, (Cham), pp. 21–42, Springer International Publishing, 2017.

[7] J. Newman and F. E. Bustamante, “The Value of First Impressions,” in
Passive and Active Measurement (D. Choffnes and M. Barcellos, eds.),
Lecture Notes in Computer Science, (Cham), pp. 273–285, Springer
International Publishing, 2019.

[8] S. Traverso, M. Trevisan, L. Giannantoni, M. Mellia, and H. Metwalley,
“Benchmark and comparison of tracker-blockers: Should you trust
them?,” in 2017 Network Traffic Measurement and Analysis Conference
(TMA), pp. 1–9, June 2017.

[9] K. Cooper, “Alexa: Most popular website list,” https://www.alexa.com/.
[10] I. Castell-Uroz, J. Solé-Pareta, and P. Barlet-Ros, “Network measure-

ments for web tracking analysis and detection: A tutorial,” IEEE Instru-
mentation & Measurement Magazine, vol. Special Issue ”Measurements
for Advanced Networking & Networks for Advanced Measurements”,
In press.

[11] S. Krishnamurthy, “Deciphering the Internet Advertising Puzzle,”
SSRN Scholarly Paper ID 651842, Social Science Research Network,
Rochester, NY, Jan. 2005.

[12] R. Lothia, N. Donthu, and E. K. Hershberger, “The Impact Of Content
And Design Elements On Banner Advertising Click-Through Rates,”
Journal of Advertising Research, vol. 43, pp. 410–418, Dec. 2003.

[13] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros, “A
Survey on Web Tracking: Mechanisms, Implications, and Defenses,”
Proceedings of the IEEE, vol. 105, pp. 1476–1510, Aug. 2017.

[14] “EasyList,” https://easylist.to/.
[15] “EasyPrivacy,” vol. https://easylist.to/easylist/easyprivacy.txt.
[16] Acceptable Ads, “Acceptable Ads,” vol. https://acceptableads.com/.
[17] E. Pujol, O. Hohlfeld, and A. Feldmann, “Annoyed Users: Ads and Ad-

Block Usage in the Wild,” in Proceedings of the 2015 Internet Measure-
ment Conference, IMC ’15, (Tokyo, Japan), pp. 93–106, Association for
Computing Machinery, Oct. 2015.

[18] M. Malloy, M. McNamara, A. Cahn, and P. Barford, “Ad Blockers:
Global Prevalence and Impact,” in Proceedings of the 2016 Internet
Measurement Conference, IMC ’16, (Santa Monica, California, USA),
pp. 119–125, Association for Computing Machinery, Nov. 2016.

[19] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: retrospective mea-
surement and analysis of anti-adblock filter lists,” in Proceedings of
the 2017 Internet Measurement Conference, IMC ’17, (London, United
Kingdom), pp. 171–183, Association for Computing Machinery, Nov.
2017.

[20] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet Jones
and the Raiders of the Lost Trackers: An Archaeological Study of Web
Tracking from 1996 to 2016,” vol. 25th USENIX Security Symposium
(USENIX Security 16), USENIX Association, 2016.

[21] Amazon Turk, “Amazon Mechanical Turk,” https://www.mturk.com/.
[22] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site

Measurement and Analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, (Vi-
enna, Austria), pp. 1388–1401, Association for Computing Machinery,
Oct. 2016.

[23] Jason Huggins, “SeleniumHQ Browser Automation,”
https://www.selenium.dev/.

[24] M. Ikram, H. J. Asghar, M. A. Kaafar, A. Mahanti, and B. Krishna-
murthy, “Towards Seamless Tracking-Free Web: Improved Detection of
Trackers via One-class Learning,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, pp. 79–99, Jan. 2017.

[25] ORM, “Online resource mapper,” https://github.com/CBA-UPC/ORM,
Feb. 2020.

[26] W3C, “Navigation timing,” https://www.w3.org/TR/navigation-timing-2/.


